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Abstract: The study of the interconnections between chemical systems is known as chemical graph
theory. Through the use of star graphs, a limited group of researchers has examined the space of
possible solutions for boundary-value problems. They recognized that for their strategy to function,
they needed a core node related to other nodes but not to itself; as a result, they opted to use
star graphs. In this sense, the graphs of neopentane will be helpful in extending the scope of our
technique. It has the CAS number 463-82-1 and the chemical formula C5H12, and it is a component
of a petrochemical precursor. In order to determine whether or not the suggested boundary-value
problems on these graphs have any known solutions, we use the theorems developed by Schaefer
and Krasnoselskii on fixed points. In addition, we illustrate our preliminary results with the help of
an example that we present.
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1. Introduction

Mathematical applications have proliferated in the twenty-first century. When quan-
tum chemistry emerged in the 1920s, it left a trail of several mathematical specialties
chemists felt compelled to understand. These included calculus and various branches of
linear algebra, including matrix and group theories. Group theory is often used in fields
such as crystallography and molecular structure analysis since it has gained widespread
acceptance among chemists. However, graph theory is being used in a number of fields,
including categorizing, systematization, enumeration, and construction of chemical interest
systems.

We have reached a stage where we believe that it is appropriate to say that, due to the
applications of mathematics that have been developed in the chemical world, mathematics
plays an essential role in contemporary chemistry. We believe that the era of the 1990s
represents a precious time to present excessive applications of the varied directions of
mathematics to chemistry. In order to distinguish the subject that is concerned with the
unique and challenging application of mathematics to chemistry, the phrase “mathematical
chemistry” was first used in the early 1980s. As is customary in this field, we can broadly
define chemistry to cover the classic areas of inorganic, organic, and physical chemistry
and its hybrid descendants, including chemical physics and biochemistry.

The contemporary landscape of chemical theory is primarily built around fundamen-
tally graph-theoretical premises. Today, all of the main fields of chemistry employ chemical
graphs for various reasons. The history of the first implicit use of the graph theory is of
significant relevance given the current extensive use of the chemical graph. The second
part of the eighteenth century saw the invention of chemical diagrams. It will be essential
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to discuss the dominant viewpoints in nineteenth-century chemistry to comprehend their
necessity at the time and the conditions of their entrance into the chemical literature.

The Scottish scientist William Cullen designed the first chemical graphs that were
easily identifiable as such. To illustrate the alleged forces that exist between pairs of
molecules undergoing different chemical reactions, Cullen began using so-called “affinity
diagrams” in his lectures in 1758. Sadly, none of these diagrams were ever published and
they were instead just used to illustrate his chemistry lecture notes (see [1]). Similar images
to Cullen’s were subsequently posted by Black, who claimed erroneously to have originated
them (see [2]); by the end of the eighteenth century, similar diagrams were prevalent in
British chemistry textbooks. Figure 1 displays copies of two Cullen-attributed surviving
schematics.

Figure 1. Examples of the earliest chemical graphs Cullen and Black developed to depict chemical
interactions in 1758.

The goal of using graph theory in chemical graph theory is to characterize molecules
in order to investigate their many different physical properties. A set Θ of vertices (or
nodes) and a set Ξ of unordered pairings of various components of Θ that create the edges
make up the components of a graph denoted by the equation G = (Θ, Ξ). In chemistry, the
atoms that make up a molecule are represented by the vertices of the structure, while the
edges show the chemical bonds.

On the other hand, recently, there has been significant theoretical and practical progress
in the area of differential equations (see, [3–9]). In the context of special functions, publica-
tions on fractional calculus focus mainly on the solution of differential equations (for detail,
see [10–17]). Recently, many new articles on nonlinear fractional differential equations
and their solutions employing approaches such as the Leray–Schauder theorem, stability
analysis, variational iteration methods, and fixed-point theory methods have been publicly
released (see [18–24] and references therein).

Lumer was the first to apply the principles of differential equation theory to graphs (for
details, see [25]). He studied extended evolution equations by altering stated operators on
implications spaces. In 1989, Zavgorodnij explored differential equations using a geometric
net (see [26]), with the recommended solutions to boundary value problems placed at
the inner vertices of the system. However, in [27], the authors used the double-sweep
technique, which they discovered to be more effective on graphs, to obtain numerical
solutions for differential equations.

Although only a tiny amount of work has been dedicated to the topic, using fixed
point theory approaches (see [28,29]), it has been proven that solutions exist for boundary
value issues involving star graphs (see Figure 2). One can see the most up-to-date research
in this area in which the authors use different types of graphs (i.e., ethane [30,31], glucose
[32], methylpropane [33], hexasilinane [34], cyclohexane [35], octane [36], etc.) and defined
the differential equations on their edges.
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Figure 2. An illustration of the star graph.

Neopentane graphs, which are more pliable than star graphs, were used here to
broaden this problem by utilizing the notion of neopentane graphs (see Figure 3).

Figure 3. An illustration of a neopentane molecule C5H12. framework.

Furthermore, the methods used in [28,29] are insufficient since, as compared to the
star graph, neopentane graphs have several junction points. As a robust approach, we use
an alternative method in which we assign integer values (0 or 1) to the vertices and edge
lengths |b̃τ | = 1 of the last graph (see Figure 4).
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Figure 4. Neopentane compound graph with vertices 0 or 1.

By utilizing the above idea, here, we consider the following system, which is stated
for each τ = 1, 2, . . . , 25 by

Drzτ(s) =Wτ(s, zτ(s),Dqzτ(s), z′τ(s)) (s ∈ [0, 1]),

zτ(0) = Dr−1zτ(1), `1z′τ(0) + `2z′τ(1) = `3

∫ a

0
Dr−1zτ(θ)dθ,

(1)

where zτ : [0, 1]→ ∞ is an unknown function, `k(k = 1, 2, 3) ∈ R with `k 6= 0, a ∈ (0, 1), Dr

and Dq are the Caputo fractional derivative of orders 1 < r ≤ 2 and q ∈ (0, 1), respectively.
Moreover, Wτ : [0, 1]×R×R×R → R is a given continuously differentiable function,
where τ = 16 is the neopentane graph’s vertex count with |b̃τ | = 1.

We want to apply relevant fixed point theorems to establish the existence of workable
solutions to the Problem (1) at hand. Finally, we show how our findings fit into the larger
body of literature by providing a concrete example.

2. Preliminaries

We shall need the following results in the next sections.

Definition 1 ([37]). Let } > 0. The fractional derivative of Caputo forW ∈ Cχ[0,+∞) can be
defined as

D}W(s) =
1

Γ(χ− })

∫ s

0
(s− θ)χ−}−1W (χ)(θ)dθ (χ− 1 < } < χ),

where χ = [}] + 1 and Γ(·) is a gamma function.

For } > 0, the general solution of D}W(ν) = 0 is given as

W(ν) = $0 + $1ν + $2ν2 + · · ·+ $n−1νn−1.

Additionally,

I}D}W(ν) = z(ν) + $0 + $1ν + $2ν2 + · · ·+ $n−1νn−1,

where $k ∈ R, k = 0, 1, ..., n− 1 (n− 1 < } < n).
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Now, we will show the proof of the following lemma, which will be used in the latter
portion of the study.

Lemma 1. Suppose that φ ∈ C([0, 1],R). Then, z? : [0, 1] → R is a solution of the subsequent
system 

Drz(s) = φ(s) (s ∈ [0, 1]),

z(0) = Dr−1z(1), `1z′(0) + `2z′(1) = `3

∫ a

0
Dr−1z(θ)dθ,

(2)

iff z? is a solution for the equation stated below

z(s) =
∫ s

0

(s− θ)r−1

Γ(r)
φ(θ)dθ +

∫ 1

0
φ(θ)dθ

+

(
1

Γ(3− r)
+ s
)[

`3

A0

∫ a

0

∫ θ

0
φ(ζ)dζdθ − `2

A0

∫ 1

0

(1− θ)r−2

Γ(r− 1)
φ(θ)dθ

]
,

(3)

where

A0 =

[
`1 + `2 −

a3−r

Γ(4− r)

]
.

Proof. Assume that z? : [0, 1]→ R is a solution of (2). Thus, there are constants d,
0d1 ∈ R

such that

z?(s) =
∫ s

0

(s− θ)r−1

Γ(r)
φ(θ)dθ + d0 + d1s. (4)

We use the boundary conditions from (2) to achieve this goal. Therefore,

d1 =
1

A0

[
`3

∫ a

0

∫ θ

0
φ(ζ)dζdθ − `2

∫ 1

0

(1− θ)r−2

Γ(r− 1)
φ(θ)dθ

]
,

d0 =
∫ 1

0
φ(θ)dθ +

1
A0Γ(3− r)

[
`3

∫ a

0

∫ θ

0
φ(ζ)dζdθ − `2

∫ 1

0

(1− θ)r−2

Γ(r− 1)
φ(θ)dθ

]
.

A solution (3) is obtained by substituting the values of d0, d1 into (4). If z? is a solution
of (3), then it follows that it is also a solution of (2).

The Schaefer and Krasnoselskii fixed point theorems are now provided.

Theorem 1 ([38]). Let Y be a Banach space. If A is completely continuous, then either A has at
least one fixed point or {z ∈ Y : z = bAz for some 0 < b < 1} is unbounded.

Theorem 2 ([38]). Let V be a nonempty, bounded, closed, and convex subset of Banach space Y and
the operators A1,A2 : V → Y with A1k +A2k′ ∈ V , ∀k, k′ ∈ V , A1 is compact and continuous
and A2 is a contraction map. Then, A1 +A2 has a fixed point.

3. Main Results

Define Ỹ = {z : [0, 1]→ R : z,Dqz, z′ ∈ C([0, 1],R)} as a Banach space with

‖z‖Ỹ = sup
s∈[0,1]

|z(s)|+ sup
s∈[0,1]

|Dqz(s)|+ sup
s∈[0,1]

∣∣z′(s)∣∣.
Hence, it can be clearly seen that Y = Ỹ16 is a Banach space with

‖z = (z1, z2, . . . , z16)‖Y =
16

∑
τ=1
‖zτ‖Ỹ .
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As addressing Lemma 1, for each (z1, z2, . . . , z16) ∈ Y , we introduce A : Y → Y by

A(z1, z2, . . . , z16) := (A1(z1, z2, . . . , z16),A2(z1, z2, . . . , z16), . . . ,A16(z1, z2, . . . , z16)), (5)

for each τ = 1, 2, . . . , 16 and (z1, z2, . . . , z16) ∈ Y , we define Aτ : Y → Ỹ by

Aτ(z1, z2, . . . , z16)(s) =
∫ s

0

(s− θ)r−1

Γ(r)
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ

+
∫ 1

0
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ +

(
1

Γ(3− r)
+ s
)
×[

`3

A0

∫ a

0

∫ θ

0
Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))dζdθ

− `2

A0

∫ 1

0

(1− θ)r−2

Γ(r− 1)
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ

]
, (6)

for all s ∈ [0, 1].
For the purpose of clarity, we will be performing all computations using the following

notation:

A0 =

[
`1 + `2 −

a3−r

Γ(4− r)

]
6= 0 (7)

A1 =

[
|`1|+ |`2|+

1
Γ(4− r)

]
6= 0 (8)

Y∗0 =
1

Γ(r + 1)
+ 1 +

1
A1

(
1

Γ(3− r)
+ 1
)(
|`3|
2

+
|`2|
Γ(r)

)
(9)

Y∗1 =
1

Γ(r− q + 1)
+

(
1

A1Γ(2− q)

)(
|`3|
2

+
|`2|
Γ(r)

)
(10)

Y∗2 =
1

Γ(r)
+

1
A1

(
|`3|
2

+
|`2|
Γ(r)

)
(11)

V∗0 = 1 +
1

A1

(
1

Γ(3− r)
+ 1
)(
|`3|
2

+
|`2|
Γ(r)

)
(12)

V∗1 =
1

A1Γ(2− q)

(
|`3|
2

+
|`2|
Γ(r)

)
(13)

V∗2 =
1

A1

(
|`3|
2

+
|`2|
Γ(r)

)
. (14)

Now, we will discuss the most important findings from this section.

Theorem 3. Consider the proposed Problem (1). Assume that W1,W2, . . . ,W16 : [0, 1] ×
R × R × R → R are continuous functions and there is Υτ > 0, ∀τ = 1, 2, . . . , 16 with
|Wτ(s, z, z̃, ˜̃z)| ≤ Υτ , ∀z, z̃, ˜̃z ∈ R and s ∈ [0, 1]. Then, there exists a solution to Problem (1).

Proof. The existence of the fixed points of A specified by (5) is a foregone conclusion if
and only if (1) has a solution, as implied by (6). Here, the complete continuity of operator
A’ is established first.
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As W1,W2, . . . ,W16 are continuous, so A : Y → Y is also continuous. Consider a
bounded set O ∈ Y and z = (z1, z2, . . . , z16) ∈ Y , so, for each s ∈ [0, 1], we have

|(Aτz)(s)| ≤
∫ s

0

(s− θ)r−1

Γ(r)
∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))

∣∣dθ

+
∫ 1

0

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3− r)
+ s
)
×
[
|`3|

∫ a

0

∫ θ

0
|Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))|dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

]
≤ ΥτY∗0 ,

where Y∗0 is given in (9). Additionally,

|(DqAτz)(s)| ≤
∫ s

0

(s− θ)r−q−1

Γ(r− q)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

+

(
s1−q

|A0|Γ(2− q)

)
×
[
|`3|

∫ a

0

∫ θ

0

∣∣Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))
∣∣dζdθ

+ |`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

]
≤ ΥτY∗1

and ∣∣(A′τz)(s)
∣∣ ≤ ∫ s

0

(s− θ)r−2

Γ(r− 1)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

+

(
1
|A0|

)
×
[
|`3|

∫ a

0

∫ θ

0

∣∣Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))
∣∣dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

]
≤ ΥτY∗2 ,

for all s ∈ [0, 1], where Y∗1 ,Y∗2 are given in (10) and (11), respectively. Therefore,

‖(Aτz)(s)‖Ỹ ≤ Υτ(Y∗0 + Y∗1 + Y∗2 ).

Hence,

‖(Az)(s)‖Y =
16

∑
τ=1
‖(Aτz)(s)‖Ỹ

≤
16

∑
τ=1

Υτ(Y∗0 + Y∗1 + Y∗2 )

< ∞.

This proves that there exists a uniform bound on A.
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The next step is to demonstrate the equicontinuity of A. For this purpose, let z =
(z1, z2, . . . , z16) ∈ O and s1, s2 ∈ [0, 1] with s1 < s2. Then, we have

|(Aτz)(s2)− (Aτz)(s1)| ≤
∫ s1

0

(s2 − θ)r−1 − (s1 − θ)r−1

Γ(r)
×

|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

+
∫ s2

s1

(s2 − θ)r−1

Γ(r)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

+

(
s2 − s1

|A0|

)
×
[
|`3|∫ a

0

∫ θ

0

∣∣Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))
∣∣dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

]
.

It is clear that if s1 → s2 then, independently, the RHS of the above expression
converges to zero. Moreover,

lim
s1→s2

|(DqAτz)(s2)− (DqAτz)(s1)| = 0, lim
s1→s2

∣∣(A′τz)(s2)− (A′τz)(s1)
∣∣ = 0.

For this reason, ‖(Az)(s2)− (Az)(s1)‖Y → 0 as s1 → s2. This shows that A is an
equicontinuous on Y = Y1 ×Y2 × · · · × Y16. For this reason, we know that the operator is
completely continuous because of the Arzela–Ascoli theorem.

Further, we define

Θ := {(z1, z2, . . . , z16) ∈ Y : (z1, z2, . . . , z16) = bA(z1, z2, . . . , z16), b ∈ (0, 1)}

ofY . We will demonstrate the boundedness property of Θ here. To this end, let (z1, z2, . . . , z16)
∈ Θ. Then, we can write

(z1, z2, . . . , z16) = bA(z1, z2, . . . , z16),

and so
zτ(s) = bAτ(z1, z2, . . . , z16), ∀s ∈ [0, 1], and τ = 1, 2, . . . , 16.

Thus,

|zτ(s)| ≤ b
[∫ s

0

(s− θ)r−1

Γ(r)
∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))

∣∣dθ

+
∫ 1

0

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3− r)
+ s
)
×
{
|`3|

∫ a

0

∫ θ

0

∣∣Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))
∣∣dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

}]
≤ bΥτY∗0 ,

and by similar computations, we obtain

|Dqzτ(s)| ≤ bΥτY∗1 ,∣∣z′τ(s)∣∣ ≤ bΥτY∗2 ,
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where Y∗0 −Y∗2 are given in (9)–(11). Hence,

‖z‖Y =
16

∑
τ=1
‖zτ‖Ỹ

≤ b
16

∑
τ=1

Υτ(Y∗0 + Y∗1 + Y∗2 )

< ∞.

It demonstrates that Θ is bounded. We now know that the operatorA has a fixed point
in Y by applying Theorem 1 and Lemma 1. This demonstrates that the problem described
in (1) has a solution.

We will now consider the solution to the Problem (1) under a variety of assumptions.

Theorem 4. Consider the proposed Problem (1). Suppose thatW1,W2, . . . ,W16 : [0, 1]×R×
R×R→ R are continuous functions and there are bounded continuous functions G1,G2, . . . ,G16 :
[0, 1]→ R, F1,F2, . . . ,F16 : [0, 1]→ [0, ∞) and nondecreasing continuous functions
M1,M2, . . . ,M16 : [0, 1]→ [0, ∞) with the properties

|Wτ(s, z, z̃, ˜̃z)| ≤ Fτ(s)Mτ(|z|+ |z̃|+ | ˜̃z|)

and

|Wτ(s, z1, z2, z3)−Wτ(s, z̃1, z̃2, z̃3)| ≤ Gτ(s)(|z1 − z̃1|+ |z2 − z̃2|+ |z3 − z̃3|)

∀s ∈ [0, 1], z1, z2, z3, z̃1, z̃2, z̃3 ∈ R and τ = 1, 2, . . . , 16. If

Λ := (V∗0 + V∗1 + V∗2 )
16

∑
τ=1
‖Gτ‖ < 1,

then (1) has a solution, where ‖Gτ‖ = sups∈[0,1]|Gτ(s)| and the constants V∗0 –V∗2 are defined
in (12)–(14), respectively.

Proof. Let ‖Fτ‖ = sups∈[0,1]|Fτ(s)| and for appropriate constants ετ , we have

ετ ≥
16

∑
τ=1
Mτ

(
‖zτ‖Yτ

)
‖Fτ‖{Y∗0 + Y∗1 + Y∗2 }, (15)

where Y∗0 −Y∗2 are defined in (9)–(11). Here, we introduce a set

Oετ :=
{

z = (z1, z2, . . . , z16) ∈ Y : ‖z‖Y ≤ ετ

}
,

where ετ can be seen in (15). Here, Oετ is obviously a closed, bounded, nonempty, and
convex subset of Y = Y1 ×Y2 × · · · × Y16. Now, we define A1 and A2 on Oετ by

A1(z1, z2, . . . , z16)(s) :=
(
A(1)

1 (z1, z2, . . . , z16)(s), . . . ,A(16)
1 (z1, z2, . . . , z16)(s)

)
,

A2(z1, z2, . . . , z16)(s) :=
(
A(1)

2 (z1, z2, . . . , z16)(s), . . . ,A(16)
2 (z1, z2, . . . , z16)(s)

)
,

where (
A(τ)

1 z
)
(s) =

∫ s

0

(s− θ)r−1

Γ(r)
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ (16)

and
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(
A(τ)

2 z
)
(s) =

∫ 1

0
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ

+
1

A0

(
1

Γ(3− r)
+ s
)[

`3

∫ a

0

∫ θ

0
Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))dζdθ

−`2

∫ 1

0

(1− θ)r−2

Γ(r− 1)
Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))dθ

]
(17)

for all s ∈ [0, 1] and z = (z1, z2, . . . , z16) ∈ Oετ .
Let M̃τ = supzτ∈Yτ

Mτ

(
‖zτ‖Yτ

)
. Now, for every z̃ = (z̃1, z̃2, . . . , z̃16),

z = (z1, z2, . . . , z16) ∈ Oετ , we have∣∣∣(A(τ)
1 z̃ +A(τ)

2 z
)
(s)
∣∣∣ ≤ ∫ s

0

(s− θ)r−1

Γ(r)
|Wτ(θ, z̃τ(θ),Dq z̃τ(θ), z̃′τ(θ))|dθ

+
∫ 1

0

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3− r)
+ s
)
× [|`3|∫ a

0

∫ θ

0

∣∣Wτ(ζ, zτ(ζ),Dqzτ(ζ), z′τ(ζ))
∣∣dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)

∣∣Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))
∣∣dθ

]
≤

∫ s

0

(s− θ)r−1

Γ(r)
Fτ(θ)Mτ

(
|z̃τ(θ)|+ |Dq z̃τ(θ)|+

∣∣z̃′τ(θ)∣∣)dθ

+
∫ 1

0
Fτ(θ)Mτ

(
|zτ(θ)|+ |Dqzτ(θ)|+

∣∣z′τ(θ)∣∣)dθ

+
1
|A0|

(
1

Γ(3− r)
+ s
)
×[

|`3|
∫ a

0

∫ θ

0
Fτ(ζ)Mτ

(
|zτ(ζ)|+ |Dqzτ(ζ)|+

∣∣z′τ(ζ)∣∣)dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)
×

Fτ(θ)Mτ

(
|zτ(θ)|+ |Dqzτ(θ)|+

∣∣z′τ(θ)∣∣)dθ
]

≤ ‖Fτ‖M̃τY∗0 .

By using similar computations, we obtain∣∣∣(DqA(τ)
1 z̃

)
(s) +

(
DqA(τ)

2 z
)
(s)
∣∣∣ ≤ ‖Fτ‖M̃τY∗1 ,

and ∣∣∣∣(A(τ)
1 z̃

)′
(s) +

(
A(τ)

2 z
)′
(s)
∣∣∣∣ ≤ ‖Fτ‖M̃τY∗2 .
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This yields that

‖A1z̃ +A2z‖Y =
16

∑
τ=1

∥∥∥A(τ)
1 z̃ +A(k)

2 z
∥∥∥
Ỹ

≤ ‖Fτ‖M̃τ(Y∗0 + Y∗1 + Y∗2 )
≤ ετ ,

and so A1z̃ +A2z ∈ Oετ . Furthermore, the continuity ofWτ refers A1’s continuity.
We will now prove that there exists a uniform bound on the expression A1. To this

end, we have∣∣∣(A(τ)
1 z

)
(s)
∣∣∣ ≤ ∫ s

0

(s− θ)r−1

Γ(r)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

≤ 1
Γ(r + 1)

‖Fτ‖Mτ

(
|zτ(θ)|+ |Dqzτ(θ)|+

∣∣z′τ(θ)∣∣).
for all z ∈ Oετ . Additionally,∣∣∣(DqA(τ)

1 z
)
(s)
∣∣∣ ≤ ∫ s

0

(s− θ)r−q−1

Γ(r− q)
|Wτ(θ, zτ(θ),Dqzτ(θ), z′τ(θ))|dθ

≤ 1
Γ(r− q + 1)

‖Fτ‖Mτ

(
|zτ(θ)|+ |Dqzτ(θ)|+

∣∣z′τ(θ)∣∣),
and ∣∣∣∣(A(τ)

1 z
)′
(s)
∣∣∣∣ ≤ 1

Γ(r)
‖Fτ‖Mτ

(
|zτ(θ)|+ |Dqzτ(θ)|+

∣∣z′τ(θ)∣∣),
for all z ∈ Oετ . Thus,

‖A1z‖Y =
16

∑
τ=1

∥∥∥A(τ)
1 z

∥∥∥
Ỹ

≤
{

r + 1
Γ(r + 1)

+
1

Γ(r− q + 1)

} 16

∑
τ=1
‖Fτ‖Mτ

(
‖zτ‖Yτ

)
,

which demonstrates the uniformly boundedness property of the operator A1 on Oετ .
Here, it remains for us to show the compactness of the operator A1 on Oετ . To this

end, let s1, s2 ∈ [0, 1] with s1 < s2. Then, we have∣∣∣(A(τ)
1 z

)
(s2)−

(
A(τ)

1 z
)
(s1)

∣∣∣ ≤ ∣∣∣∣∫ s2

0

(s2 − θ)r−1

Γ(r)
Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)
dθ

−
∫ s1

0

(s1 − θ)r−1

Γ(r)
Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)
dθ

∣∣∣∣
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≤
∣∣∣∣∫ s1

0

(s2 − θ)r−1 − (s1 − θ)r−1

Γ(r)
×

Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)
dθ
∣∣

+

∣∣∣∣∫ s2

s1

(s2 − θ)r−1

Γ(r)
Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)
dθ

∣∣∣∣
≤

∫ s1

0

(s2 − θ)r−1 − (s1 − θ)r−1

Γ(r)
×∣∣Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)∣∣dθ

+
∫ s2

s1

(s2 − θ)r−1

Γ(r)
∣∣Wτ

(
θ, zτ(θ),Dqzτ(θ), z′τ(θ)

)∣∣dθ

≤
{

sr
2 − sr

1 − (s2 − s1)
r

Γ(r + 1)
+

(s2 − s1)
r

Γ(r + 1)

}
×

‖Fτ‖Mτ

(
‖zτ‖Yτ

)
.

Hence,
∣∣∣(A(τ)

1 z
)
(s2)−

(
A(τ)

1 z
)
(s1)

∣∣∣→ 0 as s1 → s2. Additionally, we have

lim
s1→s2

∣∣∣(DqA(τ)
1 z

)
(s2)−

(
DqA(τ)

1 z
)
(s1)

∣∣∣ = 0,

lim
s1→s2

∣∣∣∣(A(τ)
1 z

)′
(s2)−

(
A(τ)

1 z
)′
(s1)

∣∣∣∣ = 0.

Hence, ‖(A1z)(s2)− (A1z)(s1)‖Y tends to zero as s1 → s2. As a result, the operator
A1 defined on Oετ is relatively compact since it is equicontinuous. By utilizing the results
proven by Arzela–Ascoli, we claim that the operator A1 is compact on Oετ .

In end, it still needs to be shown that A2 is a contraction mapping. As evidence, we let
z̃, z ∈ Oετ ,∣∣∣(A(τ)

2 z̃
)
(s)−

(
A(τ)

2 z
)
(s)
∣∣∣ ≤ ∫ 1

0
Gτ(θ)(|z̃τ(θ)− zτ(θ)|+ |Dq z̃τ(θ)−Dqzτ(θ)|

+
∣∣z̃′τ(θ)− z′τ(θ)

∣∣)dθ

+
1
|A0|

(
1

Γ(3− r)
+ s
)
[|`3|×∫ a

0

∫ θ

0
Gτ(ζ)(|z̃τ(ζ)− zτ(ζ)|

+|Dq z̃τ(ζ)−Dqzτ(ζ)|+
∣∣z̃′τ(ζ)− z′τ(ζ)

∣∣)dζdθ

+|`2|
∫ 1

0

(1− θ)r−2

Γ(r− 1)
Gτ(θ)(|z̃τ(θ)− zτ(θ)|

+|Dq z̃τ(θ)−Dqzτ(θ)|+
∣∣z̃′τ(θ)− z′τ(θ)

∣∣)dθ

]
≤ ‖Gτ‖V∗0 ‖z̃τ − zτ‖Yτ

for each τ = 1, 2, . . . , 16, where V∗0 is given in (12). According to the same kind of calcula-
tions, we also have

sup
s∈[0,1]

∣∣∣(DqA(τ)
2 z̃

)
(s)−

(
DqA(τ)

2 z
)
(s)
∣∣∣ ≤ ‖Gτ‖V∗1 ‖z̃τ − zτ‖Yτ

.

sup
s∈[0,1]

∣∣∣∣(A(τ)
2 z̃

)′
(s)−

(
A(τ)

2 z
)′
(s)
∣∣∣∣ ≤ ‖Gτ‖V∗2 ‖z̃τ − zτ‖Yτ

,
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where V∗1 and V∗2 are given in (13) and (14), respectively. Thus, we have

‖A2z̃−A2z‖Y =
16

∑
τ=1

∥∥∥A(τ)
2 z̃−A(τ)

2 z
∥∥∥
Ỹ

≤ (V∗0 + V∗1 + V∗2 )
16

∑
τ=1
‖Gτ‖‖z̃τ − zτ‖Yτ

,

and so
‖A2z̃−A2z‖Y ≤ Λ‖z̃− z‖Y .

As Λ < 1, which means that A2 is a contraction on Oετ . In this demonstration, we
use Theorem 2, to show that there exists a fixed point of A such that the problem has a
solution (1).

4. An Example

The following illustration demonstrates the relevance of our findings.

Example 1. Consider the problem stated below:



D1.5z1(s) =
36es[z1(s)]2

40, 000(1 + [z1(s)]2)
+ 0.0009es sin

(
D0.08z1(s)

)
+

180es arctan z′1(s)
200, 000

,

D1.5z2(s) =
s(arctan z2(s))

25, 000
+ 0.00004s

(
sin
(
D0.08z2(s)

))
+

4s[z′2(s)]
2

100, 000
(

1 +
[
z′2(s)

]2) ,

D1.5z3(s) = 0.0001s
(

sinh−1 z3(s)
)
+

60s
[
D0.08z3(s)

]2
600, 000 + 600, 000[D0.08z3(s)]

2 +
3s(arctan z′3(s))

30, 000
,

(18)

associated with the following boundary conditions:

z1(0) = D0.5z1(1)

13
17

z′1(0) +
6

29
z′1(1) =

15
43

∫ 1

0
D0.5z1(θ)dθ

z2(0) = D0.5z2(1)

13
17

z′2(0) +
6

29
z′2(1) =

15
43

∫ 1

0
D0.5z2(θ)dθ

z3(0) = D0.5z3(1)

13
17

z′3(0) +
6

29
z′3(1) =

15
43

∫ 1

0
D0.5z3(θ)dθ

(19)

where r = 1.5, q = 0.08, `1 = 13
17 , `2 = 6

29 , `3 = 15
43 and Dr, Dq serve as the Caputo derivative of

order r and q, respectively. LetW1,W2,W3 : [0, 1]×R×R×R→ R be continuous functions
given by

W1(s, z, z̃, ˜̃z) =
36es[z]2

40, 000(1 + [z]2)
+ 0.0009es

(
sin(D0.08z̃)

)
+

180es(arctan ˜̃z)
200, 000

,

W2(s, z, z̃, ˜̃z) =
s(arctan z)

25, 000
+ 0.00004s

(
sin
(
D0.08z̃

))
+

4s[ ˜̃z]2

100, 000
(

1 + [ ˜̃z]2
) ,

W3(s, z, z̃, ˜̃z) = 0.0001s
(

sinh−1 z
)
+

60s
[
D0.08z̃

]2
600, 000 + 600, 000[D0.08z̃]2

+
3s(arctan ˜̃z)

30, 000
,
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for all z, z̃, ˜̃z ∈ R, s ∈ [0, 1], andW4,W5, . . . ,W16 : [0, 1]×R×R×R→ R are zero functions.
Let z1, z2, z̃1, z̃2, ˜̃z1, ˜̃z2 ∈ R and s ∈ [0, 1]. Then, we have

|W1(s, z1, z̃1, ˜̃z1)−W1(s, z2, z̃2, ˜̃z2)| ≤
9es

10, 000

(
|z1 − z2|+ |z̃1 − z̃2|+ | ˜̃z1 − ˜̃z2|

)
,

|W2(s, z1, z̃1, ˜̃z1)−W2(s, z2, z̃2, ˜̃z2)| ≤
s

25, 000

(
|z1 − z2|+ |z̃1 − z̃2|+ | ˜̃z1 − ˜̃z2|

)
,

|W3(s, z1, z̃1, ˜̃z1)−W3(s, z2, z̃2, ˜̃z2)| ≤
s

10, 000

(
|z1 − z2|+ |z̃1 − z̃2|+ | ˜̃z1 − ˜̃z2|

)
.

Here, G1(s) = 9es

10,000 ,G2(s) = s
25,000 ,G3(s) = s

10,000 , and G4(s) = G5(s) = · · · =
G16(s) = 0, where ‖G1‖ = 9

10,000 , ‖G2‖ = 1
25,000 , ‖G3‖ = 1

10,000 , and ‖G4‖ = ‖G5‖ = · · · =
‖G16‖ = 0. LetM1,M2, . . . ,M16 : [0, ∞)→ R be identity functions. Thus, we obtain

|W1(s, z, z̃, ˜̃z)| ≤ 9es

10, 000
(|z|+ |z̃|+ | ˜̃z|),

|W2(s, z, z̃, ˜̃z)| ≤ s
25, 000

(|z|+ |z̃|+ | ˜̃z|),

|W3(s, z, z̃, ˜̃z)| ≤ s
10, 000

(|z|+ |z̃|+ | ˜̃z|),

for all z, z̃, ˜̃z and s ∈ [0, 1], where the continuous function F1,F2, . . . ,F16 : [0, 1]→ R are defined
by

F1(s) =
9es

10, 000
, F2(s) =

s
25, 000

, F3(s) =
s

10, 000
, F4(s) = F5(s) = · · · = F16(s) = 0.

Additionally,
V∗0 ' 1.3773, V∗1 ' 0.1779 and V∗2 ' 0.1773,

and so
V∗0 + V∗1 + V∗2 ' 1.7325.

Furthermore,

Λ := (V∗0 + V∗1 + V∗2 )(‖G1‖+ ‖G2‖+ ‖G3‖+ ‖G4‖) ' 0.0018 < 1.

According to Theorem 4, there exists a solution to Problems (18)–(19).

5. Discussion and Conclusions

The scope of the study on chemical graph theory encompasses all aspects of the appli-
cations of graph theory to the field of chemistry. The word “chemical” is used to distinguish
chemical graph theory from traditional graph theory, where rigorous mathematical proofs
are often preferred to the intuitive grasp of key ideas and theorems. However, graph theory
is used to represent the structural features of chemical substances. The tremendous growth
of this discipline over the last several decades has resulted in the development of a plethora
of cutting-edge concepts and methods for conducting this kind of study.

Using the idea of star graphs, several scholars have studied the solutions of fractional
differential equations. They chose to utilize star graphs since their method required a
central node connected to nearby vertices through interconnections, but there are no edges
between the nodes.

The purpose of this study was to extend the technique’s applicability by introducing
the concept of a neopentane graph, a fundamental molecule in chemistry with the formula
C5H12. In this manner, we explored a network in which the vertices were either labeled
with 0 or 1, and the structure of the chemical molecule neopentane was shown to have an
effect on this network. To study whether or not there were solutions to the offered boundary
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value problems within the context of the Caputo fractional derivative, we used the fixed
point theorems developed by Schaefer and Krasnoselskii. In conclusion, an example was
given to illustrate the significance of the findings obtained from this research line.

Our method can be used for various graphs, such as digraphs, which are necessary for
protein networks in biomedical engineering. The following open problems are presented
for the consideration of readers interested in this topic:

• Is there another approach that leads to the same conclusion as we proposed?
• Can this concept be applied to graphs with a circular ring structure?
• We also present the suggested fractional differential Equation (1)’s stability as an

unsolved problem.
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