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Abstract: Self-consolidating concrete (SCC) has been used extensively in the construction industry
because of its advanced characteristics of a highly flowable mixture and the ability to be consolidated
under its own weight. One of the main challenges is the high content of OPC used in the production
process. This research focuses on developing sustainable, high-strength self-consolidating concrete
(SCC) by incorporating high levels of supplementary cementitious materials. The overarching
purpose of this study is to replace OPC partially by up to 71% by using fly ash, GGBS, and microsilica
to produce high-strength and durable SCC. Two groups of mixtures were designed to replace
OPC. The first group contained 14%, 23.4%, and 32.77% fly ash and 6.4% microsilica. The second
group contained 32.77%, 46.81%, and 65.5% GGBS and 6.4% microsilica. The fresh properties were
investigated using the slump, V-funnel, L-box, and J-ring tests. The hardened properties were
assessed using a compressive strength test, while water permeability, water absorption, and rapid
chloride penetration tests were used to evaluate the durability. The innovation of this experimental
work was introducing SCC with an unconventional mixture that can achieve highly durable and
high-strength concrete. The results showed the feasibility of SCC by incorporating high volumes of
fly ash and GGBS without compromising compressive strength and durability.

Keywords: self-consolidating concrete; SCC; fly ash; GGBS; microsilica; sustainable concrete; high
strength; durability

1. Introduction

Self-consolidating concrete (SCC) was invented in 1980 as a promising solution to
cast concrete for structures with dense reinforced formwork sections [1,2]. Technically,
SCC can be placed and consolidated in congested reinforced sections under its weight and
flow around reinforcement by improving filling capacity. The cohesiveness of the concrete
obtained from optimized mixture design and proper handling of concrete during pouring
facilitates casting concrete without segregation and bleeding [1,3–7]. In addition, the char-
acteristics of SCC provide more technical solutions by eliminating vibrating equipment,
reducing noise pollution, and lowering labor costs and construction time. Applying SCC in
the construction industry showed more positive aspects, such as reduced labor associated
with lower human risk in construction sites. From the microstructural point of view, the
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proper mixture design of the SCC improves the interfacial transition zone (ITZ) between
aggregate, reinforcement, and bulk cement paste, which enhances durability by decreasing
permeability [2,7–9]. Given all the advantages of SCC in practice, emphasis has been placed
on optimizing its constituent composition by incorporating supplementary cementitious
materials (SCMs). Moreover, emphasis has been placed on investigating the effect of the
water-to-binder ratio in the mixture design with the use of chemical admixtures such as
superplasticizers and viscosity-modifying admixtures. SCMs and mixture design with the
type of applications collectively affect SCC’s fresh and hardened properties [10–12]. How-
ever, with the increasing global trend towards sustainable development in construction,
more research is indispensable to reduce the high content of Portland cement used in SCC
production. SCC cost was considered one of the major drawbacks in the production process
due to the high content of the OPC utilized in the mixture [13]. It has been estimated that
cement production was 4100 million tons [14]. The production process of Portland cement
releases at least 930 kg/ton of carbon dioxide into the atmosphere [15], which is considered
one of the main challenges that many countries have targeted by adopting long-term mea-
sures to minimize CO2 emissions [16]. Furthermore, consuming natural resources for the
constituent components of concrete exerts a considerable impact annually that jeopardizes
sustainability. Due to the increasing population worldwide and rapid urbanization, there is
global demand for Portland cement, which augments a massive demand in the construction
industry for infrastructural development [17]. Therefore, inspecting more sustainable and
environmentally friendly construction materials is crucial in developing advanced concrete-
tech binders. Developing green concrete by incorporating SCMs such as fly ash, GGBS,
and microsilica is a promising solution for producing environmentally friendly concrete
by reducing mixtures’ OPC quantity and lowering CO2 emissions [18–22]. The SCMs
have long-lasting effects on the environment because of their nature as non-biodegradable
waste materials. Incorporating pozzolanic materials can improve concrete durability and
increase the life span of the structures by reducing the required maintenance and repair in
addition to cement reduction [23,24]. The most commonly used SCMs for replacing OPC
in SCC are ground granulated blast furnace slag (GGBS), fly ash (FA), silica fume (SF),
and Microsilica (MS) [25–27]. Fly ash, GGBS, and microsilica are by-products generated
from different manufacturing processes and are not produced intentionally. The SCMs
have been used as essential constituents to enhance concrete performance and durability
when exposed to different aggressive environments [28,29]. Previously, fly ash, GGBS,
and microsilica have been applied to replace OPC partially in SCC to enhance fresh and
hardened properties and reduce its carbon footprint owing to the high content of binder
used in its mixture design [30–33]. This technique was intended to lower CO2 emissions
associated with OPC production and improve concrete durability [34–36]. Moreover, it is
intended as a method to enhance the environment by applying a green combined binder
with sustainability in addition to the durability factor [37]. However, increasing the cement
replacement level while maintaining the engineering properties and the durability of SCC
is still challenging [38]. Previously, it has been found that 10% silica fume and 10% GGBS
gave the best results for the durability and mechanical properties in SCC; however, the
recommendations were that 6% silica fume and 8% GGBS should be incorporated as a
partial replacement for the OPC separately for better performance [39]. A silica fume to
OPC ratio was used in three different percentages (4.85%, 10.5%, and 14%) to produce
SCC; however, a better mechanical performance was exhibited in comparison to the normal
vibrated concrete [40]. Zhao et al. [41] incorporated 20–40% FA as a partial replacement for
OPC to investigate its performance in SCC and concluded that a decrease in mechanical
properties was registered at 7 and 90 days in both mechanical properties. In another study,
Liu [42] investigated the substitution of FA as a partial replacement for cement to study its
effect on SCC. The research showed a decrease in compressive strength as FA increased
from 20% to 80%. The results showed that 40% replacement with FA revealed insignificant
compressive strength loss. Siddique’s results [43] also showed that up to 35% replacement
with FA in SCC resulted in compressive strength reduction as well as split tensile strength.
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Replacing cement with FA was investigated by Uysal and Sumer [44]; they concluded that
FA up to 25% may result in more developed compressive strength compared to the 100%
OPC SCC. Previous studies investigated the influence of silica fume and fly ash on the
performance of the SCC. Cement was replaced with 10% SF and 30% FA, and the results
showed an improvement in the compressive strength [45]. The impact of GGBS and SF on
SCC compressive strength was determined after replacing the cement with 30%, 50%, 65%,
and 80% GGBS. SF was incorporated with 50% GGBS in three percentages, 5%, 10%, and
15%. The study showed that SF has a recognized impact on compressive strength when
used with 50% GGBS [46]. In another study, SF was incorporated as a partial replacement
for OPC up to 25%. The results showed an enhancement in tensile strength, whereas a
decrease in compressive strength was registered; however, researchers concluded that no
more than 5% SF may be used as an enhancement factor in SCC [47]. Micro- and nanosilica
were investigated as replacements for OPC in high-performance SCC, and the results
showed the dominancy of nanosilica in its effect on the strength properties due to its high
reactivity. It is concluded that particle size distribution with a wider range may create low
porosity and low water demand and enhance packing density [48]. Higher resistance of
sorptivity characteristics of SCC was registered when combined with FA and SF; however,
partial replacement of OPC with only 20% FA showed a reduction in sorptivity [49].

In general, fewer and limited studies have been performed regarding the durability
of the SCC with the maximum amounts of binary blended replacement of OPC by SF and
GGBS; moreover, fewer studies have been conducted to investigate the durability of SCC
using SF and FA. In the present experimental investigation, this study investigates up to
70% cement replacement with binary mixtures of microsilica, fly ash, and GGBS yet aims
to maintain the engineering properties of SCC for infrastructure applications. Essentially,
the novelty in this work is the sustainable mixture design associated with high-strength
and durable SCC with high content of SCMs as a partial replacement for cement. This
research will achieve two significant goals: the first one is the sustainability of SCC as a
high-strength building material, and the second one is the advanced durability which will
provide protection against an aggressive environment. Two groups of SCCs were designed
to study fresh properties such as flowability and viscosity, in addition to compressive
strength as the hardened property. In order to evaluate SCC durability and service life [50],
a water absorption test, water permeability test, and chloride ion penetration test were
applied. The first group of mixtures contained a binary system with up to 38.74% low
calcium fly ash having 0.12 CaO/SiO2 in addition to the microsilica. The second group
contained GGBS at up to 71.16% having 1.33 CaO/SiO2 in addition to the microsilica.
Microsilica was incorporated in a constant quantity of 30 kg/m3 in all mixtures, which
is equal to 6.4%. The main objective of the current work is to confirm the possibility of
producing high-strength and durable SCC by incorporating a high percentage of SCMs as a
partial replacement for OPC.

2. Materials and Methods

This study used ordinary Portland cement with 42.5 N grade in compliance with BS EN
196 [51] and standard BS EN 197–1:2000 CEM I [52]. The chemical and physical properties
of OPC are shown in Tables 1 and 2. The supplementary cementitious materials were
ground granulated blast furnace slag GGBS complies with the BS EN 15167–1:2006 [53]S,
Indian low calcium fly ash (FA), and microsilica (MS). Microsilica (MS) was used in a
constant quantity (30 kg/m3) in all mixtures. Tables 3 and 4 show the chemical analysis
for all SCMs and the residue on 45 micron sieve, respectively. Polycarboxylate high-
range superplasticizer (HRSP) type F and G [54,55] compatible with the ASTM C494 and
BSEN [55,56] was used to produce SCC. It is a high-performance concrete superplasticizer
based on modified polycarboxylate ether, and it has a unique carboxylic ether polymer with
long lateral chains. The superplasticizer, an effective cement dispersant and high-range
water reducer, was used to fix constant water content and control flow in all mixtures.
In addition to that, it can produce high-flowing concrete without segregation, high early
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strength, and high workability with lower water content and lower permeability. It is a
high-range superplasticizer that can be used for ready-mix concrete, self-consolidating
concrete, precast concrete, and underwater concreting. Moreover, it is used for concrete
containing microsilica, GGBS, and fly ash with extremely low w/c [57]. Polycarboxylate
high-range superplasticizer (HRSP) was used for the admixture in this research.

Table 1. OPC physical properties.

Physical Properties Specification Results
Fineness (Air Permeability) - 3280 cm2/gm

Initial setting time ≥60 205 Minutes
Final setting time 265 Minutes

Compressive Strength—2 Days ≥10 25.05 MPa
Compressive Strength—7 Days - 40.22 MPa

Compressive Strength—28 Days ≥42.50 and ≤62.50 53.77 MPa

Table 2. OPC chemical analysis.

Parameter C3S C2S C3A C4AF
Results 57.37% 13.83% 6.82% 11.32%

Table 3. Chemical composition for cementitious materials.

Chemical
Composition % SiO2 Al2O3 Fe2O3 CaO MgO TiO2 SO3 Cl Na2O K2O L.O.I

GGBS 31.27 13.34 0.64 41.55 6.90 0.98 0.11 0.01 - - -
FA 47.78 29.74 5.2 5.57 3.20 1.99 0.63 - 0.97 0.96 2.42
MS 92.38 - - - - - - - 0.46 - 5.01

Table 4. Residue on 45 micron sieve for cementitious materials.

GGBS 1.78%
FA [58] 13.30%

MS 2%

In order to overcome the problem of natural fine sand shortage, a mixture of fine
washed sand and dune sand was used as part of the concrete ingredients in all mixtures.
According to the sieve analysis, the dune sand particle size is 50% passing sieve size with
0.150 mm and 1% passing sieve size with 0.075 mm. Coarse aggregate was used in two
sizes, 20 mm and 10 mm.

2.1. Experimental Program

The experimental program was designed to produce SCC with a high replacement
level of OPC content by incorporating accurate amounts of several combinations of FA with
MS and GGBS with MS. Table 5 shows the mixture proportions used in this experimental
work. Seven SCC mixtures were prepared with a constant water-to-binder ratio (w/b) of
0.33. Different characteristics of SCC were investigated according to the ASTM [59] and
European guidelines [60].
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Table 5. SCC mixture proportions.

Mixture
Code

Mixture
without MS

(%)

Mixture
with MS

(%)

OPC
kg/m3

SCM kg/m3 Aggregate Sand HRSP
kg/m3

Water
kg/m3

FA GGBS MS 20 mm 10 mm Washed Sand Dune Sand

OPC 100%
OPC

100%
OPC 470 0 0 0 331 395 726 386 6.8 155

20.43FAMS 14.0%
FA

20.43%
(FA + MS) 374 66 0 30 338 401 711 374 6.5 155

29.5FAMS 23.4%
FA

29.5%
(FA + MS) 330 110 0 30 336 399 707 372 6.7 155

38.74FAMS 32.77%
FA

38.74%
(FA + MS) 286 154 0 30 335 397 704 370 6.8 155

38.74GGBSMS 32.77%
GGBS

38.74%
(GGBS + MS) 286 0 154 30 339 402 713 375 6.5 155

52.6GGBSMS 46.81%
GGBS

52.6%
(GGBS + MS) 220 0 220 30 338 401 711 374 6.8 155

71.16GGBSMS 65.5%
GGBS

71.16%
(GGBS + MS) 132 0 308 30 337 399 708 373 7.0 155

2.2. Testing Procedures

Fresh properties of SCC were determined by using the slump-flow test to determine
the concrete flowability [59,61] (Figure 1) and V-funnel [62], L-box [63], and J-ring [64]
tests, as shown in Figures 2–4, respectively. SCC viscosity was assessed by measuring
the flow rate using the V-funnel test. The L-box test was used to measure the passing
ability of SCC [2], and the flow spread with passing ability was measured by using the
J-ring test. The durability of SCC was measured by applying different tests that have been
used regularly for standard concrete [20–22]. Water absorption (Figure 5) was determined
according to BS 1881: 122 [65]. Water permeability (Figure 6) was determined according to
BS EN 12390 [66]. The rapid chloride penetration test (RCPT) (Figure 7) was conducted for
all concrete mixtures to measure the electrical conductance and ability to resist chloride ion
penetration. The RCP test was conducted according to ASTM C 1202 [67]. Figure 8 shows
sample preparation.
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3. Results and Discussion
3.1. Workability
3.1.1. Slump Flow

Figure 9 shows the initial slump flow and the slump retention results for the self-
consolidating concrete mixtures. As can be seen, two periods were chosen to measure a
range of flow of SCC under its weight, initially before casting and 60 min after casting.

In general, the initial slump and 60 min slump results of SCC mixtures with SCMs
were increased in comparison to the reference SCC mixture that was produced with 100%
OPC. The increase in flow is related to the high replacement levels of FA, GGBS, and MS.
The enhancing effect of supplementary cementitious materials on the flowability of concrete
was reported in previous studies [20,68]. This behavior is attributed to the positive effect of
SCM particles because of their high surface area on the packing density of the mixtures
and the lower reactivity of the SCMs compared to the OPC.

FA presented different effects on SCC initial flow compared to the effect of GGBS. As
shown in Figure 9, FA with MS showed gentle concave initial flow and a decrease in the
measurements. Replacement of OPC with 20.43%, 29.5%, and 38.74% FA and MS showed
740 mm, 730 mm, and 720 mm initial flow, respectively. On the other hand, the replacement
of OPC with GGBS showed a sudden increase in the initial flow. As can be seen, 38.74%,
52.6%, and 71.16% GGBS and MS replacement showed 720, 750, and 750 mm initial flow,
respectively. The effect of particle size and the large surface area that was added to the
mixture effectively changed the behavior of the mixtures and the initial slump.

Two periods were applied to measure the slump in this investigation for different
reasons: The first reason was the SCC workability and high-range superplasticizer (HRSP)
dosage compatibility with ingredients having different particle sizes; moreover, the time
tolerance for SCC to be handled and cast was considered. On the other hand, HRSP
admixture was added to the mixture in order to keep the w/b ratio fixed at 0.33. The figure
shows that the dosage was gradually increased with the increase in the replacement ratio
of the cement [69].

Figure 10 shows the gradual increase in HRSP dosage with fly ash and GGBS mixtures.
As can be seen, the admixture dosage was increased gradually, which may be attributed to
the higher specific area of the cementitious materials [70]. Slump and workability showed
that incorporating FA and GGBS in addition to a constant quantity of MS results in almost
converging quantities of HRSP admixture needed to keep a constant water-to-binder ratio
of 0.33. Moreover, it has been reported that MS may increase the water demand in the
concrete mixture due to its very fine smooth spherical glassy particles that provide a high
surface area compared to FA, GGBS, and OPC [71].
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Generally, SCC produced with different amounts of supplementary cementitious
materials has shown an acceptable range of slump and workability. Such flow ability may
provide appropriate time for handling and casting the mixture for different applications
and environments. According to the European guidelines for self-compacting concrete,
the slump flow between 660 and 750 mm for SCC mixtures is suitable for many normal
applications such as walls and columns [2,72]. It has been reported that FA and GGBS
show a slow hydration reaction; however, providing sufficient moisture content will
allow the reaction to be continued over a longer period of time. This mechanism will
affect the concrete ability to flow and setting time; moreover, it will affect the strength
development [73].

3.1.2. V-Funnel Test

Figure 11 shows the V-funnel test results for the SCC mixtures produced with FA and
GGBS. As can be seen, the incorporation of FA and GGBS at different replacement levels
registered different rates of flow in the V-funnel test. Mixtures produced with FA and MS
had a lower rate of flow which increased as the percentage of replacement increased in
comparison to the reference mixture. The registered rate of flow was 8, 5, and 4 s for SCC
having 20.43%, 29.5%, and 38.74% FA and MS, respectively. The incorporation of GGBS
showed a different effect in comparison to the reference mixture. As can be seen, there was
an increase in the rate of flow with the increase in GGBS percentage. The SCC mixture with
38.74%, 52.6%, and 71.16% GGBS and MS showed an increase in the rate of flow, which
was 8, 10, and 12 s, respectively. Overall, the V-funnel test can provide an indication of SCC
viscosity by measuring the time required for the mixture to pass the V-funnel. The concrete
viscosity increases with the increase in flow time. The results showed that FA decreased
the concrete viscosity while GGBS increased the SCC viscosity.

According to the European guidelines, SCC with low viscosity will present a very
quick initial flow that will then stop, whereas SCC with high viscosity may continue to flow
over an extended time (creep over) [60]. The results may reflect the ability of the produced
mixtures to show adequate filling capability even with congested reinforcement and the
capability for the mixture to be self-leveled with the best surface finish; however, it has
been reported previously that SCC may suffer from bleeding and segregation [2,8].

In this investigation, based on visual observation during the V-funnel test, mixtures
showed no bleeding and no segregation, which reflects an advanced design and perfor-
mance. The rate of flow showed better times in all mixtures which are lower than 100%
OPC-SCC. It is practical to mention that viscosity is also a critical parameter and is required
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to be measured for SCC where a good surface finish is in demand when reinforcement is
very dense [8].
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3.1.3. L-Box Test

Figure 12 shows the passing ability (PA) ratio of all mixtures. For the OPC-SCC
control mixture, the PA ratio was 0.85, which meets the requirements mentioned in the
standards [60]. SCC produced by replacing OPC with FA or GGBS with the constant
amount of MS showed a higher passing ratio. The SCC mixtures showed the ability to
reach equal depths for vertical section height and a horizontal section height of the L-box
container. According to the European guidelines for self-compacting concrete [60], the
conformity criteria for L-box are classified into two classes based on the number of steel
bars installed in the L-box. The first class is PA1 (two bars with 59 mm gap), and the second
class is PA2 (three bars with 41 mm gap). This classification is related to the number of
smooth steel bars (12 + 0.2 mm) installed at the gate of the filling hopper of the L-box used
in this investigation. This test represents the ability of concrete to flow in spaces and pass
through steel reinforcing bars or tight openings without aggregate segregation or blocking;
moreover, it represents the ability of concrete to flow without leaving voids at the time
of casting. European guidelines showed that the passing ability ratio should be ≥ 0.75,
whereas British Standards (BSI) showed that the passing ability (PA) ratio for SCC must
be ≥ 0.8 and should not exceed 1.0. Figure 12 shows that all the SCC mixtures had a passing
ability equal to 1.0 except for SCC with 35% GGBS (PA = 0.9); however, the PA ratio of SCC
with 35% GGBS was higher than the OPC-SCC passing ability ratio. In general, the results
in this investigation showed that the SCC mixtures designed with replacement levels from
20.43% to 71.16% GGBS/FA have the ability to be self-leveled horizontally when placed in
formwork. Moreover, cementitious materials have participated successfully in producing
SCC with an appropriate passing ability, and no segregation or blocking was observed for
the mixtures [2,63].
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3.1.4. J-Ring Test

Figure 13 shows the J-Ring test results expressed to the nearest 10 mm for all mixtures.
In this experimental work, the J-ring test was used to assess SCC passing ability [60,74].
This is crucial to be sure that SCC can flow through spaces between and around congested
reinforcement, through tight openings, and around any other obstructions that might
prevent SCC from flowing during the casting process without segregation, blocking, or
leaving voids. As can be seen from the figure, the spread flow ability of OPC-SCC is
600 mm, whereas all developed sustainable high-strength SCCs showed a higher ability to
flow and spread within the casting process.

The results showed that there was an increase in the flow spread of concrete produced
with binder containing FA and MS. The increase was 15%, 17%, and 17% for SCC produced
by replacing OPC with 20.43%, 29.5%, and 38.74% of the FA + MS system, respectively.
Replacing OPC with high levels of GGBS and MS also showed an increase in the spread
flow ability. The results registered 12%, 15%, and 10% increases in the flow spread for
mixtures produced with 38.74%, 52.6%, and 71.16% GGBS + MS, respectively. Generally,
the test depicted the capability of SCC produced with high levels of replacement to fill
the formwork without segregation or blocking even with congested reinforcement and the
possibility of full compaction based on its weight.
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3.2. Mechanical Performance
Compressive Strength

Figure 14 shows the compressive strength test results for SCC produced with 100%
OPC and the binary binder system of FA with MS and GGBS with MS as a partial replace-
ment for OPC. The test was conducted at 3, 7, and 28 days of curing, and the average of
three specimens for each test was recorded. As can be seen from Figure 14, the OPC-SCC
mixture had 62.5, 68.1, and 72.6 MPa at the ages of 3, 7, and 28 days, respectively. The
results showed the ability of the mixture design to produce high-strength self-consolidated
concrete at the early and late ages of 3 and 28 days, respectively. Most of the results showed
an increase in strength with the incorporation of FA and GGBS. The increase in strength at
the age of 28 days was 18%, 15%, and 10% for mixtures with 20.43%, 29.5%, and 38.74% FA
and MS, respectively.

Furthermore, the increase in strength at the age of 28 days was 22%, 24%, and 13.4% for
mixtures with 38.74%, 52.6%, and 71.16% GGBS with MS, respectively. It is observed that
there was a slight reduction in strength for all mixtures with the increase in replacement
levels at all ages; however, all mixtures showed high strength results in comparison to
the reference SCC-OPC mixture. In general, the mixture design used in this experimental
work showed the ability to produce high-strength concrete at early ages, meeting advanced
concrete requirements. This may enable the de-molding of work forms and increase the
constructability during the production cycle while maintaining a high sustainability index
due to the high amount of replacement levels. The overall effect of cementitious materi-
als was clear in increasing the strength property by replacing OPC in self-consolidating
concrete [17,75]. It has been reported previously that a reduction in compressive strength
property was registered for binary and ternary mixtures, and that was attributed to the
low content of CaO which may cause a delay in hydraulic reaction [76], whereas, in this
investigation, high-strength SCC was achieved.

The mixture proportions of the binder in this work may be a combination of synergistic
ingredients that can chemically react well, producing a higher concentration of hydration
products. On the other hand, the effect of the dune sand commingled with fine sand may
have filled different size voids in the structure of the paste and aggregate, producing well-
compacted concrete [21]. The results showed that GGBS was able to be used as an effective
replacement material with good homogeneity and high synergy with MS to produce high-
strength self-consolidating eco-friendly concrete despite the high level of replacement. The
incorporated MS was effectively active during the chemical reactions with the presence of
FA and GGBS, producing high-early-strength self-consolidating concrete. MS works as a
booster to continue chemical reactions in the system, generating high-strength concrete at
the age of 28 days. It is like a reactor that works to activate the potential chemical power in
SCMs and react with Ca(OH)2 to form greater quantities of calcium silicate hydrate (C-S-H).
This mechanism may work as a densification factor to fill different voids between paste
ingredients and also fill small spaces between fine particles, thus enhancing the structure
of the SCC by increasing the packing density and producing a denser microstructure.
The synergy between FA, GGBS, and MS previously was reported in [77]. Moreover, the
polycarboxylate high-range water superplasticizer used in this mix design was capable of
accelerating and boosting the chemical reactions, increasing the hydration products.

The homogeneity of the mixed materials for binder production, crushed fine sand,
dune sand, and coarse aggregate was also a vital factor in producing concrete with a density
between 2460 and 2485 kg/m3, as presented in Table 6.

Table 6. Fresh density for SCC mixtures.

Mixture OPC 20.43%
FAMS

29.5%
FAMS

38.74%
FAMS

38.74%
GGBSMS

50.6%
GGBSMS

71.16%
GGBSMS

kg/m3 2490 2475 2480 2460 2485 2470 2470
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The ITZ in normal concrete, which is the space between the binder paste and the coarse
aggregate particles, exhibits lower strength than bulk cement paste, which is attributed
to the gathering of more voids. This weakness is due to the accumulation of bleed water
underneath aggregate particles, resulting in difficulty in packing solid particles near the
surface. This behavior leads to more calcium hydroxide (CH) forming and concentrating in
this region than elsewhere.

In this investigation, 6.4% MS played a sophisticated role at an early age. MS in-
creased the bond strength between the paste and aggregate particles. According to the
ACI Committee 234R-06, MS will react with calcium hydroxide (CH), producing more
calcium silicate hydrate (C-S-H), and it is expected that all CH will be consumed in the
early ages, producing a well-crystallized form of CSH-I. Without the pozzolanic reaction
of the added MS, CH crystals will grow large and tend to be strongly oriented parallel to
the surface of the aggregate particles. CH is weaker than C-S-H, and when the crystals are
large and strongly oriented parallel to the aggregate surface, they are easily cleaved. A
weak transition zone results from the combination of high void content and large, strongly
oriented CH crystals. Microsilica produces a denser structure in the transition zone with a
consequent increase in microhardness and fracture toughness. The presence of MS as part
of the binder in fresh concrete also may reduce bleeding and greater cohesiveness.
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Moreover, different fine particles such as dune sand with MS may increase the packing
of the solid materials as mentioned above. This behavior is related to the interlocking
mechanism of the microparticles increasing the packing of solid materials by filling the
spaces between cement and coarse aggregate grains [78]. It has been reported previously
that GGBS can be used at an optimum level of up to 55% [70], whereas in this investigation,
a high compressive strength was able to be produced with a higher replacement level of up
to 71.16%.

3.3. Durability
3.3.1. Water Permeability

Figure 15 shows the water permeability results for all samples exposed to a water
pressure of 500 ± 50 kPa for a period of time extended up to 72 ± 2 h [66]. As can be
seen from the figure, 100% OPC-SCC showed a 3 mm water penetration depth, whereas
improved results showed water penetration resistance by FA and GGBS SCC. The SCC
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with 20.43% FA and MS replacement showed the same permeability as the reference
concrete; however, there was a 67% reduction in water permeability when the replacement
level increased to 29.5% FA and MS. The SCCs with 38.74% FA and MS and 38.74%,
52.6%, and 71.16% GGBS and MS showed zero water permeability. The results with zero
water permeability can be related to the development of the hydration products with the
homogeneous combination of the binder ingredients. The hydration products for FA with
MS and GGBS with MS may be increased due to the pozzolanic reactivity acceleration. The
permeability of concrete is a congregation of the size, shape, distribution, tortuosity, and
continuity of the pores; overall, it is not a simple function. It has been reported previously
that there is a good relation between concrete durability and maximum continuous pore
radius [79]. In this investigation, it is suggested that different particle sizes for the fine sand
with dune sand and large surface area for the particles of the cementitious materials in
addition to the compactness of the hydration produced led to reduced pore size and cut off
pore continuity. The mixture design mechanism priority targeted a great increase in the
packing density by filling the micro- and nanopaste void–pore systems, which reduced the
coefficient of permeability [80–83]. Moreover, the synergistic interaction of FA with OPC
and MS or GGBS with OPC and MS may have refined the pore system generated in the
cement gel that created and developed a very dense and complex structure inhibiting the
penetration of water within the investigated duration of 72 h [84]. Improvement in concrete
permeability may also be related to the superplasticizer effect, which is designed to lower
concrete permeability, in addition to its different advantages with SCC.
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3.3.2. Water Absorption

Figure 16 shows the water absorption of SCC mixtures in percentage at 28 days. As
can be seen, the water absorption results for all SCCs produced with SCMs showed lower
results in comparison to the reference OPC-SCC. The water absorption test was performed
according to BS 1881: Part 122 [65] and involved immersing specimens in water for 30 min
after drying according to a certain procedure. It included calculating the increase in sample
mass resulting from full water immersion and expressed as a percentage of the dried
specimen. Replacing OPC with FA or GGBS and 30% MS showed a significant effect on
enhancing the ability of SCC against absorbing water in a sophisticated way. The reduction
in water absorption in mixtures with 20.43%, 29.5%, and 38.74% FA and MS was 33.3%, 40%,
and 40%, respectively; mixtures with 38.74%, 52.6%, and 71.16% GGBS and MS showed
33.3%, 47%, and 53.3% reductions, respectively, as compared to the reference mixture. It has
been reported previously that water may ingress to the surface of unsaturated concrete by
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capillary suction based on the initial water content [85–87]; moreover, capillary adsorption
may be strongly connected to the size distribution of the pores in addition to pore volume
and pore radius. Based on the work of Powers [88], two sizes of pores were identified; the
smaller pores are the gel pores less than 10 nm in diameter working as part of the hydration
products, and the larger pores are the capillary pores that occur due to excess water. In this
investigation, the reduction in water absorption may be related to the synergistic interaction
between supplementary cementitious materials. The hydration products of FA, GGBS,
and water with different quantities of OPC in the presence of MS were developed and
allowed the microsilica to react as any finely divided amorphous silica-rich constituent
in the presence of CH. Calcium ions combined with the microsilica to form extra C-S-H
through the pozzolanic reaction mechanism to produce a well-crystallized form of C-S-H
type I which is formed during early age of curing [71,78]. It has been reported previously
that fly ash and silica fume showed considerable a reduction in volume of large pores
generated in concrete [89]. The same conclusion was reported when mixing silica fume and
GGBS, which showed high early strength and later age strength development that may be
related to the increase in the hydration products that reduced the pore volume size and
structure in the mixture, resulting in reduced water absorption [90].
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3.3.3. Rapid Chloride Penetration Test (RCPT)

The RCPT was applied as quality control and to evaluate SCC chloride penetration.
The evaluation included electrical conductance to provide a rapid induction of the chloride
ion penetration resistance into the SCC. In this test method, according to ASTM standards,
the amount of electrical current passed through 51 mm thick slices of 102 mm nominal
diameter cores of cylinders for 6 h is monitored. Numerical results for the RCPT represent
the total electric charge that can pass through the concrete [67]. It is important to mention
that many factors affect chloride ion penetration, such as type of curing, w/b, the presence
of polymeric admixtures, air-void system, aggregate type, degree of consolidation, and age
of the sample when the test is applied.

As can be seen from Figure 17, the total charge passed through SCC produced with
100% ordinary Portland cement was 2700 coulombs, and this sample is classified as concrete
with moderate chloride ion penetrability as reported previously [67]. In this investigation,
SCC produced with FA and MS as well as GGBS and MS showed an advanced ability to
reduce chloride ion penetrability effectively. Adding supplementary cementitious materials
as a partial replacement for cement was extremely effective in producing SCC with very
low chloride ion penetrability. All the charges passed through concrete samples had results
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between 170 and 340 coulombs, which are lower in an effective level than the result for the
reference OPC-SCC having the same w/b.
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Figure 17 shows that the reduction in the charges passed was 87%, 88%, and 90%
compared to the reference OPC-SSC for SCC mixtures with 20.43%, 29.5%, and 38.74% FA
and MS, respectively. The reduction in charge passed was 90%, 94%, and 94% compared
to the reference OPC-SCC for SCC mixtures with 38.74%, 52.6%, and 71.16% GGBS and
MS, respectively. Because of the diversity and non-homogeneous mixture of materials,
the chloride ion penetration in concrete is a complex process of diffusion; moreover, other
environmental factors are involved in the measurement (e.g., chloride ion concentration
in seawater or structure location). Previously, it has been reported that the penetration
process for chloride ions may be related to the pore system in the body of the concrete.
The ions start the intrusion process into the pore system because of the diffusion process
which will start due to the capillary suction [91]. The addition of SCMs has reduced the
penetration of chloride ions efficiently and lowered ion diffusion ability to a very low level.
This behavior may be attributed to the pozzolanic reaction resulting from the addition
of SCMs which causes pore refinement. This process eventually reduced the concrete
permeability, as shown in Figures 13 and 14, which is also in agreement with the results
of [82]. Combining or incorporating MS in the SCC mixture design as an activation factor
was crucial to accelerate, enhance, and activate the chemical reactions with the presence of
fly ash and GGBS. Microsilica worked as a reactor to activate the potential chemical power
in SCMs and was an effective addition in increasing packing density, producing a denser
microstructure [77].

4. Conclusions

In this experimental study, self-compacting concrete was produced with high replace-
ment levels of OPC by SCMs. The results showed the ability to produce high-strength,
highly durable concrete with a high quality of sustainability by reducing the OPC used in
the SCC. Fly ash and GGBS were used as partial replacement materials with a constant
quantity of microsilica. The following conclusions can be drawn based on the results
registered from the experiments:

• In this investigation, GGBS and MS were able to be used at levels up to 71%. A
sustainable and durable SCC was successfully produced.
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• The high surface area of the SCM particles has increased both the initial slump and
60 min slump for the SCC in comparison to the 100% OPC-SCC. An appropriate
time for handling and casting was registered. Moreover, SCC with high contents of
SCMs showed the ability to be self-leveled with passing ability through reinforcement
without segregation.

• Viscosity for SCC was decreased in mixtures containing fly ash, while with GGBS
the viscosity was increased. The results showed adequate FA-SCC filling ability and
low rate of flow with congested reinforcement, whereas GGBS increased the viscosity
and consequently increased the SCC rate of flow. There was no bleeding and no
segregation, which reflects an advanced mixture design. Flow spreadability was
increased for SCCs with high levels of SCMs, which reflects the ability to flow and fill
congested reinforcement formwork without segregation or blocking. SCC showed a
higher passing ratio based on L-box test results.

• The synergy of high-content MS with FA or MS with GGBS was a clear factor in
producing high-strength SCC. MS worked as a reactor to activate the potential chemical
power in SCMs and react with Ca(OH)2 to form more calcium silicate hydrate (C-S-H).

• The combination of very fine SCMs in SCC showed an advanced interaction producing
very dense cement gel with good compactness for the paste. The result showed
sophisticated water permeability which is related to the effect of the increase in the
hydration products and good compactness of different aggregate sizes and fine sand
particles. Water permeability in SCC concrete was reduced to zero due to the effective
changes in the gel pore system. Water penetration ability was reduced due to the final
hydration products of high replacement levels of SCMs which reduced pore volume
and changed pore structure.
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