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Abstract: The photocatalytic reduction of CO2 into solar fuels by using semiconductor photocata-
lysts is one of the most promising approaches in terms of pollution control as well as renewable
energy sources. One of the crucial challenges for the 21st century is the development of potential
photocatalysts and techniques to improve CO2 photoreduction efficiency. TiO2 nanotubes (TNTs)
have recently attracted a great deal of research attention for their potential to convert CO2 into useful
compounds. Researchers are concentrating more on CO2 reduction due to the rising trend in CO2

emissions and are striving to improve the rate of CO2 photoreduction by modifying TNTs with the
appropriate configuration. In order to portray the potential applications of TNTs, it is imperative
to critically evaluate recent developments in synthesis and modification methodologies and their
capability to transform CO2 into value-added chemicals. The current review provides an insightful
understanding of TNT production methods, surface modification strategies used to enhance CO2

photoreduction, and major findings from previous research, thereby revealing research gaps and
upcoming challenges. Stability, reusability, and the improved performance of TNT photocatalysts
under visible light as well as the selection of optimized modification methods are the identified
barriers for CO2 photoreduction into valuable products. Higher rates of efficacy and product yield
can be attained by synthesizing suitable photocatalysts with addressing the limitations of TNTs and
designing an optimized photoreactor in terms of the proper utilization of photocatalysts, incident
lights, and the partial pressure of reactants.

Keywords: CO2 photoreduction; synthesis; modification; photocatalyst; hydrocarbon fuels

1. Introduction

Development is required; however, it has to be conducted in a sustainable manner
otherwise it will eventually pose a threat to humanity. In recent times, there has been a
lot of focus on the imbalanced consequences of carbon dioxide (CO2) on the ecosystem.
In the overall atmospheric system, when the amount of CO2 increases it creates a notable
imbalance in the energy input into the planet, thereby leading to global temperature
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rise [1,2]. It is widely known that rapid industrialization, exponential growth in the use
of fossil fuels, and extensive deforestation are all contributing to a sharp rise in CO2
emissions [3–5]. If current trends continue, CO2 concentrations will reach 550 ppm by 2050,
then a global temperature rise of +2 ◦C will be reached [3,6]. To mitigate the consequences of
global warming, some strategies such as shifting to renewable energy sources, the effective
use of energy as well as CO2 reduction and utilization have to be considered.

Recently, various methods are being used for the conversion and utilization of CO2.
Artificial photosynthesis is a promising and trustworthy method for CO2 reduction, and it
is also a potential technique to achieve value-added compounds by using solar energy [7,8].
This is one of the most appealing alternatives, since it can both benefit from recycling atmo-
spheric CO2 with direct solar energy usage and meet the demand for renewable fuels [9,10].
TiO2 has been extensively utilized as a photocatalyst in the photosynthesis process for
CO2 reduction due to its high photoactivity, excellent durability, affordability, and low
toxicity [11,12]. Figure 1 depicts the general mechanism of the CO2 photoreduction process
when TiO2 is used as a photocatalyst. However, practical applications of TiO2 are greatly
hindered by its wide inherent band gap (Eg = 3.2 eV for anatase), quick recombination of
photogenerated charges, and low solar light utilization (about 5%) [13,14]. Therefore, the
modification of TiO2 is crucial for practical application.
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Figure 1. Schematic diagram of photocatalysis process of TiO2-based photocatalysts for CO2 reduction.

The photocatalytic performance of TiO2 can be improved by modifying the surface of
TiO2. Due to their cost-effective construction, promising optical properties, and increased
surface-to-volume ratio, TiO2 nanotubes (TNTs) synthesized by electrochemical anodiza-
tion have received special attention among the one-dimensional (1D) TiO2 nanostructured
materials [15,16]. In recent years, the use of TNTs for photocatalytic CO2 reduction has
grown tremendously, which can be visualized in Figure 2. Beginning in 2009, TNT pho-
tocatalysts have been used to reduce CO2; since then, there has been a definite upward
trend. Recently, remarkable studies are also going on to modify TNTs with different tech-
niques such as doping, sensitization, and heterojunction for improving photocatalytic CO2
reduction performance under visible light [17–21]. Therefore, a comprehensive overview of
TNTs for applicability in reducing CO2 is required along with new perspectives to facilitate
potential directions for future research.
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Figure 2. The number of publications using search string “TiO2 nanotube and photocatalytic CO2

reduction”, (Scopus database search on 5 September 2022).

2. Scope and Overview of This Review

CO2 is regarded as the most powerful and major contributor to global warming among
other greenhouse gases. One of the most concerning environmental issues currently facing
the world is CO2 emissions [22,23]. To save the environment, it is indispensable to prevent
the source of CO2 emissions and at the same time convert CO2 into valuable resources.
In this connection, photocatalytic CO2 reduction to value-added products is a promising
approach. With the presence of substantial input energy to break down the C=O bond
and suitable photocatalysts, CO2 can be converted to value-added products such as hy-
drocarbons (CH4, C2H4, C2H6) and oxygenated hydrocarbons (CH3OH, C2H5OH, HCHO,
HCOOH, CH3COOH). During the photoreduction of CO2, CO is generally observed as
the most important intermediate product. Product selectivity is a very challenging task in
the overall CO2 photoreduction process [24,25]. Presently, plenty of research is going on
using TiO2-based photocatalysts to find suitable methods for enhancing the photocatalytic
CO2 reduction rate. Along with original research, some review works are also ongoing to
portray the recent scenario to scientific bodies. Although there have been some reviews of
photocatalytic CO2 reduction using TiO2 to produce CH4 or other value-added chemicals,
none of these reviews was entirely concerned with TNTs [6,26,27]. Consequently, in this
review, we focused on photocatalytic CO2 reduction to value-added products by employing
TNTs. A comparative summary of previously reviewed articles on different structures
and composites of TiO2 for applications in diverse fields is presented in Table 1. Recent
articles focusing on CO2 photoreduction based on TNTs or modified TNTs are critically
described. The authors believe that this comprehensive overview of the recent advances
of TNT-based photocatalytic CO2 reduction to value-added products would be useful to
concerned researchers focusing on nanotechnology, materials science, chemical engineering,
chemistry, and environmental science.
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Table 1. Comparative summary of reviewed articles on different structures and composites of TiO2

for variety of applications.

Review Type Focused on Application Critically Reviewed Reviewed Literature Reference

Comprehensive TiO2 nanotubes

Photocatalytic CO2
reduction to
value-added

products

Fabrication of TNTs,
photocatalytic performance of
TNTs, modification methods

for improving CO2
photoreduction activity under

visible light and kinetics of
CO2 photoreduction

2010–2022 This study

Critical TiO2-based materials Photocatalytic CO2
reduction

Fundamentals and recent
developments of TiO2

photocatalyst, different
modification techniques,

future challenges for CO2
photoreduction

2005–2017 [28]

Narrative TiO2-based
nanostructures

Photocatalytic CO2
conversion to

valuable chemicals

Different structures of TiO2,
photocatalytic performance
and their favorable reaction

conditions

2008–2019 [29]

Narrative TiO2-based
photocatalysts Conversion of CO2

Preparation and surface
modification of TiO2

1997–2018 [6]

Narrative TiO2 nanoparticles H2 production

Synthesis and
characterization methods for

doped-TiO2; influence of
dopants for improving

photocatalytic performance
of TiO2

2005–2019 [30]

Narrative TiO2-based materials Solar fuel production

Fabrication strategies and
performance of visible

light-responsive TiO2-based
materials for solar fuel

production

2010–2020 [31]

Comprehensive
review

TiO2-based
photocatalysts H2 fuel production

Key operating parameters
affecting the photocatalytic
performance of TiO2-based

photocatalysts

2002–2020 [26]

Narrative TNTs Dye-sensitized solar
cells

Fabrication methods of TNT
photoelectrode; modification
of TNTs for enhancing power

conversion efficiency

2001–2019 [32]

Narrative TiO2-based
composites

Degradation of
organic pollutants

Modification methods and
performance of doped

TiO2-based photocatalysts
2008–2020 [33]

Narrative TiO2 nanorods
Applications as a
photocatalyst and

electrode

Synthesis and
characterization of TiO2

nanorods; mechanism and
photocatalytic activity of TiO2

nanorods

2005–2021 [34]

Narrative Graphene coupled
TiO2 photocatalysts

Environmental
applications

Fundamental mechanism,
functionalization, and

dynamics in TiO2-graphene
Nanocomposites

2000–2020 [35]

Perspective review TiO2-x-based
materials

Photocatalytic CO2
reduction

Recent progress in reduced
TiO2 catalysts for

photocatalytic CO2 reduction
performance

2012–2022 [27]

Mini review TiO2-based
Photocatalysts

Contaminant
degradation

Different modification
techniques; photocatalytic
performance of TiO2 for

removal of emerging
contaminants

2000–2021 [36]
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3. Fundamentals of TNT

Titanium dioxide (TiO2) or titania, has become a very recognized and highly studied
photocatalyst in recent times due to its relatively long-term photostability, non-toxicity,
availability, and photocatalytic activity [26,36]. In natural conditions, TiO2 exists in four
major crystal forms: anatase, rutile, brookite, and TiO2(B). It is well documented in the
literature that TiO2 in the form of anatase has better photocatalytic performance than the
rutile and brookite forms [35,37]. Among these forms, anatase is more advantageous for
CO2 photoreduction at the nanoscale due to its faster charge carrier separation, higher
kinetic stability, lower surface energy, and acceptable bandgap energy [38,39]. The crystal
structures of TiO2 nanoparticles can be controlled by utilizing sugar alcohol such as D-
sorbitol [40]. To improve the photocatalytic performance of pristine TiO2, it is tuned
to several shapes including 0D (nanoparticles), 1D (nanofibers, nanowires, nanorods,
nanotubes), 2D (nanosheets, nanoflakes), and 3D (nanoflowers) (Figure 3). The nanotube
shape has a larger surface area than other 1D forms of TiO2 due to its additional inner walls.
Both the inner and outer surfaces of TNTs are susceptible to modification. In addition,
photons may have multiple reflections within the TNT hollow structure to facilitate its
photocatalytic applications [41,42]. A longer diffusion length of materials leads to improved
photoconversion efficiency, and this fact is widely acknowledged [43,44]. Lynch et al. [45]
revealed that the electron diffusion length of nanotubes was roughly 30 times longer than
that of other nanoparticles. Along with the morphology of the TNT photocatalyst, the
composites’ bonding strength also facilitates charge transfer [28]. TiO2 nanotubes, having
the advantages of relatively low toxicity, high chemical and thermal stability, high surface
area, and reduced recombination rate, are known to be a desired photocatalyst for CO2
photoreduction. Even though TNT has been utilized for CO2 conversion to CH4 and other
value-added compounds, for improving photoreduction performance under visible light it
is required to modify TNT.
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4. Synthesis of TNT

The one-dimensional (1D) tubular-structured TiO2 nanotube (TNT) has received per-
vasive interest due to its unique structural morphology and wide range of applications [16].
TiO2 nanotubes have a stronger catalytic performance than other 1D nanostructures in the
activation- or diffusion-governed photocatalytic process due to their superior characteris-
tics [39]. Sol-gel, template-assisted synthesis, hydrothermal treatment, and electrochemical
anodization are frequently used methods for the synthesis of TNTs. The anodization
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approach, among the other methods, allows for the development of self-organized TiO2
nanotube arrays with the simplicity of geometry control (length, diameter, and wall thick-
ness) by the use of appropriate anodization parameters [46]. The parameters that have a
direct influence on the morphology of TNTs are electrolyte types, concentration, pH, tem-
perature, anodization voltage, time, and type of electrodes [47,48]. The typical preparation
of TNTs via the electrochemical anodization process is shown in Figure 4. The following
steps are involved in TNTs’ growing process: The initial oxide layer forms on a Ti substrate
when a potential voltage is applied; the as-formed oxide layer is attacked by the Fluoride
ions to produce TiF6

2–, which will diffuse into the electrolyte; at the same time, oxidation
continues to spread into the substrate; a relatively porous layer with a short anodization
time is formed, and the interior of the layer dissolves as the anodization time increases,
resulting in well-organized tubes with sufficient length and diameter.

The formation of TNTs by using sol-gel and hydrothermal methods is oriented ran-
domly [49]. However, well-organized and vertically oriented TNTs with an average length
can be achieved by electrochemical anodization, which enhances the charge transfer effi-
ciency [50]. The anodization method is also preferable to the template assistant approach, in
which the formation of nanotube morphology is limited by the used template geometry [43].
Hence, this method is widely utilized because of its controllable, strong adherent strength,
achievability in tailoring the size and form of the NT arrays to the necessary dimensions,
and capability to fulfill the requirements of specific applications.
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5. Basics about Photocatalytic CO2 Reduction

Recently, a growing interest has been directed to conducting research in the field of
photocatalytic CO2 reduction, a novel technology for reducing CO2 emissions while also
producing renewable and sustainable fuels. However, CO2 is a highly stable molecule
(∆G◦ = –400 kJ mol−1) with linear symmetrical configuration, entirely oxidized carbon,
and gross carbon-oxygen energy of up to 804.4 kJ mol−1 (at 298 K) [52]. As a result, it is
not possible to convert it into value-added chemicals without the need for a photocatalyst
or energy input. When exposed to photons with energy over the photocatalyst’s band
gap, the excited electrons (e−) move from the valence band (VB) to the conduction band
(CB), leaving empty holes (h+) in the valence band. After that, some of the e−/h+ pairs
go through rapid recombination and do not take part in the subsequent redox processes,
which results in the loss of irradiation energy and conversion to some heat. The remaining
electrons and holes move to the photocatalyst’s surface to participate in reduction and
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oxidation reactions. The photocatalytic reduction of CO2 includes complex photocatalytic
reaction mechanisms comprising proton-assisted multiple electron reduction steps with
elevated energy barriers, low efficiency, activation and adsorption of CO2 molecules, and
product selectivity [53].

According to the literature, CO2 photoreduction follows distinct chemical pathways
depending on the reductant [54,55]. The formaldehyde and carbene pathways are the
most widely acknowledged and confirmed CO2 to CH4 conversion processes, as shown in
Figure 5. The first step in a reduction pathway is the formation of a •CO2

− anion radical
by acquiring an electron from the CB of the photocatalyst. In the formaldehyde pathway,
there are a number of possible intermediates in the conversion path of CO2 to CH4, which
is indicated by blue arrows in Figure 5. The carbene pathway, which commences with
deoxygenation followed by hydrogenation, is used to convert CO2 to CH4. The black
arrows in Figure 5 illustrate the carbene pathway for CH3OH/CH4 production. There
is still a lack of understanding regarding what happens during CO2 photocatalysis. A
thorough investigation of product selectivity is required to fully understand the mechanism
of CO2 reduction pathways [56,57].
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6. Photocatalytic CO2 Reduction to Value-Added Products Solely Using TNT

TiO2 in the configuration of nanotube arrays is highly desirable for practical appli-
cation due to the morphological advantages that allow the most appealing diffusion of
photocatalytic reduction products and a relatively low recombination rate [58]. The recent
studies regarding photocatalytic performance for reducing CO2 to hydrocarbon fuels using
TNTs as a photocatalyst are summarized in Table 2. Depending on the length, diameter,
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wall thickness, and crystal structure of the nanotubes the photocatalytic activity of TNT
photocatalysts is greatly influenced. For instance, Savchuk et al. [59] found that the pho-
tocatalytic CO2 reduction rate of multi-walled TNTs was 2-fold faster for CH4 and 4-fold
faster for CH3OH production than single-walled TNTs. Oxygen vacancies and defects
in the surface play a crucial role in enhancing the photoactivity of photocatalysts [60,61].
The photoactivity of synthesized black TiO2 nanotube arrays (TNTA) was investigated
by Gao et al. [62]. Black TNTA displayed excellent CO2 photoreduction to CO, yielding
185.39 mol g1 h−1 under irradiation of visible light. This was made possible by the oxygen
vacancy self-doping, which significantly improved three important aspects, namely the de-
velopment of photoinduced charge, transport of interfacial charge, and interfacial reaction.

Table 2. Photocatalytic performance of TNTs for CO2 reduction.

Photocatalyst Synthesis
Method Reactor Reactant Light Source Product Yield

(µmol g−1 h−1) Reference

Black TNTA Electrochemical
anodization

Gas-closed
circulation system CO2 + H2O 300 W Xe lamp CO 185.4 [62]

Flame-
annealed

TNT

Electrochemical
anodization

Stainless steel
reactor with

transparent quartz
window

CO2 + H2O
vapor

50 W LED
lamp CH4 156.5 [63]

TNTA Electrochemical
anodization

Batch reactor with
Fresnel lens and

auto-tracking
system

CO2 + H2O Sunlight
CH4
C2H4
C2H6

861.1
100.8
53.3

[64]

Amorphous
TNTA

Electrochemical
anodization

Three-way quartz
reactor CO2 + H2O UV-light bulbs CH4 14.0 [65]

Self-doped
TNT

Electrochemical
anodization

Electric-assisted
quartz reactor

CO2 + H2O
vapor UV LED lamp CH4

C2H6

682.3
52.6 [66]

Light intensity, reaction temperature, and the partial pressure of the reactant in the
photocatalytic reactor have a significant impact on CO2 photoreduction [67]. The photo-
catalytic performance of TiO2 nanotube arrays (TNTA) under concentrated sunlight and
different H2O and CO2 partial pressure was investigated by Zhang et al. [64]. The results
exhibited that the photocatalytic performance of TNTA was 100 times greater than that of
pure TiO2 at 400 sunlight concentrated ratio and 0.05 MPa CO2 pressure. For improving
the performance of TNTs as a stand-alone photocatalyst different techniques have been
used by researchers. When evaluating the photocatalytic CO2 reduction, amorphous TNTA
displayed promising photoactivity, providing a CH4 generation rate of 14.0 without any
modification methods [65]. Under visible light irradiation, flame-annealed TNTs synthe-
sized in an aqueous electrolyte medium demonstrated superior photocatalytic performance
and produced 156.5 µmol g−1 h−1 of CH4 [63]. Pan et al. [66] established a unique electric-
assisted photocatalytic method to lower the rate of electron and hole recombination. Using
this technique, self-doped TNT photocatalyst was produced without using any electrolyte
and counter electrode. Self-doped TNTs were able to convert CO2 at maximum rates of
682.3 µmol g−1 h−1 for CH4 and 52.6 µmol g−1 h−1 for C2H6, respectively. This indicates a
3.5-fold improvement in photocatalytic activity with the electric-assisted technique over
conventional photocatalysis.

7. Modified TNT for Improving Photocatalytic Performance

To get over its well-known shortcomings of wide band gap and fast recombination rate,
pure TiO2 material typically undergoes various morphological and surface modifications.
However, for improving the photoreduction activity of TNTs under visible light some
modification methods are commonly used, as shown in Figure 6. Table 3 provides a
summary of the benefits and limitations of the most adopted approaches for enhancing
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the CO2 photoreduction of the TNT-based photocatalysts. Details of different modification
methods and the performance of modified TNTs are described in the following sections.
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Table 3. Comparison of various modification methods utilized for improving photocatalytic activity
of TNTs.

Modification
Methods

Criteria of Utilized Metals
or Materials Benefits Limitations

Metal Doping Transition metals
Effective method to expand the
optical response of TiO2-based

nanocomposites.

Transition metals are expensive
and rare as well as there is a

possibility of metal leaching into
the environment.

Metal-oxide Doping Alkaline-earth metal oxides
Utilized to improve charge

separation, light absorption, and
structural properties.

Leads to structural defects.

Non-metal Doping Mostly N and C
Narrow down the bandgap of

TiO2 by introducing new energy
states.

Act as recombination centers.

Heterojunction Semiconductor materials with
narrow bandgap

Extends light absorption into
visible range and separates

reduction and oxidation sites.

This is complex approach with
relatively lower stability.

Sensitization Highly light-sensitive materials Applied to improve the light
response.

Development of photosensitized
composite is challenging task.

Carbon-based Materials Doping Chemically inert, nontoxic, and
economically feasible

Extends light absorption into
visible range, enhances

electron–hole separation and
improves CO2 adsorption on

catalytic surface.

Inhibits light absorption by TiO2
materials.
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7.1. Metal Doping

Metal doping is the most used technique to improve the photoreduction performance
of TiO2-based photocatalysts by introducing different energy levels under the CB and
slowing down the fast recombination rate [68,69]. Transition metals, rare earth, and no-
ble metals are the most reported metal dopants utilized to increase the photoactivity of
TiO2 [36,70–72]. For instance, Qian et al. [73] employed the transition metal niobium (Nb)
with TNTA for enhancing CO2 photoreduction under simulated solar irradiation. The
results showed the production of CH3CHO was over ∼500 µmol g−1 h−1 with superior
reusability and product selectivity. Nguyen et al. [74] examined molybdenum (Mo)-doped
TNTs for enhancing CO2 photoreduction. The incorporation of Mo substantially decreased
the oxidation capability of TNTs, while improving photoreduction performance. Higher
yields of CH4 and CO have been reported for Mo-modified TNTs compared to bare TNTs.
In another study, Ni and Cu metal was doped in TNT for exploring CO2 photoreduction
activity by Celaya et al. [18]. Doping Cu and Ni with TNT structures increased the density
of the carriers, which enhances photoactivity, especially for Ni-doped TNT. In order to
increase photoactivity, TiO2 structures can also be altered using single-atom (SAs) cata-
lysts, where all of the metals remain as isolated single atoms [75,76]. Single atom (SAs–Pt
and Au) catalysts were deposited on TNTs by Pan et al. [77] for enhancing CO2 photore-
duction. The Pt-Au/R-TNTs with the addition of 0.33% of SA metals showed a 149-fold
higher photocatalytic activity than untreated R-TNT, yielding CH4 and C2H6 of 360.0 and
28.8 µmol g−1 h−1, respectively. The quick shifting of photo-induced electrons from the de-
fective sites to the SAs was made possible by the strong metal support interactions between
Pt and Au. This also improved the separation of the electron holes and the transmission of
the charge carriers.

With the aid of recent advances in plasmonic photocatalysis, the performance of
CO2 photoreduction under visible light exposure has rapidly increased [78]. It uses pre-
cious metal nanoparticles (NPs) spread over photocatalysts and has exceptional qualities
including localized plasmonic surface resonance (LSPR), which helps to strengthen the
absorption of visible light and excite active charge carriers [79]. The plasmonic effect is
the consequence of the interaction between the incident beam of light and free electrons in
metal nanoparticles. Additionally, plasmonic metal nanoparticles exhibit distinct optical,
electrical, and thermal characteristics [80,81]. The most used plasmonic metals in metal
doping with TiO2 are gold (Au), silver (Ag), platinum (Pt), rhodium (Rh), and ruthenium
(Ru) [82]. To enhance the yield of CH4 through CO2 photoreduction, Kar et al. [83] syn-
thesized TNT arrays with Au and Ru nanoparticles. Under identical testing settings, the
results showed that modified TNTAs produced CH4 at a rate that was almost ten times
greater than that of unmodified TNTAs. Low et al. [15], and Khatun et al. [84] investigated
the photocatalytic performance of TNT arrays loaded with Ag and Au, respectively. In both
cases, they found improved CO2 photoreduction performance due to the LSPR behavior of
the plasmonic metals.

7.2. Metal-Oxide Doping

A metal-oxide doping technique is also used to increase the photoactivity of pure TiO2
due to their enhanced light absorption, charge separation, and surface chemistry [85,86].
Separation of charge is achieved at the junction of the metal oxide and TiO2 material,
resulting in a separation of redox processes that inhibits reactions from back and side
and increases the production of the product from CO2 photoreduction [11]. For instance,
MgO/TNT films have been constructed by Li et al. [87] for investigating photocatalytic
performance under visible light. They reported MgO/TNTs had excellent efficiency for
the conversion of CO2 to CH4 compared with the TNTs alone due to MgO having a strong
adsorption ability of CO2.

Oxides of copper are the most active dopant compared with other metals used
for improving the photoreduction performance of TiO2 [11]. Shi et al. [88] used TNT-
supported CuO-ZnO-CeO2 (CZC) catalysts for enhancing the CO2 hydrogenation to
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CH3OH. Figure 7a shows that among all catalysts, the catalyst (CZC) without TNT support
exhibits the lowest CO2 conversion. They asserted that adding TNT support to CZC cata-
lysts enhanced CO2 adsorption and increased the conversion of CO2 to CH3OH in addition
to promoting CuO reducibility, improving metallic Cu dispersion, and increasing specific
surface area. They also suggested a potential bifunctional CO2 hydrogenation pathway
over TNT-based CZC catalysts, as illustrated in Figure 7b. In another study, TNTs were
modified with different ratios of Cu2O/CuO for enhancing the CH3OH yield from CO2
photo-reduction [89]. When lactic acid was used as the electrolyte, TNT adjusted with an
80:20 CuO/Cu2O ratio demonstrated the maximum CO2 reduction performance. Recently,
Goto et al. [90] examined the gas phase complex CO2 photoreduction mechanism in high
vacuum over Cu2O-doped TNTAs. The positive synergistic effects of Cu2O nanoparticles,
and the appearance of TNA in the strong electron spin resonance signals, indicated the im-
provement of photoreduction. It is worth mentioning that although CO2 deoxygenation to
CH4 is often the primary gas phase reaction, they found that CO2 photoreduction happens
by hydrogenation in the gas phase over Cu2O-TNA photocatalysts even at high vacuum.
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7.3. Non-Metal Doping

The photocatalytic activity of TiO2 nanoparticles under the irradiation of visible light
can be accelerated by non-metal doping. The deposition of dopants in the TiO2 lattice
may produce impurity states that impact the band gap, which controls important factors
that influence the activity of photocatalysts, such as the charge transfer and recombination
rate [91]. Although its usefulness is still controversial, doping with non-metallic anions,
particularly nitrogen (N), has received a lot of attention in recent years [92]. For instance,
Delavari et al. [93] synthesized N-doped TNT arrays for CO2 photoreduction in the presence
of CH4. The results showed that the produced TNT arrays were highly organized, vertically
aligned, and maintained their structural integrity after doping nitrogen. The photo-reduced
products mostly consisted of H2 with a selectivity of 80.5%, along with a number of
additional by-products such as CO, C2H2, C2H4, and C3H8. Parayil et al. [94] examined
nitrogen and carbon (C) doping with sodium TNT to enhance CO2 photoconversion to
hydrocarbon fuels. The N, C-TNT sample with a moderate doping concentration exhibited
the highest CH4 yield of 9.75 µmol g−1 h−1. Light absorption, specific surface area, and
the concentration of Na+ ions in TNT, which act as CO2 adsorption sites and center the
photogenerated electrons, were the main parameters that improved the performance of the
modified photocatalyst.

7.4. Heterojunction

The heterojunction technique is becoming a very promising approach for the control
of the charge recombination rate as well as for achieving optimal conduction band (CB)
and valance band (VB) edge positions for improved photocatalytic activity [95,96]. In
particular, the Z-scheme method encourages strong redox facilities that are helpful for
the production and propagation of electron holes [97]. The challenge in CO2 reduction
is the appropriate fabrication of Z-scheme between TiO2 and other semiconductors with
higher CB potential. Lai et al. [98] successfully synthesized ZnO–Au-TNT Z-scheme
heterojunction with a CH3OH yield of 7.78 mmol g−1 h−1 for CO2 reduction. In another
study, Wu et al. [99] investigated the CO2 photoreduction performance of P–O-linked
g-C3N4-TNT Z-scheme composites. The synergistic effect between g-C3N4 and P–O links
plays a crucial role in the modified Z-scheme heterostructure and showed a more than
3-fold higher CO2 photoreduction than bare TNTs. The schematic diagram of the charge
transfer and separation mechanism of the structured Z-scheme P–O-connected g-C3N4-
TNTs is shown in Figure 8. When both TNTs and g-C3N4 were excited appropriately, the
photogenerated electrons on the CB of the TNTs interact with the holes on the VB of g-C3N4.
As a result, the energy-rich holes left on the VB of the TNTs and the electrons left on the CB
of g-C3N4 participate in redox processes, promoting charge separation and enhancing CO2
photoreduction. The photoreduction performance of the g-C3N4-rGO-TNT heterostructure
was also examined by Ikreedeegh and Tahir [100]. Using an optimized g-C3N4-rGO-TNT
combination after 4 h irradiation, they found elevated CH4 and CO production of 3.32 and
47.12 mmol m−2, respectively, which represents a significant improvement compared to
pristine TNTs.

A TNT photocatalyst synthesized by the hydrothermal method was modified to a
CdS(or Bi2S3)/TNT heterostructure by Li et al. [101] for enhancing photocatalytic CO2
reduction activity under the visible spectrum of light. The maximum production of CH3OH,
which was almost 2.2 times more than that of bare TNTs, was achieved on a modified
Bi2S3/TNT photocatalyst. Kim et al. [19] constructed a TNT-ZnIn2S4 type II heterojunc-
tion by a simple hydrothermal approach for highly selective CO2 photoreduction. The
results showed a significant improvement with a 4.41 mmol g−1 h−1 yield of CO, which
was 1.5 times higher than bare TNTs. The TNT-ZnIn2S4 composite extends the respon-
sive spectral range and accelerates the separation of photoexcited electrons during CO2
conversion.
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Figure 8. Schematic representation of photogenerated charge transfer and separation mechanism of
the built P–O-connected g-C3N4-TNT composites, adopted from [99].

7.5. Sensitization

The wavelength of light can be expanded by surface photosensitization, which also
improves the performance of the excitation process [96]. By utilizing sensitizers, the rate of
visible light absorption can also be increased. This approach has been utilized in various
studies for CO2 photoreduction. For instance, Cheng et al. [102] incorporated CdS/ZnS
quantum dots as a sensitizer with TNT arrays for enhancing the CO2 conversion rate under
the illumination of visible light. Before the incorporation of sensitizer, the photocatalytic
conversion efficiency of TNTA under visible light was too low. Results showed a 2.73 times
improvement in CH3OH yield after sensitizing TNTA with CdS/ZnS quantum dots. Xiao
et al. [20,21] successfully synthesized Ni(II) tetra(4-carboxylphenyl)porphyrin (NiTCP)
and cobalt tetra(4-carboxyphenyl)porphyrin (CoTCP) with TNT arrays for efficient CO2
photoreduction to CH4. Under visible light sources, CoTCP-TNTAs produced 5.5 times
more CH4 than bare TNT arrays, while NiTCP-TNTAs produced 5 times higher CH4. The
photoexcitation of electrons occurs from the highest occupied molecular orbital (HOMO) of
the sensitizer to its lowest unoccupied molecular orbital (LUMO). As depicted in Figure 9,
photogenerated electrons are transferred from the LUMO of the sensitizer to the CB of the
TiO2, where they are then consumed by the CO2 reactant.
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7.6. Carbon-Based Material Doping

Carbon-based nanostructures such as carbon quantum dots (CQDs), graphene quan-
tum dots (GQDs), carbon nanotubes (CNT), graphene oxide (GO), and reduced graphene
oxide (rGO) are often used to enhance the photoactivity of TiO2-based photocatalysts [103].
Due to strong photoluminescence, high electrical conductivity, wide solar absorption spec-
trum, and affordable cost, carbon-based materials have drawn the greatest attention to
be used as a co-catalyst in enhancing photoactivity [17,104]. To increase CO2 photoreduc-
tion performance under visible light, GO and rGO were used with TNTs as co-catalyst as
presented in Table 2. Under visible light irradiation, the graphene oxide (GO) layer links
the NTs on their surface, which helps to enhance the mobility of the electrons [105]. The
combination of the carbon-based materials along with TNTs acts as a strong photocatalyst
to improve CO2 photoreduction [17,106]. A possible synergetic mechanism to enhance the
CO2 photoreduction over the CQD-modified TNTs is shown in Figure 10. The following are
some major ways that CQDs contribute to the improvement of CO2 photoreduction. The
electrons in the CB of the TNTs are transferred to CQDs during the photocatalytic process
and quickly react with CO2, which prevents charge recombination; in the composite long-
wavelength visible light is absorbed and converted to short-wavelength by CQDs, which
then excites TNTs to increase charge separation; and in the third case, the CQDs serve as a
reservoir to trap electrons emitted from TNTs, which prevents charge recombination [17].
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As shown in Table 4, substantial improvements have been noticed converting CO2 into
solar fuels when utilizing carbon-based materials as a co-catalyst with TNT. The maximum
rate of CO2 conversion to produce CH4 was reported by Zubair et al. [107] with the use
of GQDs. It has been documented that the mobility of photogenerated charge carriers
between the GQDs and TNT crystals plays a crucial role in the photocatalytic performance
of the attained composites. A considerable improvement in the production of CH4 has also
been noticed with TNT arrays modified by rGO.

Table 4. Summary of carbon-based material-doped TNT photocatalysts used for CO2 photoreduction.

Composite
Photocatalysts

TNT Fabrication
Method Photoreactor Light Source Product

% of Yield
Increased than

TNT
Reference

CQDs-TNTs Hydrothermal
method

Electrochemical
workstation 300 W Xe lamp CO

CH4

2.4
2.5 [17]

TNT-rGO-Pt Electrochemical
anodization

Circular stainless steel
batch reactor

400 W
metal-halide

lamp
CH4 2.8 [105]

GQD-TNTA Anodization Stainless steel reactor 100 W
Xe lamp CH4 5.6 [107]

rGO-Pt-TNTA Anodization Gas–solid phase
photoreactor

500 W tungsten–
halogen

lamp
CH4 1.9 [108]

rGO-TNTA Electrochemical
anodization Stainless steel cell 100 W Xe light CH4 4.4 [109]

GO-TNT Electrochemical
anodization

Cylindrical quartz
reactor 200 W UV-A lamp CO 2.3 [110]
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8. Kinetic Modeling to Compute Rate of CO2 Photoreduction

There is a very limited number of studies focusing on the kinetic model of CO2
photoreduction. An intrinsic model is highly useful, since it avoids scale dependency and it
explains the kinetics of the entire process where all active sites on the photocatalyst surface
have an equal possibility to participate in the reaction [111]. Empirical modeling, in situ
analysis, and microkinetic approaches are generally used for computing the rate of CO2
photoreduction [112]. In heterogeneous photocatalysis, the kinetic models are utilized
for the well-stable reactants and products in terms of the concentrations of reactant and
product on the surface of photocatalysts. In general, the constants of reaction rate and
adsorption equilibrium are chosen as kinetic parameters.

There are five key steps that generally occur within the photocatalytic reactor as
shown in Figure 11. Step 1 is the initiation of reactants to the reactor, i.e., the diffusion of
H2O and CO2 to the photocatalyst’s surface; step 2 consists of diffusion along the surface-
active sites; step 3 is the provision of the energy for the reaction; step 4 consists of the
photoreaction between the two adjacent active sites; while step 5 belongs to the desorption
of products from the surface of the photocatalyst [111]. The most crucial factors influencing
photocatalytic reduction efficiency are the interactions between the CO2 molecules and the
photocatalyst surfaces. Computational modeling employing density function theory (DFT)
simulations has been applied to investigate the CO2 photoreduction processes occurring at
the surface of TiO2 photocatalysts by Liu et al. [113], and Núñez et al. [114]. Computational
fluid dynamics and the Sips model were used by Khalilzadeh and Shariati [115], and Lu
et al. [116] to investigate the CO2 photoreduction rate over TiO2 photocatalysts. So far,
no study regarding computational modeling has been conducted on TNT photocatalysts.
When evaluating the assumptions established for empirical kinetic studies, it is also vital
to understand the molecular processes appearing at the surface of the photocatalyst. The
use of in situ analysis methods is a more promising way to study the CO2 photoreduction
activities appearing on the surface of photocatalysts [111]. Photoluminescence (PL), Fourier
Transform Raman Infrared Spectroscopy (FTIR), and X-ray photoelectron spectroscopy
(XPS) are examples of in situ spectroscopy that provide vital information on the CO2
photoreduction process. A kinetic study of CO2 photoreduction over TNTs using in situ
FTIR, UV–vis, and X-ray absorption spectroscopies, has been reported by Liu et al. [113],
and Chang et al. [42]. Their findings provided evidence that carboxylate species adsorbed
on TNT might carry out surface reactions that are accelerated by UV-vis light to produce
low-carbon compounds.
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Microkinetics is the study of the fundamental processes taking place at a molecular
level on the surface of photocatalysts without taking into account the effects of heat and
mass transfer [117]. Microkinetic analysis is a viable technique for propelling CO2 photore-
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duction forward. A benefit of employing this technique is that it saves time and money
in the lab by producing models that can be used to screen and direct photocatalyst de-
sign [114]. The development of scientifically justified Langmuir–Hinshelwood (LH)-based
kinetic models provides an alternative approach to microkinetic modeling. This type of
model was previously used by Bjelajac et al. [118], and Tan et al. [119] to illustrate the
kinetics of TiO2-based CO2 photoreduction. The benefit of this method is its simplicity,
and it takes into account the effects of partial pressure as well as irradiation on the kinetic
data. The time and effort necessary to acquire CO2 photoreduction kinetic data are a
drawback. Reaction rates in non-homogeneous photocatalytic approaches are typically
related to the effective desorption of the end products on the photocatalyst surface after
reactant adsorption [119,120]. The reaction rate is an indicator of photocatalytic activity
represented as the number of moles that have reacted in a given amount of time and space,
as evaluated by this approach. The typical assumption is that the surface reactions are the
slowest and ultimately the rate-determining step. The L–H mechanism can be utilized for
such reactions if indeed the reactants are effectively adsorbed within the same adsorbent
surface with distinct rate constants. When CO2 and H2O are employed as reactants, and it
is assumed that they are adsorbed on the identical active sites just on the catalyst surface,
the L–H model can be used to compute the rate of reaction as illustrated in Equation (1).

Rate = (kIα) [
KCO2 PCO2KH2OPH2O(

1 + KCO2 PCO2 + KH2OPH2O + KCH4 PCH4 + KCOPCO + KH2 PH2

)2 ] (1)

Here, k stands for the rate constant of any specific product, and I is the amount of
incident light that is used to calculate the kinetic constants. Generally, the rate of a photo-
catalytic reaction is proportional to Iα, where α denotes the reaction order of light intensity
and depending on the intensity of light its value never exceeds one. KCO2 , KH2O, KCH4 , KCO,
and KH2 are the ratios of rate constants for the adsorption and desorption of CO2, H2O, CH4,
CO, and H2, respectively. If only reactants are adsorbed on the surface of the photocatalysts
and all products are instantly desorbed following chemical reaction, Equation (1) can be
simplified. The simplified form of the L–H model will be as Equation (2).

Rate = (kIα) [
KCO2 PCO2KH2OPH2O(

1 + KCO2 PCO2 + KH2OPH2O
)2 ] (2)

By comparing it to the experimental data of PCO2 , PH2O, light intensity, and the rate
of hydrocarbon production, the constants of the L–H model can be resolved. Delavari
et al. [84] used the L–H model for investigating the CO2 photoreduction rate over N-doped
TNTA. It has been observed that when only a small portion of the sites is utilized the
reaction rate is entirely proportional to PCO2 at a lower partial pressure. However, with the
increase in PCO2 , the rate eventually slows down and becomes less reliant on it, probably
because of CO2 adsorption on the whole surface of the photocatalyst. Moreover, the rate
of reaction is slowed down since CH4 molecules must compete with CO2 molecules to
commence chemical reactions.

The catalyst surface is frequently employed as a reaction space in heterogeneous
catalytic processes [121]. The participation of light in the initiation of certain catalytic
processes adds some complexity to photocatalysis. The reaction space cannot be described
by only one single parameter because both the quantity of the photocatalyst and the light
are essential to measure the rate of reaction at a specific position in the reaction space.
The Kinetic Monte Carlo (KMC) simulation model is rapidly becoming the benchmark
for bridging the gap between the large diversity of length scales and time scales across
which heterogeneous catalysis unfolds [122]. In a nutshell, the kinetics of CO2 photore-
duction are greatly influenced by the source of light, temperature, and pressure in the
photoreactor [111]. In both gas and liquid phase systems, partial pressure influences the
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possibility of adsorption over the photocatalyst, increasing the yield of the photocatalytic
CO2 reduction [28].

9. Concluding Remarks and Future Perspective

TiO2 nanotubes are promising photocatalysts that have been utilized for CO2 pho-
toreduction to harvest solar fuels. TiO2 nanotubes can be produced in a wide range of
morphologies utilizing a simple electrochemical anodization process. This review critically
assesses the advancement of TNT application on CO2 photoreduction over the last ten years.
The detailed description of kinetic approaches to compute the rate of CO2 photoreduction
has also been summarized in this study. Overall, notable progress has been made in the
reduction of CO2 using bare TNTs or modified TNTs. TiO2 nanotube photocatalysts utilized
by raising the incident light intensity and reaction temperature by using concentrated
sunlight have been shown to achieve excellent CO2 photoreduction to CH4. In the case
of modified TNTs, ZnO–Au–TNT Z-scheme heterojunction showed the maximum CO2
reduction with a CH3OH yield of 7.78 mmol g−1 h−1. Among the carbon-based materials,
GQD-modified TNTs showed 5.6 times higher CO2 photoreduction performance than
pristine TNTs. Langmuir–Hinshelwood (LH) is the most utilized model to compute the
rate of reaction during photocatalytic CO2 reduction to value-added products.

Despite extensive research in this area, the photocatalytic reduction of CO2 is still far
from practical application due to the low yield of products. Studies have been undertaken
so far on a lab scale, and there is still a long way to go before the technologies are taken
into consideration for large-scale applications. The control of charge-carrier recombination,
performance under visible light, quick charge separation, peeling off TNTs from substrate
along with the utilization of the whole surface of the photocatalyst in a photoreactor, and
cost-effective and environmentally friendly surface modification methods are all issues that
need to be addressed for improving the performance of TNT photocatalysts. The stability
and reusability of photocatalysts as well as cost-efficiency and more comprehensive kinetic
modeling are crucial for scaling up the CO2 photoreduction process. However, these have
been rarely addressed in previous studies. More research is required on the cost-effective
and reusable photocatalyst synthesis method, photoreactor design, kinetic modeling, and
pilot-scale implementation.
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