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ABSTRACT Emperor Penguin Optimizer (EPO) is a recently developed population-based meta-heuristic
algorithm that simulates the huddling behavior of emperor penguins. Mixed results have been observed
on the performance of EPO in solving general optimization problems. Within the EPO, two parameters
need to be tuned (namely f and /) to ensure a good balance between exploration (i.e., roaming unknown
locations) and exploitation (i.e., manipulating the current known best). Since the search contour varies
depending on the optimization problem, the tuning of f and [ is problem-dependent, and there is no one-
size-fits-all approach. To alleviate these problems, an adaptive mechanism can be introduced in EPO. This
paper proposes a fuzzy adaptive variant of EPO, namely Fuzzy Adaptive Emperor Penguin Optimizer
(FAEPO), to solve this problem. As the name suggests, FAEPO can adaptively tune the parameters f
and / throughout the search based on three measures (i.e., quality, success rate, and diversity of the current
search) via fuzzy decisions. A test suite of twelve optimization benchmark test functions and three global
optimization problems (Team Formation Optimization - TFO, Low Autocorrelation Binary Sequence -
LABS, and Modified Condition/Decision Coverage - MC/DC test case generation) were solved using
the proposed algorithm. The respective solution results of the benchmark meta-heuristic algorithms were
compared. The experimental results demonstrate that FAEPO significantly improved the performance of
its predecessor (EPO) and gives superior performance against the competing meta-heuristic algorithms,
including an improved variant of EPO (IEPO).

INDEX TERMS Emperor penguin optimizer, fuzzy adaptive EPO, fuzzy inference system, low autocorrela-
tion binary sequence, meta-heuristic algorithms, MC/DC test case generation, team formation optimization.

I. INTRODUCTION

meta-heuristic algorithms have been known to be effec-
tive for solving real-world optimization problems. Although
regarded as an approximation approach, meta-heuristic algo-
rithms often excel in the case when the search spaces are
significantly large, owing to their ability to produce good
enough solutions within polynomial time [1]. A plethora
of meta-heuristic algorithms has been introduced in the
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scientific literature over the last few decades [2], [3]. The
main feature of meta-heuristic algorithms is that they do not
require much knowledge about the problem space. Mainly,
they aim to achieve the global optima of a given problem
by balancing the quality of solution and time cost. Moreover,
they work with a randomly generated set of candidate solu-
tions known as population and can be implemented easily due
to their simple structure.

Many meta-heuristic algorithms have been suggested
during the last few decades. For example, swarm intelli-
gence (SI) and population-based methods incorporate many
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nature-inspired algorithms where the swarms are inspired by
the collective behavior of the species in nature [4]. With-
out any centralized control, these species have the ability
to position themselves for achieving their goal in a decent
way [5]. SI-based algorithms are trendy in the field of global
optimization problems. There are many SI based algorithms
proposed in the literature, such as Emperor Penguin Opti-
mizer (EPO) [6], Aquila Optimizer (AO) [7], Coot Optimiza-
tion Algorithm (COA) [8], Salp Swarm Algorithm (SSA) [9],
Artificial Bee Colony Algorithm (ABCA) [10], Cuckoo
Search Algorithm (CSA) [11], Marine Predators Algorithm
(MPA) [12]. Their effectiveness and performance are com-
pared and evaluated by adopting them in many real-world
optimization problems.

A successful meta-heuristic algorithm should judiciously
combine the benefits of exploration and exploitation to pro-
duce optimal results. A good exploration capability of a
meta-heuristic algorithm ensures exploring all the poten-
tial search regions to find the global solution. In contrast,
good exploitation manipulates the solution based on the best
solution to enhance existing ones. Although a good balance
between them may improve solution accuracy, there is no
fundamental theoretical knowledge or framework in the liter-
ature on building a credible balance between these two con-
cepts [13]. According to the literature study, putting too much
emphasis on exploitation tends to deny a diverse solution and
may lead to local optima, whereas putting too much emphasis
on exploration consumes significant computing resources and
prevent convergence.

Most meta-heuristic algorithms introduce control parame-
ters to balance exploitation and exploration phases efficiently.
For example, Crow Search Algorithm (CSA) [14] exploits
awareness probability; Salp Swarm Algorithm (SSA) [9]
introduces coefficient c1; Owl Search Algorithm (OSA) [15]
relies on linearly decreasing constant ; Sooty Tern Opti-
mization Algorithm (STOA) [16] exploits random vari-
able CB and spiral behavior; Squirrel Search Algorithm
(SQSA) [17] presents gliding constant G.. The adjustment
of the parameters thus ensures an appropriate quality solution
(i.e., based on an intertwine balance and compromise between
exploration and exploitation). Nonetheless, fine-tuning these
parameters are often time-consuming and problem-specific,
since no universal size fits all approaches [18].

A swarm-based algorithm called emperor penguin opti-
mizer (EPO) that emulates the huddling behavior of emperor
penguins was proposed by Dhiman and Kumar in 2018 [6].
This newly proposed EPO is successfully adopted in many
engineering optimization problems (e.g., [19], [20], [21],
[22], [23], [24], [25], [26], and [27]). The advancement of
research on EPO from its invention is reviewed in [28] and
categorized the variants of EPO as improved EPO [29], [30],
[31], [32], [33], hybrid EPO [34], [35], [36], [37], [38], multi-
objective EPO [39], [40], [41], [42], and chaotic EPO [43],
[44]. Despite its potential, EPO also has the shortcoming of
exploration ability [30], weak randomness ability [29], ease
to fall into local optimum [29], [30], [31], [32], [33], and
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premature convergence [39]. These flaws are caused mainly
by adequately tuning the responsible parameters that directly
impact balancing the exploitation and exploration phases of
the search space. This study proposes a fuzzy adaptive EPO
(FAEPO) to boost EPO’s performance and dynamically bal-
ance exploitation and exploration capabilities. A fuzzy-based
adaptive parameter tuning method is proposed to balance the
exploration and exploitation during the search, thus improv-
ing the performance of the algorithm. Specifically, this study
makes the following significant contributions:

o FAEPO integrates a Mamdani fuzzy inference sys-
tem that provides adaptive control of exploration and
exploitation by tuning the control parameters, f and /,
based on the need for a particular search problem.

o FAEPO improves the time complexity of the original
EPO via factoring out the unnecessary fitness calcu-
lation for each iteration when no position update is
performed.

« FAEPO is subjected to twelve optimization benchmark
test functions and three optimization problems (i.e.,
team formation optimization, low autocorrelation binary
sequence-LABS, MC/DC test case generation) as case
studies to demonstrate its applicability and generality in
many real-world applications.

The remainder of this paper is organized as follows.
Section 2 provides an overview and related works on
meta-heuristic algorithms that integrate fuzzy inference sys-
tems. An overview of the original EPO algorithm is presented
in Section 3. A detailed description of the proposed FAEPO
algorithm is presented in Section 4. Section 5 provides
our empirical evaluation along with our research questions.
Research questions are answered elaborately in Section 6.
In Section 7, an overall observation and discussion on
FAEPO are presented. Finally, we summarize this work in
Section 8 and offer directions for future research.

Il. OVERVIEW AND RELATED WORKS ON FUZZY
INFERENCE SYSTEM INTEGRATION IN META-HEURISTIC
ALGORITHM

Humans are far superior to deterministic systems or comput-
ers at certain operations, such as obstacle avoidance while
driving or planning a strategy. For the complex processes,
humans carry them out by simple rules gleaned from their
experiences. This could result from humans’ exceptional rea-
soning and complicated cognitive processing capabilities.

Fuzzy logic or many-valued logic is the practical alterna-
tive to model human reasoning by using if-then fuzzy rules
based on the fuzzy set theory proposed by L. A. Zadeh [45].
The fuzzy set theory offers a systematic methodology for
dealing with linguistic information and increases the accuracy
of numerical computation through the use of linguistic labels
specified by membership functions [46], [47].

Fuzzy Inference Systems (FIS) employs fuzzy logic to
map the inputs to outputs in three steps effectively: fuzzifica-
tion, fuzzy rules inference evaluation (i.e., decision-making),
and defuzzification [48]. Fuzzification is the process of
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transforming the input data into the appropriate linguistic
terms (records in Table 3 can be considered as an example).
This stage (Figure 3 can be viewed as an example) involves
the application of membership functions to associate system
input and output values with fuzzy input and output mem-
bership values. The second step, fuzzy rules inference eval-
uation, employs rules (record in Table 4 can be considered
as an example) to infer fuzzy control actions in response
to fuzzy inputs. The third step, defuzzification, employs the
defuzzification formula and fuzzy output membership values
to generate a single crisp value [48].

Mamdani, Sugeno, and Tsukamoto are three types of fuzzy
inference systems (FIS) that have been widely employed in
both scenarios. Their strategy sets them apart to generate crisp
output from fuzzy inputs. Especially the Center of Gravity
(COQG), the Weighted Average (WA), and the Height Method
(HM) are used by the Mamdani, Sugeno, and Tsukamoto
FISs, respectively, to determine the crisp output [49]. Mam-
dani FIS is the most widely used of the three because of
its simple structure, which produces reasonable results, and
its rule base, which is intuitive and interpretable [50], [51],
[52]. The ability to design a system with greater flexibility is
another benefit.

On the other hand, parameter settings (PS) of meta-
heuristic algorithms are one of the long-standing grand chal-
lenges. PS has a substantial impact on the performance and
control of the behavior of meta-heuristic algorithms [53].
Thus, the parameters of the meta-heuristic algorithm must be
appropriately controlled (i.e., known as the parameter control
problem) or fine-tuned (i.e., known as the parameter tuning
problem) in order to achieve high performance. Furthermore,
there are only a handful of parameter-free algorithms in the
literature to date (e.g., Teaching Learning based Optimiza-
tion (TLBO) [54], Jaya Algorithm (JA) [55], and Symbiotic
Optimization Search (SOS) [56]).

Parameter control and parameter tuning problems are
clearly related, but bear important differences. Typically,
parameter tuning techniques require a large number of runs
in order to examine algorithms’ performance on a single
problem instance or a set of problem instances with vary-
ing parameter settings. This adds to the time required for
parameter adjustment, which is the primary downside of
parameter tuning. A good tuning procedure may be used to
tune the parameters of a wide variety of meta-heuristic algo-
rithms that implies the universality of the parameter tuning
procedure [57]. On the other hand, parameter control has
the obvious disadvantage of not being universal, since the
parameter control techniques for one algorithm are not always
good for another algorithm [58]. Additionally, a rough idea is
required to change parameters dynamically to achieve good
performance to properly design parameter control procedures
for a meta-heuristic algorithm [59]. Thus, parameter tuning is
more convenient and practical than parameter control in the
senses mentioned above.

However, the integration of FIS in meta-heuristic algo-
rithms is not a novel concept to solve the parameter control
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and parameter tuning problems. The focus of this paper is
on parameter tuning. Many interesting contributions have
been published recently within this field. A number of recent
related works on parameter tuning by employing FIS in
meta-heuristic algorithms are recorded in Table 1, to list
a few. Table 1 records the author names with reference,
publication year, standard meta-heuristic algorithm, tuned
parameters, fuzzy inputs, and fuzzy outputs data.

As for particle swarm optimization (PSO), the parame-
ters listed in Table 1, which have been tuned by using FIS
in various researches, are inertia weight [60], [64], particle
velocity [61], [63], acceleration coefficients [62], learning
factors [61], [62], [63], [64], [67], cognitive factor [65], [66],
social factor [65], [66], and momentum weight factor [67].
Liu et al. [68] and Qi and Chunming [69] tuned the same
parameters (i.e., mutation and crossover) to improve the
performance of the Genetic Algorithm (GA). In [70], [73],
[74], [76], [78], and [80], the iterations are considered as
fuzzy input to tune the corresponding parameters for Gravita-
tional Search Algorithm (GSA), Harmony Search Algorithm
(HSO), Flower Pollination Algorithm (FPA), Bee Colony
Optimization (BCO), and Bird Swarm Algorithm (BSA).
Neyoy et al. [71] tuned the alpha parameter using the errors
and the changes in the errors to improve Ant Colony Opti-
mization (ACO). Bidar and Kanan [72] use count and delta
as fuzzy inputs and alpha and gamma as fuzzy outputs for
the Modified Firefly Algorithm (MFA). To tune the mutation
parameter of differential evolution (DE), Ochoa et al. [75] use
the number of generations as fuzzy input. Bernal et al. [77]
used decades as fuzzy input for the 8 and n parameters of
the Imperialist Competitive Algorithm (ICA). In the Chimp
Optimization Algorithm (ChOA), Saffari et al. [79] tuned two
random variables using the number of repetitions and the
parameter f .

The works in the literature that select the most influential
operators using FIS are listed in Table 2, to name a few.
In Table 2, the authors’ names with the corresponding ref-
erence, the year of publication, the standard meta-heuristic
algorithm, the influential operators, the fuzzy inputs, and the
fuzzy outputs data are recorded. It should be noted that the
choice of proper control operators requires some expertise.
The inappropriate choice of control operators may contribute
to poorer performance. According to the research listed in
Table 1 and Table 2, integrating fuzzy for parameter tuning
and control with meta-heuristic algorithms maximizes the
performance of standard meta-heuristic algorithms.

The preceding overview of related research shows that the
combination of fuzzy approaches and meta-heuristic algo-
rithms is currently receiving a significant amount of attention
from researchers, and the number of studies that have begun
to address these two topics together has started to steadily
increase day by day. Because of the growing complexity and
unpredictability of the problems, it has become essential to
combine meta-heuristic algorithms with fuzzy approaches in
order to generate results that are both more effective and more
reliable. Therefore, this study aims to propose a new fuzzy
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TABLE 1. Related works on parameter tuning by employing FIS in meta-heuristics.

SI  Author Year Standard Tuned Parameters Fuzzy Inputs Fuzzy Outputs
[Reference] Published Meta-heuristic
1 Shi and Eberhart 2001 PSO » inertia weight » current best solution » updated inertia weight
[61] » current inertia weight
2 Liuetal. [62] 2007 PSO » minimum velocity B current best performance ¥ scaling factor
threshold of particles evaluation » velocity threshold
» current velocity
3 Juang et al. [63] 2011 PSO » acceleration B difference betweentwosuc- B two acceleration coeffi-
coefficients cessive global bests cients
4 Liuand Ma [64] 2011 PSO » velocity particle value » velocity
» iteration counter
5 Niknam et al. [65] 2012 PSO » inertia weight » best fitness B inertia weight
» learning factors » number of generations # learning factors
6 Melin et al. [66] 2013 PSO » cognitive factor # iteration # cognitive factor
» social factor » diversity error » social factor
7 Olivas et al. [67] 2014 PSO » cognitive factor # iteration # cognitive factor
» social factor » diversity » social factor
8 Mahmoud and 2015 PSO » learning factors » normalized best fitness » learning factors
Ahmed [68] » momentum weight fac-  # normalized unchanged best ~ » momentum weight factor
tor fitness
9 Liu et al. [69] 2005 GA » mutation » maximum fitness » mutation probability
» crossover » average fitness » crossover probability
10 Qi and Chunming 2010 GA » mutation » maximum fitness » mutation probability
[70] » crossover » average fitness # crossover probability
11  Sombraetal. [71] 2013 GSA » alpha parameter # iteration » alpha
12 Neyoy et al. [72] 2013 ACO » alpha parameter » errors » alpha
» changes of errors
13 Bidar and Kanan 2013 MFA » alpha (controls explo- ¥ count » alpha
[73] ration) » delta » gamma
» gamma (controls ex-
ploitation)
14 Perazaetal. [74] 2016 HSO » harmony memory ac- ¥ iteration » harmony memory accepting
cepting parameter » pitch adjusting rate
» pitch adjustment pa-
rameter
15 Valdez et al. [75] 2020 HSO » harmony memory ac- ¥ iteration » harmony memory accepting
cepting parameter
16  Ochoaet al. [76] 2017 DE » mutation parameter » number of generations » mutation
17  Valenzuela et al. 2017 FPA » pollination probability ¥ iteration » global pollination probabil-
[77] ity
18  Bernal et al. [78] 2017 ICA » B and ¢ parameters » decades » 3 parameter
» ¢ parameter
19  Castillo and 2018 BCO » alpha B iteration » alpha
Amador-Angulo » beta » diversity » beta
[79]
20  Saftfari et al. [80] 2022 ChOA » parameters (random B the number of repetitions » parameter a
variables) a and ¢ » parameter f » parameter ¢
21  Melinetal. [81] 2022 BSA » cognitive (c1) and the ¥ iteration » parameter c1

social (c2) acceleration
coefficients

» parameter c2

adaptive variant of the Emperor Penguin Optimizer to solve
global optimization problems.

Ill. OVERVIEW OF THE ORIGINAL EPO ALGORITHM

In the aquatic world, penguins are recognized as flight-
less seabirds. When compared to other penguin species, the
Emperor Penguin is the tallest and heaviest member of the
penguin family [82]. They reside on Antarctic ice, where they
spend the entire winter on open ice, and even breed during this
difficult season. While the Antarctic is experiencing a hard
winter, they cluster together to conserve heat, demonstrating
their collectiveness and solidarity through their social behav-
ior [83]. They hunt and forage in groups for the sake of sur-
vival. EPO’s mathematical model is primarily concerned with
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identifying efficient movers, updating the position of emperor
penguins, and the temperature around the huddle. The pri-
mary reason for creating a huddle by emperor penguins is to
enhance the ambient temperature and preserve energy within
the huddle. The huddle border structure is recognized as a
L-shaped polygonal plane. Therefore, the huddle temperature
T is dependent on the radius of the huddle polygon R. This
relation is represented using Eq. (1) as follows:

0, ifR>0.5
T = nhe 1)
1, ifR<0.5

The temperature profile 7’ is an important factor to
take into consideration that has impact on both the explo-
ration and exploitation processes. T’ is computed using
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TABLE 2. Related works on choosing the most influential operators by employing FIS in meta-heuristics.

SI  Author Year Standard Influential Operators Fuzzy Inputs Fuzzy Outputs
[Reference] Published Meta-heuristic
1 Cheng and 2018 TLBO # teacher phase operator ¥ success rate » probability utilizing bar
Prayogo [82] » student phase operator movement
2 Zamli et al. [49] 2017 TLBO # teacher phase operator ¥ quality measure » selection operator
» student phase operator ¥ intensification measure
» diversification measure
3 Zamli et al. [4] 2018 PSO » global search operation ¥ normalized current fitness B inertial weight
» local search operation » Euclidean distance between
the current and local best par-
ticle
» Euclidean distance between
the current and global best
particle
Eq. (2) as follows: for updating their position.
2
M; R X
T = (T = —f) . 0<x <M 2) S@A) = ( [t - (7)
X — M,
—» —
where P(x +1)= ep(x) —A-Dgp (3

x - number of iterations currently in progress and also
used for controlling main loop.
M, - number of iterations that may be taken as a maximum.

The distance between the emperor penguins and the current
ideal solution is calculated when the huddle boundary is
generated. On iteration x, the other agents will update their
positions using Eq. (3) as follows:

—_—> - _— - >
Doy = |S@A) - Pep(d) — € - PX) 3)

where

D_e; - distance of emperor penguin to best fit emperor
N penguin.
_P) - position vector of the current emperor penguin.
P., -position vector of the fittest emperor penguin (i.e., the
best optimal solution).
S (Z) - social forces to identify the best mover (i.e., optimal
search agent).

<

The parameters (;1) and (6’) are used to avoid collisions
between surrounding emperor penguins, and they are com-
puted as follows:

A =M x (T' + Pgria(ac)) x Rand() —T' (4
Pyriatac) = |P — Py 5)
C = Rand() (6)

where

M - movement parameter used for collision avoid-
ance, and the value is set to 2.
Pygria(ac) - accuracy of polygon grid.
Rand() - random function in the range of [0,1].
Using Eq. (7), we can calculate S(Z), which is responsible
for moving the search agent in the direction of the best
optimal search agent. Eq. (8), on the other hand, is responsible
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where
e - signifies the expression function.

f and [ - the control parameters to maintain the effective
exploration and exploitation processes, and their
values are in the range of [2,3] and [1.5,2], respec-

_ tively.
P(x + 1) - the next updated position of the emperor
penguin.

The pseudocode showing the step-by-step procedure for
implementing the basic EPO algorithm is shown in Figure 1.
EPO begins by defining the initial values of the param-
eters: T', A, C, S(A), x, n, D, R, M;;, and P, where n and D
represent the number of population and dimension of the
search space, respectively. Next, EPO generates the initial
population of emperor penguins. The main loop begins by
calculating the initial fitness of all emperor penguins to find
the best emperor penguin. The positions of the other penguins
are updated with respect to the position of the best emperor
penguin using Eq. (8). While the position of all emperor pen-
guins is updated, the fitness of each penguin is re-evaluated.
The current best solution is updated and compared to the
next best solution in the next iteration if a better solution
was found in the previous step. The best emperor penguin is
returned by EPO once the termination criteria are met. For
more information, the reader is referred to EPO’s original
publication in [6].

IV. THE PROPOSED FUZZY ADAPTIVE EPO (FAEPO)

In line with the context of Section II, the performance of
meta-heuristic algorithms can be enhanced successfully by
adopting fuzzy system in them, which make them adaptive.
This inspired us to make the EPO adaptive with the help of
fuzzy logic. A detailed description of our proposed fuzzy
adaptive variant of EPO is provided in this section. This
section is divided into two subsections. The first subsection
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Input: the emperor penguin’s population P
Output: the best-obtained search agent E

Procedure EPO

1 Initialize the parameters T’,X, a N (A)), x,n,D,R, M;;, and P

2 -while (x < M;;,.) do

3 FITNESS(ﬁ (x)) /* Compute the fitness of each search agent using FITNESS function */
4. Generate random number R in range [0, 1]

5: Compute the temperature profile 7’ around the huddle using Eq. (2)

6: fori < 1tondo

7 forj < 1toDdo

8: Compute the vectors AandC using Eq. (4) and (6)

9: Compute the function S (/T) using Eq. (7)

10: Update the position of the current agent using Eq. (8)

11: end for

12: end for

13: Update parameters T’, Z, E: S (ff)

14: Amend search agent which goes beyond the region of search space

15: FITNESS(P (x)) /* compute the fitness value of updated search agents */

16: Update E) if there is a better solution than previous optimal solution, i.e., (FITbest)
17: xXe—x+1

18:  Lend while

19: return H;

End procedure

FIGURE 1. Pseudocode of original EPO algorithm.

demonstrates the methodology for parameter adaption using
fuzzy system. The second subsection illustrates the pseu-
docode of the proposed FAEPO.

A. METHODOLOGY FOR PARAMETER ADAPTATION
Dynamic parameter adaption utilizing fuzzy system increases
the quality of the outcome acquired by conducting a more
efficient local and global search than the original EPO
approach. Figure 2 illustrates the Mamdani fuzzy inference
system [84], [85], which is an integral part of the proposed
FAEPO. The metric used in the fuzzy system as input are
quality, success rate, and diversity. On the other hand, the
fuzzy system outputs are the dynamic adjustment of f and
| parameters that control the exploration and exploitation
of the search space stated in Eq. (7). The quality measure
(Qum) metric represents the quality of the current potential
solution (i.e., FIT[current]) in the normalized form. The Qys
is formulated in Eq. (9) as follows:

. . -
Fiteyrrent — Fitpes:(P)

. = . =
Fitpess(P) — Fityors:(P)

Oy = x 100 )

The success measure (Sys) metric represents the average
improved tries in the normalized form, where N denotes the
population size. The Sy, is formulated in Eq. (10) as follows:

Sy — [No. of Improved Triesi| « 100 (10)

N
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The diversity measure (Djs) metric is the mean square
average of the current fitness compared to the average fitness,
which represents the diversity of the current fitness compared
to the rest of the population. The Dy, is formulated in Eq. (11)
as follows:

VSN i — Fita (PP

D
M N

x 100 (11)

1) FUZZIFICATION

The fuzzification refers to the transition from the real domain
to the fuzzy domain. The fuzzification process employs three
predefined trapezoidal membership functions, as illustrated
in Figure 3. Each membership function utilizes three linguis-
tic terms: high, medium, and low. Each linguistic term may
be absolute or partial, depending on its value range. Table 3
summarizes each membership function and the ranges of their
corresponding linguistic terms.

2) RULES EVALUATION

A rule base is required after fuzzifying the input parame-
ters. This work combines the inputs with Mamdani Fuzzy
Conjunction (AND) fuzzy rules. Table 4 summarizes the six
fuzzy rules used for inference evaluation based on Figure 2.
It can be observed that a variety of scenarios for the bounds of
the fuzzy membership functions can be generated by varying
the parameters. In the present study, the bounds and defini-
tions were selected based on the detailed and comprehensive
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Fuzzy Rules Value of
Feedback Fuzzification Inference Evaluation Defuzzification Parameters
lity of 1 N P N s T ' N .
Quali y o Curr.en > COG : ! |
Potensial Solution N !
Crisp Output » Parameter /1

Success Rate for
Improve Attempts

Y

Diversity of
Current Fitness

Y

Q
Q
Q

 Crisp Output | » Parameter / 1

Potential

FIGURE 2. Fuzzy inference system for FAEPO.

TABLE 3. Value range of all linguistic terms of each input membership
function.

. Range of PN
M;ﬁlr:)ci;(s):lllp Normalized Ll;frlr:lc Status
Value

0-60 High Absolute
60 -70 High & Medium Partial

QM 70 - 80 Medium Absolute
80-90 Medium & Low Partial

90 - 100 Low Absolute

0-20 Low Absolute
20-30 Low & Medium Partial

Swm 30 -40 Medium Absolute
40-50 Medium & High Partial

50 - 100 High Absolute

0-30 Low Absolute
30-40 Low & Medium Partial

Dy 40 - 60 Medium Absolute
60 - 70 Medium & High Partial

70 - 100 High Absolute

TABLE 4. The set of fuzzy rules used in Mamdani FIS for FAEPO.

Rule No. Fuzzy Inputs Fuzzy Outputs

Qum Sm Dy f l
R1 Low X X f1 l1
R2 Low Medium X fa lo
R3 Medium  Medium Low f3 I3
R4 Medium Low Medium fa N
R5 High Low High fs ls
R6 High X X fG l6

X = Don’t Care Condition

sensitivity analyses of the EPO [6] algorithm (as the ancestor
of the proposed FAEPO).

3) DEFUZZIFICATION
In this study, defuzzification is achieved using two crisp out-
puts for the f and [ parameters. For each parameter, there are

116350

\ Solutions

TABLE 5. Value range of all linguistic terms of f and / parameters.

Parameter f Parameter /

Value Linguistic Status Value Linguistic Status
Range Terms Range Terms
20-2.1 f1 Absolute  1.50-1.55 I Absolute
2.0-22 f1and f2 Partial 1.50-1.60 I andl2 Partial
21-23 fa Absolute  1.55-1.65 lo Absolute
22-24 foand f3  Partial 1.60-1.70 lo andl3 Partial
23-25 f3 Absolute  1.65-1.75 I3 Absolute
24-2.6 fsand fq4  Partial 1.70-1.80 I3 andly Partial
25-27 fa Absolute  1.75-1.85 In Absolute
2.6-2.8 faand f5 Partial 1.80-190 4 andls Partial
2.7-29 fs Absolute  1.85-1.95 Is Absolute
2.8-3.0 f5and fe Partial 1.90-2.00 5 andlg Partial
29-30 fe Absolute  1.95-2.00 lg Absolute

six different linguistic terms, where f1, f>, f3, f4, f5, and fg are
linguistic terms belonging to the f parameter, and /1, /5, 3,
l4, I5, and I are linguistic terms belonging to the / parameter,
symbolized by the trapezoidal membership functions shown
in Figure 3. The ranges of f and /, discussed in the previous
section, are divided into six equal sections. A variety of
defuzzification methods, such as Mean of Max, Centroid, and
Center of gravity, are available to obtain crisp values for these
parameters. Defuzzification has been accomplished using the
Center of gravity method in this paper. Table 5 contains the
values of all linguistic terms for the parameters f and /.

B. PROPOSED FAEPO IMPLEMENTATION

Figure 5 shows the step-by-step process for implement-
ing the proposed general Fuzzy Adaptive EPO (FAEPO)
algorithm. The first step in the FAEPO algorithm is to
define the membership functions for the linguistic vari-
ables, and the second step is to define fuzzy rules (see
lines 1 and 2). After that, the algorithm sets the required
parameters: 7', A, C, S(A), n, D, M and P, where n and D
represent the number of population and dimension of the
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FIGURE 3. Fuzzy input membership functions.

search space, respectively. Prior to entering the main loop,
the algorithm utilizes the FITNESS function to determine the
fitness of each search agent (see line 4). Let’s now look at
the original EPO algorithm in Figure 1. The initial evaluation
of the fitness function (see Figure 1, line 3) is considered
redundant because at the end of each iteration, the fitness
of all search agents (see Figure 1, line 15) are recomputed
to see which one was the best at the end of that iteration.
In the proposed FAEPO, this redundant computation, which
significantly impacts the time complexity, is eliminated by
factorizing it before the main loop. This leads to a reduction
in the time complexity of FAEPO. The main loop in Figure 5
begins by computing the temperature profile of the huddle
(see line 7). Then the function S(A) is computed (see line 8).
The position of the current search agent is updated within the
nested for loops based on the current values of vectors (A) and
(6 ) (see lines 11 and 12). After completing the nested loop,
the algorithm computes the three measures (quality, success
rate, and diversity) (see line 15), fuzzifies the crisp inputs
using the predefined membership functions (see line 16),
evaluates the fuzzified values based on the fuzzy rules given
in Table 4 (see line 17), and finally defuzzifies the crisp
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FIGURE 4. Fuzzy output membership functions.

outputs for parameters f and / using the predefined mem-
bership functions (see line 18). Then the algorithm modifies
the search agents that are outside the region of the search
space. At the end of the main loop, the algorithm calculates
the fitness of the updated search agents and updates the best
search agent if a better solution is found (see lines 20 and 21).
The main loop is executed until the condition of the maximum
number of iterations is met. Finally, FAEPO returns the search
agent that has achieved the best results.

V. EMPIRICAL EVALUATION

We conducted a comprehensive evaluation of the proposed
algorithm. The evaluation experiments had three distinct
goals: (1) to investigate how FAEPO compares to its prede-
cessor EPO; (2) to compare FAEPO to other contemporary
meta-heuristic algorithms for global optimization problems;
(3) to compare the performance of FAEPO to the benchmark
algorithms compared in terms of the Friedman Mean Rank
Test. Consistent with the above goals, we focus on answering
the following research questions:

RQ1: To what extent does the use of FAEPO improve EPO
performance?

RQ2: How are the convergence efficiency and statistical
significance of FAEPO compared to other meta-
heuristic algorithms?

116351



IEEE Access

M. A. Kader et al.: Experimental Study of a Fuzzy Adaptive Emperor Penguin Optimizer for Global Optimization Problem

Input: the emperor penguin’s population P
Output: the best-obtained search agent E'

Procedure FAEPO

1: Define the membership functions for the linguistic variables

2 Define the fuzzy rules

3 Initialize the parameters T", Z, E: S (/Y), x,n,D,R, M, and P

4: F ITNESS(ﬁ (%)) /* Compute the fitness of each search agent using FITNESS function */
5: ~while (x < M;;,) do

6: Generate random number R in range [0, 1]

7 Compute the temperature profile 7" around the huddle using Eq. (2)

8: Compute the function S(/T) using Eq. (7)

9: fori < 1tondo

10: forj < 1toDdo

11: Compute the vectors AandC using Eq. (4) and (6)

12: Update the position of the current agent using Eq. (8)

13: end for

14: end for

15: Compute Qy, Sy, and Dy, using Eq. (9), (10) and (11), respectively

16: Fuzzity inputs Qy, Sy, and Dy, based on the predefined membership functions
17: Evaluation of fuzzy rules

18: Defuzzify the outputs to produce crisp output for / and f parameters

19: Amend search agent which goes beyond the region of search space

20: FITNESS(ﬁ ) /* compute the fitness value of updated search agents */
21: Update E) if there is a better solution than previous optimal solution, i.e., (FIThest)
22: xe—x+1

23:  Lend while

24: return E

End procedure

FIGURE 5. Proposed general fuzzy adaptive EPO (FAEPO).

RQ3: How are the performances of FAEPO compared
to EPO, IEPO, and other competing meta-heuristic
algorithms?

Is there any overhead in terms of the time perfor-
mance of FAEPO implementation?

Is FAEPO sufficiently general to handle both mini-
mization and maximization optimization problems?

RQ4:

RQS5:

A. EXPERIMENTAL RUNNING ENVIRONMENT

The following are the specifications of the personal computer
that we have utilized in our experiment. RAM is 8.00 GB,
and the hard disc (HDD) storage capacity is 500 GB. The
processor is an Intel Core i7-6650U running at 2.20 GHz.
Windows 10 Pro is the operating system being used, whereas
the type of system is a 64-bit operating system and processor
based on the x64 architecture. In order to carry out our
experiments, we have used the MATLAB 2020b simulation
platform. Each experiment is carried out a total of thirty times
to establish statistical significance.

B. COMPETING META-HEURISTIC ALGORITHMS

The performance of the proposed FAEPO is compared with
seven state-of-the-art meta-heuristic algorithms, including its
predecessor EPO and an improved variant of EPO (IEPO).
The reason for selecting these algorithms is that they are
swarm intelligence-based meta-heuristic algorithms. A brief
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description of each algorithm (except EPO) can be found
below:

o Moth-flame Optimization Algorithm (MFO): MFO is
a nature-inspired optimization algorithm presented by
Seyedali Mirjalili in 2015 [86]. MFO mimics the trans-
verse orientation, a type of navigation strategy, of moths
in nature. The transverse orientation represents the spiral
convergence towards the artificial lights eventually. The
moths only adjust their position concerning the best
flame only during final iterations. In this way, explo-
ration and exploitation of the search space are balanced
by gradually reducing the number of flames.

o Salp Swarm Algorithm (SSA): Mirjalili et al. developed
the SSA in 2017 [9]. SSA is a swarm intelligence and
population-based algorithm that mimics the behavior
and social interaction of salp swarms. Salps inhabit the
deep oceans and move in search of food in swarms
called salp chains. Salp chains can be mathematically
divided into two types: the head salp is the leader, while
the others are followers. According to Newton’s law
of motion, the followers update their positions. This
algorithm has been used to solve design problems in the
field of engineering.

o Sooty Tern Optimization Algorithm (STOA): Dhiman
and Kaur [16] proposed the STOA, a population-based
meta-heuristic algorithm. The main objective of STOA
is to mimic the natural migration and attack behavior of
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the sooty tern seabird. The exploration and exploitation
of the search space are represented by the migration and
attack behavior, respectively. This algorithm has been
used to solve industrial engineering problems.

o Genetic Algorithm (GA): The Genetic Algorithm
(GA) [87] is an evolutionary algorithm inspired by nat-
ural selection. GA develops three operators: selection,
crossover, and mutation. These operators are widely
used to find near-optimal solutions. Over generations,
the algorithm improves on previous solutions until the
termination criterion is met.

o Particle Swarm Optimization (PSO): Particle Swarm
Optimization (PSO) [88] is another population-based
stochastic optimization algorithm inspired by the social
behavior of schools of fish or flocks of birds. Each
particle moves in the search space looking for the global
best solution and may update its current position if it
is better than the previous best solution. The popularity
of this algorithm is due to the fact that it has a few
adjustable parameters.

o Improved Emperor Penguin Optimizer (IEPO): IEPO is
an improved variant of EPO proposed by Tang et al.
in 2020 [89]. This improved variant is designed and
coupled with eQuest simulation tool for the minimiza-
tion of energy consumption of residential buildings.
The authors introduced two modification in IEPO. First,
the incidental parameter shown in Eq. (6) is altered
into a balanced equation by the singer process. Second,
an incidental walk method (Lévy flight) is applied in this
scenario so that proper control of the local search can be
maintained.

C. PARAMETER SETTINGS FOR THE COMPETING
META-HEURISTIC ALGORITHMS
The main general settings for all algorithms (i.e., population
size, maximum iteration, and maximum fitness evaluation)
are defined in Table 6. To ensure fairness, the termination
criteria for all algorithms is based on the maximum fitness
evaluation.

The specific parameter settings for the participating algo-
rithms can be found in Table 7. Here, the best parameter
settings are adopted from their original papers.

D. OVERVIEW OF THE CASE STUDY OBJECTS

Accordingly, we design our experimental evaluation to com-
prehensively focus on four separate case studies to thoroughly
assess the proposed FAEPO performance. The overview of
the case studies and design of their fitness functions are
described in the following subsections.

1) CLASSICAL OPTIMIZATION BENCHMARK TEST
FUNCTIONS

Many studies have been conducted to improve existing strate-
gies or propose new algorithms. The use of test problems
for benchmarking purposes is one of the common features
of these studies. Most of the test problems are mathematical
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functions designed to mimic the complexity of real search
spaces. In the following, twelve benchmark test functions are
briefly described with their constraints.

Matyas: This function is a continuous, differentiable, non-
separable, non-scalable, and unimodal benchmark test func-
tion defined as follows:

Fi(z) = 0.26(z3 + 25) — 0.48z1 22 (12)

subject to —10 < z; < 10. The global minimum is located at
7 =F1(0,0), Fi(z") = 0.

Schaffer N.4: This function is a continuous, differentiable,
non-separable, non-scalable, and unimodal benchmark test
function defined as follows:

cos (sin (|27 — z3])) — 0.5
[1+0.001 (2 +2)1°

subject to —100 < z; < 100. The global minimum is located
at z* = F»(0, 1.25313), F»(z*) = 0.292579.

Powell Sum: This function is a continuous, differentiable,
separable, scalable, and unimodal benchmark test function
defined as follows:

F(2) =05+

13)

D
Fy@) =) |zl (14)
i=1

subject to —1 < z; < 1. The global minimum is F3(z*) = 0.
Schwefel’s Problem 2.22: This function is a continuous,
differentiable, non-separable, scalable, and unimodal bench-
mark test function defined as follows:
D n
Fa@ =) _lzl + [ ]lal (15)
i=1 i=1
subject to —10 < z; < 10. The global minimum is located at
75 = F4(0,...,0), F4(z*) = 0.
Brown: This function is a continuous, differentiable, non-
separable, scalable, and unimodal benchmark test function
defined as follows:

n—1
2 2
Fs(x) =Y ()&t 4 (g, )+ (16)
i=1
subject to —1 < z; < 4. The global minimum is located at
7" =F5(0,...,0), F5(z*) = 0.
Xin-She Yang N.3: This function is a non-separable uni-
modal benchmark test function defined as follows:

D (zi\*™ D
Fo(2) = |:e Y2(5) " e 2@ [ cos? (zi):| (17)
i=1
subject to —20 < z; < 20. The global minimum is located at
¥ =Fg0,...,0), Fs(z*) = —1 form = 5and 8 = 15.
Egg Crate: This function is a continuous, separable, and
non-scalable benchmark test function defined as follows:

Fi(z) = z% + z% +25 {sinz(zl)sinz(zz)} (18)

subject to —5 < z; < 5. The global minimum is located at
7* = F4(0,0), F7(z*) = 0.
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TABLE 6. Common parameter settings used in different experiments.

S.N.  Name of the Optimization Problem

Population Size

Maximum Iteration

Maximum Fitness Evaluation

1 Classical optimization benchmark test functions 10 700 7000
2 Team formation optimization problem 10 100 1000
3 Low autocorrelation binary sequence (LABS) problem 10 1000 10000
4 MC/DC test case generation problem 10 1000 10000
TABLE 7. Parameter configurations for the competing meta-heuristic algorithms.
S.N.  Name of the Algorithm Parameters Values
1 Moth-flame Optimization Algorithm (MFO) Awareness Probability (A P) 0.1
Flight Length f Total Experts
Random Number 1 and 7o [0, 1]
2 Salp Swarm Algorithm (SSA) Random Number c1, c2, c3 [0, 1]
Number of Generations 1000
Leader Position Update Probability 0.5
3 Sooty Tern Optimization Algorithm (STOA) Controlling Variable (C'y) [2, 0]
Random Variable (C'g) [0, 0.5]
Constants u and v 1
Variable k [0, 27]

4 Particle Swarm Optimizer (PSO)

5 Genetic Algorithm (GA)

6 Emperor Penguin Algorithm (EPO)

7 Improved Emperor Penguin Algorithm (IEPO)

8 Fuzzy Adaptive Emperor Penguin Algorithm (FAEPO)

Inertia Coefficient w

Personal Acceleration Coefficient ¢
Social Acceleration Coefficient co
Selection

Crossover Probability

Mutation Probability

Parameter M

Parameter f

Parameter [

Parameter M

Parameter f

Parameter [

Parameter M

Parameter f

Parameter [

Linearly decreases from 0.99
2

2

Roulette wheel
0.1

0.02

2

[2,3]

[L1.5,2]

2

[2,3]

[1.5,2]

2

Fuzzyfied
Fuzzyfied

Crowned Cross: This function is a multimodal bench-
mark test function and the negative form of the cross in tray
function. It is a complex function to optimize and defined as
follows:

3, 2 0.1
(z1 +235)
100- ——=

T

Fs(z) = 107 | |sin(z))sin(z2)e +1] (19

subject to —10 < z; < 10, i = 1, 2. The global minimum is
Fg(z*) = 0.0001.

Rastrigin: This function is a non-convex, non-linear mul-
timodal function defined as follows:

D
Fo) =AD+ " [ — Acos @mz)] 20)

i=1

subject to —5.12 < z; < 5.12, A = 10. The global minimum
is located at z¥ = Fy(0, ..., 0), Fo(z*) = 0.

Xin-She Yang N.1: This is a separable, generic stochastic,
and non-smooth benchmark test function proposed in [90]
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and defined as follows:

D
Fio(@) =Y €ilzil’
i=1

subject to —5 < z; < 5. The variable ¢;,i = 1, 2,

2n

...,Dis

a uniformly distributed random variable in [0, 1]. The global

minimum is located at z* = F;0(0, ..., 0), F10(z*) = 0.

Xin-She Yang N.2: This is a non-separable, multimodal
benchmark test function defined as follows:

Fr1(2) =

Z?:l |zi]

eZiD:l sin (th)

(22)

subject to —27w < z; < 2m. The global minimum is located
atz* = F11(0,...,0), F11(z*) = 0.
Quartic Noise: This function is a continuous, differen-

tiable, separable, and scalable benchmark test function.

D

Fia(z) = Z iz} 4 random|0, 1)

i=1

(23)

subjectto —1.28 < z; < 1.28. The global minimum is located
atz* = F12(0,...,0), F12(z*) = 0.
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TABLE 8. Interconnected experts with skills and interaction cost.

Interconnection Cost (C)

Experts Skills
el e es €4 es €6

e1 s1,82,s3 000 000 050 1.00 1.00 0.75
e2 s1,82,s3 000 000 050 1.00 1.00 0.75
e3 s1,82,84 050 050 0.00 1.00 1.00 1.00
es s5,86,87 1.00 1.00 1.00 0.00 1.00 0.75
es 58, S9 1.00 1.00 1.00 1.00 0.00 1.00
€6 s3, 87 075 075 1.00 075 1.00 0.00

Eq. (12) to Eq. (23) are used as the fitness function for the
optimization of respective benchmark test function. A sum-
mary of the selected benchmark test functions with their
constraints is shown in Table 9.

2) TEAM FORMATION OPTIMIZATION PROBLEM
The team formation optimization (TFO) problem is about
identifying experts and forming the best group or team
with the required skills for specific tasks. TFO is designed
to create such a team. Consider an example with six
experts, represented by E = {ej, ez, €3, e4, €5, €6} with
a total of nine unique skills, represented by SU =
{s1, 52, 83, 54, 55, S6, 57, 58, S9}. The experts with their com-
plementary skills and interconnection costs are listed in
Table 8. The interconnection cost, C,-j (i=12,...,6 and
j=1,2,...,6) of all experts with respect to their skills can
be calculated using Eq. (24) where S represents the skills
of the " expert. Eq. (24) provides the values between [0,1].
Eii = 0 means that experts e; and ¢; have no connection to
each other, or both experts have the same skills. On the other
hand, C;; = 1 means that both experts have no common skills
S NS
S USY
Take for example, a project P which requires the skills
sk = {s§, slg, s§}. In accordance with Table 8, 4 experts
(i.e., e1, ez, e4, and eg) possess one or more required skills
where s§, slg,and SI; possess by {e1, e2, ec}, {€4}, and {es, ec},
respectively. Only four expert combinations are qualified as
potential teams out of the entire pool of possible combina-
tions. The potential teams are: 71 = {eq, e2, e, €6}, T =
{er, eq,e6}, T3 = {e1,eq,e6}, and Ty = {eas, ec}. Using
Eq. (25), their costs can be calculated as: Tlc =425, Tzc =
2.5, T?,C = 2.5, and Tf = 0.75. Moreover, the size of the
potential teams are T) = 4,T; = 3,T; = 3,and T} = 2.
Since T4 scores the lowest 07 and the smallest team size, it is
selected as the optimum team or T*.

Ci=1 (24)

i=n—1 j=n
f(T*):argnéiTn Z Z Cy (25)
i=1 j=i+l

This is a simple example. However, in practical applica-
tions, there would be a large number of ¢; with a massive set
of §, which will generate a huge number of teams. A linear
solution to the problem of determining 7* is impractical.
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From the above definition, we can formulate our fitness
function using Eq. (25) for solving TFO problem, where,
C” represents the interconnection cost of the team.

3) LOW AUTOCORRELATION BINARY SEQUENCE (LABS)
PROBLEM
Finding a low autocorrelation binary sequence (LABS) is a
hard combinatorial optimization problem. However, LABS
problems have many applications in diverse areas of signal
and information processing. Therefore, much research has
been published on these sequences to find low autocorrela-
tion because of their practical importance. Moreover, various
methods for constructing low-autocorrelation sequences have
been devised. To illustrate the problem, consider the represen-
tation of a binary sequence S? of length N as s157 . .. sy with
sie{—1,1};for 1 < i < N, ie., Se{—1, l}N. Suppose the
sequence S” has a periodic autocorrelation C with a distance
k(=0,1,2,...,N — 1), and the formula for this correlation
can be defined as follows.
N—k
Ce(S") =) sisivk (26)

i=1

The energy function associated with the sequence S is the
sum of the squares of its correlations:

N—-1
E@S’) =" Cis) 27)

k=1

The LABS problem is to find a sequence S? of given length N
that minimizes the E(S b ). Golay [91] devised a new measure
known as the merit factor to evaluate the quality of sequences
as follows:

2

2E(SP)

If we define Fy to be the optimal value of the merit factor
for sequences of length N, the LABS(N) problem can be
alternatively described as finding F such that:

F(sb) = (28)

Fy = max F(SY) (29)

Sbe{—1,1}V
The only method for determining the sequence with the opti-
mal Fy is to perform an implicit enumerative search over all
2L possible sequences.
For LABS problem, Eq. (29) is considered as the fitness
function for finding the optimal binary sequence with low
autocorrelation.

4) MC/DC TEST CASE GENERATION PROBLEM

NASA promotes the MC/DC as a structural testing coverage
criterion for safety-critical software systems. Exists in pairs,
MC/DC criteria [92] insist that each variable could influence
the overall outcome independently while maintaining the
value of the other variable(s). Each pair differs solely in terms
of the Boolean value of a single condition, but produces a dif-
ferent outcome for the decision statement. The MC/DC pairs
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if ((x>100 && y<50) || '=z) A B C |Output

;lz:atementl; } F F F T

{ statement2; } F F T F
F T F T
F T T F
T F F T
T F T F
T T F T
T T T T

FIGURE 6. lllustrative example [93].

for AND operation are {{F,T},{T,T}},{{T,F},{T,T}}
where the entry {T', T'} is redundant. To decrease the num-
ber of test cases, the whole MC/DC compatible test predi-
cate can be simplified to {F, T}, {T, F} and {T, T}. In sim-
ilar manner, the reduced MC/DC pairs for OR operation
are {{F,F},{T,F}}, {F, T}, {T, F}}. Manual test creation
is viable for a specific range of predicates, but when
dealing with a large number of predicates, it becomes
time-consuming to perform the procedure manually. An illus-
trative example of if statement involving AND, OR, and NOT
operations introduced by Haque et al. in [93] is reused and
shown in Figure 6 to clear the readers about the MC/DC
test data generation. Referring from the truth table shown
in Figure 6, there are one pair, one pair, and three pairs
for MC/DC coverage for variables A, B, and C, respec-
tively. Three alternative MC/DC solutions (i.e., [0,1,3,5,7],
[2,3,5,7], and [3,4,5,7]) are derived by combining the pairs
except the repetition. The result is that any MC/DC find-
ings may be transformed to appropriate test cases for all the
predicates.

However, the MC/DC gives us a manageable number of
tests to perform when the number of combinations is just too
high. In order to achieve MC/DC, we will need to locate at
least one test pair that satisfies the MC/DC criterion for each
condition that is contained in the given boolean expression.
If the number of conditions is m, then the total number of test
cases will be 2™. It is proved that with MC/DC, the minimum
number of test cases will be m+ 1 for m number of conditions
[94]. In this experiment, the fitness function counts the size of
the generated test case set for each candidate. The minimum
size represents the best fitness of the respective candidate,
which can be close to or equal to m + 1 for m number of
conditions.

E. DATASETS USED IN DIFFERENT EXPERIMENTS
This section provides the details of datasets that are used

in different experiments to evaluate the performance of the
proposed FAEPO.

1) CLASSICAL OPTIMIZATION BENCHMARK TEST FUNCTION
EXPERIMENT

In the research that has been published, benchmark test func-
tions have been utilized in order to evaluate the performance
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of meta-heuristic algorithms. Real-world problems are best
tackled with the help of algorithms that have proven suc-
cessful when applied to a variety of numerical optimization
challenges. Due to the absence of a standardized or generally
accepted test bed, various researchers make their own unique
selections of functions and configurations for their experi-
ments. Because of this, it is hard for researchers to find func-
tions that can accurately measure the robustness of a proposed
meta-heuristic algorithm. However, we have selected twelve
test functions listed in Table 9, where Dimensions denotes the
function’s dimension, Range represents the function’s search
space boundary, and F(z*) indicates the optimal value of the
function. These functions are divided into two categories. The
first six are unimodal (F; — Fg), and the last six are multi-
modal (F7 — F13). Unimodal functions have only one global
optimum, whereas there are multiple local solutions exists in
multimodal categories. Unimodal functions are well-suited
for evaluating the exploitation performance of algorithms,
whereas the exploration performance of algorithms is mea-
sured using multimodal functions. These functions contain
numerous local optimums, which the algorithm should avoid.
Both type of functions are further divided into two categories:
fixed dimensional and variable dimensional. F1 — F2 and
F3 — F6 are belongs to the unimodal fixed dimensional
and unimodal variable dimensional test functions, respec-
tively. Moreover, F7 — F8 and F9 — F12 are belongs to
the multimodal fixed dimensional and multimodal variable
dimensional test functions, respectively. The dimension of the
fixed dimensional test function considered is 2, whereas three
different higher dimensions (i.e., 50, 70, and 100) are consid-
ered for variable dimensional test functions in the experiment.

2) TEAM FORMATION OPTIMIZATION EXPERIMENT

Two benchmark datasets have been utilized in this experi-
mental evaluation. The first dataset is the IMBD dataset [95],
which consists of movie actors (1014 names of actors) and
their roles (28 unique roles) by genre. This dataset is owned
by Amazon, which is considerably denser than the other
datasets and can be used to test the scalability of an algorithm
that is currently being evaluated [96]. The dataset is com-
posed of information gathered between the years 2000 and
2002, and the only actors who are regarded as experts are
those who made an appearance in eight or more films during
this time period. The ability of an actor to perform in a diverse
range of genres is a good indicator of the breadth and depth
of their acting skills. The second is the DBLP dataset [97],
a bibliographic database of scientific publications (includes
5641 authors’ information with 3887 unique skills). DBLP
is considered to be one of the most widely used real-life
benchmark dataset on social networks. This was derived from
DBLP XML published in July 2017. The largest number of
specialists in database theory, data mining, and artificial intel-
ligence have contributed to the DBLP dataset. The people
who are considered to be experts in this dataset are those who
have more than one publication indexed on DBLP. The level
of expertise of each expert is based on meaningful keywords
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TABLE 9. Descriptions of the selected optimization benchmark test functions.

Benchmark Function Type  Function ID  Function Name Dimensions (D) Range F(z*)
Unimodal F1 Matyas 2 [-10, 10] 0
(Fixed Dimension) F2 Schaffer N. 4 2 [-100, 100]  0.292579
F3 Powell Sum 50,70,100 [-1, 1] 0
E@g{%‘l‘:lmmension) F4 Schwefel’s 2.22 50,70,100 [-10, 10] 0
F5 Brown 50,70,100 [-1, 4] 0
F6 Xin-She Yang N.3 50,70,100 [-20, 20] 0
Multimodal F7 Egg Crate 2 [-5, 5] 0
(Fixed Dimension) F8 Crowned cross 2 [-10, 10] 0.0001
F9 Rastrigin 50,70,100 [-5.12,5.12] 0
X;;ﬁ:gfedgimension) F10 Xin-She Yang N.1 50,70,100 [-5, 5] 0
F11 Xin-She Yang N.2 50,70,100 [-27, 27] 0
F12 Quartic Noise 50,70,100 [-1.28, 1.28] 0

taken from the title of the author’s work. For our evaluation,
we have adopted five sets of skills to find (i.e., 5, 10, 15, 20,
and 25). The datasets are standardized in the same way that
other datasets are adjusted so that a single algorithm can be
evaluated using many datasets.

3) FINDING LABS EXPERIMENT

Finding binary sequences of low autocorrelation (LABS) is
a notoriously hard combinatorial optimization problem [98].
There is no dilemma involved with LABS. Because of this,
the solution is dictated by an objective function, and the goal
is to acquire the objective function values that are the lowest
possible. The value of the objective function, sometimes
referred to as the solution quantity, of each potential candidate
solution needs to be determined. Due to the fact that the
objective function needs to be minimized, the LABS problem
is a minimization problem. The minimum values of energy or
the maximum values of merit factor for the binary sequences
through exhaustive search are stated in [99]. We have used
binary sequences of length 7 < N < 31 in our experiment
to evaluate the performance of the proposed algorithm to find
the near-optimal merit factor of LABS.

4) MC/DC TEST CASE GENERATION EXPERIMENT

We opt to select a list of eight logical expressions/functions
(LEI to LE8) for MC/DC test case generation. Tests are
performed on eight functions listed in Table 10. The clas-
sification of triangles is the task of the first function (i.e.,
LE1) to be examined through testing. This is a well-known
problem that has been cited in a great deal of previous testing
work. The triangle function takes as input three real numbers
that represent the lengths of the three sides of a triangle and
then determines whether the triangle is irregular, scalene,
isosceles, or equilateral. The code for the triangle function
is eighty lines long. The second function (i.e., LE2), which is
known as NextDate, accepts a date as its input, verifies that
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date, and then calculates the date of the next daytime. The
input consists of a day, a month, and a year, each of which is
represented by an integer. The LE3, LE4, LE6, and LE7 are
the instances of functions that are considered arbitrary. The
Traffic Alert and Collision Avoidance System (TCAS) is an
on-board aircraft embedded system for conflict detection and
resolution. Alt_sep_test (i.e., LES) is the highest-level func-
tion of TCAS. This function takes fourteen global variables as
input. The last logical function (i.e., LE8) is taken from TCAS
of an avionics system. This function list is used to ensure a
fair comparison of all competing meta-heuristic algorithms.
The logical functions considered in this experiment comprise
three, four, and five predicates only.

VI. EXPERIMENTAL RESULTS ALIGNED WITH RQs
The section provides the answers to the given research ques-
tions (RQs) in relation to our experimental findings.

A. TO WHAT EXTENT DOES THE USE OF FAEPO IMPROVE
EPO PERFORMANCE? (RQ1)

The improvements that the proposed FAEPO brings over
the EPO are twofold: (1) adaptive tuning of control param-
eters; (2) elimination of unnecessary fitness calculations.
This study provides a novel Fuzzy Adaptive EPO (FAEPO)
algorithm that integrates a Mamdani fuzzy inference system
(see Figure 2), which enables adaptive control of explo-
ration and exploitation by tuning the control parameters f and
1 according to the need of a particular search problem. The
fuzzy rules shown in Table 4 and input-output membership
functions are shown in Figure 3 and Figure 4, respectively.
Moreover, the proposed FAEPO improves the time complex-
ity of the original EPO by excluding the unnecessary fitness
calculation for each agent in each iteration when no position
update is performed. Instead of the redundant fitness evalua-
tion in EPO (i.e., in line 3 of Figure 1), the proposed FAEPO
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TABLE 10. List of tested logical expression.

S.N.  Function Name Logical Expression (LE) LE#  No. of Predicates
1 Triangle function [101] (AIBIIC) LE1 3
2 NextDate function [101] ((AIIB)IIC) LE2 3
3 Instance of function (A&&B)II(~ C) LE3 3
4 Instance of function All(B&&C) LE4 3
5 Alt_sept_test [102] (A&&(B&&C)lI(~ D)) LES 4
6 Instance of function (AlB) && (CIID) LE6 4
7 Instance of function (A&&B)II(C&&D) LE7 4
8 Traffic Collision Avoidance System (TCAS) [103] A&&((~ B)li(~ C))&&DIE  LE8 5

evaluates the initial fitness of all emperor penguins once
before entering the main loop shown in line 4 of Figure 5.

B. HOW ARE THE CONVERGENCE EFFICIENCY AND
STATISTICAL SIGNIFICANCE OF FAEPO COMPARED TO
OTHER META-HEURISTIC ALGORITHMS? (RQ2)

In this section, the FAEPO algorithm is evaluated against a set
of classical optimization benchmark test functions to answer
research question 2 (RQ2). Test problems are considered nec-
essary in the development of optimization algorithms. There-
fore, there are standard test functions that many researchers
have used. For a similar reason, some test functions are
also used in this experiment to evaluate the performance
of the proposed FAEPO. The performance of the proposed
algorithm, FAEPO, is compared with that of its predecessor
(i.e., EPO), it’s an improved variant (i.e., [EPO) and the other
five benchmark meta-heuristic algorithms, which are listed
in Table 7. Next, Tables 11 and 12 summarize the statistical
results (i.e., best, mean, standard deviation, and rank) next
to the different algorithms compared for various dimensions.
Finally, the last two rows of the tables provide the Friedman
mean ranking and the overall ranking. The first measure, the
Friedman mean rank, is calculated by considering the ranks
of the algorithms, with the positions determined by sorting
the means. Similarly, the overall rankings of the compet-
ing meta-heuristic algorithms are determined by sorting the
average rankings. Moreover, the Friedman mean rank of the
competing meta-heuristic algorithms for the benchmark test
functions is shown in Figure 7 and Figure 8 for unimodal
(F1-F6) and multimodal (F7-F12) benchmark functions,
respectively.

According to the experimental results of the unimodal
functions in Table 11 for different dimensions, FAEPO out-
performs the other competitors and secures the first place
due to the improved balance between exploitation and explo-
ration, followed by STOA, PSO, SSA, EPO, GA, MFO, and
IEPO. Figure 7 illustrates the Friedman mean ranking of the
competing meta-heuristic algorithms based on their average
results. As mentioned in Section 3, tuning the parameters f
and [/ improves the algorithm’s ability for exploration and
exploitation. A close competitor of FAEPO in terms of rank-
ing is STOA. FAEPO obtains the first rank, while EPO and
IEPO obtain the fifth and eighth rank, respectively. So the
average rank of FAEPO is 1 and is clearly ahead of EPO and
IEPO.
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Table 11 also records the standard deviation of the identi-
fied the best solutions for fourteen different dimensional tests
to indicate the consistency of the solutions. FAEPO has the
lowest standard deviation in nine out of fourteen different
dimensional tests of the unimodal functions, while MFO,
SSA, STOA, PSO, GA, EPO, and IEPO have the lowest
standard deviation in 3, 4, 6, 4, 0, 3, 3 tests, respectively.
These results demonstrate the consistency of FAEPO in solv-
ing problems. This is also true for all dimension of F6, where
all competing algorithms except GA have identical standard
deviations (i.e., 0.000E+00).

Table 12 summarizes the results obtained for multi-
modal functions. Unlike unimodal functions, multimodal
functions have multiple optimal solutions. However, in our
experiments, all competing meta-heuristic algorithms have
difficulties in finding the global optimal solution. However,
if multiple global optimal solutions exist due to equal fitness
values, identifying one of these solutions would be consid-
ered a success.

Multimodal functions show results identical to those of
unimodal functions. In this scenario, FAEPO again achieves
first place. However, the STOA algorithm improves and
secures the second position. The EPO and IEPO algorithms,
on the other hand, performs poorly and secures fourth and
eighth place. The ranks of the remaining algorithms MFO,
SSA, STOA, PSO, and GA are 7, 6, 2, 5, and 3, respectively.

Figure 8 illustrates the Friedman mean rank of all compet-
ing meta-heuristic algorithms for multimodal benchmark test
functions. For the standard deviations recorded in Table 12,
FAEPO, and STOA achieve a minimum standard deviation
of 0.00E+400 in five different dimensional test cases. The
PSO, EPO, and IEPO achieve a minimum standard deviation
of 0.00E+400 in 1, 1, and 3 different dimensional test cases,
respectively, whereas MFO, SSA, and GA failed to achieve
minimum standard deviation.

Convergence analysis is primarily used to better under-
stand the behavior of optimization algorithms. Figure 9 and
Figure 11 for unimodal and Figure 10 and Figure 12 for
multimodal test functions show the best convergence curves
(among 30 runs) of FAEPO and other competing meta-
heuristic algorithms.

Figure 11 shows an intense competition between FAEPO
and EPO. On the other hand, PSO manages to converge fairly.
The other competing meta-heuristic algorithms, namely
MFO, SSA, STOA, GA, and IEPO get stuck in the local
optimum and cannot recover. On the contrary, FAEPO has
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TABLE 11. Statistical results for the unimodal benchmark test functions.

FunctionID D - MFO SSA STOA PSO GA EPO IEPO FAEPO

Best 2.41E-25 2.27E-17 1.48E-58  4.85E-76 3.11E-84 8.43E-152 3.39E-17 5.79E-156
Mean 1.93E-05 2.77E-15 1.09E-40  7.11E-53 2.81E-17 2.08E-124 1.28E-01 5.44E-150

Fl 2 Stdev 1.03E-04 3.68E-15 5.85E-40 3.83E-52 1.52E-16 9.86E-124 3.21E-01 2.93E-149
Rank 7 6 4 3 5 2 8 1
Best 2.93E-01 2.93E-01 2.93E-01 2.93E-01 2.93E-01 2.93E-01 3.24E-01 2.93E-01
P 5 Mean 2.98E-01 2.93E-01 2.93E-01 2.93E-01 3.35E-01 3.86E-01 4.30E-01 2.95E-01
Stdev 1.08E-02 2.71E-08 6.50E-06 1.78E-06 4.37E-02 6.79E-02 5.65E-02 1.21E-02
Rank 5 2 2 2 6 7 8 4
Best 1.09E-06 2.19E-06 1.21E-53 1.16E-24 3.67E-14 3.51E-125 3.50E-02 3.00E-128
50 Mean 3.77E-02 8.73E-06 4.09E-19 4.14E-13 4.75E-07 1.11E-01 9.88E-01 2.73E-119
Stdev 1.36E-01 6.07E-06 2.12E-18 2.01E-12 1.25E-06 4.12E-01 5.59E-01 9.45E-120
Rank 6 5 2 3 4 7 8 1
Best 2.08E-04 1.81E-06 2.06E-46  5.60E-22 2.71E-15 2.53E-59 5.31E-01 3.11E-76
F3 70 Mean 7.35E-02 1.15E-05 4.86E-04  4.14E-13 2.53E-07 9.88E-01 1.42E+00 1.89E-31
Stdev 1.17E-01 6.31E-06 1.91E-03 1.33E-12 5.61E-07 7.64E-01 5.60E-01 7.06E-31
Rank 6 4 5 2 3 7 8 1
Best 3.22E-03 1.49E-06 1.29E-32 1.48E-16 8.75E-15 9.63E-01 7.07E-01 4.19E-02
100 Mean 1.59E-01 1.35E-05 2.35E-02 3.01E-11 1.61E-07 1.97E+00 1.61E+00 2.10E-01
Stdev 2.10E-01 9.46E-06 5.59E-02  6.67E-11 5.35E-07 5.37E-01 5.54E-01 3.41E-01
Rank 5 3 4 1 2 8 7 6
Best 4.15E+02 1.75E+25 1.41E-09 4.07E+02  9.30E+02 2.78E+02 3.08E+43 2.00E+02
50 Mean  9.11E+02 7.70E+47 5.09E-08  8.02E+02  7.95E+23 7.16E+74 1.02E+75 2.29E+02
Stdev  3.42E+02 3.43E+48 4.68E-08 2.17E+02  4.15E+24 3.15E+75 2.98E+75 5.72E+01
Rank 4 6 1 3 5 7 8 2
Best 1.31E+03 1.04E+43 6.46E-09  8.66E+02  1.19E+03 3.69E+02 1.37E+49 2.12E+02
F4 70 Mean  1.80E+03 1.19E+77 4.73E-07 1.37E+03 1.54E+41  4.30E+106  1.04E+106  3.45E+02
Stdev  2.60E+02 6.42E+77 8.01E-07 2.29E+02  7.94E+41  2.31E+107 4.99E+106  8.08E+01
Rank 4 6 1 3 5 8 7 2
Best 2.49E+03 3.24E+78 1.46E-07  1.59E+03 1.02E+09 5.03E+02 2.36E+80 4.26E+02
100 Mean  3.75E+03 1.39E+105  2.89E-06  1.07E+31 2.81E+74  1.05E+152  2.30E+150  5.92E+02
Stdev  4.92E+02  7.29E+105 4.73E-06  5.75E+31 1.51E+75  5.62E+152  1.06E+151 1.74E+02
Rank 3 6 1 4 5 8 7 2
Best 4.20E+01 7.79E-04 8.36E-18  3.61E+00 1.56E-01 5.29E-34 1.46E+01 3.97E-36
50 Mean  5.88E+02 5.85E-01 8.60E-15  3.04E+01  7.44E+00 3.01E-27 3.14E+11 7.14E-34
Stdev  5.62E+02 1.38E+00 2.05E-14  2.59E+01  6.98E+00 1.57E-26 1.58E+12 2.12E-33
Rank 7 4 3 6 5 2 8 1
Best 1.59E+02 1.19E+00 391E-15 1.21E+01 1.20E+01 3.82E-29 1.89E+01 2.52E-30
F5 70 Mean  1.42E+03 3.16E+01 1.87E-12  8.09E+01 3.39E+01 1.60E-23 2.61E+13 1.98E-27
Stdev 1.12E+03 3.06E+01 2.68E-12  8.30E+01 2.02E+01 3.43E-23 9.84E+13 8.99E-28
Rank 7 4 3 6 5 2 8 1
Best 1.40E+03 8.91E+01 7.73E-14  2.85E+01  4.73E+01 2.25E-22 8.66E+01 4.57E-22
100 Mean  7.14E+07 2.56E+02 2.85E-10  1.10E+02  1.28E+02 1.29E-18 3.90E+14 1.26E-21
Stdev  2.92E+08 1.51E+02 6.95E-10  8.06E+01  4.23E+01 3.19E-18 1.75E+15 2.53E-21
Rank 7 6 3 4 5 2 8 1
Best 0.00E+00  4.46E-287  0.00E+00  0.00E+00 6.20E-67 0.00E+00 0.00E+00 0.00E+00
50 Mean 1.13E-301 9.19E-234  0.00E+00  0.00E+00 2.63E-49 0.00E+00 0.00E+00 0.00E+00
Stdev  0.00E+00 0.00E+00 0.00E+00  0.00E+00 1.12E-48 0.00E+00 0.00E+00 0.00E+00
Rank 6 7 3 3 8 3 3 3
Best 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.2E-92 0.0E+00 0.0E+00 0.0E+00
F6 70 Mean 0.0E+00 5.4E-300 0.0E+00 0.0E+00 2.8E-56 0.0E+00 0.0E+00 0.0E+00
Stdev 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.5E-55 0.0E+00 0.0E+00 0.0E+00
Rank 3.5 7 3.5 3.5 8 3.5 3.5 3.5
Best 0.00E+00 0.00E+00 0.00E+00  0.00E+00  3.23E-122 0.00E+00 0.00E+00 0.00E+00
100 Mean  0.00E+00 0.00E+00 0.00E+00  0.00E+00 1.54E-85 0.00E+00 0.00E+00 0.00E+00
Stdev  0.00E+00 0.00E+00 0.00E+00  0.00E+00 8.09E-85 0.00E+00 0.00E+00 0.00E+00
Rank 4 4 4 4 8 4 4 4
Friedman Mean Rank 5.32 5.00 2.82 3.39 5.29 5.04 6.82 2.32
Overall Rank 7 4 2 3 6 5 8 1
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TABLE 12. Statistical results for the multimodal benchmark test functions.

Function ID D - MFO SSA STOA PSO GA EPO IEPO FAEPO
Best 1.46E-135  2.26E-16 1.58E-78  5.75E-245  3.42E-15 8.94E-289 4.40E-22  2.01E-290
F7 2 Mean 1.31E+00 1.26E-13 8.97E-62 9.82E-01 1.64E+00  1.10E-260  1.00E+00  3.63E-278
Stdev  3.33E+00 1.51E-13 4.83E-61 2.94E+00  3.65E+00  0.00E+00  2.86E+00  0.00E+00
Rank 7 4 3 5 8 2 6 1
Best 1.00E-04 5.07E-02 1.41E-03 1.00E-04 5.54E-03 1.00E-04 1.09E-01 1.00E-04
F8 2 Mean 1.18E-02 1.71E-01 5.13E-01 3.64E-03 8.99E-02 4.57E-01 6.96E-01 9.32E-02
Stdev 1.68E-02 4.78E-02 1.59E-01 9.72E-03 8.11E-02 1.96E-01 2.25E-01 1.63E-01
Rank 2 5 7 1 3 6 8 4
Best 2.97E+02  1.13E+02  8.93E-11 9.88E+01  9.27E+01 9.18E-09 4.09E+02 5.68E-14
50 Mean  3.97E+02  1.96E+02 9.08E+00 1.66E+02  1.35E+02  7.68E+01 6.62E+02 6.59E-08
Stdev  6.56E+01  4.10E+01  1.40E+01  3.45E+01 2.83E+01 1.23E+02 1.00E+02 3.55E-07
Rank 7 6 2 5 4 3 8 1
Best 497E+02  2.01E+02  1.31E-09 1.65E+02  1.33E+02 5.75E-08 7.18E+02 6.53E-10
F9 70 Mean  6.13E+02  3.00E+02  8.23E+00  2.60E+02 1.94E+02  1.22E+02  9.86E+02  4.42E-09
Stdev  6.01E+01  4.69E+01  1.40E+01  3.93E+01 3.36E+01 1.95E+02 1.12E+02 9.59E-09
Rank 7 6 2 5 4 3 8 1
Best 7.50E+02  3.12E+02  5.00E-12 3.37E+02 1.55E+02  4.55E-13 1.01E+03  0.00E+00
100 Mean  9.53E+02  4.33E+02 4.99E+00 4.75E+02  2.56E+02  1.83E+02 1.46E+03 1.08E+02
Stdev  6.86E+01  5.43E+01  1.38E+01  7.20E+01  4.95E+01  3.65E+02 1.86E+02  1.81E+02
Rank 7 5 1 6 4 3 8 2
Best 1.10E+15 1.44E+04  8.04E-13 3.68E-01 1.26E+10  3.55E+05  9.87E+12 1.79E-13
50 Mean 1.39E+22  5.13E+10  6.73E-04 1.94E+11  5.20E+16  2.14E+20 9.55E+25  3.11E+08
Stdev  3.74E+22  1.93E+11 1.94E-03 9.03E+11 1.47E+17  5.64E+20  3.25E+26  1.49E+09
Rank 7 3 1 4 5 6 8 2
Best 6.90E+27  6.39E+07  1.56E-15 1.87E+04  5.17E+14  2.40E+16 1.58E+25 4.80E-04
F10 70 Mean  1.57E+34  1.93E+21  3.52E-04 1.32E+27  4.69E+28 1.31E+36 1.28E+41 1.63E+23
Stdev  4.77E+34  6.69E+21  9.28E-04 7.11E4+27  2.47E+29  4.45E+36  5.67E+41 8.77E+23
Rank 6 2 1 4 5 7 8 3
Best 2.82E+43 1.57E+14  3.66E-09 1.30E+16  2.28E+25  2.38E+38 4.62E+46  2.13E+32
100 Mean 1.19E+52  2.32E+33  2.77E-02 2.84E+31 1.67E+47 1.17E+57  2.77E+59  4.35E+41
Stdev  4.28E+52  8.44E+33  8.91E-02 1.53E+32  9.01E+47  5.59E+57 1.20E+60  1.63E+42
Rank 6 3 1 2 5 7 8 4
Best 7.08E-20 4.50E-19 1.63E-19 2.78E-20 1.62E-20 1.65E-19 1.72E-19 1.66E-19
50 Mean 1.03E-19 4.86E-18 1.69E-19 1.55E-19 2.25E-20 1.74E-19 1.79E-19 1.73E-19
Stdev 1.59E-20 6.58E-18 2.64E-21 1.26E-19 3.78E-21 3.13E-21 1.30E-21 3.09E-21
Rank 2 8 4 3 1 6 7 5
Best 2.83E-28 1.34E-26 7.39E-28 2.66E-28 5.61E-29 7.51E-28 7.72E-28 7.19E-28
FI11 70 Mean 4.20E-28 3.17E-24  7.64E-28 3.05E-26 1.04E-28 7.82E-28 7.94E-28 7.35E-28
Stdev 1.11E-28 6.51E-24 1.02E-29 8.69E-26 6.32E-29 1.13E-29 6.71E-30 1.12E-29
Rank 2 8 4 7 1 5 6 3
Best 7.80E-41 1.97E-36 1.90E-40 9.06E-41 1.34E-41 1.95E-40 2.04E-40 1.90E-40
100 Mean 3.13E-40 5.15E-33 1.97E-40 6.95E-36 1.13E-40 2.01E-40 2.04E-40 1.93E-40
Stdev 6.91E-40 1.88E-32 2.24E-42 2.59E-35 1.37E-40 2.49E-42 4.15E-56 1.26E-42
Rank 6 8 3 7 1 4 5 2
Best 5.14E+00 3.17E-01 3.41E-03 1.81E-01 1.82E-01 2.44E-03 3.97E+01 9.61E-04
50 Mean  4.84E+01 1.08E+00  9.34E-03 7.31E-01 3.20E-01 1.42E-02 2.14E+02 1.00E-02
Stdev  4.18E+01 3.38E-01 6.96E-03 1.18E+00 6.79E-02 1.26E-02 1.18E+02 9.54E-03
Rank 7 6 1 5 4 3 8 2
Best 4.33E+01 1.61E+00  2.39E-03 6.86E-01 2.90E-01 4.59E-03 1.99E+02 1.92E-03
F12 70 Mean 1.48E+02  2.49E+00  1.37E-02 1.28E+00 4.34E-01 2.56E-02 6.07E+02 2.56E-03
Stdev  7.87E+01 6.12E-01 9.32E-03 6.66E-01 8.37E-02 2.47E-02 2.37E+02 8.25E-04
Rank 7 6 2 5 4 3 8 1
Best 1.34E+02  3.86E+00  4.66E-03 2.03E+00 4.04E-01 7.40E-03 9.05E+02  4.91E-03
100 Mean  3.62E+02  7.66E+00  1.75E-02 5.35E+00 7.15E-01 4.13E-02 1.59E+03 5.12E-03
Stdev 1.42E+02  2.13E+00  9.21E-03 5.49E+00 1.58E-01 2.53E-02 3.65E+02 1.05E-03
Rank 7 6 2 5 4 3 8 1
Friedman Mean Rank 5.71 5.43 243 4.57 3.79 4.36 7.43 2.29
Overall Rank 7 6 2 5 3 4 8 1
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TABLE 13. Experimental results were obtained through 30 independent runs using IMDB dataset.

Number of

Mean Team Size (TS)

Test Skills  Mean Team Cost (TC) MFO SSA STOA PSO GA EPO IEPO FAEPO
5 TS 3.0000 3.0000 3.0000 3.0000 3.1667 3.0000 3.0000 3.0000
TC 2.1638 22215 2.1439 2.3089 2.7279 2.3710 2.5024 2.0782
10 TS 4.6333 4.7333 5.0333 4.7000 4.5000 5.4333 5.9000 4.1333
TC 6.2722 6.5357 7.5985 6.3536 5.7384 9.3560 11.5432 5.0501
15 TS 7.3000 7.0000 7.3333 7.1000 6.8667 7.8333 8.0667 6.7667
TC 19.8670  18.3549  20.0965 18.5965 17.6289  23.2339  24.8830  17.0822
20 TS 8.5333 8.5333 8.9667 8.2667 8.4667 9.7333 10.2667 7.9333
TC 26.5503  26.8599  30.8383  24.9286 26.3670 35.5611 41.3109  23.2583
25 TS 11.2000  11.7000  11.7667  11.4000 11.7000  13.1000  12.8000  11.1333
TC 48.7030  52.7929  53.6963  49.7990  52.4914  66.7576  65.2642  47.7404
3.00 optimization, binary sequence with low autocorrelation -
2,00 LABS, MC /DC test case generation. Numerical results of all
se00 expeﬁments are plotted and performance is compared us%ng
K 00 the Friedman Mean Rank test. The performance evaluation
§4'00 of FAEPO for each optimization problem is described as
. follows.
% 3.00
£ 2.00 1) PERFORMANCE EVALUATION OF FAEPO ON TEAM
1.00 FORMATION OPTIMIZATION PROBLEM
0.00 FAEPO is compared with state-of-the-art meta-heuristic algo-
MFO SSA STOA PSO EPO  IEPO FAEPO

Competing Meta- heurlstlc Algorithms

FIGURE 7. Friedman mean rank for unimodal benchmark functions F1-F6.
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FIGURE 8. Friedman mean rank for multimodal benchmark functions
F7-F12.

better convergence for F1-F6, while PSO converges better for
F3 for dimension 100.

Analogous to the convergence properties for unimodal
functions, FAEPO is also shown to converge faster than other
algorithms for multimodal functions, as shown in Figure 12.
Moreover, a competing convergence characteristic between
FAEPO, EPO, and IEPO can be observed, with the former
dominating the latter for F7-F12 except F11.

C. HOW IS THE PERFORMANCE OF FAEPO COMPARED
TO EPO, IEPO, AND OTHER META-HEURISTIC
ALGORITHMS? (RQ3)

To answer this research question (RQ3), we used our pro-
posed FAEPO and other competing meta-heuristic algo-
rithms in three global optimization problems: team formation

VOLUME 10, 2022

rithms including its predecessor EPO, and an improved vari-
ant of EPO on two benchmark datasets, namely IMDB and
DBLP. Tables 13 and 14 show the results obtained for all
competing meta-heuristic algorithms in 30 independent runs
for TFO using the benchmark datasets: IMDB and DBLP,
respectively.

Although the average results are scattered across different
cells of the tables, FAEPO obtains the lowest average value in
terms of team size (TS) and team cost (TC) for both datasets.
With the exception of GA, all competing meta-heuristic algo-
rithms show comparable performance for the lowest number
of test skills values (i.e., 5) with respect to the mean team size
for the IMDB dataset. The performance differences become
more pronounced with a higher number of test skills values.
Moreover, FAEPO exhibits the lowest mean values for all
SR, which shows the superiority of the proposed algorithm
in finding optimal solutions over the previously compared
meta-heuristic algorithms. Moreover, FAEPO performs better
in mean values than any other algorithm of interest for the
IMDB datasets. FAEPO’s closest competitor is PSO and
MFO for the IMDB dataset in terms of average team size and
average team cost, respectively.

Similar to IMDB, the results of DBLP also demonstrate
the superiority of the proposed algorithm, FAEPO, over all
other competing meta-heuristic algorithms for S = {5, 10}.
For example, although MFO and SSA obtain the best average
for all SR = {15, 20, 25}, FAEPO obtains a better average in
terms of team size and team cost than EPO and IEPO for all
SR values. Friedman’s mean ranking and overall ranking are
shown in Table 15 and Table 16 for the IMDB and DBLP
datasets, respectively. FAEPO outperforms all other compet-
ing meta-heuristic algorithms by securing the overall rank of
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FIGURE 9. Convergence curves of the competing meta-heuristic algorithms on unimodal fixed dimensional

benchmark test functions (F1-F2).
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FIGURE 10. Convergence curves of the competing meta-heuristic algorithms on multimodal fixed dimensional

benchmark test functions (F7-F8).

1 for the IMDB datasets, as can be seen in Table 15. On the
other hand, FAEPO secures rank 1 in DBLP dataset for S® =
{5, 10}, but performs poorly for SR — {15, 20, 25}. FAEPO
tied for third place among all the meta-heuristic algorithms
tested on the DBLP dataset. Friedman’s mean rankings for
the IMDB and DBLP datasets are shown in Figure 13 and
Figure 14, respectively.

In terms of the fairness of the comparison with other meta-
heuristic algorithms, several points can be further discussed.
First, we compared our work with the same category of algo-
rithms (nature-inspired meta-heuristic algorithms). There-
fore, for these algorithms, we consider the best parameter
values proposed in their original works and listed in Table 7.
Second, all competing meta-heuristic algorithms stop work-
ing when the number of maximum fitness scores is reached,
which means that all competing meta-heuristic algorithms get
equal chances to update their search agents.

From the discussions, it can be concluded that the proposed
algorithm, FAEPO, is the best performing algorithm for the
team formation optimization problem among all the compet-
ing meta-heuristic algorithms, especially EPO and IEPO.

2) PERFORMANCE EVALUATION OF FAEPO ON LABS
PROBLEM

Table 17 shows the experimental results of the best obtained
optimal merit factor (Fj ) of the LABS problem for sequence
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lengths up to 31. The obtained average merit factors and
actual merit factors [97] are also shown in Table 17. The
sequence lengths below seven are not considered, since these
sequences provide comparable performance for all algo-
rithms compared.

In this experiment, we used two ranking methods for per-
formance evaluation: Difference mean (EFN) rank and Fried-
man mean rank. Here, the difference mean represents the
mean of absolute difference between the actual merit factors
calculated by exhaustive search [97] and the best obtained
merit factors. The mathematical formulation of the difference
mean is shown in Eq. (30) as follows:

31

DFN = E Z |FN(actual) - FN(beA‘t obtained)| (30)
N=7

The goal of the competing meta-heuristic algorithms is
to find the merit factor that is equal or close to the actual
merit factor. Therefore, the difference mean can determine the
overall performance of the competing meta-heuristic algo-
rithms by comparing the closeness to the BFN of the actual
merit factor (i.e., zero). The ranking of the difference means
provides information about the performance of the competing
meta-heuristic algorithms in this experiment. The ranking of
the competing meta-heuristic algorithms are shown in the last
row of Table 17.
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FIGURE 11. Convergence curves of the competing meta-heuristic algorithms on unimodal variable dimensional benchmark test functions (F3-F6).

The Friedman mean ranking was also used in this experi- meta-heuristic algorithms for LABS problem is shown in
ment to rank the competing meta-heuristic algorithms based Figure 15. FAEPO achieves the rank 1 in each ranking among
on the average merit factors. Table 18 shows the Friedman all the competing meta-heuristic algorithms.
mean ranking of the competing meta-heuristic algorithms The experimental results uncover that the proposed FAEPO
based on the performance (average merit factor) recorded quickly finds the near-optimal (best found) merit factors
in Table 17. Friedman’s mean ranking of all competing equal to or close to actual merit factors. Moreover, the
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FIGURE 12. Convergence curves of the competing meta-heuristic algorithms on multimodal variable dimensional benchmark test functions (F9-F12).

acquired maximum average merit factors and minimum dif-
ference mean results demonstrate that the proposed FAEPO
outperforms the other algorithms.

3) PERFORMANCE EVALUATION OF FAEPO ON MC/DC TEST
CASE GENERATION PROBLEM

We conducted our MC/DC test case generation experiment
to evaluate our proposed algorithm in terms of the size of
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generated test cases. This experiment was performed on a
benchmark set of eight logical functions, which are listed in
Table 10. All the experimental results are shown in Table 19.
As shown in Table 19, all competing meta-heuristic algo-
rithms achieve identical results for the LE1 and LE2 func-
tions. Similarly, all algorithms beat GA for functions LE3,
LE4, LES, LE6, LE7, and LES8 in generating average test
cases.
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TABLE 14. Experimental results were obtained through 30 independent runs using the DBLP dataset.

Number of = Mean Team Size (TS)

Test Skills  Mean Team Cost (TC) MFO SSA STOA PSO GA EPO IEPO FAEPO
5 TS 3.967 3.967 4.000 3.933 4.000 5.000 4.933 3.833
TC 5.474 5.466 5.683 5.376 5.689 9.645 9.389 5.345
10 TS 6.167 6.267 6.300 6.400 7.167 7.633 8.133 6.000
TC 15.138 15.676 16.096 16.669 21.574 24.596 28.132 14.458
15 TS 9.767 9.700 10.667 9.867 11.067 13.800 13.100 10.033
TC 41.049 40.030 49.877 42.125 54.063 85.569 77.292 43.491
20 TS 13.167 13.067 14.633 14.000 14.800 16.700 16.567 14.100
TC 78.412 76.981 97.685 88.774 100.044  129.079  127.283  90.459
25 TS 16.700 16.933 18.267 17.667 19.633 21.000 20.933 18.000
TC 127.384  131.090 153.465 143.640 178.573  202.515 201.476  147.352

TABLE 15. Friedman mean ranking of competing meta-heuristic algorithms using IMDB dataset based on the performance in Table 13.

Number of  TS-Team Size

Test Skills  TC-Team Cost MFO SSA STOA PSO GA EPO IEPO FAEPO

5 TS 4 4 4 4 8 4 4 4
TC 3 4 2 5 8 [§ 7 1
10 TS 3 5 6 4 2 7 8 1
TC 3 5 6 4 2 7 8 1
15 TS 5 3 6 4 2 7 8 1
TC 5 3 6 4 2 7 8 1
20 TS 4.5 4.5 6 2 3 7 8 1
TC 4 5 6 2 3 7 8 1
25 TS 2 4.5 6 3 4.5 8 7 1
TC 2 5 6 3 4 8 7 1
Friedman Mean Rank (TS) 3.7 4.2 5.6 3.4 3.9 6.6 7 1.6
Overall Rank (TS) 3 5 6 2 4 7 8 1
Friedman Mean Rank (TC) 34 4.4 5.2 3.6 3.8 7 7.6 1
Overall Rank (TC) 2 5 6 3 4 7 8 1
) &
o ~ ~
7 Nl
'é 6 ﬁ N
& « &2
=4 p p 5
£3
2 ©
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| w -
0
o < < [} < o o] o o < < o < ] ] @]
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Competing Meta-heuristic Algorithms
FIGURE 13. Friedman mean rank for IMDB dataset.
Moreover, PSO, GA, and EPO give poor results in generat- equally better than the other competing meta-heuristic algo-
ing average test cases for function LE6. Moreover, PSO and rithms in all cases.
GA provide poor results for LE7 and LES8 functions. On the The entries in Table 20 represent the Friedman mean rank-

other hand, MFO, SSA, STAO, IEPO, and FAEPO perform ing and the overall ranking of the competing meta-heuristic
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TABLE 16. Friedman mean ranking of competing meta-heuristic algorithms using DBLP dataset based on the performance in Table 14.

Number of  TS-Team Size
Test Skills ~ TC-Team Cost MFO SSA STOA PSO GA EPO IEPO FAEPO
5 TS 35 3.5 5.5 2 5.5 8 7 1
TC 4 3 5 2 6 8 7 1
10 TS 2 3 4 5 6 7 8 1
TC 2 3 4 5 6 7 8 1
15 TS 2 4 3 6 8 7 4
TC 2 4 3 6 8 7 4
20 TS 2 1 4 3 6 8 7 4
TC 2 1 4 3 6 8 7 4
25 TS 1 2 5 3 6 8 7 4
TC 1 2 5 3 6 8 7 4
Friedman Mean Rank (TS) 2.1 2.1 4.9 3.2 5.9 7.8 7.2 2.8
Overall Rank (TS) 1.5 1.5 5 4 6 8 7 3
Friedman Mean Rank (TC) 22 2 4.8 32 6 7.8 7.2 2.8
Overall Rank (TC) 2 1 5 4 6 8 7 3

7

Friedman Mean Rank
B W N
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Mean Rank for TS

IEPO FAEPO MFO

Competing Meta-heuristic Algorithms

SSA STOA PSO EPO
Mean Rank for TC

IEPO FAEPO

FIGURE 14. Friedman mean rank for DBLP dataset.

algorithms based on the performance shown in Table 19. The
overall ranking of the competing meta-heuristic algorithms in
Table 20 shows that FAEPO, IEPO, STOA, SSA, and MFO
achieve the same rank of 3 for computing the average MC/DC
test cases. On the other hand, EPO, PSO, and GA achieve the
overall rank of 6, 7, and 8, respectively.

The experimental results suggest that the proposed FAEPO
performs better than its predecessor EPO and the other
competing meta-heuristic algorithms in terms of ranking.
Although five algorithms, including the proposed FAEPO,
achieve the same top ranking, EPO receives a poor ranking
(i.e., 6). Figure 16 shows Friedman’s mean ranking of all

116366

competing meta-heuristic algorithms for generating MC/DC
test cases.

4) IS THERE ANY OVERHEAD IN TERMS OF THE TIME
PERFORMANCE OF FAEPO IMPLEMENTATION?

Complexity is one of the most influential metrics for evalu-
ating the performance of an algorithm. Big Oh (O) notation
is commonly used to represent the complexity of an algo-
rithm. Many factors affect the time complexity of a meta-
heuristic algorithm. Generally, the number of population (n),
dimension (d), maximum iteration (M), and fitness func-
tion evaluation (f,) are considered when evaluating the time
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TABLE 17. Numerical results of obtained merit factors (Fy ) for sequence length 7 < N < 31.

Sequence Merit
Length (N)  Factor (Fn) MFO SSA STOA PSO GA EPO IEPO FAEPO Actual Fyy [99]
7 Best Found 8.167 8.167 8.167 8.167 8.167 8.167 8.167 8.167 3.167
Average 7.700 8.167 8.167 4.442 7.389 8.167 8.167 8.167 ’
3 Best Found 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
Average 4.000 4.000 4.000 3.400 3.822 4.000 4.000 4.000 ’
9 Best Found 3.375 3.375 3.375 3.375 3.375 3.375 3.375 3.375 3375
Average 3.375 3.375 3.375 2.734 3.150 3.375 3.375 3.375 ’
10 Best Found 3.846 3.846 3.846 3.846 3.846 3.846 3.846 3.846 3846
Average 3.749 3.846 3.846 2.782 3.651 3.846 3.846 3.846 ’
11 Best Found 12.100  12.100  12.100  12.100  12.100  12.100  12.100 12.100 12.100
Average 5.422 7.881 12.100  3.132 4.221 12.100  12.100 12.100 ’
12 Best Found 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7.200 7200
Average 5.279 6.994 7.200 2.894 4.376 7.200 7.200 7.200 ’
13 Best Found 14.083  14.083 14.083 6.036 6.036 14.083  14.083 14.083 14.083
Average 5.537 7.064 11.669 2.642 3.790 12.742 8.450 14.083 ’
14 Best Found 5.158 5.158 5.158 5.158 5.158 5.158 5.158 5.158 5158
Average 4.343 5.107 5.158 2.635 3.446 5.158 5.158 5.158 ’
15 Best Found 4.891 7.500 7.500 4.891 4.891 7.500 7.500 7.500 7500
Average 4.182 4.873 5.239 2.744 3.091 5.326 5.065 6.370 ’
16 Best Found 5.333 5.333 5.333 4.000 4.000 5.333 5.333 5.333 5333
Average 4.052 4.679 5.257 2.765 3.000 5.283 4.991 5.333 ’
17 Best Found 4.516 4.516 4.516 3.613 4.516 4.516 4.516 4.516 4516
Average 3.702 4.047 4.389 2.453 2.902 4.348 4.275 4.516 )
18 Best Found 4.909 4.909 4.909 3.951 3.951 6.480 4.909 6.480 6.480
Average 3.583 4.366 4.686 2.306 2.822 4.802 4.622 5.328 ’
19 Best Found 4.402 4.402 5.470 2.959 3.684 5.470 4.878 6.224 6.224
Average 3.454 4.027 4.538 2.276 2.785 4.610 4.442 5419 ’
20 Best Found 4.000 5.263 5.263 2.564 5.263 5.882 5.882 5.882 7692
Average 3.274 4.130 4.297 2.071 2.996 4.552 4.509 5.370 ’
21 Best Found 4.410 4410 4.410 3.150 3.341 4.410 5.803 8.481 3481
Average 3.368 3.966 4.150 2.127 2.584 4.356 4.274 5.248 ’
2 Best Found 4.410 4.410 4.410 3.150 3.341 4.410 5.803 8.481 6.205
Average 3.368 3.966 4.150 2.127 2.584 4.356 4.274 5.248 ’
23 Best Found 4.410 4.410 4.410 3.150 3.341 4.410 5.803 8.481 5608
Average 3.368 3.966 4.150 2.127 2.584 4.356 4.274 5.248 ’
24 Best Found 4.000 4.500 5.143 3.429 3.600 4.500 5.539 5.539 3.000
Average 3.263 3.681 3.940 1.943 2.480 4.051 4.177 4.743 ’
25 Best Found 3.906 4.596 4.112 3.255 3.125 4.883 4.596 6.010 3681
Average 3.116 3.800 3.840 2.120 2.379 4.105 4.016 4.726 ’
2% Best Found 4.390 4.390 4.390 3.101 3.101 4.899 5.541 5.541 7511
Average 3.193 3.708 3.840 2.044 2.400 4.253 4.331 4.695 ’
27 Best Found 3.609 4.993 4.734 2.382 3.609 5.283 5.283 5.975 0851
Average 3.134 3.879 3.791 1.863 2.337 4.246 4.236 4.887 ’
28 Best Found 4.558 4.781 4.356 2.761 3.564 5.297 5.026 7.840 7840
Average 3.031 3.871 3.763 1.960 2.339 4.063 4.112 4.853 ’
29 Best Found 3.689 4473 4473 2.362 3.138 5.682 4.890 6.007 6.782
Average 2.947 3.701 3.594 1.769 2.430 4.170 4.150 4.834 ’
30 Best Found 4.206 4.546 4.206 2.514 3.237 4.945 4.206 5.422 7627
Average 2.943 3.546 3.541 1.795 2.270 4.058 3.927 4431 ’
31 Best Found 3.784 4491 4.665 2.626 2.684 4.854 5.058 5.789 7172
Average 2.902 3.632 3.497 1.877 2.155 4.028 3.983 4.620 ’
Difference Mean 3.327 2.607 2.131 4.737 4.059 1.916 2.140 1.426 0.000
Difference Mean Rank 6 5 3 8 7 2 4 1
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TABLE 18. Friedman’s mean ranking of competing meta-heuristic
algorithms based on the performance in Table 17.

TABLE 19. Cumulative results of obtained MC/DC test cases using
benchmark algorithms.

Sequence ~ \ipo SSA STOA PSO GA EPO IEPO FAEPO Algorithm  T¢$tC3€ y gy [E2 LE3 LE4 LES LE6 LE7 LES
Length (IV) Pairs
7 6 3 3 8 7 3 3 3 Min 4 4 4 4 5 5 5 6
8 35 35 35 8 7 35 35 3.5 MFO Max 4 4 4 4 5 5 5 6
9 35 35 35 8 7 35 35 3.5 Average 4 4 4 4 5 5 5 6
10 6 3 3 8 73 3 3 Min 4 4 4 4 5 5 5 6
11 6 5 25 8 7 25 25 2.5
SSA Max 4 4 4 4 5 5 5 6
12 6 5 25 8 7 25 25 2.5 Aver 4 4 4 4 5 5 s ¢
13 6 5 3 8 7 2 4 1 verage
14 6 5 25 8 7 25 25 2.5 Min 4 4 4 4 5 5 5 6
15 6 5 3 8 7 2 4 1 STOA Max 4 4 4 4 5 5 5 6
16 6 5 3 8 7 2 4 1 Average 4 4 4 4 5 5 5 6
17 6 5 2 8 7 3 4 1 -
mo  Mmo4 444313
19 6 5 3 8 7 2 4 1 ax
20 6 5 4 8 7 2 3 1 Average 4 4 4 4 5 633 64 6.63
21 6 5 4 8 7 2 3 1 Min 4 4 4 4 5 5 6 6
22 6 5 4 8 7 2 3 1 GA Max 4 4 5 5 6 8 8 8
23 6 5 4 8 7 2 3 1 Average 4 4 433 437 577 67 697 7.37
24 6 5 4 8 7 3 2 1 -
26 6 5 4 8 7 3 2 1 EPO Max 4 4 4 4 5 6 5 6
27 6 4 5 3 7 2 3 1 Average 4 4 4 4 5 547 5 6
28 6 4 5 8 7 3 2 1 Min 4 4 4 4 5 5 5 6
29 6 4 5 8 7 2 3 1 IEPO Max 4 4 4 4 5 5 5 6
30 6 4 5 8 7 2 3 1 Average 4 4 4 4 5 5 5 6
31 6 4 5 8 7 2 3 1
. Min 4 4 4 4 5 5 5 6
Friedman =5 o0 457 360 800 7.00 242 310 154 FAEPO Max 4 4 4 4 5 5 5 6
Mean Rank Average 4 4 4 4 5 5 5 6
Overall Rank 6 5 4 8 7 2 3 1
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TABLE 20. Friedman mean ranking of competing meta-heuristic
algorithms based on the performance in Table 19.

LE# MFO SSA STOA PSO GA EPO IEPO FAEPO

LEI 45 45 4.5 45 45 45 4.5 4.5
LE2 45 45 4.5 45 45 45 4.5 4.5
LE3 4 4 4 4 8 4 4 4
LE4 4 4 4 4 8 4 4 4
LE5 4 4 4 4 8 4 4 4
LE6 3 3 3 7 8 6 3 3
LE7 35 35 3.5 7 8 35 3.5 3.5
LES8 35 35 35 7 8 35 3.5 3.5
Friedman
Mean Rank 39 39 3.9 53 7.1 43 3.9 3.9

Overall Rank 3 3 3 7 8 6 3 3

FIGURE 15. Friedman mean rank for LABS problem.

complexity of meta-heuristic algorithms. The time complex-
ity of a meta-heuristic algorithm (Ays) can be expressed as
follows:

O(Apy) = O(Fitness Function Evaluation
+ Agent Update in Memory
+ Dimension Update 31
The time complexity of the meta-heuristic algorithms com-
pared in this study is summarized using Eq. (31) in Table 21.

The time complexity of each meta-heuristic algorithm in
Table 21 can be approximated as ~ O(Mj, X n X (fo + d))
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for sufficiently large n, provided all other operations can be
completed in constant time. This approximation shows that
adding FIS to FAEPO has no negative impact on perfor-
mance.

For a more fair comparison, the average running time com-
parison of all competing meta-heuristic algorithms for each
experiment is considered in this study. Tables 22 to 25 record
the comparative results for the competing meta-heuristic
algorithms that have been executed within the same environ-
ment. The results highlight the average running time in sec-
onds. The bolded results represent the best average running
time obtained. Overall, EPO outperforms all other competing
meta-heuristic algorithms in terms of average running time
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TABLE 21. Comparative time complexity.

Algorithm  Time Complexity Remarks

MFO O(Mitr Xn X (fe+1+d+n)) MFO requires sorting (O(n?) for worst-case) of flames in each iteration depending upon their
fitness value.

SSA O(n? + Myt x n X (fe +1+d))  Before entering the main loop, SSA requires that the locations of salps be sorted in ascending
order based on their fitness value.

STOA O(Misr x 1 X (fe +1+d)) STOA only performs a single agent update per iteration.

PSO O(Misr x 1 X (fe +1+d)) PSO only performs a single agent update per iteration.

GA O(Mitr X n X (fe +1+4d)) GA only performs a single agent update per iteration.

EPO O(Mitr xn X (2 X fe+1+44d)) The time complexity of EPO includes the multiplier two, which represents the number of fitness
function evaluations done in each iteration.

IEPO O(Mitr xn X (fe+1+dx L)) The time complexity of IEPO includes L, which represents the number of levy function evaluations
done for each dimension in each iteration.

FAEPO O(Mitr X n X (fe +1+d)) +r Unlike the original EPO, the FAEPO calculates the fitness of all search agents once in each

iteration, resulting in time complexity improvement. However, the time complexity also contains
the constant value, 7, for fuzzy decision-making.

*
o

=~

@
“
“
o o o -
| | I
A EPO

MFO SSA STOA PSO G
Competing Meta-heuristic Algorithms

b Sl =
= o o

39
39

Friedman Mean Rank
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3

e
=3

IEPO FAEPO

FIGURE 16. Friedman mean ranking for MC/DC test case generation.

in all experiments except MC/DC test case generation and
TFO for the DBLP dataset. However, it fails to generate
optimal results in any of the configurations for the given case
studies. Although not the fastest, FAEPO outperforms the
other strategies in terms of generating optimal results, better
than EPO and IEPO in all experiments. On the other hand,
the average running time of IEPO is higher than the other
competing meta-heuristic algorithms and provides very poor
results in all cases.

5) IS FAEPO SUFFICIENTLY GENERAL TO HANDLE BOTH
MINIMIZATION AND MAXIMIZATION OPTIMIZATION
PROBLEMS?

The answer to question 5 (RQ5) refers to the performance
evaluation of FAEPO on three global optimization problems.
Among the optimization problems, TFO and MC /DC test
case generation are the minimization problems, while LABS
is considered as a maximization problem in terms of find-
ing the maximum merit factor of sequences. Unlike typical
meta-heuristic algorithms that require presetting of control
parameters, FAEPO tunes its control parameters using FIS
based on the quality, success rate, and diversity of the current
search. As a result, FAEPO becomes more general and can
handle different optimization problems. The experimental

VOLUME 10, 2022

TABLE 22. Average running time comparison for benchmark test function
experiment.

F‘“;g“’“ D MFO SSA STOA PSO GA EPO IEPO FAEPO

F1 2 0.022 0.031 0.016 0.130 0.234 0.015 1.185 0.288
F2 2 0.029 0.041 0.020 0.154 0.270 0.019 1.288 0.334

50 0.132 0.120 0.101 0.238 0.390 0.099 39.271 0.488
F3 70 0.155 0.133 0.122 0.218 0.336 0.111 42.390 0.457
100 0.308 0.277 0.251 0.396 0.525 0.221 76.154 0.746

50 0.074 0.064 0.076 0.166 0.319 0.047 37.053 0.358
F4 70 0.084 0.065 0.097 0.136 0.262 0.056 41.005 0.312
100 0.159 0.111 0.184 0.235 0.359 0.101 80.138 0.517

50 0.126 0.160 0.128 0.249 0.406 0.074 34.903 0.410
F5 70 0.161 0.204 0.187 0.265 0.412 0.097 43.054 0.416
100 0.356 0.459 0.440 0.586 0.792 0.243 89.370 0.822

50 0.070 0.061 0.072 0.164 0.309 0.046 35.569 0.351
F6 70 0.067 0.054 0.072 0.133 0.237 0.045 37.558 0.295
100 0.137 0.097 0.160 0.191 0.309 0.095 60.427 0.447

F7 2 0.020 0.026 0.015 0.104 0.181 0.014 0.906 0.208
F8 2 0.023 0.032 0.018 0.117 0.236 0.017 1.184 0.266

50 0.055 0.046 0.059 0.108 0.190 0.037 21.667 0.238
F9 70 0.085 0.071 0.087 0.159 0.270 0.056 40.892 0.342
100 0.167 0.128 0.183 0.219 0.330 0.104 61.687 0.473

50 0.139 0.129 0.144 0.222 0.392 0.114 39.333 0.512
F10 70 0.166 0.147 0.173 0.218 0.349 0.137 43.533 0.493
100 0.287 0.255 0.313 0.335 0.465 0.246 59.178 0.768

50 0.057 0.050 0.061 0.114 0.199 0.044 21.992 0.283
F11 70 0.078 0.066 0.082 0.144 0.250 0.054 38.224 0.327
100 0.088 0.068 0.100 0.119 0.202 0.064 42.311 0.280

50 0.122 0.112 0.127 0.189 0.316 0.099 30.087 0.418
F12 70 0.161 0.144 0.169 0.216 0.348 0.132 43.510 0.483
100 0.409 0.357 0.448 0.494 0.668 0.334 95.691 1.027

results show that the proposed FAEPO outperforms the other
competing meta-heuristic algorithms for both minimization
and maximization optimization problems.

VII. OVERALL OBSERVATIONS AND DISCUSSION ON
FAEPO

The effectiveness of our algorithm can be further justi-
fied by considering the research questions raised earlier.
As mentioned earlier, FAEPO is compared with seven other
well-known meta-heuristic algorithms, including its prede-
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TABLE 23. Average running time comparison for TFO experiment.

TABLE 24. Average running time comparison for LABS experiment.

IMDB Dataset

Number of Test Skills MFO SSA STOA PSO GA EPO IEPO FAEPO
5 0.166 0.139 0.141 0.141 0.140 0.124 42.637 0.259
10 0.100 0.081 0.081 0.089 0.089 0.064 38.397 0.134
15 0.122 0.100 0.102 0.098 0.103 0.092 39.002 0.168
20 0.087 0.071 0.073 0.078 0.080 0.058 38.475 0.134
25 0.117 0.097 0.098 0.101 0.104 0.083 39.516 0.148

DBLP Dataset

Number of Test Skills MFO SSA STOA PSO GA EPO IEPO FAEPO
5 119.972 116.011  119.799 124986 87.799 137.799  298.026  131.171
10 28.255 38.792 32.048 47.991 61.516 22.506 218.297 20.562
15 41.328 52.486 46.124 73.666 96.298 30.691 221.681 28.327
20 53.679 60.473 57.982 77.303 89.196 40.552 232.240  34.562
25 85.569 84.675 84.026 83.017 96.898 69.403 282.970 70.456

Sequence

Length (N) MFO SSA STOA PSO GA EPO IEPO FAEPO .
7 0.072 0.062 0.063 0.208 0.329 0.054 4.685 0.408
8 0.081 0.074 0.070 0.230 0.358 0.059 5.894 0.429
9 0.081 0.068 0.067 0.219 0.353 0.059 6.460 0.425
10 0.083 0.073 0.070 0.223 0.361 0.062 7.154 0.429
11 0.085 0.072 0.070 0.228 0.357 0.061 7.734 0.432
12 0.087 0.075 0.074 0.228 0.361 0.064 8.552 0.441
13 0.089 0.074 0.075 0.227 0.356 0.063 9.245 0.435
14 0.090 0.074 0.079 0.233 0.375 0.068 10.122 0.451
15 0.089 0.073 0.073 0.217 0.345 0.061 10.725 0.412
16 0.086 0.071 0.073 0.209 0.327 0.063 10.456 0.407
17 0.086 0.073 0.076 0.213 0.329 0.066 11.055 0.400
18 0.091 0.079 0.084 0.235 0.371 0.066 13.310 0.427
19 0.163 0.135 0.141 0.379 0.590 0.119 22253 0.758
20 0.097 0.077 0.081 0.206 0.336 0.072 12.995 0.391
21 0.089 0.073 0.081 0.208 0.327 0.065 13.733 0.384
22 0.089 0.073 0.081 0.208 0.327 0.065 13.733 0.384
23 0.089 0.073 0.081 0.208 0.327 0.065 13.733 0.384 .
24 0.112 0.090 0.100 0.252 0.392 0.085 18.752 0.476
25 0.173 0.132 0.154 0.391 0.641 0.140 29.307 0.708
26 0.099 0.078 0.090 0.217 0.338 0.071 16.855 0.400
27 0.119 0.094 0.109 0.246 0.399 0.089 20.566 0.484
28 0.172 0.132 0.156 0.350 0.543 0.119 30.230 0.727
29 0.110 0.087 0.100 0.227 0.361 0.083 19.818 0.437
30 0.112 0.087 0.099 0.228 0.348 0.086 19.789 0.448
31 0.112 0.091 0.100 0.220 0.344 0.086 20.719 0.412

TABLE 25. Average running time comparison for MC/DC test case

generation experiment.

LE# MFO SSA STOA PSO GA EPO IEPO FAEPO

LE1 3.735 5.143 5720 4.570 4390 5.160 8362 5.683

LE2 2.668 3.580 4.002 3435 3.175 3.561 5774 4.054

LE3 2418 2411 2.832 3480 3472 2515 6.457 2861

LE4 3.238 4.086 3.678 2478 2570 3.718 6.895 4.054 °
LE5 5.130 6.198 12.073 7.857 7.950 13.178 364.290 15.175

LE6 5.347 6359 13.164 4.730 4.272 16.308 364.290 17.627

LE7 5.087 5.009 11.287 4.833 4.495 13.152 18.162 13.523

LE8 70.378 82.034 332.950 48.161 32.293 610.184 546.419 1500.0

cessor EPO and its improved variant IEPO. The value of
the default/common parameters was kept identical to make a
fair comparison between the competing meta-heuristic algo-
rithms during the experiments, as listed in Table 21. Based
on the obtained results of all experiments and the above
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discussions, some thought-provoking observations can be
made, which are explained below.

Our analysis of the overall ranking results shows that
FAEPO can maintain an appropriate balance between
exploration and exploitation processes. Unlike the origi-
nal EPO, where exploration was performed by predefin-
ing control parameters, FAEPO can use the FIS to tune
the control parameters. However, FAEPO outperforms
EPO and other competing meta-heuristic algorithms
due to its adaptive behavior, which is the major factor
for FAEPO’s superior performance. Statistical analysis
shows that FAEPO outperforms all other meta-heuristic
algorithms (see Tables 12 and 13), except for its prede-
cessor EPO, which outperforms all other meta-heuristic
algorithms in only one case (see Table 11).

The benchmarking experiments show that the integra-
tion of FIS into FAEPO has improved its exploration
and exploitation capabilities. By breaking the default
of control operators, fuzzy rules make the exploration
and exploitation of FAEPO more dynamic. Unlike typ-
ical meta-heuristic algorithms, FAEPO behaves like a
parameterized algorithm without requiring significant
tuning.

When comparing the two algorithms, there are no sig-
nificant differences between FAEPO and EPO in terms
of convergence across different experiments. In fact, our
experimental results show that both FAEPO and EPO
can achieve convergence in fewer iterations than the
other competing meta-heuristic algorithms.

It is convenient to use Big O notation to com-
pare the performance of each meta-heuristic algo-
rithm considered in terms of time complexity. In most
cases, the time complexity is determined by the num-
ber of search agents (n), the number of dimensions
(d), the number of maximum iterations (Mj,) and
the evaluation of the fitness function (f,). Accord-
ing to Eq. (31), the time complexity of all compet-
ing meta-heuristic algorithms can be summarized in
Table 21. When n is sufficiently large, the time complex-
ity of all meta-heuristic algorithms in Table 21 can be
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approximated as &~ OMj, x n x (f, + d)), assum-
ing that all other operations can be performed in a
constant time. From this approximation, it can be
deduced that the introduction of FIS within FAEPO
does not directly degrade the performance of the
system.

« With respect to the fairness of comparisons with other
meta-heuristic algorithms, several issues can be dis-
cussed in more detail. First, instead of using the max-
imum number of iterations, our research chose the
maximum fitness evaluation as the stopping criterion,
while maintaining the same population size. This choice
ensures that each algorithm performs the same num-
ber of agent updates regardless of the iteration number.
Second, implementation efficiency, choice of language
implementation, and data structure directly affect the
runtime performance of an algorithm. For this reason,
we have considered the average running time compari-
son of the competing meta-heuristic algorithms, and all
of them are implemented within the same environment.
Even though it’s not the fastest, FAEPO is better than
the other meta-heuristic algorithms because it always
gives the best results. Finally, we focused our Fried-
man Mean Rank analysis on the mean results rather
than the best. The performance of all meta-heuristic
algorithms can be affected by chance, since they all
use randomness to update their solutions (through trial
and error). By chance, one algorithm may produce the
optimal result once, but produces suboptimal results on
subsequent runs. Therefore, using the mean instead of
the best results can give a more accurate indication of
performance.

e Our design decisions can affect our FAEPO perfor-
mance in terms of fuzzy design on the subject of con-
straints. We chose a Mamdani-based approach over
a Sugeno-based approach and a triangular/trapezoidal
membership function over the Gaussian membership
function due to the simplicity of maintaining the fuzzy
rules. We also opted for three and six overlapping
linguistic terms for each input and output member-
ship function, respectively (see Figure 3 and Figure 4).
In addition, our design decisions highlight some limi-
tations of our approach. First, the choice of linguistic
terms can be described from two opposing perspectives.
On the one hand, an excessive number of linguistic
terms requires additional rules that require additional
computations. On the other hand, an insufficient number
of linguistic terms cannot meet the requirements of the
problem.

o In terms of our design decisions, we have created a
fuzzy FIS. However, other approaches may be more
effective. It is not guaranteed that our choices are suf-
ficiently general for other optimization problems. Dif-
ferent design decisions (e.g., Mamdani versus Sugeno
approach, Gaussian versus Trapezoidal membership
function) may lead to different results.
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VIil. CONCLUSION AND FUTURE WORKS

In this study, an adaptive variant of the EPO (i.e., FAEPO)
is proposed for solving global optimization problems by
tuning its control parameters. The proposed FAEPO is a
combination of the EPO algorithm and the Mamdani fuzzy
interference system for adaptive tuning of two control param-
eters based on setting their range of values by a fuzzy
decision process. In order to perform a comprehensive eval-
uation, the proposed algorithm is applied to twelve opti-
mization benchmark test functions consisting of unimodal,
multimodal, and three global optimization problems (TFO,
LABS and MC/DC). Based on the experimental findings
obtained, FAEPO outperforms not only its predecessor (i.e.,
EPO) but also other competing meta-heuristic algorithms for
all experiments conducted in this study. Moreover, we con-
cluded that FAEPO is sufficiently general and can be applied
to other optimization problems. Finally, it is important to
point out that our FIS approach can also be applied to
other meta-heuristic algorithms such as the Aquila Opti-
mizer (AO) [7], Cat Swarm Optimization (CSO) [11], Orca
Predation Algorithm (OPA) [103], and Mayfly Optimization
Algorithm (MOA) [104] to solve the optimization problems
highlighted in this paper. Moreover, instead of dealing with
the tuning of the control operators, as proposed in this work,
the FIS can automatically select the search operators while
the algorithm is running. Meta-heuristic algorithms need
more work to make them even better at what they do. Here
are some possible directions for research that could help to
improve the performance of FAEPO:

o« FAEPO can be combined with other algorithms like
PSO, GWO, and EO to create a hybrid algorithm.

« FAEPO can be extended for solving multi objective and
many objective optimization problems.

« FAEPO can be enhanced for feature selection problems
as a binary variant.

« FAEPO can be adopted to solve a wide variety of
constrained and unconstrained real-world optimization
problems.

o FAEPO can be combined with chaotic maps and levy
flight.
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