
i

REMOTE CONTROL OF A MOVING VEHICLE

SUZALEY BIN SULAIMAN

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2008

ii

DECLARATION

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ______________________

Author : SUZALEY BIN SULAIMAN

Date : 17
TH

 NOVEMBER 2008

iii

DEDICATION

Specially dedicate to

My beloved family and those people who have guided and inspired me

through out my journey of education.

iv

ACKNOWLEDGEMENT

 In the name of Allah S.W.T, the most Gracious, the ever Merciful, Praise is to

Allah, Lord of the universe and Peace and Prayers be upon His final Prophet and

Messenger Muhammad S.A.W.

First, I would like to express my acknowledgment and gratitude to my

supervisor, Mrs. Nurul Haslina binti Noordin for the encouragement, advice,

information, motivation, guidance and co-operation that been given throughout the

progress and to complete this project.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

Finally, special thanks extended to my beloved family who had given me moral

support and prayed for my success.

Thank you,

Suzaley Bin Sulaiman

v

ABSTRACT

 The remote control of a moving vehicle is a project that uses a radio frequency to

control the maneuver and movement of the model car. The Peripheral Integration

Controller (PIC) 16F877A is used in this project. The LCD is placed at the remote

control to help user to determine the maneuver angle of the model car. The

potentiometer is used as a joystick for the transmitter. There are 2 potentiometer used in

this project. The first potentiometer is used to control the maneuver angle and the other

one is used to control the movement of the car. The stepper motor is used instead of DC

motor to maneuver the car. This is because the stepper motor is more precise than DC

motor. DC motor is used to for the movement of the car. The stepper motor and DC

motor are interface with PIC on receiver board. The frequency of RF module that used is

343MHz. The car will maneuver to the left or right with the exact angle and the angle is

already program in PIC. The angle that has been program in the PIC is 5°, 15° and 45°.

To ensure the maneuver more precise, the movement of the motor will stop whenever

the car is maneuvering to the left or right. The head light will automatically ON when

the car detect the surrounding a little bit darker than usual. The bottom light of the car

will automatically ON whenever the surrounding is completely dark. There are also 2

other head light that can be ON using the remote control.

vi

ABSTRAK

Projek ini mengguna gelombang radio frekuensi untuk mengawal pergerakan

kereta. PIC 16F877A digunakan di dalam projek ini. LCD dipasang pada bahagian alat

kawalan jauh bagi memudahkan pengguna menentukan sudut belokan yang dikehendaki.

Perintang boleh laras digunakan sebagai alat kawalan. Terdapat 2 perintang boleh laras

yg digunakan, satu perintang digunakan untuk mengawal sudut belokan kereta dan satu

lagi digunakan untuk mengawal pergerakan kereta. Kereta ini menggunakan “stepper

motor” untuk mengawal sudut belokan. “Stepper motor” adalah lebih cekap berbanding

DC motor. DC motor digunakan untuk mengawal pergerakan ke depan atau ke belakang

kereta. DC motor dan “stepper motor” disambung ke PIC. Frekuensi gelombang radio

yang digunakan adalah 343MHz. Kereta akan bergerak ke kiri atau ke kanan

berdasarkan sudut belokan yang telah diprogramkan di dalam PIC. Sudut yang telah

diprogramkan di dalam PIC adalah 5°, 15° dan 45°. Untuk memastikan sudut belokan

adalah tepat, kereta akan berhenti ketika kereta membelok ke kanan atau ke kiri. Lampu

hadapan akan menyala secara automatik apabila keadaan sekeliling berubah menjadi

lebih gelap daripada biasa. Lampu bawah akan menyala apabila keadaan berubah

menjadi terlalu gelap. Terdapat 2 lagi lampu hadapan yang boleh dikawal dengan

menggunakan alat kawalan jauh.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

Declaration ii

Dedication iii

Acknowledgement iv

Abstract v

Abstrak vi

Table of contents vii

List of tables xi

List of figures xii

List of abbreviations xiv

List of appendices xv

1 INTRODUCTION

1.1 Overview 1

1.2 Problem statement 2

1.3 Objective 2

1.4 Scope 2

1.5 Methodology 3

1.6 Review of the thesis content 4

viii

2 LITERATURE REVIEW

2.1 Overview 6

2.2 Available Remote Control Car

2.2.1 Ruf Bot 1.1 6

2.2.2 Toy Car Hack –

 "Synthetic Rodent Development'' 9

2.2.3 Final Project - RC Car Controller 10

 2.3 Components

 2.3.1 Input - Potentiometer 13

 2.3.2 Controller – PIC 15

 2.3.3 Output

 2.3.3.1 LCD 22

 2.3.3.2 Stepper Motor 24

 2.3.3.3 DC Motor 26

3 METHODOLOGY

3.1 Overview 29

3.2 Hardware Testing

3.2.1 PIC free running test 30

3.2.2 Transmitter and receiver 32

3.2.3 LCD 35

3.2.4 Stepper motor 36

3.2.5 DC motor 38

3.3 Hardware Implementation

3.3.1 PCB layout 39

3.3.2 PCB layout ironing 44

3.3.3 PCB Etching 44

ix

3.3.4 PCB Holes Drilling 45

3.3.5 PCB Soldering 46

3.4 Software Implementation

3.4.1 Programming the PIC 16F877A 47

3.4.2 The PICkit 2 Microcontroller Programmer 51

 3.5 Application 54

4 RESULT AND DISCUSSION

4.1 Introduction 57

4.2 Power Supply Output Voltages 57

4.3 Transmitter and Receiver 68

4.4 LCD 60

4.5 Stepper Motor 62

4.6 DXP Protel 63

4.7 PICBasic Pro

4.7.1 Programming the free running 66

4.7.2 Programming the transmitter and receiver 66

4.7.3 Programming the potentiometer 68

4.7.4 Programming the LCD 69

4.7.5 Programming the Stepper Motor 72

4.7.6 Programming the DC Motor 73

 4.8 Application 75

x

5 CONCLUSION AND RECOMMENDATIONS

5.1 Overview 78

5.2 Problem and solution 79

5.3 Conclusion 80

5.4 Future Recommendation 80

5.5 Costing and Commercialization 81

REFERENCES 85

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

 3.1 Single Stepping Sequence 37

 3.2 High torque Stepping Sequence 47

 3.3 Half Stepping Sequence 38

 4.1 Transmitter and Receiver Range 59

 4.2 High torque Stepping Sequence 62

 4.3 Specified modifier 69

 4.4 LCD command 70

 5.1 Total Cost of the Project 81

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 1.1 Transmitter Block Diagram 3

 1.2 Receiver Block Diagram 4

 2.1 Transmitter Circuit 7

 2.2 Receiver Circuit 8

 2.3 Car Model 8

 2.4 Toy Car Hack Model 10

 2.5 Steering Control Circuit 11

 2.6 RC-Car Block Diagram 12

 2.7 Construction of wire-wound Circular Potentiometer 13

 2.8 A typical single turn potentiometer 14

 2.9 PIC 16F877A and it’s Schematic 21

 2.10 Example of LCD 23

 2.11 Examples of stepper motors 25

 2.12 Part of an Electric Motor 26

 2.13 Example of DC motor 28

 3.1 Transmitter Block Diagram 29

 3.2 Receiver Block Diagram 30

 3.3 Free Running Circuit 31

 3.4 Free Running Test 32

 3.5 Encoder Circuit 33

 3.6 Decoder Circuit 33

 3.7 Decoder Frequency 34

 3.8 Encoder Frequency 34

 3.9 LCD circuit 36

 3.10 Stepper Motor Circuit 36

 3.11 DC motor Circuit 39

 3.12 DXP Protel 40

 3.13 Track size setting 41

 3.14 Complete Transmitter PCB layout 42

 3.15 Complete Receiver PCB layout 43

 3.16 Complete Transmitter board after drilling 45

 3.17 Front view of the PCB transmitter

board after being soldered 46

 3.18 The PCB transmitter board after being soldered 46

 3.19 PICBasic Pro Compilers (Micro Code Studio) interface 48

 3.20 Flowchart of the Transmitter board 49

 3.21 Flowchart of the Receiver board 50

xiii

 3.22 PICkit 2 Microcontroller Programmer Interface 51

 3.23 UIC00A Board Layout 52

 3.24 Development Board Circuit 53

 3.25 The recycle toy car 54

 3.26 Remote control is spray into black colour 54

 3.27 The original board 55

 3.28 Implementing Receiver Board into the model 55

 3.29 Modified stepper motor 56

 3.30 Gears position 56

 4.1 Power Supply Output Voltage 58

 4.2 Transmitter Reading 58

 4.3 Receiver Reading 59

 4.4 Transmitter and Receiver Reading 59

 4.5 The Upper line visible 60

 4.6 Upper and lower line Display 61

 4.7 Changing the angle 61

 4.8 Changing movement 61

 4.9 LCD is inserted into the slot at the remote control box 62

 4.10 Successful Transmitter Board Layout 63

 4.11 Successful Receiver Board Layout 64

 4.12 Complete remote control 75

 4.13 Complete car model 76

 4.14 LEDs placed at the front of the car 76

 4.15 LEDs placed at the bottom of the car 77

xiv

LIST OF ABBREVIATIONS

Component The Description

PIC Programmable Interface Controller

LCD Liquid Crystal Display

DC Direct Current

RC Radio-Controlled

vs. Versus

xv

LIST OF APPENDIXES

APPENDIX TITLE PAGE

A PIC MICROCONTROLLER CIRCUIT 86

B LIST OF COMPONENT 89

 C PICBASIC PRO PROGRAMMING 92

 D DATA SHEET 101

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

PT 917 TAMAN MURNI, BERIS LANJUT, NURUL HAZLINA BT NOORDIN
16100 PENGKALAN CHEPA, (Nama Penyelia)
KELANTAN

Tarikh: 17 NOVEMBER 2008 Tarikh: : 17 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009

 SUZALEY BIN SULAIMAN (860717-33-5781)

REMOTE CONTROL OF A MOVING VEHICLE

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : NURUL HAZLINA BT NOORDIN

 Date : 17 NOVEMBER 2008

1

CHAPTER 1

INTRODUCTION

1.1 Overview

 Nowadays, we often heard about nature disaster and how it can kill thousands of

people. For an example, sometimes when a building collapsed, there are still survivors

under the ruin but we can’t enter and search for the survivors under the ruin because it

is too dangerous and sometimes there is just a small opening. Besides that, sometimes

it is dangerous to enter dark area bluntly. We can get hurt or worst we can die because

we enter without knowing what is beyond it.

 Realizing this problem, this project is developed to help us scout the

surrounding inside a dangerous area and unreachable to human. We can control the

movement of the vehicle using a joystick. The vehicle can be control within a range of 7

meter. When entering a dark place, the vehicle will automatically switch on the vehicle

light to make the vision clearer. A camera is attached to the vehicle to help us see the

visual inside the area.

 In the first phase, this project will only focus on making the vehicle movement

according to the joystick and move within the range of 7 meter. After the first phase is

successfully done, the vehicle will be added with a vehicle light that will automatically

2

on when entering a dark area. After finish adding the vehicle light, a camera will be

attached to the vehicle and connected to a laptop or a computer.

1.2 Problem Statement

 There is some areas that can not be entered by human being such as a small hole

and a place that dangerous to human. This project is developed to help human scout the

surrounding inside a dangerous area and unreachable to human.

1.3 Objective

The main objective of this project is to build a device that can control a vehicle

maneuver and movement within a range of 7 meter.

1.4 Scope

This project is focused to design and build the model of a remote control and a

model car that would be used to scout the dangerous and unreachable areas to human.

Therefore, this model will cover the scope as followed:

(i) The vehicle can be control in a range of 7 meter.

(ii) The vehicle can move forward, reverse, left and right.

(iii) The degree movement of the vehicle can be control precisely.

3

1.5 Methodology

The purpose of this project is to control the movement of a vehicle using the

input from the joystick. The vehicle can move forward, reverse, and turn left and right.

The joystick is controlling the vehicle using radio frequency. The potentiometer is used

as the joystick.

The hardware contains 2 parts that is the transmitter (Figure 1.1) and the

receiver (Figure 1.2). In the transmitter part, the joystick will be connected to the PIC

16F877A and the PIC 16F877A will send the signal to the encoder (TWS-434).

The receiver will receive the signal from the transmitter using the decoder

(RWS-434) and sent the signal to PIC 16F877A. The PIC 16F877A will send a signal to

the motor driver and the motor will run according to the joystick input.

Figure 1.1: Transmitter Block Diagram

4

Figure 1.2: Receiver Block Diagram

1.6 Review of the Thesis Content

This thesis consists of five chapters. This chapter discuss about overview of

project, problem statement, objective, project scope, methodology and thesis

organization.

Chapter 2 will describe about the input, controller, the output of the system and

the previous similar project. It will explain about the concept of the components that are

used in the project.

Chapter 3 includes the project methodology. It will explain how the project is

organized and the flow of process in completing this project. Also in this topic discusses

the methodology of the system, circuit design, software design and the mechanical

design.

Chapter 4 will be discussing about the result obtained in this project and a

discussion about the result. This chapter also discuss about the experimental result,

expected performance and performance limit that can be archive.

5

Finally, the conclusions for this project are presented in chapter 5. This chapter

also discusses about the recommendation or future development of the project and cost

that involved in the project

6

CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Overview

This chapter reviews about previous system that has been developed and has

similarities with the remote control of a moving vehicle. This topic will also discuss

about the component that will be used in developing this systems.

2.2 Available Remote Control Car

2.2.1 Ruf Bot 1.1

The article is about constructing a car that can be controlled using joystick. The

project is called the Ruf Bot. It is made from a 4 x 8 piece of plastic sheet and has

modified servos for motors. The servos are modified in a way that makes them DC gear

head motors. The servos internal electronics have been completely removed and only

the motor and gears remain (hence the need for an H-Bridge).

The project uses TX/RX pair and the serial communication built into the

PICBasic programming language for the PIC's. The actual programming couldn't be

easier since it is written in Basic and uses premade serial communication routines.

7

 The position of the Potentiometer in the joystick can be determine using the

PICBasic 'POT' command and the result is store in memory at location 'B0'. From there,

the contents of 'B0' are sent using the 'SEROUT' command to pin 6 of the TWS 434

transmitter [1]. On the receiver end, the 'SERIN' command is use to read the incoming

data from pin 3 on the RWS 434 and the result is store in 'B0'. The value in 'B0' directly

correlates to joystick position, above 150 is right, below 106 is left, and in between is

center. By using these numbers a dead zone can be define.

The implication is easier at this point. From the number that is transmitted we

can determine the movement of the vehicle. By using the antenna that is made for 900

MHz cordless telephones, the vehicle can be control within the range of 350 feet. The

circuit and the model of the project are shown in Figure 2.1, 2.2 and 2.3 below.

 Figure 2.1: Transmitter Circuit

8

Figure 2.2: Receiver Circuit

Figure 1.3: Car model

9

2.2.2 Toy Car Hack - "Synthetic Rodent Development"

This article is about making a light follower toy car. The toy car will follow the

light that is beam to the car. It will determine whether the light came from the left, right

or center. The car will stop when an object has been hit. The car is built in 5 inches

in length. It is powered by 4 AAA batteries and it has a small dc motor. After gutting

the original electronics, a piece of circuit board was cut to size and mounted with one

screw. The circuit board is pad-per-hole type and the wiring on the bottom is done with

tiny pieces of 30 gauge (wire wrap) wire soldered between points [2].

Visual detection is done using a pair of (matched) photocells. This type of cell

works at even very low light levels. The light sources can be determined to be from

left, right, or center using a pair in series feeding a 3 level comparator circuit. The

photo cells are physically located to 'look' through a hole drilled in the black plastic

windshield.

The motor drive circuit has an adjustable current level detector. This detects

motor 'stalls' and is used to determine when an object has been hit. To save power in

'sleep' mode, the PIC powers down the entire external circuit (the op-amp and

associated resistor networks) when not needed. A permanent magnet 'floats' on a pair of

pivots and is held centered by being attracted to a fixed set of metal pole pieces. When

power is applied to the solenoid, the pole pieces move the magnet to the left or right [3].

The toy car hack model is shown in Figure 2.4 below.

10

Figure 2.4: Toy Car Hack model

2.2.3 Final Project - RC Car Controller

 The article is about building a transmitter and receiver modules for a radio-

controlled (RC) car, as well as implements variable-speed motor control and a

continuous steering function. The block diagram of the project is shown in Figure 2.6.

The original implementation of speed control in the car consists of a servo which

mechanically moves the arm of a simple high-power potentiometer. While the motion

of the servo is continuous, the circuit only produces six discrete levels: three forward,

two reverse, and neutral.

A simple communication protocol was established to send messages from the

controller to the car. Because the connection is serial, we encode each command into a

byte-long packet. The top nibble denotes the command, and the lower nibble represents

the level at which the command is to be executed. For discrete operations (like

headlights), the second nibble determines which functions are to be toggled.

Communication travels one way from the controller to the car, which cuts down on the

hardware required for either unit.

11

The original controller used spring centered potentiometers to produce analog

signals which controlled the speed and direction of the car. The analog signals were

transmitted to the car via a 75 MHz AM radio link.

The steering of the car is controlled by a servo. Rather than supplying a simple

voltage, servos operate on a fixed voltage source and a control line that is pulsed to

dictate the turn angle. The servo is connected to the MCU. A Timer interrupt

subroutine is used in conjunction with user input from the transmitter to determine the

pulse width to be applied and sent through the MCU's port pins. Figure 2.5 show the

steering control circuit.

Figure 2.5: Steering Control Circuit

The received four-bit digital signal denotes the desired speed of the motor. The

motor is drive at full voltage and pulse width modulation is used to control speed.

Several products exist which accomplish this task; however, it is a simple matter to

implement PWM on the microcontroller. A timer interrupt is used to count 16 “ticks”,

and the given magnitude determined how many of those ticks the motor will be driven.

The joystick is able to move the car forwards and back, and turn left and right.

The pulse width modulation, as it was originally conceived, was far too fast for the

motor to turn at all. Slowing down the period to approximately one second, up from 1

millisecond, solved the problem. There was some initial irregularity in the pulse itself;

instead of regular intervals, it seemed as though the pulses were being interrupted by

12

some external stimulus. Careful programming to avoid register clobbering solved much

of the problem, but irregularities occasionally appear at unpredictable times [4].

Turning the car is nicely variable but not particularly smooth. The same

irregularities found in the speed control manifest themselves to a greater extent in the

servo, causing the wheels to jerk slightly left and right of the desired turn angle. The

problem to be extremely difficult to solve with the Atmel MCU, as pulse widths for the

servo vary from 1 to 2 milliseconds; at those small periods, it is difficult to get very

accurate timing with the Timer0 interrupt [5]. Perhaps a 555 circuit would have solved

this problem.

The software portion of the project was easy to design, and the implementation

is quite simple. By avoiding complicated code, we are able to concentrate on hardware

issues. Because most of this project relies on carefully designed circuitry, the reliability

of the program greatly simplifies the debugging process.

Figure 2.6: RC-Car Block Diagram

13

2.3 Components

A system is constructed with a certain components which has it own function

integrated to each others for completing the whole system. The system should have an

input, a controller and the output. In the transmitter board, the input is potential meter,

the controller is PIC 16F877A and the output is the transmitter and LCD. For the

receiver board, the input is receiver, the controller is PIC 16F877A and the output is

stepper motor and dc motor.

2.3.1 Input - Potentiometer

A potentiometer is a three-terminal resistor with a sliding contact that forms an

adjustable voltage divider. If only two terminals are used (one side and the wiper), it

acts as a variable resistor or Rheostat. Potentiometers are commonly used to control

electrical devices such as a volume control of a radio. Potentiometers operated by a

mechanism can be used as position transducers, for example, in a joystick. Figure 2.7

shows the construction of a wire-wound circular potentiometer.

Figure 2.7: Construction of a wire-wound circular potentiometer

14

Key: The resistive element (1) of the shown device is trapezoidal, giving a non-
linear relationship between resistance and turn angle. The wiper (3) rotates with
the axis (4), providing the changeable resistance between the wiper contact (6)
and the fixed contacts (5) and (9). The vertical position of the axis is fixed in the
body (2) with the ring (7) (below) and the bolt (8) (above).

A potentiometer (colloquially called a "pot") is constructed using a semi-circular

resistive element with a sliding contact (wiper). The resistive element, with a terminal at

one or both ends, is flat or angled, and is commonly made of graphite, although other

materials maybe used instead. The wiper is connected through another sliding contact to

another terminal. On panel pots, the wiper is usually the center terminal of three. For

single-turn pots, this wiper typically travels just under one revolution around the

contact. "Multiturn" potentiometers also exist, where the resistor element may be helical

and the wiper may move 10, 20, or more complete revolutions, though multiturn pots

are usually constructed of a conventional resistive element wiped via a worm gear.

Besides graphite, materials used to make the resistive element include resistance wire,

carbon particles in plastic, and a ceramic/metal mixture called cermet. Figure 2.8 shows

an example of typical single turn potentiometer.

Figure 2.8: A typical single turn potentiometer

One form of rotary potentiometer is called a String potentiometer. It is a multi-

turn potentiometer operated by an attached reel of wire turning against a spring. It is

used as a position transducer. In a linear slider pot, a sliding control is provided instead

of a dial control. The resistive element is a rectangular strip, not semi-circular as in a

rotary potentiometer. Because of the large opening for the wiper and knob, this type of

15

pot has a greater potential for getting contaminated. Potentiometers can be obtained

with either linear or logarithmic relations between the slider position and the resistance

(potentiometer laws or "tapers").

A linear taper potentiometer has a resistive element of constant cross-section,

resulting in a device where the resistance between the contact (wiper) and one end

terminal is proportional to the distance between them. Linear taper describes the

electrical characteristic of the device, not the geometry of the resistive element. Linear

taper potentiometers are used when an approximately proportional relation is desired

between shaft rotation and the division ratio of the potentiometer; for example, controls

used for adjusting the centering of (an analog) cathode-ray oscilloscope.

A logarithmic taper potentiometer has a resistive element that either 'tapers' in

from one end to the other, or is made from a material whose resistivity varies from one

end to the other. This results in a device where output voltage is a logarithmic (or

inverse logarithmic depending on type) function of the mechanical angle of the pot.

Most (cheaper) "log" pots are actually not logarithmic, but use two regions of

different, but constant, resistivity to approximate a logarithmic law. A log pot can also

be simulated with a linear pot and an external resistor. True log pots are significantly

more expensive. Logarithmic taper potentiometers are often used in connection with

audio amplifiers.

2.3.2 Controller - PIC

Controller is the main part of the system where all the process flow will be

controlled by this hardware accordingly to the embedded programming in it. PIC

Microcontroller is chosen for the system as the controller. The functions of the PIC are

limited by the manufacturer or the types of certain model. PIC is a family of Harvard

16

architecture microcontrollers made by Microchip Technology, derived from the

PIC1640 originally developed by General Instrument's Microelectronics Division. The

name PIC initially referred to "Programmable Interface Controller", but shortly

thereafter was renamed "Programmable Intelligent Computer".

The PIC architecture is distinctively minimalist. It is characterized by the

following features:

I. separate code and data spaces (Harvard architecture)

II. a small number of fixed length instructions

III. most instructions are single cycle execution (4 clock cycles), with

single delay cycles upon branches and skips

IV. a single accumulator (W), the use of which (as source operand) is

implied (i.e. is not encoded in the opcode)

V. All RAM locations function as registers as both source and/or

destination of math and other functions.[1]

VI. a hardware stack for storing return addresses

VII. a fairly small amount of addressable data space (typically 256 bytes),

extended through banking

VIII. data space mapped CPU, port, and peripheral registers

IX. the program counter is also mapped into the data space and writable

(this is used to implement indirect jumps)

Unlike most other CPUs, there is no distinction between "memory" and

"register" space because the RAM serves the job of both memory and registers, and the

RAM is usually just referred to as the register file or simply as the registers.

17

Baseline Core Devices

 These devices feature a 12-bit wide code memory, a 32-byte register file, and a

tiny two level deep call stack. They are represented by PIC10 series, as well as some

PIC12 and PIC16 devices. Baseline devices are available in 6-pin to 40-pin packages.

Generally the first 7 to 9 bytes of the register file are special-purpose registers,

and the remaining bytes are general purpose RAM. If banked RAM is implemented, the

bank number is selected by the high 3 bits of the FSR. This affects register numbers 16–

31; registers 0–15 are global and not affected by the bank select bits.

The ROM address space is 512 words (12 bits each), which may be extended to

2048 words by banking. CALL and GOTO instructions specify the low 9 bits of the

new code location; additional high-order bits are taken from the status register. Note

that a CALL instruction only includes 8 bits of address, and may only specify addresses

in the first half of each 512-word page.

The instruction set is as follows. Register numbers are referred to as "f", while

constants are referred to as "k". Bit numbers (0–7) are selected by "b". The "d" bit

selects the destination: 0 indicates W, while 1 indicates the result is written back to

source register f.

Mid-Range Core Devices

These devices feature a 14-bit wide code memory, and an improved 8 level deep

call stack. The instruction set differs very little from the baseline devices, but the

increased opcode width allows 128 registers and 2048 words of code to be directly

addressed. The mid-range core is available in the majority of devices labeled PIC12 and

PIC16.

18

The first 32 bytes of the register space are allocated to special-purpose registers;

the remaining 96 bytes are used for general-purpose RAM. If banked RAM is used, the

high 16 registers (0x70–0x7F) are global, as are a few of the most important special-

purpose registers, including the STATUS register which holds the RAM bank select

bits. (The other global registers are FSR and INDF, the low 8 bits of the program

counter PCL, the PC high preload register PCLATH, and the master interrupt control

register INTCON.)

The PCLATH register supplies high-order instruction address bits when the 8

bits supplied by a write to the PCL register, or the 11 bits supplied by a GOTO or

CALL instruction, is not sufficient to address the available ROM space.

PIC17 High End Core Devices

The 17 series never became popular and has been superseded by the PIC18

architecture. It is not recommended for new designs, and may be in limited availability.

Improvements over earlier cores are 16-bit wide opcodes (allowing many new

instructions), and a 16 level deep call stack. PIC17 devices were produced in packages

from 40 to 68 pins. The 17 series introduced a number of important new features:

• a memory mapped accumulator

• read access to code memory (table reads)

• direct register to register moves (prior cores needed to move registers

through the accumulator)

• an external program memory interface to expand the code space

• an 8bit x 8bit hardware multiplier

• a second indirect register pair

19

• auto-increment/decrement addressing controlled by control bits in a

status register (ALUSTA)

PIC18 High End Core Devices

Microchip introduced the PIC18 architecture in 2002 [2], and unlike the 17

series, it has proven to be very popular, with a large number of device variants presently

in manufacture. In contrast to earlier devices, which were more often than not

programmed in assembly, C has become the predominant development language [3].

The 18 series inherits most of the features and instructions of the 17 series, while adding

a number of important new features:

• much deeper call stack (31 levels deep)

• the call stack may be read and written

• conditional branch instructions

• indexed addressing mode (PLUSW)

• extending the FSR registers to 12 bits, allowing them to linearly address

the entire data address space

• the addition of another FSR register (bringing the number up to 3)

The auto increment/decrement feature was improved by removing the control

bits and adding four new indirect registers per FSR. Depending on which indirect file

register is being accessed it is possible to postdecrement, postincrement, or

preincrement FSR; or form the effective address by adding W to FSR. In more

advanced PIC18 devices, an "extended mode" is available which makes the addressing

even more favourable to compiled code:

20

• a new offset addressing mode; some addresses which were relative to the

access bank are now interpreted relative to the FSR2 register

• the addition of several new instructions, notable for manipulating the

FSR registers.

These changes were primarily aimed at improving the efficiency of a data stack

implementation. If FSR2 is used either as the stack pointer or frame pointer, stack items

may be easily indexed -- allowing more efficient re-entrant code. Microchip C18

chooses to use FSR2 as a frame pointer.

PIC24 and PIC 16-bit Microcontrollers

Microchip introduced the dsPIC series of chips in 2001, and they entered mass

production in late 2004. They are Microchip's first inherently 16-bit microcontrollers.

PIC24 devices are designed as general purpose microcontrollers. PIC devices include

digital signal processing capabilities in addition.

Architecturally, although they share the PIC moniker, they are very different

from the 8-bit PICs. The most notable differences are:

• they feature a set of 16 working registers

• they fully support a stack in RAM, and do not have a hardware stack

• bank switching is not required to access RAM or special function

registers

• data stored in program memory can be accessed directly using a feature

called Program Space Visibility

• interrupt sources may be assigned to distinct handlers using an interrupt

vector table

21

Some features are:

• hardware MAC (multiply-accumulate)

• barrel shifting

• bit reversal

• (16x16)-bit multiplication and other DSP operations.

• hardware support for loop indexing

• Direct Memory Access

To summarize, a microcontroller contains (in one chip) two or more of the

following elements in order of importance:

i. Includes Powerful Microchip PIC16F877 Microcontroller with 8kb

Internal Flash program memory (Figure 2.9)

ii. Operating Speed at 10MHz

iii. Direct In-Circuit Programming for Easy Program Updates

iv. Up to 28 I/O points with easy to connect standard headers

v. Internal EEPROM

vi. 8 Channel 10-bit A/D Converter

vii. One 16-bit Timer with Two 8-bit Timers

viii. Serial port

ix. Reset Button

Figure 2.9: PIC 16F877A and it’s Schematic

22

2.3 Output

2.3.1 LCD

A liquid crystal display (LCD) is an electro-optical amplitude modulator

realized as a thin, flat display device made up of any number of color or monochrome

pixels arrayed in front of a light source or reflector. It is often utilized in battery-

powered electronic devices because it uses very small amounts of electric power. Figure

2.10 shows the example of LCD. Important factors to consider when evaluating an LCD

monitor:

• Resolution: The horizontal and vertical size expressed in pixels (e.g.,

1024x768). Unlike monochrome CRT monitors, LCD monitors have a

native-supported resolution for best display effect.

• Dot pitch: The distance between the centers of two adjacent pixels. The

smaller the dots pitch size, the fewer granularities are present, resulting

in a sharper image. Dot pitch may be the same both vertically and

horizontally, or different (less common).

• Viewable size: The size of an LCD panel measured on the diagonal

(more specifically known as active display area).

• Response time: The minimum time necessary to change a pixel's color or

brightness. Response time is also divided into rise and fall time. For

LCD Monitors, this is measured in btb (black to black) or gtg (gray to

gray). These different types of measurements make comparison difficult.

• Refresh rate: The number of times per second in which the monitor

draws the data it is being given. A refresh rate that is too low can cause

flickering and will be more noticeable on larger monitors. Many high-

end LCD televisions now have a 120 Hz refresh rate (current and former

NTSC countries only) [citation needed]. This allows for less distortion

23

when movies filmed at 24 frames per second (fps) are viewed due to the

elimination of telecine (3:2 pulldown). The rate of 120 was chosen as the

least common multiple of 24 fps (cinema) and 30 fps (TV).

• Matrix type: Active TFT or Passive.

• Viewing angle: (coll., more specifically known as viewing direction).

• Color support: How many types of colors are supported (coll., more

specifically known as color gamut).

• Brightness: The amount of light emitted from the display (coll., more

specifically known as luminance).

• Contrast ratio: The ratio of the intensity of the brightest bright to the

darkest dark.

• Aspect ratio: The ratio of the width to the height (for example, 4:3, 16:9

or 16:10).

• Input ports (e.g., DVI, VGA, LVDS, Display Port, or even S-Video and

HDMI).

Figure 2.10: Example of LCD

24

2.3.2 Stepper Motor

A stepper motor (or step motor) is a brushless, synchronous electric motor that

can divide a full rotation into a large number of steps. The motor's position can be

controlled precisely, without any feedback mechanism. Stepper motors are similar to

switched reluctance motors, which are very large stepping motors with a reduced pole

count, and generally are closed-loop commutated.

Stepper motors operate differently from normal DC motors, which rotate when

voltage is applied to their terminals. Stepper motors, on the other hand, effectively have

multiple "toothed" electromagnets arranged around a central gear-shaped piece of iron.

The electromagnets are energized by an external control circuit, such as a

microcontroller. To make the motor shaft turn, first one electromagnet is given power,

which makes the gear's teeth magnetically attracted to the electromagnet's teeth. When

the gear's teeth are thus aligned to the first electromagnet, they are slightly offset from

the next electromagnet. So, when the next electromagnet is turned on and the first is

turned off, the gear rotates slightly to align with the next one, and from there the process

is repeated. Each of those slight rotations is called a "step." In that way, the motor can

be turned to a precise angle.

Stepper motors are constant-power devices (power = angular velocity x torque).

As motor speed increases, torque decreases. The torque curve may be extended by using

current limiting drivers and increasing the driving voltage.

Steppers exhibit more vibration than other motor types, as the discrete step tends

to snap the rotor from one position to another. This vibration can become very bad at

some speeds and can cause the motor to lose torque. The effect can be mitigated by

accelerating quickly through the problem speed range, physically damping the system,

or using a micro-stepping driver. Motors with a greater number of phases also exhibit

25

smoother operation than those with fewer phases. Figure 2.11 shows the examples of

stepper motors.

Full Step, Low Torque

Full Step, High Torque (standard application)

Half Step (best precision):

Figure 2.11: Examples of stepper motor

26

2.3.3 DC motor

Electric motors are everywhere. In a house, almost every mechanical movement

that you see around you is caused by a DC (direct current) electric motor. An electric

motor is a device that transforms electrical energy into mechanical energy by using the

motor effect. Figure 2.13 shows the example of DC motor.

Every DC motor has six basic parts -- axle, rotor (a.k.a., armature), stator,

commutator, field magnet(s), and brushes. In most common DC motors, the external

magnetic field is produced by high-strength permanent magnets. The stator is the

stationary part of the motor -- this includes the motor casing, as well as two or more

permanent magnet pole pieces. The rotor rotates with respect to the stator. The rotor

consists of windings (generally on a core), the windings being electrically connected to

the commutator. Figure 2.12 shows an example of part of an Electric Motor. Industrial

applications use dc motors because the speed-torque relationship can be varied to

almost any useful form -- for both dc motor and regeneration applications in either

direction of rotation. Continuous operation of dc motors is commonly available over a

speed range of 8:1. Infinite range (smooth control down to zero speed) for short

durations or reduced load is also common.

Figure 2.12: Part of an Electric Motor

27

Dc motors are often applied where they momentarily deliver three or more times

their rated torque. In emergency situations, dc motors can supply over five times rated

torque without stalling (power supply permitting). Dc motors feature a speed, which can

be controlled smoothly down to zero, immediately followed by acceleration in the

opposite direction -- without power circuit switching. And dc motors respond quickly to

changes in control signals due to the dc motor's high ratio of torque to inertia.

Dc motors feature a speed, which can be controlled smoothly down to zero,

immediately followed by acceleration in the opposite direction -- without power circuit

switching. And dc motors respond quickly to changes in control signals due to the dc

motor's high ratio of torque to inertia. The greatest advantage of DC motors may be

speed control. Since speed is directly proportional to armature voltage and inversely

proportional to the magnetic flux produced by the poles, adjusting the armature voltage

and/or the field current will change the rotor speed.

Today, adjustable frequency drives can provide precise speed control for AC

motors, but they do so at the expense of power quality, as the solid-state switching

devices in the drives produce a rich harmonic spectrum. The DC motor has no adverse

effects on power quality. The drawbacks of Dc motors are:

• Power supply, initial cost, and maintenance requirements are the

negatives associated with DC motors

• Rectification must be provided for any DC motors supplied from the

grid. It can also cause power quality problems.

• The construction of a DC motor is considerably more complicated and

expensive than that of an AC motor, primarily due to the commutator,

brushes, and armature windings. An induction motor requires no

commutator or brushes, and most use cast squirrel-cage rotor bars

instead of true windings — two huge simplifications.

28

Figure 2.13: Example of DC motor

29

CHAPTER 3

METHODOLOGY AND DESIGN

 3.1 Overview

This chapter explains about the systems design through construction of the

hardware and development of the software. In addition, the chapter elaborates the

hardware and software stage by stage. All the operations of the hardware and

software are included in this chapter. Before looking into the details of designing

this project, it is best to start with brief review of the system design. Figure 3.1 and

3.2 shows the complete system design of a transmitter and a receiver board. The

project is divided into 4 parts that is hardware testing, hardware implementation,

software implementation and application.

 Figure 3.1: Transmitter Block Diagram

30

 Figure 3.2: Receiver Block Diagram

3.2 Hardware Testing

The whole idea of this part is to test the functionality of the main component

of the project. After this part has fully passed, the project will continue into

hardware implementation part. In this part, it is divided into 5 stages that are PIC

free running test, transmitter and receiver, LCD, stepper motor and DC motor.

3.2.1 PIC free running test

In the first phase, the circuit is connected as the diagram below (Figure 3.3).

The purpose of this phase is to test the functionality of the PIC. There are 4 parts of

connection in the first phase which is the power supply, clock circuit, reset circuit

and also the free running test.

Before testing the circuit, the PIC is removed. Then, the power supply is set

to 6v (without switching on the supply). Using the digital millimeters, only 5V can

passes through the whole circuit and PIC. Now, the PIC can be placed back in the

circuit making sure that the PIC was not plugged in backward. When the power

supply is on, the clock is monitored by using the signal test probe which will show a

31

high low signal alternatively. If the test probe shows the exact result, the LED

connected to PORTB 7 will blink. This shows that the PIC is working promptly.

In addition to make sure that all the connections are correct, then RESET

button is pushed. The circuit then will halts at its state before reset. When the

RESET button is released, the system will reset itself. A reset circuit is essential is

this design as it is useful when the system hangs. The function of the regulator in the

circuit is to maintain the voltage output no matter how much the input voltage is.

We are using two PIC and both PICs are tested for free running test. Figure 3.4

shows the free running test.

 Figure 3.3: Free Running Circuit

32

Figure 3.4: Free Running Test

3.2.2 Transmitter and receiver

In this part, we have to test the functionality of the transmitter and receiver.

We can test the functionality using a function generator and an oscilloscope. The TX

pin from the transmitter is connected to a function generator and the antenna is

connected to the oscilloscope. The result is shown in the next chapter.

For the receiver part, the antenna pin is connected to the function generator

and the RX pin is connected to the oscilloscope. The result is shown in the next

chapter. To test the functionality of both transmitter and receiver when using

together, the TX pin of the transmitter is connected to the function generator and the

RX pin of the receiver is connected to the oscilloscope. We can determine the range

of the transmitter and receiver from the oscilloscope. The result is shown in the next

chapter.

The transmitter and receiver are connected using an IC to the PIC. For the

transmitter, we use encoder to encode the data from the PIC to the transmitter. The

data from the PIC is a digital data, and the encoder is function to send the digital

data to the transmitter serially. For the receiver, we use decoder to decode the serial

data that is received from the receiver and the data is sent to the PIC.

The encoder is connected to PORTB 0 – PORTB 3 in the transmitter board

and the decoder is connected to PORTB 4 – PORTB 7 in the receiver board (Figure

3.5 and 3.6). The enable pin (TE) for the encoder is an active low, the pin is

33

connected to a switch and from the switch to ground. The enable pin allowed the

data from the PIC to be encoded and sent to the transmitter.

The encoder and decoder uses resistor to oscillate frequency according to the

datasheet (Figure 3.7 and 3.8). The decoder frequency has to be 50 times the encoder

frequency.

 Figure 3.5: Encoder Circuit

 Figure 3.6: Decoder Circuit

34

Figure 3.7: Decoder Frequency

Figure 3.8: Encoder Frequency

35

3.2.3 LCD

The LCD is use in the transmitter board as angle and movement indicator.

Most LCD conforms to a standard interface. A 14-pin access is provided having

eight data lines, three control lines and three power lines.

Pin 1 and 2 are the power supply lines, VGND and VCC. Pin 3 is a control pin,

VEE which is used to alter the contrast of the display. Pin 3 is connected to a

potentiometer. The potentiometer will control the contrast of the LCD. Pin 4 is the

Register Select (RS) line, the first of the three command control input. When this

line is low, data bytes transfer to the display are treated as command, and the bytes

read from the display indicates its status. By setting the RS line high, character data

can be transferred to and from the LCD. Pin 4 is connected to PORTE 1 of the PIC.

Pin 5 is the Read/Write (R/W) line. This line is set low in order to write

commands or character to the LCD, or set high to read character data or status

information from its register. In this project, R/W line is connected to ground as it

only is used for transmitted data from PIC16F877A to LCD. Pin 6 is the Enable (E)

line. This input is used to initiate the actual transfer of commands or character data

between the LCD and data lines. When writing to the display, data is transferred

only on the high to low transition of this signal. However, when reading from the

display, data will become available shortly after the low to high transition and

remain available until the signal falls to low again. The pin 6 is connected to PORTE

2 of the PIC.

 Pin7 to pin 14 are the eight data bus lines (D0 to D7). Data can be transferred

to and from the display, either as a single 8-bit byte or as two 4-bit “nibbles”. For

this project, the entire pin data bus line is connected to PORTD.

The pin D0-D7 is connected to PORTD 0 – PORTD 7 of the PIC. The

connection of the LCD is shown is Figure 3.9 below.

36

 Figure 3.9: LCD circuit

3.2.4 Stepper Motor

In this part, we have to test functionality of the stepper motor. The stepper

motor is connected to a stepper motor IC driver that is ULN 2003A. By using the

ULN 2003A we can control the stepper motor. Figure 3.10 shows the connection of

the stepper motor to the stepper motor driver and PIC.

 Figure 3.10: Stepper Motor Circuit

37

The PIC will send the sequence of data to the ULN 2003A and according to

the data the stepper will move clockwise or anti clockwise. There are several

stepping modes that can use to drive the stepper motor. The stepping modes are

different according to the data that sent to the ULN 2003A.

Single stepping is the simplest mode that turns one coil ON at a time. 48

pulses are needed to complete one revolution. Each pulse moves rotor by 7.5

degrees. The following sequence has to be repeated 12 times to complete one

revolution (Table 3.1).

Table 3.1: Single Stepping Sequence

High torque stepping is a high power / precision that mode turns ON two

coils at a time. 48 pulses are needed to complete one revolution. Each pulse moves

rotor by 7.5 degrees. The following sequence has to be repeated 12 times for motor

to complete one revolution (Table 3.2).

Table 3.2: High torque Stepping Sequence

Half stepping is modes that doubled the stepping so that the motor needed 96

pulses to complete one revolution. Each pulse moves rotor by approximately 3.75

degrees. It is the mix of single stepping mode and high torque mode (Table 3.3).

38

Table 3.3: Half Stepping Sequence

From the above data, we have found the suitable sequence data to move the

stepper motor to archive the objective of the project. Result is shown in the next

chapter.

3.2.5 Direct Current Motor

The DC motor is connected to the DC driver that is L 293B. The driver has a

separate supply input for the logic so that it may be run off a lower voltage to reduce

dissipation. The low voltage from the PIC can drive the high voltage DC motor.

Figure 3.11 shows the connection of the DC motor to the DC driver motor.

39

Figure 3.11: DC motor Circuit

3.3 Hardware Implementation

The hardware implementation of the project can be divided into 5 main

processes. They are:

I. Printed Circuit Board (PCB) Layout

II. PCB Layout Ironing

III. PCB Etching

IV. PCB Holes Drilling

V. PCB Soldering

3.3.1 Printed Circuit Board (PCB) Layout

The PCB layout for the project is design using Altium DXP. It is an

electronics design software which provides a complete and diverse set of capabilities

for electronic product development. Altium allows to better communicate the

breadth of technologies integrated on its DXP platform – board-level system design

40

and verification, FPGA-level system design and verification, embedded software

development, CAM engineering, and design data, document and library

management. Protel 2004’s schematic editor provides full support for designs that

contain repeated blocks of circuitry. Figure below shows that the example circuit

and PCB development using DXP Protel. Figure 3.12 shows the software that is

used for this project.

Figure 3.12: DXP Protel

The size of the board and the track should be setting as the same as the

required by the components that will be soldered on the board. Figure 3.13 shows

the board setting exactly the same specification with the strip board.

41

Figure 3.13: Track size setting

The board layout will be designed with the toolbars that has been provided

by the software. The complete PCB layout for transmitter and receiver board is

shown in figure 3.13 and figure 3.14.

42

Figure 3.14: Complete Transmitter PCB layout

43

Figure 3.15: Complete Receiver PCB layout

44

3.3.2 PCB Layout Ironing

The complete PCB layout will be printed on the special paper that can be

ironed into the PCB. The paper only can be printed by laser jet printer. There are

certain things that should be confirm before the board will be ironed:

I. Clean the oxidize surface of the PCB

II. Any dirt on the surface should be removed to avoid the printed part

from the paper will not stuck on the PCB.

III. The heat of the iron should be 75 percent of the total heat.

IV. Each surface that being ironed should be in duration of 3 – 4 minutes.

V. The ironed surface should not rub with the iron to avoid the tracks size

change.

After the ironing process, the tracks of the layout on the PCB should be check

if any of the tracks on the PCB is lost. ‘Touch Up’ process is required if any of the

tracks is lost. Permanent marker is used to connect the lost of the tracks.

3.3.3 PCB Etching

Etching is the process where the excess copper is removed to leave the

individual tracks or traces. Many different chemical solutions can be used to etch

circuit boards. The etching also can be fastening by increasing the temperature of the

chemical solution and increase the saturation of the reagent.

Certain acid are used to do the process. Normal copper etching reacted with

the initial reaction, which results in build up of cuprous ions. The basic etching

reaction is the same as cupric chloride etching but to work the copper (II) ions require

complexing with ammonium chloride and ammonia. Fastening the etching process

should be considered because if the process occurred to fast, it sometimes will remove

the tracks of traces on the PCB surface. Personal Protection Equipment must always

45

be used, spent solutions should always be disposed of properly and not down local

drains, where they pollute local sewage works and rivers. The etching process for this

project took about 2 hours.

3.3.4 PCB Holes Drilling

The process will produce the holes for the components before been soldered.

The holes required should suitable enough with the component legs. The drill lead

also should be suitable in size for avoiding the holes drilled to large or sometimes will

remove the tracks of the cuprum. The drill lead use for the project is 0.8 mm in

diameter.

The black printed tracks on the PCB will be clean for viewing the cuprum

tracks that is not removed while the etching process been conducted. The black

printed should be removed by using sand paper or pen eraser. The connection on the

PCB is check for it continuity on the same connection or path. Figure 3.16 shows the

complete PCB transmitter board after drilling.

Figure 3.16: Complete Transmitter board after drilling

46

3.3.5 PCB Soldering

This is the last stage of the hardware implementation where the whole

components of the project are soldered on the PCB. The components will be soldered

and resoldered is avoided to prevent the cuprum tracks from damages. The soldered

PCB is encouraged to be coated with the layer that will prevent the cuprum from

being deoxidize. Figure 3.17 and 3.18 shows the PCB board after being soldered with

the component of the project.

Figure 3.17: Front view of the PCB transmitter board after being soldered

Figure 3.18: The PCB transmitter board after being soldered

47

3.4 Software Implementation

This section will discuss about the software that has been implemented in this

project. There are two main software used which is PICkit™ 2 Microcontroller

Programmer and PicBasic Pro Compilers (Micro Code Studio). The PICkit™ 2

Microcontroller Programmer is used for uploading the programming into the PIC and

PicBAsic Pro Compilers is used to design the programming.

3.4.1 Programming the PIC16F877A Microcontroller

Micro Code Studio is a powerful, visual Integrated Development Environment

(IDE) with In Circuit Debugging (ICD) capability designed specifically for

microEngineering Labs PICBasic PRO compiler. The code explorer allows you to

automatically jump to include files, defines, constants, variables, aliases and

modifiers, symbols and labels that are contained within your source code. It's easy to

set up the compiler, assembler and programmer options or the Micro Code Studio can

do it automatically with its built in auto search feature. Compilation and assembler

errors can easily be identified and corrected using the error results window. Figure

3.19 shows the PicBasic Pro Compilers (Micro Code Studio) interface.

48

Figure 3.19: PICBasic Pro Compilers (Micro Code Studio) interface

The programming of the PIC is divided into 7 part that is programming the free

running test, programming the transmitter and receiver part, programming the

potentiometer, programming the LCD, programming the dc motor, programming the

stepper motor and combining all 6 programming parts. The result will be shown in the

next chapter.

Figure 3.20 shows the transmitter board flowchart meanwhile figure 3.21 shows

the receiver board flowchart.

49

 Figure 3.20: Flowchart of the Transmitter board

50

 Figure 3.21: Flowchart of the Receiver board

51

3.4.2 The PICkit™ 2 Microcontroller Programmer

The PICkit™ 2 Microcontroller Programmer is a low cost development

programmer. It is capable of programming most of Microchip’s Flash

microcontrollers. This programmer is able to automatically detect PIC from connected

target and display it in the Device Configuration window. Figure 3.22 shows the

PICkit 2 programmer interface.

Fig

ure 3.22: PICkit 2 Microcontroller Programmer Interface

When the PIC is detected, we can check whether the PIC is blank or already

have a program using Blank Check function. It helps us to check the status of the PIC.

For the Erase, it helps us to delete the programming that is in the PIC. We can clear

the programming in the PIC and the PIC is ready to be uploaded with a new

programming. We can upload the programming to the PIC using Write function.

52

Verify function verify the device program to the imported Hex file. Read

function is to view the code written to the PIC. The code will be display in the

Program Memory and Data EEPROM Memory. If all zero display, it is possible that

the target device is code-protected.

Auto Import Hex + Write Device allows the programmer to automatically

import and write the Hex file to the connected device when the Hex file is updated,

for an example on a new firmware build. By clicking this button, it will bring up an

Import Hex File dialog.

The PICkit 2 programmer transfer the programming to the UIC00A (Figure

3.23). The UIC00A is a hardware that transfers the programming from the PICkit 2

programmer into the PIC. The UIC00A contain 5 main components that is mini USB

socket, switch to initiate write device programming, main power supply indicator,

busy indicator and box header for programming connector (Table 3.4).

Figure 3.23: UIC00A Board Layout

 Table 3.4: PICkit board component

53

The mini USB port socket is for USB connection to PC desktop or laptop. The

mini USB is used to transfer the programming HEX into the board. The switch is used

to initiate the write device function when the Write function on the PICkit

programmer is checked. The yellow LED indicates the main power supply of

UIC00A. It should be ON once USB connection from UIC00A to computer or Laptop

is ready. The red LED indicates busy function such as UIC00A is in program mode or

is alerting that a function is in progress. The box header is used for connecting

programming cable to the development board.

The development board is connected to the UIC00A through the ribbon cable

and the ribbon cable is connected to the box header in UIC00A board. The circuit for

the development is shown in Figure 3.24.

 Figure 3.24: Development Board Circuit

54

3.5 Application

After all the above stage is complete, the process will continue into making the

model of the remote control and the car. The remote control model is build is using a

box and the model car is built from the recycle toy car (Figure 3.25).

Figure 3.25: The recycle toy car

The box is spray into black colour to make it more realistic (Figure 3.26). The

used toy car board (Figure 3.27) is removed and replace with the receiver board

(Figure 3.28) that had been successfully passed in the hardware implementation stage.

The toy car uses DC motor and gears to maneuver the car. There are 3 gears and one

spring in the car maneuver compartment. The spring is used to move the tyres to the

original position.

 Figure 3.26: Remote control is spray into black colour

55

Figure 3.27: The original board

 Figure 3.28: Implementing Receiver Board into the model

 For this project, we are using stepper motor instead of DC motor to control the

maneuver of the car. The DC motor is change to the stepper motor because stepper

motor have more precise angle than DC motor. The gears are modified to suit the

stepper motor. The spring is removed because the stepper motor will control all the

maneuver of the car.

 The DC motor holder is small to hold the stepper motor, so the holder is

modified to hold the stepper motor. The stepper motor gear is modified because it did

56

not reach the gears in the maneuver compartment. Figure 2.39 shows the stepper

motor after being modified.

 Figure 3.29: Modified stepper motor

 Each pair of a little (12-tooth) and large (24-tooth) gears steps the speed down

by a factor of one quarter (12/24). There are 3 pairs of gears (Figure 3.30), so the

whole trains steps the speed down by
8
1

2
1

2
1

2
1

=×× . Now for every 8 turn of the

stepper motor the wheel turns only one.

 Figure 3.30: Gears position

 The toy car have 2 motor that is the stepper motor that is used to control the

maneuver of the car and the DC motor that is used for movement of the car. The full

complete model will be shown in the next chapter.

57

CHAPTER 4

RESULTS & DISCUSSION

4.1 Introduction

In this chapter, the function of circuit and operating of the transmitter and

receiver will be discussed according to the flow of program and the result that

obtained from this project. The analysis is divided into 7 parts:

i. Power supply output voltages

ii. Receiver and transmitter testing

iii. LCD

iv. Stepper Motor

v. DXP protel

vi. PICBAsic Pro

vii. Application

4.2 Power Supply Output Voltages

The analysis of supply voltage is important to ensure the voltage is not

exceeding the required value. Electronic component such as PIC just need 5V to

operate. If the component is supplied more than that, the component will be hot and in

some cases it can blow. So it is important to analyze the input voltage to all

components to ensure it get the required supply voltages.

58

Figure 4.1 shows the outputs of a power supply. This supply came from LM

7805 voltage regulator, enters the PIC. All the circuits in this project required 5V

power supply including LCD. From the figure we can see that the output is 5.12V

which match the supply voltages that PIC and other components needed. It is very

smooth and the voltage is near to the desired value.

Figure 4.1: Power Supply Output Voltage

4.3 Transmitter and receiver

The result from the oscilloscope for transmitter testing is shown in Figure 4.2.

 Figure 4.2: Transmitter Reading

59

The result from the oscilloscope for receiver testing is shown in Figure 4.3.

Figure 4.3: Receiver Reading

The result for the range of the transmitter is shown in Figure 4.4.

Figure 4.4: Transmitter and Receiver Reading

Range (cm) Voltage (V)
50 2.90
100 2.50
150 2.20
200 1.90
300 1.50

Table 4.1: Transmitter and Receiver Range

60

From the testing result, the transmitter and the receiver can be used in a range

of 5 meter without using an antenna. The antenna can lengthen the range up to 7

meter. We are using a straight antenna to get to the fullest range.

The encoder is used to send data serially to the receiver. The data is sent

according to the frequency of the encoder. We choose to use a 1MΩ resistor and

according to the datasheet it will produce around 1.9 kHz – 3.5 kHz. The transmitter

and the receiver must be in the same frequency so that it will function properly. To

choose the frequency for the receiver, we must follow the following rule:

encoder) (HT12E f 50decoder) (HT12D f OSCEOSCD =

4.4 LCD

This part will discuss about the operation of LCD and result obtained from it.

The potentiometer is use to control the brightness of the LCD. The potentiometer is

set to the desired value according to the brightness of the LCD. Before programming,

we can only see the upper line display of the LCD (Figure 4.5). After the

programming is done, we can program the upper and lower line display of the LCD

(Figure 4.6).

Figure 4.5: The Upper line visible

61

Figure 4.6: Upper and lower line Display

The LCD is program to display the angle and the movement according to the

single turn potentiometers that acts as joysticks for the system. There are two single

turn potentiometer that are used, one is used to control angle and the other one is use

to control movement. When the potentiometer for the angle is turned, the angle will

change (Figure 4.7) and when the potentiometer for the movement is turned, the

movement will change (Figure 4.8). Figure 4.9 shows the LCD is inserted into the slot

at the remote control box.

Figure 4.7: Changing the angle

Figure 4.8: Changing movement

62

Figure 4.9: LCD is inserted into the slot at the remote control box

4.5 STEPPER MOTOR

The stepper motor needs a data sequence to work properly. For the hardware

testing part, we found that the sequence in Table 4.1 is the most suitable one for the

project.

Table 4.2: High torque Stepping Sequence

 High torque stepping is a high power / precision mode that turns ON two coils

at a time. 48 pulses are needed to complete one revolution. Each pulse moves rotor by

7.5 degrees. The following sequence has to be repeated 12 times for motor to

complete one revolution.

63

During the testing time, a problem has occur, the ULN 2003 and the stepper

motor cannot withstand the current flow from the battery. The stepper motor and the

ULN 2003A always heated if use in a long period. To protect the component from

damage, the usage of the stepper motor and the ULN 2003A have been minimized.

4.6 DXP protel

DXP Protel is used to design PCB board. During this time there are many

problems occurred. The connection of the PCB is cannot be made because the path of

the component is cross into one another. The path have been reconstructed and

compiled. Figure 4.10 shows the successful transmitter board layout and Figure 4.11

shows the successful receiver board layout.

64

Figure 4.10: Successful Transmitter Board Layout

65

Figure 4.11: Successful Receiver Board Layout

4.7 PICBasic Pro

Programming is divided into 7 modules that are programming the free running

test, programming the transmitter and receiver, programming the potential meter and

photo resistor (LDR), programming the LCD, programming the stepper motor,

programming the DC motor and combining all 6 modules. For combining all 6

modules, the programming is shown in Appendix C.

66

4.7.1 Programming the free running

 The free running programming is the simplest programming in the whole

system. The programming is a basic programming that can help us familiarize with

defining the register and setting the clock of the system. We have to define the clock

and register of the system like below.

Define osc 4

trisb.7 = 0

 The clock of the system is define to 4MHz and the PORTB 7 is define as an

output. The program will flow according to the line. After defining the register, the

program will flow to the main program. The main program will be set as below:

Main:

High portb.7

pause 1000

Low port.7

pause 1000

goto Main

 The LED will be ON for one seconds and follow by OFF for one seconds. The

system will loops until it is shut down or the reset button is pressed.

4.7.2 Programming the transmitter and receiver

For the transmitter and receiver programming, it is nearly the same as the free

running program. We have to define the register to set the output or input of the

system. For example, we use a push button to ON LED using transmitter and receiver

function. The transmitter has 4 outputs and one input, the register is define as below:

67

Define osc 4

trisb.0 = 0

trisb.1 = 0

trisb.2 = 0

trisb.3 = 0

trisb.4 = 1

 There are 4 port that has been define for output because the 4 output from the

PIC will be connected to the encoder and will be became the input for the encoder.

The encoder will sent data serially to the transmitter. The data will be sent when the

push button is press, the command is as below:

main:

if portb.4 = 1 then LED ON

Goto main

LED ON:

portb = %00000001

goto main

 The program will loop until the system is shut down or the reset button is

pressed. For the receiver programming, we have to define the register to allow the PIC

to process the data that received from the transmitter. The register define is as below:

Define osc 4

trisb.4 = 1

trsib.5 = 1

trisb.6 = 1

trisb.7 = 1

trisb.3 = 0

68

There are four inputs because the receiver is connected to the decoder. The

data that are received from the transmitter are sent to the decoder serially and the

decoder sent the data to the PIC. The PIC processed the data and implemented it to

the output. The main program for the receiver is as below:

main:

if portb.3 = 1 then LED ON

goto main

LED ON:

HIGH portb.3

pause 1000

goto main

 The LED will be continuously ON until the puss button is released. The

system will loops until it is shut down or the reset button is pressed.

4.7.3 Programming the potentiometer

For programming the potentiometer, we use ADCIN function in the PIC to

ease our programming. ADCIN allow the PIC to read the on-chip analog to digital

converter Channel and store the result in a variable. Before the ADCIN can be used,

the appropriate register must be set to make the desired pin input. ADCON1 also

needs to be set to assign the desired pins to analog inputs and in some cases to set the

result format and clock source (Refer to the data sheet in the Appendix).The PIC

16F877A has an 8-bit ADC.

69

Several DEFINEs may also be used. The defaults are shown below:

DEFINE ADC_BITS 8 ‘Set number of bits in result 8’

DEFINE ADC_CLOCK 3 ‘Set clock source (rc =3)

DEFINE ADC_SAMPLEUS 50 ‘Set sampling time in

 microseconds’

ADC_SAMPLEUS is the number of microseconds the program waits between

setting the Channel and starting the analog to digital conversion. This is the sampling

time. The minimum number of microseconds usable is determined by the minimum

time for PAUSEUS.’

TRISA = 255 ‘Set PORTA to all input’

ADCON1 = 0 ‘PORTA is analog’

ADCIN 0, B0 ‘Read channel 0 to B0’

4.7.4 Programming the LCD

PICBasic Pro supports LCD modules with a Hitachi 44780 controller or

equivalent. These LCDs usually have a 14- or 16-pin single- or dual-row header at

one edge. If a pound sign (#) precedes an Item, the ASCII representation for each

digit is sent to the LCD. Table 4.3 shows the specified modifier for LCD.

 Table 4.3: Specified modifier

A program should wait for at least half a second before sending the first

command to an LCD. It can take quite a while for an LCD to start up. The LCD is

initialized the first time any character or command is sent to it using LCDOUT. If it

70

is powered down and then powered back up for some reason during operation, an

internal flag can be reset to tell the program to reinitialize it the next time it uses

LCDOUT:

FLAGS = 0

 Commands are sent to the LCD by sending a $FE followed by the command.

Some useful commands are listed in the following table:

 Table 4.4: LCD command

There are commands to move the cursor to the beginning of the different lines

of a multi-line display. For most LCDs, the displayed characters and lines are not

consecutive in display memory - there can be a break in between locations. For most

16x2 displays, the first line starts at $80 and the second line starts at $C0. The

command:

LCDOUT $FE, $80 + 4

Sets the display to start writing characters at the forth position of the first line.

16x1 displays are usually formatted as 8x2 displays with a break between the memory

locations for the first and second 8 characters. 4-line displays also have a mixed up

memory map, as shown in the table above.

71

LCDOUT $FE,1,“Hello” ‘ Clear display and show

 “Hello”’

LCDOUT $FE,$C0,“World” ‘ Jump to second line and show

 “World”’

LCDOUT B0,#B1 ‘ Display B0 and decimal ASCII

 value of B1’

The LCD may be connected to the PIC using either a 4-bit bus or an 8-bit bus.

If an 8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, the top 4

LCD data bits must be connected to either the bottom 4 or top 4 bits of one port.

Enable and Register Select may be connected to any port pin. R/W may be tied to

ground if the LCDIN command is not used.

PBP assumes the LCD is connected to specific pins unless told otherwise

using DEFINEs. It assumes the LCD will be used with a 4-bit bus with data lines

DB4 - DB7 connected to PIC PORTD.0 - PORTD.3, Register Select to PORTE.1and

Enable to PORTE.2. It is also preset to initialize the LCD to a 2 line display.

‘Set LCD Data port’

DEFINE LCD_DREG PORTD

‘Set starting Data bit (0 or 4) if 4-bit bus’

DEFINE LCD_DBIT 4

‘Set LCD Register Select port’

DEFINE LCD_RSREG PORTE

‘Set LCD Register Select bit’

DEFINE LCD_RSBIT 1

‘Set LCD Enable port’

DEFINE LCD_EREG PORTE

‘Set LCD Enable bit’

DEFINE LCD_EBIT 2

‘Set LCD bus size (4 or 8 bits)’

DEFINE LCD_BITS 4

‘Set number of lines on LCD’

72

DEFINE LCD_LINES 2

‘Set command delay time in us’

DEFINE LCD_COMMANDUS 2000

‘ Set data delay time in us’

DEFINE LCD_DATAUS 50

4.7.5 Programming the Stepper Motor

The programming for the stepper motor is nearly the same as free running

program. We have to define the register to set the output or input of the system. For

example, we want to run the stepper motor clock-wise continuously. The stepper

motor program has 4 output, the register is define as below:

Define osc 4

trisb.0 = 0

trisb.1 = 0

trisb.2 = 0

trisb.3 = 0

 There are 4 port that has been define for output because the 4 output from the

PIC will be connected to the stepper motor driver and will be sending the sequential

data to the stepper motor. The stepper motor will run according to the sequential data.

There are three main stepping modes that are single stepping, high torque and half

stepping. We are using the high stepping mode for this project. For each 4 of the

sequential data is sent, the stepper motor will rotate one step. The stepper motor can

rotate either clock-wise or anti clock-wise. The clock-wise program for stepper motor

is as below:

main:

portb = %00001001

pause 100

portb = %00001100

73

pause 100

portb = %00000110

pause 100

portb = %00000011

pause 100

goto main

 The data order of the sequential data will determine the direction of the

stepper motor rotation. When the sequential data is sent in inverse order of the clock-

wise, the rotation of the stepper motor will be anti clock-wise. The program is as

below:

main:

portb = %00000011

pause 100

portb = %00000110

pause 100

portb = %00001100

pause 100

portb =%00001001

pause 100

goto main

4.7.6 Programming the DC motor

Programming the DC motor is also nearly the same as the free running

program. We have to define the register to set the output or input of the system. For

example, we want to run the DC motor clock-wise continuously. . The DC motor

program has 3 output, the register is define as below:

74

Define osc 4

trisc.0 = 0

trisc.1 = 0

trisc.2 = 0

 The DC motor has 3 output because the DC driver has 3 input to drive the

motor. PORTC 1 and PORTB 2 are use to control the rotation of the motor and

PORTC 0 is to enable the motor to run. The motor can rotate clock-wise or anti clock-

wise according to the input that are sent from the PIC. For the clock-wise rotation, the

program is as below:

main:

LOW portc.0

HIGH portc.1

LOW portc.2

goto main

 The motor will continuously rotate clock-wise until the system is shut down or

the reset button is push. The motor will rotate anti clock-wise if the data for PORTC 1

and PORTC 2 are sent inversely from the clock-wise data. The motor will run anti

clock-wise for the program below:

main:

LOW portc.0

LOW portc.1

HIGH portc.2

goto main

 PORTC 0 is the enabling port that allow the driver to drive the motor. If the

enabling port is reset to HIGH the motor will stop.

HIGH portc.0

75

4.8 Application

The remote control and the car model are successfully built. Figure 4.12 and

Figure 4.13 shows the complete model of the remote control and the complete model

of the car. 4 LEDs (Figure 4.14) are added at the front of the car and 3 LEDs (Figure

4.15) at the bottom of left and right side of the car. The 2 LEDs at the front will

automatically ON when the surrounding became a little bit dark and the LEDs at the

bottom of the car will automatically ON when the surrounding is completely dark.

The other 2 LEDs at the front will ON when received the signal from the remote

control.

 Figure 4.12: Complete remote control

76

Figure 4.13: Complete car model

Figure 4.14: LEDs placed at the front of the car

77

Figure 4.15: LEDs placed at the bottom of the car

78

CHAPTER 5

CONCLUSION AND FUTURE DEVELOPMENT

5.1 Overview

This thesis has discussed on remote control of a moving vehicle. This

project is design to build a device that can control a vehicle movement and

maneuver within a range of 7 meter. This project is divided into 3 scopes that are

the vehicle can be control in a range of 7 meter, the vehicle can move forward

and reverse, and the degree of the vehicle maneuver can be control precisely.

This project has been able to achieve its objectives. The remote control

of a moving vehicle is successfully built. This chapter will discuss about the

problem faced during the development of this project and future

recommendation that can be made to the project.

79

5.2 Problem And Solution

There are some problems occur during the development of the project:

(i) Implementing stepper motor into the model:

• The original motor of the recycle toy car is a DC motor.

• The maneuver compartment has gears.

Solution:

 The maneuver compartment is modified using recycle component and

 the stepper motor is modified to suit the gears. (Refer chapter 3)

(ii) Programming the transmitter and receiver to transmit and receive data

• The transmitter needed a serial data as an input and the receiver

output is also serial.

• The PICBasic Pro has a little bit complex command for sending and

receiving serial data.

Solution:

The PIC is connected to the encoder to send serial data to the transmitter

and the PIC is connected the decoder when receiving data from the

receiver. There are two type of encoder and decoder that are suitable that

is HT-12E and PT 2262, and HT-12D and PT 2272. HT-12E and HT-

12D is chosen because it only uses 16 inputs for encoder and 16 outputs

for decoder. The PT 2262 and PT 2272 is has more inputs and outputs.

This project just used 12 inputs and 12 outputs. (Refer chapter 3 and

chapter 4).

80

(iii) Implementing PCB

• The route on the PCB is overlap with one another.

• There are some libraries for the DXP Protel software is not available.

Solution:

The track size for the PCB route is narrows a little bit to ensure the route

will not overlap again. The libraries are made such as libraries for

encoder and decoder.

5.3 Conclusion

The remote control of a moving vehicle has been presented in this

project. This project has achieved all the objectives and scopes. The results of

the output are the same as stated in reference studied. The remote control of a

moving vehicle can be used as a surveillance car. It car help us scout the area

that are unreachable to us.

5.4 Future Recommendation

Even though this project is successfully done, however there are some

enhancements that can be applied to the project. This addition somehow can

improve performance of the project. Below are some suggestions for the future

development:

(i) Installed a motion camera.

• Using a motion camera, we can detect movement in dark places.

81

(ii) Use GUI to control the car.

• Replace the potentiometer as the joystick with a GUI interface such

as visual basic.

(iii) Produce a smaller car

• Built a smaller car that can enter a small area without any difficulties.

(iv) Range of the transmitter and receiver.

• Control the car in wider range.

• Using a higher frequency transmitter and receiver

• Using a coil antenna.

5.5 Costing and Commercialization

This part explains about the costing of this project. The total project cost

for all components is estimated to be RM 317.11. The highest cost among the

component is the price of the transmitter and receiver. Even though the price of

these components is expensive, it is still a necessary item and the less expensive

substitutes are nonexistent. The component chosen based on the performance of

the component, means that the chosen component rating is above designed

value. The table of component cost is on Table 5.1 below.

No Device Specification
Unit

Cost
Quantity

Extended

Cost

1 Capacitor 4.7 µF RM0.07 1 RM0.07

2 Capacitor 1 µF RM0.07 2 RM0.14

82

3 Capacitor 100 µF RM0.10 1 RM0.10

4 Capacitor 22 pF RM0.07 2 RM0.14

5 Resistor 220 Ω RM0.05 8 RM0.40

6 Resistor 560 Ω RM0.05 8 RM0.40

7 Resistor 2.2 kΩ RM0.06 1 RM0.06

8 Resistor 4.7 kΩ RM0.07 8 RM0.56

9 Resistor 10 kΩ RM0.06 1 RM0.06

10 Resistor 33 kΩ RM0.06 1 RM0.06

11 Resistor 47 kΩ RM0.06 1 RM0.06

12 Resistor 1 MΩ RM0.04 8 RM0.32

13 Strip board Independent RM5.00 0 RM5.00

14 LCD 16 x 2 RM30.00 1 RM30.00

15 Potentiometer 10 kΩ RM0.60 3 RM1.80

16 Ribbon Cable 16 x 2m RM3.00 3 RM9.00

17
Voltage

Regulator
LM 7805 RM1.00 3 RM3.00

18 Crystal 4 MHz RM1.90 2 RM3.80

19 Transmitter RF transmitter RM50.00 1 RM50.00

20 Receiver RF receiver RM50.00 1 RM50.00

21 Encoder HT-12E RM4.50 1 RM4.50

83

Table 5.1: Total Cost of the Project

22 Decoder HT-12D RM4.50 1 RM4.50

23 IC Base 16 kaki RM0.20 2 RM0.40

24 IC Base 18 kaki RM0.20 2 RM0.40

25 IC Base 48 kaki RM0.20 2 RM0.40

26 PIC 16F877A Microcontroller RM25.00 2 RM50.00

27 Stepper Motor RM35.00 1 RM35.00

28
Stepper Motor

Driver
ULN 2003A RM4.90 1 RM4.90

29 DC Motor RM35.00 1 RM35.00

30
DC Motor

Driver
L 293B RM7.20 1 RM7.50

31 Connector 9 Vdc RM0.02 2 RM0.04

32 LED Crystal white RM0.50 3 RM1.50

33 LED Crystal Red RM0.50 3 RM1.50

34 LED Green RM0.50 3 RM1.50

35
Wire

Wrapping
 RM15.00 1 RM15.00

 TOTAL RM317.11

84

This project can be commercialized after some improvement is being

made. The car has to be attached with a camera to ease user to monitor the

movement of the car. The car can be used as a surveillance car. The total cost of

this project was estimated to be RM 350. Based on it, it is still relevant to

commercialize this project.

85

REFERENCES

[1] Ruf Bot 1.1
 http://mysite.verizon.net/res8dbeh/

[2] Toy Car Hack - "Synthetic Rodent Development
 http://mondo-technology.com/toycar.html

[3] Toy Car Hack - "Synthetic Rodent Development
 http://mondo-technology.com/toycar.html

[4] Final Project - RC Car Controller

http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s1999/blair/RCcar.ht

ml

[5] Final Project - RC Car Controller
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s1999/blair/RCcar.ht

ml

APPENDIX A

PIC MICROCONTROLLER CIRCUIT
TRANSMITTER CIRCUIT

RECEIVER CIRCUIT

Figure A.1: Full Transmitter Schematic of the Project

Figure A.2: Full Receiver Schematic of the project

APPENDIX B

LIST OF COMPONENT

Table B.1: List of Component 1

No Component Specification Quantity

1 Capacitor 4.7 µF 1

2 Capacitor 1 µF 2

3 Capacitor 100 µF 1

4 Capacitor 22 pF 2

5 Resistor 220 Ω 8

6 Resistor 560 Ω 8

7 Resistor 2.2 kΩ 1

8 Resistor 4.7 kΩ 8

9 Resistor 10 kΩ 1

10 Resistor 33 kΩ 1

11 Resistor 47 kΩ 1

12 Resistor 1 MΩ 8

13 Strip board Independent 0

14 LCD 16 x 2 1

15 Potentiometer 10 kΩ 3

16 Ribbon Cable 16 x 2m 3

17 Voltage Regulator LM 7805 3

18 Crystal 4 MHz 2

19 Transmitter RF transmitter 1

20 Receiver RF receiver 1

21 Encoder HT-12E 1

22 Decoder HT-12D 1

23 IC Base 16 kaki 2

24 IC Base 18 kaki 2

25 IC Base 48 kaki 2

26 PIC 16F877A Microcontroller 2

27 Stepper Motor 1

28 Stepper Motor Driver ULN 2003A 1

29 DC Motor 1

30 DC Motor Driver L 293B 1

31 Connector 9 Vdc 2

32 LED Crystal white 3

33 LED Crystal Red 3

34 LED Green 3

35 Wire Wrapping 1

APPENDIX C

PICBASIC PROGRAMMING
TRANSMITTER PROGRAMMING

RECEIVER PROGRAMMING

TRANSMITTER PROGRAMMING
DEFINE osc 4
Define ADC_BITS 8 'bit adc'
Define ADC_CLOCK 3 'internal clock 3 MHz'
Define ADC_SAMPLEUS 50 'samplint time in microsec'

DEFINE LCD_DREG PORTD 'define port for lcd'
DEFINE LCD_DBIT 4
DEFINE LCD_RSREG PORTE
DEFINE LCD_RSBIT 1
DEFINE LCD_EREG PORTE
DEFINE LCD_EBIT 2
DEFINE LCD_BITS 4
DEFINE LCD_LINES 2
DEFINE LCD_COMMANDUS 2000
DEFINE LCD_DATAUS 50

adcon0 = %11101101 'adc channel register'
adcon0 = %11100101

adcon1 = %00001001 'adc port register'

trisd = 0 'output port for lcd'
trise.1 = 0
trise.2 = 0

trise.0 = 1 'input for adc'
trisa.5 = 1

trisb.0 = 0 'output port for encoder'
trisb.1 = 0
trisb.2 = 0
trisb.3 = 0

trisb.5 = 1 'suis'

res1 var word 'adc variable'
res2 var word

main:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:"
 lcdout $fe,$C0, "movement:"
pause 100
goto process

process:
adcin 4, res1
pause 100
if res1 < 28 then satu
if res1 < 56 then dua
if res1 < 84 then tiga
if res1 < 112 then empat
if res1 < 140 then lima
if res1 < 168 then enam
if res1 < 196 then tujuh
if res1 < 224 then lapan
if res1 < 256 then sembilan
goto process

satu:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:-45"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000001
goto process

dua:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:-15"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000010
goto process

tiga:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:-5"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000011
goto process

empat:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80, "angle:LED OFF"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000100
goto process

lima:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:0"
 lcdout $fe,$C0, "movement:"
pause 100
adcin 5, res2
pause 100
if res2 < 85 then maju
if res2 < 170 then senyap
if res2 < 255 then undur
if portb.6 = 1 then process
portb = %00000101
goto process

enam:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80, "angle:LED ON"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000110
goto process

tujuh:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:5"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00000111
goto process

lapan:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:15"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00001000
goto process

sembilan:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:45"
 lcdout $fe,$C0, "movement:"
pause 100
if portb.5 = 1 then process
portb = %00001001
goto process

maju:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:"
 lcdout $fe,$C0, "movement:maju"
pause 100
portb = %00001010
goto process

senyap:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:"
 lcdout $fe,$C0, "movement:senyap"
pause 100
portb = %00001011
goto process

undur:
pause 100
 LCDOUT $FE,1
 lcdout $fe,$80+2, "angle:"
 lcdout $fe,$C0, "movement:undur"
pause 100
portb = %00001100
goto process

RECEIVER PROGRAMMING
DEFINE osc 4
Define ADC_BITS 8 'bit adc'
Define ADC_CLOCK 3 'internal clock 3 MHz'
Define ADC_SAMPLEUS 50 'samplint time in microsec'

adcon0 = %11011101 'adc channel register'
adcon1 = 0 'adc port register'

trisa.3 = 1 ‘adc input’

trisd.0 = 0 'output port for led'
trisd.1 = 0
trisd.2 = 0
trisd.3 = 0
trisd.4 = 0
trisd.5 = 0

trisb.0 = 0 'output for stepper'
trisb.1 = 0
trisb.2 = 0
trisb.3 = 0

trisb.4 = 1 'define output for decoder'
trisb.5 = 1
trisb.6 = 1
trisb.7 = 1

trisc.0 = 0 'output for dc motor'
trisc.1 = 0
trisc.2 = 0

loop var word 'stepper motor variable'
loops var word

res var word 'adc variable'

main:
loops = 0
adcin 3, res
pause 100

if res < 5 then two
if res < 10 then one

pause 100
high portd.0
low portd.1

low portd.2
high portd.3

pause 100
goto process

process:
portb = %00000000
if portb = %00010000 then satu
if portb = %00100000 then dua
if portb = %00110000 then tiga
if portb = %01000000 then empat
if portb = %01010000 then lima
if portb = %01100000 then enam
if portb = %01110000 then tujuh
if portb = %10000000 then lapan
if portb = %10010000 then sembilan
if portb = %10100000 then sepuluh
if portb = %10110000 then sebelas
if portb = %11000000 then duabelas
goto main

satu: 'loop 1 step clockwise (30degree)'
loop = 15
loops = 0
goto motor1 'motor1 = clockwise'

dua:
loop = 10
loops = 0
goto motor1

tiga:
loop = 5
loops = 0
goto motor1

empat:
high portd.4
low portd.5
goto process

lima:
loop = 0
loops = 0
goto motor1

enam:
low portd.4
high portd.5
goto process

tujuh:
loop = 5
loops = 0
goto motor2

lapan:
loop = 10
loops = 0
goto motor2

sembilan:
loop = 15
loops = 0
goto motor2

motor1: 'rotate 1 step clockwise'

portb = %00001001
pause 100
portb = %00001100
pause 100
portb = %00000110
pause 100
portb = %00000011
pause 100

if loops = loop then process
loops = LOOPS + 1 'add 1 at variable loops'
pause 100
goto motor1 'loop back until loop = loops'

motor2: 'rotate 1 step counterclockwise'

portb = %00000011
pause 100
portb = %00000110
pause 100
portb = %00001100
pause 100
portb = %00001001
pause 100

if loops = loop then process
loops = loops + 1
pause 100
goto motor2

two:
pause 100
high portd.1
low portd.0
high portd.2
low portd.3
pause 100
goto process

one:
pause 100
high portd.1
low portd.0
low portd.2
high portd.3
pause 100
goto process

sepuluh:
high portc.1
low portc.0
high portc.2
goto main

sebelas:
high portc.1
low portc.0
low portc.2
goto main

duabelas:
high portc.0
low portc.1
high portc.2
goto main

APPENDIX D

DATA SHEET
PIC 16F877A

ULN 2003A

L 293B

HT-12E

HT12D

PIC 16F877A

ULN 2003A

L 293B

HT-12E

HT-12D

