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Abstract. Vanillin adsorption onto resin H103 was modelled using artificial neural network 

(ANN) approach and the best ANN algorithm was determined in this work. The first step of 

ANN modeling was ANN set up, followed by the optimization of ANN. The parameters for the 

input layers are contact time, initial vanillin concentration, resin dosage, pH, and temperature 

while the response is residual vanillin concentration. The neural network was trained using 

backpropagation (BP) algorithm. The result shows that the Levenberg–Marquardt algorithm was 

best suited the training function and the optimized ANN involved seven neurons at the hidden 

layer. This model can produce a correlation of determination value of 0.9999 with the mean 
square error (MSE) value of 0.0277. The best adsorption efficiencies for each factor were 

98.11%, 96.03%, 98.14%, 98.2%, and 98.10% at 2.0 g of adsorbent dosage, 30 min of contact 

time, 100 mg/L of initial vanillin concentration, pH 5, and 25 °C, respectively. The outcomes of 

this work proved that ANN is excellent in predicting experimental data of vanillin adsorption by 

resin H103. 

1. Introduction 

Vanillin is one of the most important flavoring materials which has been widely used in the food 
industry, perfumes, cosmetics, and pharmaceuticals [1]. Vanillin can be recovered using several 

techniques such as distillation, extraction using gas-expanded liquid, ultrafiltration, and adsorption. The 

adsorption process is preferable to separate vanillin from lignin due to its nature of environmentally 
friendly and more economical compared to the other separation technologies [2]. 

The world annual production of vanillin is more than 12,000 tons. However, less than 1% of the 

material is natural vanillin originated from botanical sources such as cured vanilla pods and Java 

citronella [3]. The price of synthetic vanillin is less than USD15/kg, in contrast to the price of natural 
vanilla between USD1,200.00/kg and USD4,000.00/kg [4]. Because of the limited supply and high price 

of natural vanillin combined with the increasing demand for natural flavors, it becomes a motivation for 

the researchers to find an alternative method to produce vanillin. 
 Modeling is done before the implementation of a new method to predict its feasibility and explain 

the possibilities of response in particular circumstances. In the past few decades, it is challenging to do 
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modeling and optimization of adsorption because they have to carry out many experiments to obtain the 

desired and optimum value. In the 50s, response surface methodology (RSM) was proposed by Box and 

Behnken [5] for the purpose modeling and optimization, and this helps the researcher save a lot of time. 
However, modeling and optimization of the heterogeneous photon-Fenton process using RSM showed 

that the degradation efficiency of the experiment was within the range of 70% to 90%, not high enough 

to describe the behavior of the experiment [6]. The problem faced by the same data can be solved by 
using ANN due to its ability to achieve a degradation efficiency of 98.11% [7]. The improvement 

occurred because ANN consists of three layers and a training algorithm to adjust the error and repeat 

until the desired output is obtained [8]. 

 ANN is a computing system which imitates the biological neural network of living organisms. It is 
based on a collection of connected units called artificial neurons. These artificial neurons are typically 

organized in three groups – input, hidden, and output layers. Activities of the hidden layers depend on 

the activities of the input layers, while the hidden layers will affect the output layer. The results are then 
processed by an input–output function (transfer function) [9]. The number of hidden layers is directly 

proportional to the accuracy of the result. Other than predicting the output variables, it is also used to 

eliminate irrelevant input, called pruning method. When the significant variable is determined, other 

irrelevant variables are eliminated from the model which can help to reduce the size of the network and 
minimize the redundancy in the training data [10]. 

 This work aimed to model the vanillin adsorption from aqueous solution using resin H103 by ANN, 

and the results describe that a good agreement between the experimental data and predicted output was 
achieved. Resin H103 was selected due to its high adsorption capacity and low cost [11]. The effects of 

adsorbent dosage, contact time, vanillin initial concentration, pH and temperature were also studied [11]. 

The designation of a neural network, selection of the best training method, and identification of the 
suitability of ANN for modeling of vanillin adsorption played an essential role in completing this 

research. 

2. Methodology 

2.1. Data Preparation  
The experimental data of vanillin adsorption from aqueous solution using resin H103 were taken from 

a previous study [11]. The experimental data show the effect of adsorbent dosage, contact time, initial 

vanillin concentration, pH, and temperature on the adsorption performance of resin H103. The selection 
of resin H103 was based on its highest capacity and low cost. For this modeling, the data of model 

variables are shown in table 1. 

 
Table 1. Data used for ANN modeling [11]. 

Variables Range 

Input layer  

Adsorbent dosage (g) 0.5–5.0 

Contact time (min) 3–300 

Initial vanillin concentration (mg/L) 6.25–800 

pH 3.00–7.00 

Temperature (°C) 25–55 

  

Output layer  

Vanillin residual concentration (mg/L) 0.41–44.92 

 

2.2. Artificial neural network model 

2.2.1. Backpropagation algorithm. Backpropagation (BP) was used as the training algorithm for the 
modeling of vanillin adsorption from aqueous solution using resin H103 [12]. It was used to change the 
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weights and biases in a network to improve the overall output of the network. The working principle of 

the backpropagation algorithm is iteration. The iteration will only stop when the error between the 

predicted output and the experimental data is acceptable [13]. There are 13 backpropagation algorithms 
exist in the ANN, and all were performed to determine the best suited BP training algorithm for this 

model. These training algorithms were performed with an initial ANN design of three layers with tangent 

sigmoid transfer function (TANSIG) at the hidden layer and linear transfer function (PURELIN) at the 
output layer. All the data were normalized to be between 0 and 1 to suit the application of sigmoid 

function in the ANN [14]. A linear activation function (PURELIN) is normally used for the output layer 

when the ANN is trained for regression before optimization. Ten neurons were used at this stage to 

determine the best-suited training algorithm. During the training, the experimental data were randomly 
divided into training, validation, and test subsets at a ratio of 2:1:1 [15]. The validation set was used to 

determine when to stop the iteration of the training set to prevent overfitting [16]. The iteration of the 

BP algorithm was stopped when the MSE of the validation set reached the minimum value and it started 
to bounce back. 

 In the next stage, the MSE for each training algorithm was compared. The performance of the BP 

training algorithm was measured using the MSE value. A smaller MSE value indicates that the predicted 

output is very close to the experimental data. Therefore, the BP training algorithm with the minimum 
value of MSE was selected as the best-suited training algorithm and to be used in the subsequent 

modeling. 

2.2.2. Optimization of ANN. The best-suited training algorithm determined from the previous part was 
used in the three layers ANN with tangent sigmoid transfer function at the hidden layer and linear 

transfer function at the output layer to perform the optimization of ANN. The optimization of ANN was 

performed as the function of the number of neurons in the hidden layer and was evaluated based on the 
MSE and linear regression [10]. Two neurons were used as an initial guess to evaluate the performance 

of the ANN then it was repeated by increasing the number of neurons with an interval of one. The 

performance of ANN is improved with the increase in the number of neurons, but when the number of 

neurons exceeds the threshold number, overfitting of the model will occur and causes the model to fail 
to predict the experimental data [17]. Therefore, the number of neurons is increased until the MSE of 

the model started to increase after the minimum point was achieved.  

 Then, the MSE of the model for each number of neurons was compared. The optimum number of 
neurons was determined with the minimum value of MSE and the highest linear regression of the model. 

Finally, the three-layer ANN with tangent sigmoid transfer function at the hidden layer and linear 

transfer function at the output layer was evaluated at the best-suited training algorithm and the optimum 
number of neurons. 

2.2.3. Validation of effect of variables on adsorption efficiency. The effects of adsorbent dosage, contact 

time, initial vanillin concentration, pH, and temperature on the experimental output were studied and 

validated by the predicted output from the ANN model. The output from the experimental data is 
residual vanillin concentration, which is correlated to the adsorption efficiency for the ease of 

comparison. The adsorption efficiency was calculated using equation (1): 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
100(𝐶1−𝐶2)

𝐶1
                    (1) 

where C1 and C2 are the initial and final vanillin concentrations in the solution, respectively. The 

adsorption efficiency from the experimental data was compared with the predicted output from the 
ANN. The predicted output which is deviated from the experimental data is justified. Finally, the 

suitability of ANN for the modeling of vanillin adsorption from aqueous solution using resin H103 was 

evaluated based on the regression of the model. 
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3. Results and Discussion 

3.1. Selection of backpropagation (BP) algorithm 

Thirteen BP algorithms were compared to determine the best training function to be used in the 
modeling. A three-layer of ANN with a tangent sigmoid transfer function (TANSIG) at the hidden layer 

and a linear transfer function (PURELIN) at the output layer was used to perform all the training 

algorithms. The hidden layer consisted of 10 number of neurons. Gradient descent with momentum 
learning function (LEARNGDM) was used for this network and mean squared error (MSE) was used to 

measure the performance of the network. The result shows that the Levenberg–Marquardt 

backpropagation algorithm (LMA) with a minimum MSE was the best training function for this 

modeling. 
 The comparison of the different algorithms was based on the deviation of the predicted output from 

the experimental data. A large deviation of some algorithms from the experimental data was observed, 

while some of the algorithms were able to converge to the experimental data. The results show that 
LMA was able to produce the smallest deviation compared to the other backpropagation algorithms. In 

contrast, the predicted output by gradient descent algorithm (GDA) has the largest deviation. As shown 

in table 2, a minimum MSE with a value of 0.024 was produced by TRAINLM, which is followed by 

TRAINBR with the MSE value of 0.114. The MSE values produced by other training algorithms such 
as TRAINBFG, TRAINCGB, TRAINCGF, TRAINCGD, TRAINGDM, TRAINGDA, TRAINGDX, 

TRAINOSS, TRAINRD, and TRAINSCG are greater than one. The largest MSE was produced by 

TRAINGD with the MSE value of 1500. The deviation produced by the algorithm can be attributed to 
the nonlinear structure and combinatorial nature of the experimental data. Therefore, LMA is the best 

training function for this modeling because it can solve nonlinear least-squares problems and produce a 

least-squares curve fitting [18]. 

Table 2. Comparison of 13 backpropagation algorithms. 

Backpropagation (BP) 

algorithms 
Function 

Mean 

square 

error 

(MSE) 

Iteration 

number 

(IN) 

R2 
Best linear 

equation (BLE) 

BFGS quasi-Newton  TRAINBFG 9.910 23 0.919 y = 0.92x − 0.055 

Bayesian regularization TRAINBR 0.114 1000 1.000 y = x + 0.0075 

Powell–Beale conjugate gradient TRAINCGB 20.700 12 0.896 y = 0.73x + 1.9 

Fletcher–Reeves conjugate TRAINCGF 29.000 18 0.855 y = 0.76x + 1.8 

Polak–Ribière conjugate 

gradient 
TRAINCGP 28.600 10 0.818 y = 0.59x + 2.7 

Gradient descent  TRAINGD 1500.000 6 0.405 y = 0.47x + 40 

Gradient descent with 

momentum 
TRAINGDM 706.000 6 0.130 y = 0.22x + 20 

Gradient descent with adaptive 

learning rate  
TRAINGDA 22.000 260 0.918 y = 0.82x + 2.3 

Gradient descent with 

momentum and adaptive 

learning rate 

TRAINGDX 105.000 29 0.327 y = 0.1x + 6.6 

Levenberg–Marquardt TRAINLM 0.024 6 1.000 y = 0.99x + 0.013 

One-step secant TRAINOSS 15.700 22 0.911 y = 0.8x + 2.7 

Resilient (Rprop) TRAINRP 44.800 21 0.821 y = 0.67x + 1.2 

Scaled conjugate gradient TRAINSCG 39.000 26 0.813 y = 0.68x + 2.5 
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3.2. Optimization of ANN Structure 

The optimization of the ANN structure was determined based on the MSE value and the regression of 

the model. In the optimization, two neurons were used as the initial guess in the hidden layer for this 
network. When the number of neurons was increased, the MSE produced by the network became 

smaller. At a certain number of neurons, the MSE of the network started to increase from the minimum 

value of MSE. Figure 1 shows that the MSE of the network was the highest at 2 neurons with a value of 
5.98. When the number of neurons was increased from 3 to 6, MSE decreased significantly from 5.35 

to 0.188. The network achieved the minimum value of MSE of 0.0277 with 7 neurons at the hidden 

layer. When the number of neurons was increased from 7 to 14, the MSE of the network gradually 
increased from 0.0277 to 0.879. A further increase in the number of neurons from 14 to 15 resulted in a 

sharp increase in the MSE.  

 

Figure 1. Relationship between MSE and number of neurons in the hidden layer. 

At the same time, when the number of neurons is increased, the regression of the predicted outputs will 
increase. Figure 2 illustrates the dependence of regression and the number of neurons in the hidden 

layers. When the number of neurons was increased from 2 to 6, the regression of the predicted outputs 

increased from 0.9706 to 0.9992, but there is an exception when there are 3 neurons at the hidden layer 
where the regression decreased from 0.9706 to 0.9597 due to the combinatorial nature of the 

experimental data. The combinatorial experimental data sent to training was scattered which reduced 

the regression of the predicted output. The highest regression of predicted output of 0.9999 was achieved 
with 7 neurons at the hidden layer. A further increase in the number of neurons from 7 to 15 reduced 

the regression of the predicted output. The performance of the network is better when the number of 

neurons is increased. However, overfitting will occur when there is too much number of neurons. 
Overfitting will lead to the predicted outputs to be exact with or close to the experimental data and 

therefore may fail to fit additional data [17]. 
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Figure 2. Relationship between regression and number of neurons in hidden layer. 

The number of iteration determines the training of the network. When the predicted output deviates from 

the experimental data, the weight of the deviation will be adjusted, and the input of the network will be 
reinitialized and the network is trained again with the new input. Training will stop when the predicted 

output is close to the experimental data (the error was set to 1%). In this modeling, the training was 

stopped after 43 iterations out of 1000 (Epochs 43/1000) for LMA because further iterations show that 
the MSE started to increase. Figure 3 shows the MSE of training, validation, and test at different epochs 

for TRAINLM. The validation set was used to determine when to stop the iteration of the training set to 

prevent overfitting. The best epoch was at 37 because the MSE of validation started to increase after 37 
epochs. At 37 epochs, the optimum MSE of the training was 0.0277. 

 

Figure 3. MSE of training, validation, and test against epochs. 

Finally, the optimum artificial neural network with the BP algorithm was designed for this modeling. 
The network consists of three layers, which are input layer, hidden layer, and output layer. There are 

seven neurons at the hidden layer with tangent sigmoid transfer function (TANSIG) and an output layer 
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with linear transfer function (PURELIN). Figure 4 shows the optimum structure of ANN, together with 

the BP algorithm flow chart for the prediction of residual vanillin concentration. 

 

 

Figure 4. Optimum ANN structure with BP algorithm flow chart for prediction of residual vanillin 

concentration 

 
3.3. Modeling of Vanillin Adsorption 

In this modeling, the optimum ANN structure was used to test the performance of five variables which 

are adsorbent dosage, contact time, initial vanillin concentration, pH, and temperature. Their 

performance was evaluated based on the MSE of the training and regression of the model. A good model 
is a model with low MSE and high regression. For this modeling, the training network provided an MSE 

of 0.024 and the correlation of determination for the model is 0.9999, which proved that ANN is suitable 

to model the vanillin adsorption using resin H103. ANN is excellent in solving nonlinear model because 
it can produce a precise and effective response in a short time. The precision of the model was achieved 

by the BP algorithm. It calculated the error of the predicted output from the experimental data and 

propagated the error backwards, so that the input could be reinitialized and to be trained again. This 

process was repeated until the predicted output was close to the experimental data. On the other hands, 
LM algorithm which was used as a training transfer function can solve the nonlinear problem of the 

experimental data. It can minimize the problems of least-square curve fitting. Figure 5 shows the 

predicted residual vanillin concentration against the experimental residual vanillin concentration. The 
predicted vanillin concentration is very close and almost equal to the experimental residual 

concentration which means that the modeling of vanillin adsorption by ANN is successful [19]. 
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Figure 5. Predicted vanillin residual concentration versus experimental residual concentration. 

3.4. Effect of Adsorbent Dosage on Adsorption Efficiency 

The effect of adsorbent dosage on adsorption efficiency was studied by increasing the adsorbent dosage 

from 0.5 to 5.0 g while the contact time, initial vanillin concentration, pH, and temperature were 

maintained at 90 min, 50 mg/L, 5.94, and 25 °C, respectively. Figure 6 shows the efficiency between 

the experimental data and predicted output as a function of adsorbent dosage. The experimental data 

show that the adsorption efficiency increased from 92.37% to 98.11% when the adsorbent dosage was 

increased from 0.5 to 2.0 g. However, a further increase of adsorbent dosage to 5.0 g reduced the 

adsorption efficiency from 98.11% to 96.69%. According to Garg et al. [20], this can be attributed to 

the increase of surface area and the availability of adsorption sites for the removal of vanillin when the 

weight of the adsorbent is increased. However, a further increase of adsorbent dosage may cause 

aggregation and leads to overlapping of adsorption sites. Consequently, the available adsorption sites 

may decrease as well due to the adsorption density. The maximum adsorption efficiency was found to 

be 98.11% at 2.0 g of adsorbent dosage. 

 

Figure 6. Adsorption efficiency between experimental data and predicted output as a function of 

adsorbent dosage 
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3.5. Effect of Contact Time on Adsorption Efficiency 

The effect of contact time on adsorption efficiency was studied by increasing the contact time up to 300 

min while the adsorbent dosage, initial vanillin concentration, pH, and temperature were maintained at 

0.5 g, 50 mg/L, 5.94, and 25 °C, respectively. The experiment was repeated by replacing the adsorbent 

dosage to 2.0 g to compare the effect of adsorbent dosage and contact time on the adsorption efficiency. 

The experimental data show that a contact time of 60 and 30 min at 0.5 and 2.0 g of adsorbent dosage, 

respectively, are sufficient for the adsorption efficiency to achieve equilibrium (figure 7). A further 

increase of contact time did not yield a significant increase in the adsorption efficiency. Therefore, a 

further increase in contact time is unnecessary by considering the cost of energy consumed in agitation. 

The adsorption efficiency at 60 min with 0.5 g of adsorbent dosage was 88.17% while the adsorption 

efficiency at 30 min with 2.0 g of adsorbent dosage was 96.03%. The adsorbent dosage of 2.0 g was 

chosen because it could achieve higher adsorption efficiency with lesser energy consumed in agitation 

due to decrease in contact time. 

 

(a) 

 

(b) 

Figure 7. Adsorption efficiency between experimental data and predicted output as a function of 

contact time for (a) 0.5 and (b) 2.0 g of adsorbent dosage 
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3.6. Effect of Initial Vanillin Concentration on Adsorption Efficiency 

The effect of initial vanillin concentration on adsorption efficiency was studied by increasing the initial 

vanillin concentration from 6.25 to 800 mg/L while the adsorbent dosage, contact time, pH, and 

temperature were maintained at 0.5 g, 90 min, 5.94, and 25 °C, respectively. The experimental data in 

figure 8 show that the adsorption efficiency increased gradually from 93.14% to 98.14% when the initial 

vanillin concentration was increased from 6.25 to 100 mg/L. The adsorption efficiency decreased from 

98.14% to 96.40% as a result of further increase of initial vanillin concentration because beyond 100 

mg/L of initial vanillin concentration, the adsorbent was already saturated where all of the adsorption 

sites were fully occupied. Besides, Michael and Ayebaemi [21] reported that the adsorbate takes a 

shorter time to adsorb themselves to the adsorption sites at low concentration of adsorbate. In contrast, 

it takes a longer time when the concentration of adsorbate is increased because the adsorbate needs to 

diffuse to the adsorbent site through the intraparticle diffusion mechanism. The optimum initial vanillin 

concentration was found at 100 mg/L with 98.14% adsorption efficiency. 

 

Figure 8. Adsorption efficiency between experimental data and predicted output as a function of 

initial vanillin concentration 

3.7. Effect of pH on Adsorption Efficiency 

The effect of pH on adsorption efficiency was studied by increasing the pH from 3.00 to 7.00 while the 

adsorbent dosage, contact time, initial vanillin concentration, and temperature were maintained at 0.5 g, 

90 min, 50 mg/L, and 25 °C, respectively. The experimental data show that when pH was increased 

from 3.00 to 5.00, the adsorption efficiency slightly increased from 97.93% to 98.17% because at low 

pH, there is a high concentration of H+ ions to compete with vanillin to bind themselves with the actives 

sites. Therefore, when pH was increased, H+ ions decreased, resulting in the more available active site 

for vanillin, thus increasing the efficiency of vanillin removal. However, no substantial difference in the 

adsorption efficiency within the tested pH range, which might be due to the neutral state of vanillin in 

the pH range of 2.0–6.0 [22]. The optimum pH was found to be 4.00 for this modeling. Figure 9 shows 

the comparison of efficiency between the experimental data and predicted output as a function of pH. 

Different from the other factors, the ANN model shows some deviation from the experimental data 

which might be caused by the insufficient experimental data to be trained in the ANN model which 

made the ANN model to fail to predict the experimental data accurately [23]. 
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Figure 9. Adsorption efficiency between experimental data and predicted output as a function of pH. 

3.8. Effect of Temperature on Adsorption Efficiency 

The effect of temperature on adsorption efficiency was studied by increasing the temperature from 25 

to 55 °C while the adsorbent dosage, contact time, initial vanillin concentration, and pH were maintained 

at 0.5, 90 min, 50 mg/L, and 5.94, respectively. The experimental data (figure 10) show that the 

adsorption efficiency kept decreasing from 98.10% to 96.03% when the temperature was increased from 

25 to 55 °C. Because adsorption is a physisorption process [11], when temperature increases, vanillin 

molecules gain enough kinetic energy to overcome the electrostatic force of attraction between the 

adsorbent and themselves and escapes from the surface of the adsorbent which leads to a decrease in the 

adsorption efficiency. The optimum temperature for the adsorption process for this model was found to 

be 25 °C. 

 

Figure 10. Adsorption efficiency between experimental data and predicted output as a function of 

temperature. 

4. Conclusions 

The optimum backpropagation ANN for this modeling is three layers with tangent sigmoid transfer 
function (TANSIG) at the hidden layer and linear transfer function (PURELIN) at the output layer. A 

minimum error of predicted data from experimental data was obtained by using the Levenberg–

Marquardt algorithm with the MSE of only 0.024. The optimum ANN structure is with 7 neurons at the 
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hidden layer with a coefficient of determination of 0.9999 which means that the regression of the model 

is very high and the MSE value of 0.0277. The best adsorption efficiencies for each factor were 98.11%, 

96.03%, 98.14%, 98.17%, and 98.10% at 2.0 g of adsorbent dosage, 30 min (2.0 g of adsorbent dosage), 
100 mg/L of initial vanillin concentration, pH 5, and 25 °C, respectively. From the result, ANN shows 

an excellent performance in predicting the experimental data and suitable to be used in the modeling of 

vanillin adsorption. 
 

Acknowledgment 

We would like to thank you Universiti Malaysia Pahang for providing MATLAB for the modeling 
throughout the research. 

References 

[1] Zhang Q F, Jiang Z T, Gao H J and Li R 2008 Eur. Food Res. Technol. 226(3) 377–83 
[2] Mota M I F, Pinto P C R, Loureiro J M and Rodrigues A E 2016 Sep. Purif. Rev. 45(3) 227–59 

[3]      Chambers C M 1997 Prooc. of The Internal Structure of Black Holes and Spacetime Singularities  

490–96 
[4]     Lomascolo A, Stentelaire C, Asther M and Lesage-Meessen L 1999 Trends Biotechnol. 17(7)   

282–89 

[5] Box G E P and Behnken D W 1960 Technometrics 2(4) 455–75 
[6] Ba D and Boyaci I H 2007 J. Food Eng. 78(3) 836–45 

[7] Elemen S, Akçakoca Kumbasar E P and Yapar S 2012 Dye. Pigment. 95(1) 102–11 

[8] Kasiri M B, Aleboyeh H and Aleboyeh A Environ. Sci. Technol. 42(21) 7970–75 
[9] Singh V, Khan M, Khan S and Tripathi C K M 2009 Appl. Microbiol. Biotechnol. 82(2) 379–85 

[10] Gevrey M, Dimopoulos I and Lek S 2003 Ecol. Modell. 160(3) 249–64 

[11] Samah R A 2016 Optimization of Batch Adsorption and Fixed-Bed Adsorption of Vanillin onto  
Resin H103. Universiti Putra Malaysia, Selangor, Malaysia. 

[12] Ortega-Zamorano F, Jerez J M, Munoz D U, Luque-Baena R M and Franco L 2016 IEEE Trans.  

Neural Networks Learn. Syst. 27(9) 1840–50 
[13] Karnin E D 1990 IEEE Trans. Neural Networks 1(2) 239–42 

[14] Gueguim Kana E B, Oloke J K, Lateef A and Adesiyan M O 2012 Renew. Energy 46 276–81 
[15] Basheer I A and Hajmeer M 2000 J. Microbiol. Methods 43(1) 3–31 

[16] Mele B and Altarelli G 1993 Phys. Lett. B 299(3–4) 345–50 

[17] Kumar K V and Porkodi K 2009 Chem. Eng. J. 148(1) 20–25 
[18] Yetilmezsoy K and Demirel S 2008 J. Hazard. Mater. 153(3) 1288–300 

[19] Satoh H and Namerikawa T 2007 Proc. IEEE Int. Conf. Control Appl. 539–44 

[20] Garg V K, Gupta R, Yadav A B and Kumar R 2003 Bioresour. Technol. 89(2) 121–24 
[21] Michael H J and Ayebaemi I S 2005 Electron. J. Biotechnol. 8(2) 162–69 

[22] Li R, Jiang Z, Mao L and Shen H 1998 Talanta 47(5) 1121–27 

[23] Demiral Y F and Öztürk N 2013 Proc. of ICOEST 246–55 
 

 


