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Abstract 

In measuring the power output of an engine, the engine has to be coupled to a load 

device known as dynamometer. The coupling is done by means of a solid shaft. The 

proper couplings and shaft are required for the connection to avoid any failure to the 

engine or the dynamometer. Unsuitable selection could lead to undesired problems such 

as torsional vibrations, vibration of the engine and dynamometer, whirling of the 

coupling shaft, damage of the bearings, engine starting problem or immoderate wear of 

the shaft line components. The commonly encountered problem is the resonance in 

torsional vibration, which results in disastrous failure of the shaft due to excessive 

vibration. This project is aimed to study the appropriate design of the shaft to be used in 

the dynamometer-engine coupling to prevent the system from undergoing unwanted 

problems. The theoretical calculations involve in the design are presented. The 

dimension of the coupling shafts for engines with various maximum torques are 

estimated. It is shown that the diameter of the shaft is proportional to the maximum 

torque of the engine given that the same coupling is used for every system, whereas the 

length of the shaft is almost equal for every engine. The diameter of the shaft is a vital 

parameter compared to its length. For engines with the maximum torque vary from 40 

to 200 Nm, the same shaft length of 500 mm can be used but with increasing shaft 

diameter as the maximum torque increases. For a 40 Nm engine, the shaft diameter of 

20 mm generated acceptable result. The shaft diameter was increased by 5 mm as the 

maximum torque increases and acceptable results were obtained. On the other hand, by 

using aluminium instead of steel as the material of the shaft, lower critical engine speed 

is obtained given that the same dimension of the shaft is used. This is due to the fact that 

aluminium possesses lower modulus of rigidity in comparison to steel.



Abstrak 

Di dalam mengukur kuasa yang dijana oleh sesebuah enjin, enjin perlu disambungkan 

kepada sebuah mesin dikenali sebagai dinamometer. Penyambungan dilakukan dengan 

menggunakan syaf yang padat. Syaf dan perangkai yang sesuai diperlukan untuk 

mengelakkan sebarang kerosakan pada enjin atau dinamometer. Pemilihan yang tidak 

bersesuaian boleh mengakibatkan berlakunya masalah-masalah yang tidak diingini 

seperti getaran kilasan, getaran pada enjin dan dinamometer, pemusingan pada syaf 

perangkai, kerosakan pada galas, masalah untuk menhidupkan enjin dan kerosakan 

teruk pada komponen-komponen syaf. Masalah yang paling biasa dihadapi ialah 

resonan pada getaran kilasan yang boleh mengakibatkan kerosakan teruk pada syaf 

disebabkan oleh lebihan getaran. Projek mi disasarkan untuk mengkaji tentang 

rekabentuk syaf yang sesuai untuk diaplikasikan di dalam sistem dinamometer-enjin 

bagi mengelakkan sistem daripada dilanda masalah yang tidak diingini. Pengiraan 

secara teori yang terlibat didalam proses merekabentuk dipersembahkan didalam kajian 

mi. Dimensi syaf perangkai bagi enjin-enjin yang berlainan nilai tork maksimum adalah 

dianggarkan. Kajian mi menunjukkan bahawa diameter syafberkadar terus dengan nilai 

tork maksimum enjin, dengan semua system menggunakan perangkai yang sama, tetapi 

panjang syaf adalah hampir sama bagi semua enjin. mi menunjukkan diameter syaf 

adalah lebih penting daripada panjangnya. Bagi enjin-enjin dengan nilai tork maksimum 

berbeza daripada 40 hingga 200 Nm, panjang syaf yang sama iaitu 500 mm boleh 

digunakan tetapi dengan diameter syaf bertambah bagi setiap peningkatan nilai tork 

maksimum. Bagi engine dengan 40 Nm tork, diameter syaf sebesar 20 mm 

menghasilkan keputusan yang boleh diterima. Diameter syaf dibesarkan sebanyak 5 mm 

dengan nilaj tork maksimum enjin meningkat dan keputusan yang memuaskan 

diperoleh. Dalam pada itu, dengan menggunakan syaf yang diperbuat daripada 

aluminium berbanding besi, kelajuan kritikal enjin yang !ebih rendah diperolehi dengan 
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menggunakan syaf yang berdimensi sama. mi kerana aluminium mempunyai modulus 

ketegaran yang lebih rendah berbanding besi.
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CHAPTER 1: Introduction 

1.1 Overview 

In the automotive industry, there are a wide variety of tests conducted on the 

engine to measure the performance, responsiveness for acceleration/deceleration, 

emissions, fuel economy, durability, noise and vibration. Parameters affecting an 

engine's performance include the basic engine design, compression ratio, valve timing, 

ignition timing, fuel, lubricant and temperature [Gitano, 2008c]. Therefore, the 

development of vehicle cannot be realised without engine testing. However, some of 

these targets or parameters often work against each other [Tominaga, 2010]. Hence 

there are a number of specialist systems and control systems that requires isolated 

execution of the test. 

The most commonly used prime mover in an automotive vehicle is the internal 

combustion engine. It produces the power through the conversion of the chemical 

energy in the fuel into heat followed by the conversion of the heat into mechanical work 

[Klingebiel & Dietsche, 2007; Pulkrabek, 2004]. This conversion takes place by means 

of combustion. The conversion of thermal energy into mechanical work occurs through 

a transmission of the energy to a working medium, which hereupon increases its 

pressure and subsequently produce power [Klingebiel & Dietsche, 20071. Hence, it can 

be said that the internal combustion engine is an energy transformer [Crolla, 2009]. 

The ability of an internal combustion engine to do work is measured by a 

quantity known as torque. Torque is defined as the force acting at a moment distance 

and it is measured in newton metres (Nm). The engine creates torque and uses it to spin 

the crankshaft During the power stroke, the crankshaft moves 180° from the top dead 

centre (TDC) to the bottom dead centre (BDC). During the movement, the effective
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Figure 1.1: Torque variation during power stroke. [Heisler, 1998] 

P 

radius of the crank-arm increases from zero (at TDC) to the maximum value in the 

region of mid-stroke and decreases to zero again at the end of the stroke (at BDC). The 

movement is illustrated in Figure 1.1 where: 

p is the cylinder gas pressure, 

F is the connecting-rod thrust, 

R is crank-throw, 

r is the effective crank radius, and 

T is the turning-effort or torque.

This shows that the torque produced varies during the power stroke, whereas during the 

idling stroke, there is no useful torque generated [Heisler, 1998]. The maximum torque 

of an engine is known as the maximum brake torque speed (MBT). Most of the modern 

automobiles possess the maximum torque within the range of 200 - 300 Nm at the 

engine speed of 4000 - 6000 RPM [Pulkrabek, 2004].
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The torque produced by an internal combustion engine is measured using a 

device known as dynamometer. The dynamometer resists the torque produced by the 

engine connected to it and measures the torque [Martyr & Punt, 2007a]. In engine 

testing, it is important to recreate the actual on-road situation in the most effective way 

in order to obtain accurate data. However, the test conducted must be safe and 

repeatable, thus the engine can be tested with different desired conditions [Atkins, 

2009]. 

1.2 Background of the study 

As mentioned in previous section, the internal combustion engine has to be 

coupled to a dynamometer in order to measure its torque. Figure 1.2 shows the 

illustration of dynamometer-engine setup. The engine is connected to the dynamometer 

by means of a shaft. The shaft has to be properly designed since a poorly designed shaft 

could lead to serious impairments not only to the engine, the dynamometer or the shaft, 

but also to the human conducting the test.

Figure 1.2 : Dynamometer-engine setup. [Gitano, 2008b] 

Figure 1.3 depicts a broken shaft and a broken coupling as a result of improper 

designing prior to the test. The inappropriate design of the shaft could lead to various 

problems, namely excessive torsional vibrations, whirling of the coupling shaft, bearing 

damages, excessive wear of the shaft line components, engine starting problem and so 
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forth [Martyr & Punt, 2007b]. The most commonly encountered problem in a 

dynamometer-engine system is the resonance of torsional vibration. The frequency of 

the torsional vibration depends on the inertia of the engine and dynamometer, and the 

stiffness of the coupling shaft. Therefore, it is vital to design a shaft with the proper 

stiffness to avoid the problem.

(a)

(b) 

Figure 1.3 (a) A broken shaft. (b) A broken coupling. [DynoTech-Research, 2010]
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1.3 Objectives of the study 

This project is aimed to study the design shaft to be used in a dynamometer-

engine system. As stated in [Martyr & Punt, 2007b], the design of the shaft for different 

engines may differ. The objectives of this study are as follows: 

1. To study the relation between the maximum torque of an engine and the design 

of the shaft to couple it to a dynamometer. 

2. To investigate the importance of the dimensions of the shaft (i.e. shaft diameter 

and length) to the dynamometer-engine coupling. 

3. To study the impact of using different material such as aluminium instead of 

steel in fabricating the shaft. 

1.4 Scope and limitation 

In this study, five hypothetical engines with different maximum torque values (i.e. 

40, 80, 120, 160 and 200 Nm) were used. The shafts to couple these engines to a 

dynamometer were virtually designed to investigate the impact of maximum torque 

value on the shaft design. From the results, the dimensions of the shaft for each case 

will be observed. This study only involves theoretical calculations and the actual shafts 

are not fabricated. The study was conducted analytically rather than experimentally. 

Since hypothetical engines were used in the calculations, some parameters such as the 

displacement volume, bore, stroke and the moment of inertia of the engines were 

estimated.



CHAPTER 2: Literature review 

2.1 Introduction 

There are only a few studies that were conducted regarding this topic. One of the 

relevant journals was published in year 2004 [Jayabalan, 2004]. In addition to it, there is 

a book entitled Engine Testing that contains a chapter dedicated to the dynamometer-

engine coupling [Martyr & Punt, 2007b]. However, no comparison can be made since 

the design of the shaft differs for every dynamometer-engine setup (i.e. different 

engines and/or different types of dynamometer). In this chapter, the theories involve in 

this topic, namely the engine dynamometer and its operating mechanism, the torsional 

vibration/oscillation, damping and coupling, and so forth, are presented and described. 

They were reviewed from various journals, books, articles and brochures from 

manufacturers. 

2.2 Engine dynamometer 

To measure the torque and power output of an engine in a laboratory, the engine 

is coupled directly to a device known as engine dynamometer. It introduces variable 

loading conditions on the engine under test across the range of engine speeds and 

durations. Hence, the torque and power output of the engine can be accurately measured 

[Atkins, 2009]. Direct coupling means that the dynamometer shaft is connected to the 

driveshaft or propeller shaft of the engine under test resulting both the engine and the 

dynamometer running at the same speed [Gitano, 2008a]. In addition, since the 

dynamometer rotor is coupled to the shaft, its speed is also identical to the speed of 

engine crankshaft [Atkins, 2009].



Force on brake 

otation	 Rotation 

William Froude introduced the first modern dynamometer when he designed a 

dynamometer for HMS Conquest, a C-class light cruiser of the Royal Navy [Atkins, 

20091. Nowadays, there are many types of dynamometers used in the industry. Each of 

them has its own advantages and disadvantages over its counterparts. Commonly used 

dynamometers in the industry include [Gitano, 2008a]: 

Frictional (brake) dynamometer, 

Hydraulic (water brake) dynamometer, 

Eddy current dynamometer, 

Generator type dynamometer, and so forth. 

2.2.1 Frictional (brake) dynamometer 

Figure 2.1: Frictional dynamometer. [Gitano, 2008a] 

Frictional (brake) or dry friction dynamometer is the oldest type of dynamometer. 

It contains mechanical braking device such as belt or frictional 'shoe' as shown in 

Figure 2.1. It operates with the shaft spins the disk or drum. The braking device then 

applies force to resist the rotating disc or shaft. The force applied by the brake is equal 

to the force on the disk and acts in the opposite direction.
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2.2.2 Hydraulic (water brake) dynamometer 

Hydraulic dynamometer is fundamentally a hydraulic pump. The engine rotates 

the shaft, which hereupon spins the impeller. Water is pumped from a reservoir through 

a hydraulic circuit via a throttling valve as shown in Figure 2.2. Hydraulic drag induced 

by the water resists the motion of the impeller. The load is varied through opening and 

closing of the valve. Hydraulic dynamometers typically have the highest power 

densities.

Figure 2.2 : Hydraulic dynamometer. [Gitano, 2008a] 

2.2.3 Eddy current dynamometer 

Eddy current dynamometer is an electromagnetic load device consists of a disk 

placed inside its housing. The coupling shaft spins the disk, which contains large 

electromagnetic coils as shown in Figure 2.3. This initiates electric current. As the 

current passes through the coils that surround the disk, a strong magnetic field is 

induced. The magnetic field creates a so-called 'eddy current' in the disk that resists its 

rotation. This produces a torque between the housing and the disk. Varying the current 

varies the torque generated as well as the load on the engine.
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Force on Disk Electromagnet 

Rotation Rotation 

Figure 2.3 : Eddy current dynamometer. [Gitano, 2008a]

Force on Coil 

2.2.4 Generator type dynamometer 

In a system comprising of generator type dynamometer, the coupling shaft spins 

the rotor of a generator as depicted in Figure 2.4. Electrical load is applied to the output 

of the generator creating an electromagnetic force.

Power Supply 

Rotation

Water Tank 

Figure 2.4 : Generator type dynamometer. [Gitano, 2008a] 

This force resists the motion of the rotor. A resistor bank (heater) is commonly used as 

the load, which is either air or water-cooled. In order to vary the mechanical load, the 

field winding current is controlled.
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2.2.5 Different types of dynamometer 

In previous sections, four common dynamometers are described. Following table 

lists the advantages and disadvantages of different types of dynamometer. This table 

was reproduced from some literatures. [Crolla, 2009; Martyr & Plint, 2007a]. 

Table 2.1: Pros and cons of different types of dynamometer. [Martyr & Punt, 2007a]

Dynamometer type Advantages Disadvantages 

Obsolete, but many cheap and Slow response to change in 
Froude sluice plate reconditioned models in use load. Manual control not easy 

worldwide, robust to automate 

Capable of medium speed load 

Variable fill water change, automated control, 'Open' water system required. 

brakes robust and tolerant of overload. Can suffer from cavitation or 
Available for largest prime- corrosion damage 
movers 

'Bolt-on' variable Cheap and simple installation. Lower accuracy of 
fill water brakes Up to 1000 kW measurement and control than 

fixed machines 

Disc type hydraulic Suitable for high speeds Poor low speed performance 

For special applications, Mechanically complex, noisy 
Hydrostatic provides four quadrant and expensive. System 

performance contains large volumes of high 
pressure oil 

D.C. electrical Mature technology. Four High inertia, commutator may 
motor quadrant performance be fire and maintenance risk 

Asynchronous Lower inertia than DC. Four Expensive. Large drive cabinet 
motor (A.C.) quadrant performance needs suitable housing 

Permanent magnet Lowest inertia, most dynamic Expensive. Large drive cabinet 
motor four quadrants. Small size in needs suitable housing 
__________________ cell performance 

Vulnerable to poor cooling Low inertia (disc type air gap). 
Eddy current Well adapted to computer supply. Not suitable for 

control. Mechanically simple sustained rapid changes in 
power (thermal cycling)
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Special purpose applications 

Friction brake for very high torques at low Limited speed range 
speed 

Cheap. Very little support Noisy. Limited control 
Air brake services needed accuracy 
-

Possible cost advantage over Complexity of construction 
Hybrid sole electrical machine and control

In this study, the eddy current dynamometer is used throughout the analysis. Different 

results will be obtained, given that other type of dynamometer is used. 

2.3 Operating mechanism of a dynamometer 

The operation of a dynamometer can be simulated by a spring balance, anchored 

to the ground, with a rope attached to the top eye and wrapped around a drum with a 

slipknot as shown in Figure 2.5. As the drum rotates, the slipknot tightens, tensioning 

the rope. The tension is indicated as a weight by the spring balance. 

Figure 2.5 : Dynamometer operation simulated by a spring balance. [Atkins, 2009] 

There is a friction between the rope and the drum, which slows down the motion of the 

drum and its driving engine until a certain speed, for example 'x' RPM, and the spring 

balance shows a reading of 'y ' kg. This shows that the weight lifted is '' kg, and 

therefore the speed of the drum or the engine recorded is used to calculate the 
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horsepower. In real application, the engine is clamped on a test bed with a drive shaft 

coupled to it. The other end of the drive shaft is coupled to the dynamometer, which 

replaces the system containing the drum and the spring balance as described previously 

[Atkins, 2009]. 

2.3.1 Principle of operation 

The operating principle of a dynamometer is illustrated in Figure 2.6. Depending 

on the type of dynamometer, the rotor is coupled to a stator electromagnetically, 

hydraulically or by mechanical friction. The stator is supported in low-friction bearings. 

It is stationary balanced with the rotor via static calibration. By balancing it with 

weights, springs or pneumatic means, the torque exerted on it with the rotor turning can 

be measured [Atkins, 2009].

O pnf Al flitiniA P 

Figure 2.6 : The mechanism of torque measurement [Atkins, 2009]. 

Given that the torque T is exerted, then it can be calculated as follows: 

T=FB	 (2.1) 

On the other hand, the power P generated by the engine under test is as the matter of 

fact the product of torque and angular speed as given by following equation:
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P=2irNT	 (2.2) 

where N is the engine speed in revolution per minute (RPM). 

As previously mentioned, torque denotes the ability of an engine to do work, 

whereas power indicates the rate at which the work is done. The power calculated from 

Equation ( 2.2 ) is known as brake power, designated as Pb. This is the useful power 

delivered by the engine to the applied load. Basically, the dynamometer applies a 

resistive force to oppose the rotation of the drive shaft (or the torque of the engine's 

crankshaft). This causes the engine to work harder to retain its rotational speed. 

2.3.2 Operating quadrants 

Figure 2.7 depicts the four quadrants, which the dynamometer may be operated. 

+ ye Torque 

Counterclockwise rotation	 Clockwise rotation 
ABSORBS TORQUE	 ABSORBS TORQUE 

4 

Counterclockwise rotation	 Clockwise rotation 
DEVELOPS TORQUE	 DEVELOPS 

- ye Torque


Figure 2.7 : Operating quadrants of a dynamometer. [Atkins, 2009] 

In general, most of the engines testing takes place in the first quadrant with the engine 

running counter-clockwise if viewed from the flywheel end. All types of dynamometer 

are normally able to operate in the first or second quadrant [Atkins, 2009; Martyr & 

Plint, 2007a].
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A dynamometer needs to operate in third and fourth quadrants when it is 

required to produce power as well as to absorb it. However, the choice is limited since 

only DC machines, AC machines, hydrostatic and hybrid dynamometers are able to 

operate in such quadrants. These dynamometers are reversible, thus able to operate in 

all four quadrants. An eddy-current dynamometer is also basically reversible. 

Nevertheless, a hydraulic dynamometer is normally designed for one directional 

rotation, albeit it could be operated in reverse at low fill state without damage. 

In present, the transient testing (very rapid load changes and torque reversals) is 

growing resulting an increase in demands for four-quadrant operation. A notable feature 

of a four-quadrant dynamometer is its ability to start the engine. Table 2.2 lists some 

common types of dynamometer and their particular operating quadrant, which is 

reproduced from [Atkins, 2009]. 

Table 2.2 : List of dynamometers and their operating quadrants. [Atkins, 2009]

Type of Machine Operating Quadrant(s) 

Hydraulic sluice plate 1 or 2 

Variable fill hydraulic 1 or 2 

Hydrostatic 1, 2, 3, 4 

DC electrical 1, 2, 3, 4 

AC electrical 1, 2, 3, 4 

Eddy current 1 and 2 

Friction brake 1 and 2

14 



2.4 Torsional vibration 

2.4.1 Overview 

A dynamometer-engine system can be considered as identical to a system 

comprises of two rotating masses connected by a flexible shaft as illustrated in Figure 

2.8. Both masses possess a tendency to vibrate 1800 out of phase about an arbitrary 

point located along the connecting shaft. The oscillatory movement is superimposed on 

any steady rotation of the shaft. Hence, such system tends to generate torsional 

vibrations [Martyr & Punt, 2007b]. The twisting of the shaft while the engine rotates is 

known as torsional vibration. It occurs due to the periodical nature of actuating torque 

[Meirelles et al., 2007]. Excessive amount of torsional vibration can bring about failures 

of the crankshaft, couplings, engine dampers and so forth [Feese & Hill, 2009]. 

Figure 2.8 Two mass system. [Martyr & Punt, 2007b] 

2.4.2 Literature review 

The importance of the knowledge and understanding of torsional vibration has 

led to publishing of many journals and articles regarding the subject. A method to 

predict the behaviour of the torsional vibrations in internal combustion engines at 

transient and steady state regime by the modal superposing method was developed in 

1987 [Johnston & Shusto, 1987]. In some systems, excessive vibrations are exhibited on 
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