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Abstract. Direct current motors (DC motor) are used in the small electric devices commonly. 
Brushed DC motors are cheap and easy to install, thus their popularity. Although the 
popularity, faults occur which make diagnosis and detection of faults very important. It avoids 
financial loss and unexpected shutdown operation causes by these faults. This paper is a 
present characterization of brushed DC motor with brush fault using thermal signature analysis. 
To organize the character, the temperature profile of DC motor was analysed using the K-type 
thermocouple with data logger. The thermocouples were mounted on 4 part of the DC motor, 
casing, permanent magnet, brush and bearing. The temperature data of DC motor with faulty 
brush and healthy DC motor were measured by thermocouple and recorded using data logger 
in real time until steady state temperature, under different load. The analysis on the steady state 
temperature of brush fault can be conclude through recognisable of characteristics temperature 
difference with a healthy motor. 

Keywords. Fault diagnosis; Thermal behaviour; Temperature profile; Brushed dc motor; Brush 
fault  

1. Introduction 
DC motor is the most popular motor used in simple onboard application. Several applications with low 
power (under 250W) in a very large range of field use DC motor. Considered by simple assembly and 
control, it is largely used even by hobbyist, in electrical learning starter kit on electro-mechanical 
energy conversion demonstrator and for modular add-on electrical systems [1]–[4]. Typical 
applications of brushed DC motors are in the low voltage ranging from 12-24 V, as found in cost-
effective creations for drone, e-bike, scooter and also automotive drives. These drives are so prevalent 
that as many as 80 single drives are installed in each of today’s luxury cars. 
     Many researches about Fault Detection and Diagnosis (FDD) of electric motor presented various 
type of method with different of common fault. The common fault of electric motor can divide by two 
categories. First is mechanical fault such as bearing fault, eccentricity fault, rotor shaft bending, 
commutator fault, brush fault (shown in figure 1) and ventilation system problem [5]–[7]. Generally, 
thermal signal analysis used to detect mechanical fault on electric motor. The other category is 
electrical fault it including stator winding fault, rotor broken bar, wire insulated damage and external 
sensor devices [8]–[10]. Indeed, the most recurrent faults which can be found in the stator part such as 
short circuits between turns or between phases commonly due to an abnormal elevation of 
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temperature. This can bring insulation degradation, or even in the worsts case short circuit and 
irreversible damage [11]–[13]. The same application of thermal assessment for electrical fault as in 
mechanical fault can be sometime difficult due to inherent nature of Joule losses in conductors. 
Therefore, plenty other method also exists. 
     Several technique of FDD methods of electric motors can be found in the newest review [10]–[13]. 
Different of FDD technique for various fault were proposed [14]–[18]. Normally brush fault are 
related to brush carbon broken and wiring of brush have damage that will make the brush not 
functional. Other FDD techniques that can be cited are based on various signals such as: electric 
current or motor current signal analysis [19]–[21], vibrations signal analysis  [22]–[24], acoustic 
signals analysis [25]–[27], thermal signal analysis [28], [29]. 
 

Figure 1. One of brush carbon is broken in (red round). 

2. Proposed techniques of characterized temperature 
Figure 2 show the experiment setup of Dynamometer test bench. Temperature is a physical parameter 
that showing the existence of energy in form of heat. Electric motor generated heat from Copper 
Losses caused of the current flow passing through the conductors. It can be quantified using equation 
(1). 

 ������� = �.	² (1) 

     From the equation 1, shows the losses are proportional to the resistance of the conductor R, which 
is the winding of the motor in the case of electrical machine and also proportional to the current 
square. In principle, the speed of a motor is proportional to the voltage, while the torque is 
proportional to the current as presented in equation (2) and equation (3). 

 
=	.�+� ; �=��. (2) 

 �=��.	 (3) 

     Thus, as the load increase, the current increase and cause in consequence higher losses. In this 
paper, the speed will be maintained as a constant parameter by keeping the voltage apply to the 
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electric motor at 5V. The current as a changing parameter, and it will be adjusted by changing the 
load. The brushed DC motor used in this study has the parameters as listed in the table 1 below: 
 

Table 1. Specifications of the Brushed DC motor studied. 

Specification Detail 
Model MY1016 

Voltage 240 VDC 

Rated speed 2650 RPM 

Rated current 13.7 A 

Output 250 W 
 
     The brushed DC motor was instrumented by thermocouple as a temperature sensor on its bearing, 
brush, permanent magnet and casing. 
 

 
Figure 2. Experiment setup of Dynamometer test bench. 

3. Methodology 
Figure 3 show the methodology flow chart of the experimental procedure. The first step starts with 
instrumenting the motor with thermocouple on the component to be monitored. The most important 
part is the brush. Other parts are also instrumented in order to be compared with. They are casing, 
permanent magnet, and bearing.  After completed, the motor is installed on the test bench as shown in 
figure 2, and the thermocouples are attached to the data logger that record and display the temperature 
on a monitor in real time. The load is then applied to by attaching a mass that pull on a brake system 
that apply a counter torque to the motor shaft. Then, the motor is switched on and accelerated to the 
reference speed which is set at 5V.  Two sets of motor (healthy and faulty brush) were tested under the 
condition of speed and load parameter as listed in table 2 below. The healthy and faulty bearing motor 
are compared under the same speed at different loading. 
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Figure 3. The methodology flow chart of temperature profile experiment procedure. 

 

Table 2. Speed and load parameter of experiment. 
 
      
 
 
 

Once the speed and load set, then the data acquisition of the temperature rise start to be recorded 
until the steady state reached. After the steady state reached, the data recorded are analyzed and graph 
plotted using the data. The motor is finally unplugged from the power supply and leave to cool down 
back to the ambient temperature. All of experiment will repeat several times to make sure the 
validation and consistently of data.   

4. Results and discussion 
The temperature data recorded for both healthy and faulty brush motor are then plotted and shown in 
figure 4 and figure 5. 
 

Speed � Voltage (Volt) Loading Load � Current (Ampere) 
5V No-load 0.5A 
5V With load 1.5A 
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Figure 4. Temperature profile of healthy and faulty brush motor at no-load. 
 

Figure 5. Temperature profile of healthy and faulty brush motor at load. 
 
     First things that can observed is all of the components take around 7000 seconds to reach steady 
state temperature. For cool down time of all component to get back the ambient temperature also 
same. The steady state temperature, regardless the loading and fault, are in descending order started 
with the brush, the bearing, the casing and the permanent magnet. The highest temperature is brush 
component as expected, because brush as an electrical component that conduct current from the power 
supply to the rotating commutator that deliver the current to the stator of the motor. Therefore, both 
influence of mechanical friction and copper losses lead to very high temperature. Table 3 presents 
more detail about steady state temperature analysis for steady state temperature of heathy DC motor at 
different load and for steady state temperature of DC motor with faulty brush also presented at table 4. 
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On the right column of both tables, the temperature increase in percentage of the comparison between 
no-load and loaded case are presented. Accordingly, a bar chart presenting it is drawn in figure 6. 
 

Table 3.  Steady state temperature of healthy motor at different load. 

DC motor part Temperature for 
0.5A 

DC motor (°C) 

Temperature for 
1.5A 

DC motor (°C) 

Temperature 
Increase 

(°C) / % 
Bearing 25.15 28.88 3.73 / 14.83 
Brush 29.33 35.47 6.14 / 20.93 
Casing 24.71 27.68 2.91 / 12.02 

P.Magnet 24.48 27.47 2.99 / 12.21 
 

Table 4. Steady state temperature of motor with faulty brush at different load. 

DC motor part Temperature for 
0.5A 

DC motor (°C) 

Temperature for 
1.5A 

DC motor (°C) 

Temperature 
Increase 

(°C) / % 
Bearing 25.27 27.11 1.84 / 7.28 
Brush 27.79 31.98 4.19 / 15.08 
Casing 24.20 25.61 1.41/ 5.83 

P.Magnet 23.66 25.24 1.58 / 6.68 
 

 
Figure 6. Temperature increase in percentage (%) of the 

comparison between no-load and loaded case. 

     In general, from figure 6, from observation that the temperature difference increases from the case 
no load with the case loaded is obviously higher for the motor with healthy compare to the DC motor 
with brush fault. That because of one pair of brush carbon on fault DC motor are not function. So 
performance of fault DC motor lower than health DC motor which causes temperature for health DC 
motor is higher than fault DC motor. The detail of temperature comparison between healthy and faulty 
motor at both no-load and loaded (table 5), that the temperature difference of healthy and faulty motor 
is very small in the case without load throughout the components. None is abnormally higher 
compared to others. Therefore, at no load, faulty brush cannot be detected. 
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In table 5 shows, the different temperature does not have a large gap between motors part. But in 
the same time, the temperature profile of health DC motor are higher than temperature profile of brush 
fault DC motor on all of measured component. 

Table 5. Temperature different (� Temperature) of DC motor between healthy motor and faulty 
bearing under no load and under load. 

Part of DC motor � Temperature (°C) 
(Healthy-Faulthy) 

Different 
Temperature 

Part of DC umotor 

Bearing Without load With load 1.84 / 7.28 
Bearing part -0.12 1.77 Bearing part 
Brush part  1.54 3.49 Brush part  
Casing part 0.51 2.07 Casing part 

5. Conclusions 
The first conclusion that can be made is that faulty brush due to broken one of carbon brush low 
performance of DC motor and decrease overall motor component temperature. Brush fault hard to 
distinguish when motor operate at no load condition but, the performance of DC motor can be 
recognized when motor operate in load condition. The temperature level on the brush and other 3 
components of brushed DC motor with brush fault are clearly lower to compare with healthy brushed 
DC motor. Therefore, a brush fault diagnosis and characterize can be done using thermal analysis on a 
loaded motor. A larger test on a more extensive and higher range of load would certainly put forward 
the brush fault. 
     In a perspective, the proposed diagnostic and characterize technique can be extended to higher 
power electric motor. In the future, we will analyze more high powers electric motors and other faults 
with various operational parameters. Lastly, a standard temperature table related to load can be 
developed to help a faster diagnostic 
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