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ABSTRACT 

 

Assembly Line Balancing (ALB) is an attempt to assign tasks to various workstations along a 

line so that the precedence relations are satisfied and performance measures are optimised. 

Assumption by previous researches that any assembly task can be performed in any workstation 

encourages the author to focus on the resource usage in ALB. Limited number of resources in 

the industry also becomes a vital influencer to consider this constraint in ALB. This research 

aim to model and optimize the ALB with resource constraints. In different with existing work 

that assume all workstations have similar capability, this research consider the tool, worker and 

equipment constraints in the assembly process. The early study reveal that the current trend in 

production line is becoming more complex due to growth in the product development and also 

market force to minimize the set up cost. Therefore, beside only consider the simple assembly 

line problem (SALB), this research also consider two-sided assembly line problem (2S-ALB) 

and mixed-model assembly line problem (MMALB) that match with current trend in assembly 

layout. All three version of ALB problems have been modelled to include the general resource 

constraints. This make all three versions of ALB model is unique compared with existing model 

in literature. In all three ALB version, the resource constraints have been set as one of objective 

function to be minimized. The optimization was conducted by using different optimization 

algorithms. In SALB, we found that the Elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) have better performance. Meanwhile, for 2S-ALB and MMALB, the Particle 

Swarm Optimization and Ant colony Optimization have superior performance respectively. 

The validation for the problem ALB with resource constraints have been conducted in 

electronic and automotive assembly plant. The final result indicated that the proposed model 

is capable to improve the assembly efficiency and also capable to reduce the number of the 

resources required in assembly plant.  
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ABSTRAK 

 

Pengimbangan rangkaian pemasangan (ALB) ialah proses mengagihkan kerja pemasangan ke 

stesyen-stesyen kerja supaya kekangan turutan dapat dipenuhi dan prestasi pemasangan dapat 

dioptimakan. Andaian daripada penyelidik terdahulu, di mana menyatakan mana-mana kerja 

boleh dijalankan pada mana-mana stesyen kerja adalah tidak benar. Keterhadan bilangan 

sumber di industri juga menjadi sebab keperluan kajian ini. Kajian ini mensasarkan untuk 

memodel dan mengoptimakan ALB dengan kekangan sumber. Berbeza dengan kajian 

terdahulu yang menganggap semua stesyen kerja mempunyai keupayaan yang sama, kajian ini 

mengambilkira kekangan dari segi peralatan, pekerja dan mesin di dalam proses pemasangan. 

Kajian awal mendedahkan trend semasa di rangkaian pemasangan yang menjadi semakin 

kompleks di sebabkan pembangunan produk dan tekanan pasaran untuk meminimakan kos. 

Oleh itu, selain dari masalah rangkaian pemasangan mudah (SALB), kajian ini juga 

mengambilkira rangkaian pemasangan dua arah (2S-ALB) dan rangkaian pemasanagan produk 

bercampur (MMALB). Semua tiga versi ALB ini telah dimodelkan untuk mengambilkira 

kekangan sumber secara umum. Ini menjadikan ketiga-tiga model ini unik berbanding dengan 

kajian sebelumnya. Di dalam ketiga-tiga variasi ALB, kekangan sumber dijadikan sebagai 

salah satu objektif pengoptimaan. Pengoptimaan telah dilakukan menggunakan algoritma yang 

berbeza. Bagi SALB, didapati Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

mempunyai prestasi yang lebih baik. Manakala bagi 2S-ALB dan MMALB, Particle Swarm 

Optimization dan Ant colony Optimization masing-masing mempunyai kelebihan berbanding 

algoritma lain. Proses validasi untuk ALB dengan kekangan sumber ini dilakukan di industri 

pemasangan elektronik dan automotif. Hasil daripada validasi ini menunjukkan model yang 

dicadangkan berupaya untuk meningkatkan kecekapan pemasangan dan mengurangkan jumlah 

sumber di dalam proses pemasangan.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 INTRODUCTION 

This chapter gives a brief description of the research background including the problem 

statement, followed by research objectives, research scope and significant of research. In the 

next section, the structure of this thesis is briefly explained and in the last part, the chapter 

summary is presented. 

1.2 RESEARCH BACKGROUND 

Assembly line is one of the industrial production systems used to produce finished 

goods in an industry. It has been widely employed in many production industries such as 

automotive, electronics and other consumer durable production to enhance the efficiency of 

production system (Mozdgir et al., 2013). The rapid development of manufacturing industry is 

caused by increasing customer demands. This scenario forced manufacturers to maximise the 

production output in order to meet customers’ demands. This can be achieved by eliminating 

process inefficiencies (i.e. minimise the number of workstations and cycle time) as well as by 

utilising resources at an optimum level. 

Assembly Line Balancing (ALB) problem is defined as assigning tasks to workstations 

to optimise some performance measures by reducing the percentage of idle time or balance 

delay of assembly line (Chen et al., 2006; Ranjan and Pawar, 2014). This research aims to 

maximise the production rate and achieve the number of workstations, while satisfying some 

particular constraints, such as (i) precedence constraints and (ii) the total processing time 
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assigned to each workstation must not exceed the cycle time (Suwannarongsri and 

Puangdownreong, 2008). 

Due to limited number of resources in industry, it is necessary to consider the problem 

in assembly optimisation. This research intends to focus on multi-objective optimisation of 

Assembly Line Balancing Type-E (ALB-E) problem of a simple model. 

1.3 PROBLEM STATEMENT 

The main problem with the existing research in the ALB is the assumption that any 

assembly task can be performed at any workstation (Scholl & Becker, 2006; Zhang et al., 2007; 

Zhang et al., 2008; Hamta et al., 2013). However, each workstation has its own capabilities and 

specialisation. This situation has been highlighted as one of the serious problems in the industry 

(Ağpak and Gökçen, 2005; Bautista and Pereira, 2007). This finding is consistent with the 

study by Sungur and Yavuz, (2015) that emphasizes workers’ assignment to be mandatorily 

based on their qualification. 

Rapid growth in manufacturing becomes a vital influencer to consider the usage of 

resources due to limited number of machines and tools.  Although a small number of researches 

considered resource constraint in their works, none of them focused on resource constraint in 

ALB especially in terms of machine, tool and worker constraints (Ağpak and Gökçen, 2005; 

Browning and Yassine, 2010; Corominas et al., 2011 Battaïa and Dolgui, 2013). It is important 

to consider these constraints due to the limited number of resources where the utilisation of 

these resources can be minimised.  

 In the past years, the Genetic Algorithm (GA) approach has attracted the attention of 

researchers to solve issues related to ALB (Gurevsky at al., 2013; Zacharia and Nearchou, 

2013; Al-Hawari et al., 2014). This finding is consistent with the finding of past studies that 

used similar approach (Scholl & Becker, 2006; Suwannarongsri & Puangdownreong, 2008; 

Wei & Chao, 2011). Till date, to the best knowledge of the researcher, none of the published 

work employed Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) in the 

optimisation of ALB-E in terms of resource constraint. 
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For that reason, it is crucial to propose NSGA-II to address the research gap as it is 

capable to solve real-world optimisation problem for multi-objective functions (Chica et al., 

2012; Guo et al., 2014; Zhao et al., 2015).  In comparison with the old version of Non-

Dominated Sorting Genetic Algorithm (NSGA), the NSGA-II implements elitism-preserving 

technique (Deb, 2001). The findings from past studies by Deb et al. (2002) and Zhao et al. 

(2015) concluded that NSGA-II has better convergence towards Pareto-optimal front. The 

solutions generated by NSGA-II are geared towards Pareto-optimal front. However, the 

existing algorithms such as Multi-Objective Genetic Algorithm (MOGA) usually have slow 

convergence (Fonseca and Fleming, 1993). Based on literature review, there are no studies 

available on the implementation of NSGA-II to optimise the ALB-E with resource constraint 

and this has motivated the researchers to conduct the present study. 

1.4 RESEARCH OBJECTIVE  

The objectives of this research are: 

i. To study the assembly line balancing (ALB) problem and establish a mathematical model 

for ALB with resource constraints. 

ii. To propose and optimise suitable optimization algorithm for the ALB with resource 

constraints. 

iii. To validate the mathematical model and optimisation of algorithm through an industrial 

case study. 

 

1.5 RESEARCH SCOPE 

The scope of this research are stated as follow: 

i. This research studies on the optimisation of Assembly Line Balancing with resource 

constraint. The scope of problem is limited to three version of ALB problems: 

a. A simple ALB type E problem (ALB-E) with resource constraints.  

b. Two-sided ALB (2S-ALB) with resource constraints. 

c. Mixed-model ALB (MMALB) with resource constraints. 
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ii. In this research, different optimization algorithms are tested for different ALB problem 

types. However, the algorithms are limited to three main metaheuristics; Genetic 

Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO). 

 

iii. The validation method of the optimised algorithm is conducted using test problems 

from literature. In addition to that, the algorithm and mathematical model are validated 

through an industrial case study to ensure the applicability of the optimisation results. 

The industrial case study is only focused on and conducted in an electronic company. 

 

1.6 SIGNIFICANCE OF RESEARCH  

By achieving the aforementioned objectives, the research will increase the efficiency 

of assembly process. This research targets to reduce the number of workstation in an assembly 

as well as to minimise the cycle time by managing the number of resource used. Lower cycle 

time and number of workstation used will enhance the line efficiency. Apart from that, by 

considering the resource constraints, the resource usage will be significantly reduced in an 

assembly process.  

By proposing an efficient way using the proposed algorithm and mathematical model 

to assemble a product, the long term implication of this research will be reflected on the 

enhanced industrial productivity. The modelling phase involves the steps to transform a product 

into a precedence diagram and also the steps on how to transform the precedence diagram into 

a digital format language that can be understood by a computer. Then, the NSGA-II will find 

the optimal solutions according to the objective functions to assemble a product. 

 



5 
 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter serves as a platform to review literature. The literature for this topic is presented 

in two papers as follow: 

1. Jusop, M. and Ab. Rashid, M.F.F. (2015), “A Review On Assembly Line Balancing 

Type-E Problem”, IOP Conf. Series: Materials Science and Engineering, vol. 100, 

012005. 

2. Abdullah Make, M.R., Ab. Rashid, M.F.F. and Razali, M.M. (2017), “A Review of 

Two-Sided Assembly Line Balancing Problem”, The International Journal of Advanced 

Manufacturing Technology, vol. 89, Issue 5, pp. 1743-1763 (ISI IF=1.568). 
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Abstract. Simple assembly line balancing (SALB) is an attempt to assign the tasks to the 

various workstations along the line so that the precedence relations are satisfied and some 

performance measure are optimised. Advanced approach of algorithm is necessary to solve 

large-scale problems as SALB is a class of NP-hard. Only a few studies are focusing on simple 

assembly line balancing of Type-E problem (SALB-E) since it is a general and complex 

problem. SALB-E problem is one of SALB problem which consider the number of workstation 

and the cycle time simultaneously for the purpose of maximising the line efficiency. This paper 

review previous works that has been done in order to optimise SALB-E problem. Besides that, 

this paper also reviewed the Genetic Algorithm approach that has been used to optimise 

SALB-E. From the reviewed that has been done, it was found that none of the existing works 

are concern on the resource constraint in the SALB-E problem especially on machine and tool 

constraints. The research on SALB-E will contribute to the improvement of productivity in real 

industrial application.  

1. Introduction 

An assembly line is a manufacturing process comprises of a sequence of workstations in which a set of 

necessary task to assemble a product are performed. The development of assembly is system usually 

used in the production of goods in the industry. The idle time and the number of workstations on the 

production line have to be minimised whereas the line efficiency has to be maximised so as to achieve 

a balance line. 

The decision problem of optimally partitioning the assembly task among the workstations with 

respect to some objective is known as Simple Assembly Line Balancing (SALB) [1]. This problem 

intends at grouping assembly operations which have to be performed to produce final products, and 

assigning the groups of operations to workstations, so as to make sure the total assembly time required 

at each station is nearly the same and the precedence constraints between operations are respected [2]. 

SALB is a type of NP-hard optimisation problems which means that when the number of assembly 

task is increased, the feasible solution will rise staggeringly [3-5]. Advanced approach of algorithm is 

necessary to solve large-scale problems. 

SALB can be classified into two categories (i) Simple Assembly Line Balancing Problems 

(SALBP) (ii) General Assembly Line Balancing Problems (GALBP) [6, 7]. The most well-known 

assembly line is called simple assembly line balancing problem. Simple assembly line balancing is 

considered when the same product is running on the line. This type of problem is classified into four 

groups with respect to the objectives function [6, 8].  
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 Simple assembly line balancing Type-1 (SALB-1) aims to minimise the number of workstations on 

the line for a fixed cycle time.  

 Simple assembly line balancing Type-2 (SALB-2) aims to minimise the cycle time for fixed 

number of workstations on the line.  

 Simple assembly line balancing Type-E (SALB-E) aims to maximise the efficiency of the line 

simultaneously minimising the number of workstations and the cycle time.  

 Simple assembly line balancing Type-F (SALB-F) aims to determine a feasible line for a 

combination of the number of workstations and cycle time.  

Other problems which are not included in simple assembly line are considered as generalised 

assembly line balancing problems. Mixed-model assembly line balancing (MALBP) or mixed-model 

sequencing problem (MSP) and also U-line balancing problem (UALBP) are categorised as GALBP 

[7]. The classification of assembly line balancing problems is illustrated as in figure 1. 

 

 
Figure 1. Classification of assembly line balancing problems. 

 
Most of previous researches are focusing on SALB-1 [5, 6, 9, 10] and SALB-2 [2, 11-13]. Only a 

small number of previous research study on SALB-E as it is more complicated compare with SALB-1 

and SALB-2. Study on SALB-E need to consider multi-objective functions instead of single objective 

in both SALB-1 and SALB-2. In real manufacturing scenario, it is better if we consider both 

parameters; minimised the number of workstations and minimised the cycle time for the purpose to 

maximise the assembly efficiency.  

This paper reviews the previous study on simple assembly line balancing Type-E. The rest of the 

paper consists of problem modelling and objective function, SALB-E optimisation algorithm, and 

genetic algorithm for SALB-E. Finally, conclusion and suggestion for future research are addressed.  

2. Problem modelling and objective function 

Simple Assembly Line Balancing of Type-E Problem (SALBP-E) has been reviewed by Gurevsky et 

al. under dissimilarities of task processing times [14]. The research on stability of feasible and optimal 

solutions for SALBP-E is presented in this paper. Two heuristic procedures are proposed and 

evaluated on certain targets in order to find a concession between the two goal functions. Polynomial 

time algorithm has been proposed so as to compute the stability radius of feasible balances. 

The paper presented by Suwannarongsri & Puangdownreong  proposed a combination of partial 

random permutation (PRP) method and an adaptive tabu search (ATS) in an attempt to specify the 

optimum solutions for the assembly line balancing problem [15]. The researcher has considered the 
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simple assembly line balancing in the work with four objective functions (i) minimise the number of 

workstations, (ii) minimise the idle time, (iii) minimise the workload variance and (iv)maximise the 

line efficiency. The equation (1) is used to represent the line efficiency. 

 

              (1) 
 

where : Line efficiency 

 : Number of workstations 

: Cycle time 

: processing time of the 
th 

workstation 

 

A test against three benchmark single-model SALB problems such as Buxey, Sawyer, and 

Warnecke on actual SALB problem has been conducted by the researcher to assure the efficiency of 

the proposed multiple-objective method. The results shows that the proposed method is efficient for 

multiple-objective compare to the single-objective.  

Previous study by Scholl & Becker stated that there is no direct method to solve the SALBP-E [6]. 

That type of model can be solved by a search method; the combination of the number of stations  

and the cycle time  which is feasible for the efficient line is chosen among the others or, the value of 

required line capacity as in equation (2) should be minimal. 

 

                   (2) 

 

where   is line capacity 

 

The review published by Wei & Chao   are focused on SALBP-E in order to optimise the line 

balancing efficiency as well as minimising the idle time [16]. This objective can be achieved by 

minimising the number of stations and the cycle time. SALBP-1 and SALBP-2 models are combined 

by the researcher in order to develop the SALBP-E model. In SALBP-1, the number of stations is 

minimised with fixed cycle time. This model is re-defined to SALBP-1-i with the intention of 

determining the minimum number of stations. The goal of modified model SALBP-2 is to ensure the 

minimisation of cycle time  with a fixed number of workstations . The efficiency of the line is 

formulated as equation (3): 

 

                                               (3) 

 

where   is the total time of all tasks      

   

In order to maximise the line efficiency, the optimal number of workstation must be obtained by a 

given . The value of   must be less than or equal to the total task times and at the same 

time it also should be greater than or equivalent to the largest task time in data. Only one workstation 

will be required whenever the value of  is exceed or the same as total task times. No solution 

will obtained as the value for  is less than or equivalent to the largest task time in data. The 

respecting conditions are used for .  

 

 

If  then ,  thus, Balance loss = 0 

If , no solution 
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After the value of ctmax has been set, the optimal number of workstations  can be attained by 

using the spreadsheet. The value of  lies between and  and it has been calculated as 

equation (4) and equation (5): 

 

     (4) 

 

                                                           (5) 

 

                 

where  

 

In another work, Zacharia & Nearchou minimised the number of workstations  and cycle time  

using fuzzy task processing times so-called as f-SALBP-E [17]. The objective functions of the 

problem are to maximise the efficiency of the line, simultaneously minimising the number of 

workstations  and the cycle time . The fuzzy efficiency ě of the line is linearly dependent with 

summation of fuzzy processing times of all the task ṫsum. It is also can be attained by minimising the 

product of number of workstations and fuzzy cycle time of the line. The line efficiency function is 

represented by equation (6): 

       (6) 

 

where  : total sum of the fuzzy processing time of all the tasks 

                    : fuzzy cycle time of the line      

       

The uncertainty and variability of task processing time and cycle time are presented by triangular 

fuzzy numbers (TFNs). A heuristic method based on Genetic Algorithm (GA) has been developed to 

solve the f-SALBP-E as it is a type of NP-hard optimisation problems. A two-phase GA is used for the 

purpose to solve the problem. In this approach, the optimal solution found from the first run is used to 

generate the early population of the binary run. There is no resource constraint being stated in the 

study. By considering the fuzzy processing time for the single assembly line balancing problem, a 

formulated mathematical model is performed and thus minimised the number of workstations and the 

fuzzy cycle time on the line. 

A new genetic algorithm has been presented by Al-Hawari et al. to solve multi-objective simple 

assembly line balancing problem [18]. Minimisation of number of workstations, minimisation of 

workload variation, and maximisation of line efficiency are considered as the objective functions in 

the study. A Multi-Assignment Genetic Algorithm (MA-GA) has been proposed by the researcher 

with the combination of forward, backward, and bidirectional methods. The researcher concluded that 

the proposed algorithm has shown a better performance in solving multi-objective simple assembly 

line balancing for a larger size of problem. Equation (7) represents the line efficiency,  which is 

supposed to be maximised. 

                                                                                         (7) 

 

The efficiency of the line can be maximised by minimising both variables; the actual number of 

workstations  and the actual cycle time of the assembly line  whereas the sum 

of handling time of task  is fixed. The minimum number of actual workstations  can be obtained 

using the mathematical formulation as stated in equation (8): 
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    (8) 

 

 
 

 
 

Suwannarongsri et al. has proposed a combination of tabu search (TS) and genetic algorithm (GA) 

to identify the solution for simple assembly line balancing problem [13]. The goals of the problem are 

to (i) minimise the number of workstations, (ii) minimise the workload variance, (iii) minimise the idle 

time and (iv) maximise the efficiency of the line. The maximum line efficiency can be calculated by 

using equation (9): 

 

                                                                                                      (9) 

 

where n      : number of workstations 

                : processing time of  workstation 

            : actual cycle time 

             : line efficiency 

 

3. SALB-E optimisation algorithm 

A two-part genetic algorithm (GA) is established to solve f-SALBP-E [17]. The first part of GA 

started with generating initial population, followed by performing the best solutions until it reached 

termination conditions. The optimal solution achieved from the first attempt is used as the source for 

the early population in the binary part for the purpose to find a better performance. The algorithm rises 

in a good feasible solution which is approximately to the exact solution in an acceptable time period.  

The algorithm proposed by Al-Hawari et al. uses the combination of forward, backward, and 

bidirectional methods of task assignment [18]. These methods are used to assign each of tasks in a 

chromosome to workstations. Priority-based encoding, crossover, mutation, sequence encoding, 

decoding (assignment), evaluation, and selection are the primary procedures in MA-GA. As 

mentioned previously, the researcher simplified that the proposed MA-GA can solve problem for a 

larger size. It provides many feasible solutions of task assignments by combining the three methods 

simultaneously instead of combine using the only forward method. MA-GA will also increase the 

probability of identifying the optimal solution. 

Suwannarongsri et al. used TSGA-based method which is the combination of TS and GA method 

to find the solutions for simple assembly line balancing problem. The researchers have performed a 

test of all type of SALBP problems from a literature against the proposed method. The result showed 

that the proposed TSGA-based method is capable in producing better solutions compared with 

conventional method [13]. 

Most of previous researcher used genetic algorithms (GAs) as an optimisation technique especially 

in SALB problem [2, 11, 12, 19, 20]. However, only a small number of researchers are focusing on 

simple assembly line balancing of Type-E problem [13, 14, 17]. As a consequence, the 

implementation of GA method has not been widely publicised in SALB-E itself. 

 

4. Genetic algorithm for SALB-E 

Genetic Algorithms (GAs) are mainly used by researcher for optimising large and complex problem 

specifically in SALB problem [2, 21-24]. GAs used a direct random search as an optimisation method 
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for complex problem with the aim of finding optimum solutions [21]. The application of genetic 

algorithm is quite popular compare with the simulated annealing and ant colony optimisation [25]. 

In [17], the design of GA comprises of chromosome’s encoding, a decoding mechanism, an 

evaluation mechanism, generation of early population, and generation of offspring. The solution for f-

SALBP-E is characterised by chromosome’s encoding, which is consists of tasks priorities (first part 

of the chromosome) and number of workstations on the line (binary part of chromosome). The tasks 

are then assigned to workstations by using a suitable decoding scheme. In evaluation mechanism, an 

individual chromosome with higher fitness value tends to have higher probability to be selected. The 

feasible tasks provide a better solution for the problem as it has low values of total fuzzy idle time. 

The early random population undergoes selection, crossover, and mutation process to produce new 

generation. The optimum solution obtained from the first part is used as the source for the early 

population in second part for the aim of finding a better solution. A roulette wheel method is used in 

selection process. Chromosomes with higher fitness value will be selected to produce new population. 

Crossover operator is developed to produce new chromosomes from two parents’ chromosomes by 

changing the tasks order. In GA, mutation mechanism worked by flipping or swapping an only 

chromosome to produce a single new chromosome. 

Previous paper presented by  Al-Hawari et al. used three assignment methods (i) forward (ii) 

backward and (iii) bidirectional in Multi-Assignment Genetic Algorithm (MA-GA) [18]. A forward 

assignment method is the mainly used for solving SALBP. By using this technique, the works are 

allocated sequentially to workstations by taking into consideration the cycle time constraint. In 

backward assignment, a flipping method is used. The task sequence chromosome is flipped to be 

assigned using forward assignment method whereas, the bidirectional assignment method used both 

forward and backward directions. From the acquired result, bidirectional assignment attained the best 

solution. 

Three genetic operators that have been used in GA are (i) crossover (ii) mutation and (iii) selection. 

The researcher used weight mapping crossover operator (WMX), swap mutation operator, and roulette 

wheel selection (RWS). The crossover operates two chromosomes (parent) to produce a new 

chromosome. One-point WMX is used in the proposed MA-GA and one crossover cut has been 

pointed at anyplace along the length of the parent, producing two offspring that have their genes. In 

the research, the swap mutation operator is used in order to keep the genetic diversity. In selection 

step, the roulette wheel selection method has been applied to produce a new population.  The 

chromosomes with higher fitness value get more chances to be selected. To avoid the loss of the best 

chromosome(s), an elitism approach is adopted while using the RWS. 

Suwannarongsri et al. used TS method to determine the number of tasks assign in each workstation 

whereas GA is employed to assign the sequence of tasks for each workstation by considering the 

precedence constraints [13]. The searching process of the GA is comparable to the nature development 

of biological beings. The flowchart of GA is summarised as in figure 2. 
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Figure 2. Flowchart of genetic algorithm. 

 

5. Conclusion 

This paper reviewed the optimisation algorithm and techniques used by the previous researcher on 

SALB-E. From literature review that have been conducted, it can be concluded that the application of 

genetic algorithm (GA) as an optimisation technique are on the rise due to its ability to solve a large-

scale optimisation problem as well as searching near optimal solution. 

Only a few studies are focusing on SALB-E as it is a general and complex problem. Up till now, 

none of them are concern on the resource constraint in the problem especially machine and tool 

constraint. Future research direction could be to consider recourse constraint in the optimisation of 

SALB-E itself. 
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Abstract Assembly line balancing (ALB) is concerned with
assigning tasks within an assembly line to meet the required
production rate for optimization purposes. On the other hand,
two-sided ALB performs double-sided assembly operation on
a single assembly line. In this paper, we have focused the
survey on two-sided assembly line balancing (2S-ALB) re-
search problems. The numerous factors mentioned in 2S-
ALB literature were actually based on problem resolutions,
and this paper will quote any preferred literature considering
the frequent citation. In particular, this review explores in de-
tail the ALB problems, optimization methods, objective func-
tions, and specific constraints used in solving 2S-ALB prob-
lems. Among the purposes of ALB problems is that it tradi-
tionally focuses on simple ALB with various engaging ap-
proaches. General ALB comes second because of its complex-
ity and nondeterministic polynomial (NP)-hard-classified
problems. However, due to the current manufacturing issues,
GALB problems, such as 2S-ALB, are forced to be examined
and this comprehensive literature will specify anything neces-
sary for the optimization purposes. Finally, future research
direction has been discovered and put forward as the
suggestion.

Keywords Assembly line balancing . Two-sided . Artificial
intelligence

1 Introduction

In a modern manufacturing system, assembly line balancing
(ALB) plays a vital function, especially in the production line.
The installation of an assembly line is a long-term decision and
requires large capital investments. It is important that such a
system is designed and balanced so that it is able to work as
efficiently as possible [1–3]. The assembly line was introduced
by Henry Ford in his automobile plants. Since then, many
developments through researches have been introduced [4].

Generally, from the feature of the product and technical
operational requirement, there have been differences in the
line balancing problem classifications made by the re-
searchers. For instance, [5] classified the line balancing prob-
lems into simple and general types of problems. The similar
classification was also used by [6, 7]. Besides that, the line
balancing also was classified according to the model number
(single-model and multimodel) and the nature of task times
(deterministic and stochastic) by [8–10]. On the other hand,
[11, 12] classified the line balancing problems into two types:
one-sided and two-sided ALB problems.

Both two types of assembly lines are quite famous among
researchers. One-sided assembly, or commonly called single-
sided assembly line, was examined extensively in the past few
decades. The assembly line is a flow-line production system in
which a series of stations are arranged along a conveyor belt or
a similar mechanical material handling system [13]. The sta-
tions are often prepared in a single line which is long enough
to complete the desired product with different types of tasks or
assembly processes, as illustrated in Fig. 1. Frequently, every
station only has one operator to manage each task and fully
run the assembly line. The operator cannot leave the station
when the assembly process is running.

Although the focus of researches are always on one-sided
assembly lines, two-sided assembly lines are recognized to be
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crucially important too, especially in the assembly of the
large-sized products like cars, busses, or trucks [14]. Two-
sided assembly line or often called the double-sided assembly
line is absolutely different compared to the one-sided or
single-sided assembly line. In the two-sided assembly lines,
the operating direction of the assembly tasks will be carried
out on the same product in parallel at both the left and right
sides of the lines. Due to the use of both sides of the lines, the
tasks will have additional operating direction restrictions. The
directions can be classified into three types: the left side (L),
the right side (R), and either side (E) [13, 15, 16]. Figure 2
illustrates the example of a two-sided assembly line. One of
the main differences between the single- and two-sided assem-
blies is the restriction on the operating directions. Some of the
assembly operations can be performed at only one of the sides,
while others can be performed on either side of the lines [17].
The two-sided assembly line used both of the lines to enhance
the assembly performance of a complex production system
such as in automotive industries.

In industry, line balancing is very important in taking
advantage of them. Unbalanced lines may incur unneces-
sary cost [4]. Hence, ALB was raised among researchers
in order to satisfy the workload and increase the opera-
tional line efficiency [18]. The activity of balancing oper-
ations has appeared since 1955 [4]. In order to increase
line efficiency, the balancing operations are responsible to
determine the set of tasks. ALB is generally classified into
two, either simple assembly line balancing (SALB) or
general assembly line balancing (GALB) [6, 10].
Figure 3 illustrates the ALB classification and problem-
type examples.

Normally, SALB studies only on a single side of the as-
sembly line (Fig. 1). Even so, SALB problems have been
categorized into some classes. First, SALB in type 1
(SALB-1) will perform the minimization of workstation num-
bers for a given cycle time as the objective [19, 20]. Second,
type 2 assembly will consider the minimization of cycle time
with the given number of workstations [19, 21]. Next is SALB
for type E problems which is different in line configuration
from the single-sided ALB [22–25]. This SALB-E
type is significantly believed to have its own advantage.
Another class in SALB is type F that was categorized by
Kriengkorakot and Pianthong (2007) in their studies [10].

SALB type F also has been discussed in the Assembly Line
Balancing book by Micieta B. and Stollmann V. (2011) [26].

On the other hand, another ALB class also has been justi-
fied in general form (GALB) [27]. First was by the two-sided
assembly line balancing (2S-ALB) [28–31], followed by the
mixed model of ALB (MALB) [4, 32–35], and then the U-
type of ALB [36–40]. The GALB of 2S-ALB will be
discussed in detail in another section on the ALB problems.
The MALB problem is normally for high production with
multiple types of products [41]. However, in GALB, there
are many other types of assemblies that have been introduced
by other researchers [42]. It was also included with combina-
torial problem types. The GALB is always considered as the
nondeterministic polynomial (NP)-hard problem due to its
complexity.

The development of 2S-ALB in GALB seems more crucial
over single-sided assemblies. Two-sided assembly lines were
introduced in 1993 by Bartholdi [43], who conducted an iter-
ative program with balancing algorithm using the first fit heu-
ristic. Then, consequently, it was continued by other re-
searchers [44–46], with genetic algorithm as the solving ap-
proach. Meanwhile, [47] has proposed an ant colony algo-
rithm to solve two assembly line balancing problems focusing
on the minimization of workstations and the maximization of
work relatedness. In addition, the simulated annealing for a
two-sided assembly problem are successfully presented in
[48, 49] and again for mixed-model two-sided assembly line
balancing problem in [50].

In previous conducted research, the objective function has
also been given considerable attention. In [4, 13, 46, 50–52],
the minimizing number of workstations and mated stations are
selected as the applied objectives. Besides, [15, 36, 53, 54]
have adopted the minimizing number of workstation and line
length as their preferred objective function. Apart from that,
multiobjective function is also presented in studies by [16, 29,
48, 55, 56]. A continuous evaluation toward 2S-ALB con-
straint for single [17, 30, 46, 47, 56] and multiple considered
constraints [29, 49] is addressed very well. This paper reviews
on 2S-ALB problems to address problem types, optimization
methods, objective functions, and considered constraints.
Many optimization problems have been successfully studied
by other researchers. Hence, this review will discuss through
their literature and studies.

station 1 station 2 ….. station (n-1) station (n)

Fig. 1 Single-sided assembly line

station 1 station 3 ….. station (n-3) station (n-1)

Conveyor

station 2 station 4 ….. station (n-2) station (n)

Fig. 2 Two-sided assembly line
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2 Assembly line balancing problem

The assembly line balancing problem (ALBP) was first math-
ematically formulated by Salveson in 1955 [26, 29]. ALBP is
the problem of assigning tasks to stations in such a way that
one or more objectives are optimized, subjected to some spe-
cific constraints. Since then, many researches on assembly
lines have included the exact solution methods, heuristics,
and metaheuristic approaches reported in the literature. The
heuristic method is actually an answering method to produce a
solution that applies the trial-and-error strategy with a reason-
able functional period [57]. On the other hand, the
metaheuristic approach is an independent solution strategy
that is believed to resolve any optimization problem. The
ALBP assigns tasks in an ordered fashion to every worksta-
tion by satisfying specific constraints [58–60]. The related
studies on ALB are classified in various types of problems.
Since this study considers 2S-ALB as the main problem, the
other ALB problems will also be discussed.

2.1 General two-sided assembly line balancing

Two-sided assembly line was introduced for the first time by
Bartholdi in 1993 [16, 59] to produce high volumes of large-
sized products. Typically, the 2S-ALB production of bus and
trucks by Kim, Kim, and Kim in 2000 [44], automobile by
Lee et al. in 2001 [11], and a domestic product by Baykasoglu
and Dereli (2008) [47] studied on the problem to find the best
solution. Since then, numerous researches have brought up
different methods, either heuristic or metaheuristic as the so-
lution approach.

As shown in Fig. 2, 2S-ALB generally has a pair of
workstations/stations facing each other almost in all operation
lines. A pair of stations facing each other, e.g., station 1 and
station 2, is called “mated station,” and one of the stations is
called “companion” [44]. Every operating station will perform
a different task despite the stations being opposite of each
other. Large assembly production industries such as cars and
trucks need this type of assembly lines for them to perform the
assembly operation at a given time to achieve their productiv-
ity target. The operational process in 2S-ALB will provide
several advantages compared to the single-sided ALB [14].

The comparisons between 2S-ALB and single-sided ALB
are remarkably different. As indicated earlier, 2S-ALB has a
more complex layout against single-sided ALB. Figure 4 il-
lustrates the 2S-ALB layout with the left and right sides of the
workstation. The number in the boxes indicates the task on
every side of the workstation. For a single-sided ALB, the
sides are definitely not crucially tough, because it only has a
single-side layout of the operation line [29, 61]. In addition,
the task distribution between the compared ALB problems
differs as well. Having two preferred sides of the assembly
line, 2S-ALB definitely needs to distribute every task accord-
ingly. For a single-sided assembly, the precedence relation is
considered appropriate with all the tasks assigned to a work-
station that can be carried out without any interruption.
However, its difference from 2S-ALB is that some of the tasks
assigned could be delayed after the assigned task of its com-
panion [30, 43], or commonly known as idle time [48]. The
shaded area in Fig. 4 denotes the idle time which is unavoid-
able in completing the 2S-ALB processing product.

Throughout the 2S-ALB installation, it will lead to some
valuable advantages of the assembly lines [45], such as the
following:

1. Shortens the assembly line
2. Saves some spaces on the assembly lines
3. Reduces the cost of tools and fixtures
4. Reduces the throughput time
5. Reduces material handling

Based on these advantages, it is considered to have the
ability to maximize the productivity of the assembly lines. In
reality, high attention has been given for the study of 2S-ALB

Assembly Line Balancing 
(ALB)

Simple Assembly Line 
Balancing (SALB)

General Assembly Line 
Balancing (GALB)

SALB-1 SALB-2 SALB-E 2S-ALB MALB UALB OtherSALB-F

Fig. 3 ALB classification

Side

L 1 3
R 2

L 4 8
R 5 6 7 9

1 2 3 4 5 6 Time

Fig. 4 2S-ALB task distribution layout
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problems. Two decades have passed since it was firstly intro-
duced by Bartholdi for his large volumes of vehicle produc-
tion [43]. Initially, the aim is to simplify and facilitate the
manufacturing industries of the 2S-ALB functional capabili-
ties. Up until now, the studies focusing on 2S-ALB problems
continue to attract participation among public researchers.
Nowadays, 2S-ALB has also been implemented in other
manufacturing industries, for instance, in furniture and elec-
trical appliance production [4]. Moreover, the 2S-ALB prob-
lem complexity is also growing day after day, with the com-
bination and hybridization of the ALB problems. Therefore,
currently, better performance of optimization algorithm is fa-
vorably built by researchers in line with the 2S-ALB progress.
Besides, introducing and emphasizing a new framework for
2S-ALB problem solutions are also involved.

In 2S-ALB studies, researchers have stated and applied
many different kinds of approaches successfully. For example,
Purnomo and Wee (2014) [30] proposed the harmony search
method to solve 2S-ALB problems. On the other hand, in the
[44–46] studies, the genetic algorithmmethod was performed.
The simulated annealing algorithm was also applied in some
other studies [48, 49]. Besides, the heuristic approach, which
is a problem-dependent method, has been addressed as well
for 2S-ALB problems [11, 47, 51, 62].

2.2 Two-sided mixed-model assembly line balancing

The mixed-model line balancing problem was first introduced
by Thomopoulos in 1967 [55]. Considering today’s competi-
tive market, the MALB has becomemore advantageous rather
compared with a single model assembly line balancing. A
single model assembly line only designs a single standardized
homogenous product, while the mixed-model assembly lines
are widely applied to produce two or more product models
depending on the customer needs [4]. In other words, a mixed-
model assembly line is designed to produce a similar set of
products in the different mixed-ordered model.

The existing research for the MALB problem addressed
single- and multi-objective problems under various assembly
line considerations. Commonly, in configuring a mixed-model
assembly line, a lot of goals and objectives are considered.
There are two goals that have been studied by most re-
searchers [63] in balancing the mixed-model assembly lines:

1. Leveling workloads for every station on the line
2. Leveling part usage on the line

The first goal of leveling the workload for all stations on
the line is attempting to achieve a balanced workload at spe-
cific times for each assembly task, while the second goal is
attempting to minimize the variation used by the different
parts over time.

In order to fill customer requirement, MALB is applied
widely in a range of industries; for instance, in the production
of electrical appliances, furniture, and clothing [4]. In
automotive industries, the mixed-model assembly line was
broadly introduced in combination with the two-sided assem-
bly line. For example, [4, 14, 16, 50] studied a two-sided
mixed-model assembly line balancing established with a dif-
ferent solution balancing approach. These optimally gave a
positive effect on the large-sized high-volume production in-
dustries such as in automobile and appliance factories.

2.3 Two-sided parallel assembly line balancing

The parallel line configuration idea in ALB was started by
Suer and Dagli in 1994 [59]. The combination of two or more
lines placed parallel to each other became an idea of sharing
tools and fixtures to complete an entire job. The balancing
idea of P-ALB was studied by Gökçen, Agpak, and Benzer
in 2006 [64] with the title Balancing of Parallel Assembly
Lines. They proposed a new procedure with a mathematical
model on the single-model assembly line balancing problem
with parallel lines. Since then, the researcher broadly contin-
ued the study on the P-ALB problem. Various approaches and
ideas to solve the P-ALB problem then emerged. Cercioglu,
Ozcan, Gokcen, and Toklu (2009) proposed a simulated an-
nealing approach for solving the P-ALB [65]. Meanwhile,
Ozcan, Cercioglu, Gokcen, and Toklu (2009) firstly utilized
a multiobjective Tabu search algorithm method on parallel
assembly lines [66]. A novel ant colony optimization (ACO-
based algorithm also became one of the methods for solving
the P-ALB problems by Baykasoglu, Ozbakir, Gorkemli, and
Gorkemli in 2009 [59, 60].

Parallel assembly lines, usually built with two or more
lines, are located parallel to each other. This provides the fol-
lowing advantages [64] to the lines:

1. Shortens the assembly lines
2. Steadily runs during breakdown

By installing parallel configuration of the assembly lines, it
definitely shortens the assembly lines. Besides, being able to
locate only one operator in between the adjacent station helps
the operator to perform both tasks. These completely utilize
the workers on the assembly lines [60]. Another advantage of
parallel assembly lines is that it could still be run steadily even
when a workstation faces a problem or breakdown [64]. A
single assembly line will stop the assembly operation if any
workstation faces a problem, but P-ALB will continue to run
and perform the task at the other adjacent lines. The advan-
tages of parallel assembly lines over a single assembly line
were also discussed by Ozcan, Gokcen, and Toklu (2010)
[66]. It is able to provide much more benefits:
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1. It can help to produce similar products or different models
of the same production of the adjacent lines.

2. It can reduce the idle time and increase the efficiency of
the assembly lines.

3. It is able to make production with a different cycle time
for each of the lines.

4. It can improve visibility and communication skills be-
tween operators.

5. It is also able to reduce operator requirements.

The combination types of production lines for the parallel
and two-sided lines were already studied. The parallel two-
sided assembly line balancing problem (PTALBP) was firstly
developed by Ozcan, Gokcen, and Toklu in 2010 [66], focus-
ing on the large-sized productions in different industries.
Other studies on the PTALB problem were reviewed by
Ağpak and Zolfaghari (2015) [53] and Kucukkoc and Zhang
(2015) [60].

3 Optimization method

Since 1955 by Salveson, various researches regarding the
ALB solving problem were introduced [27]. The researchers
focused on improving the assembly line, so that it was able to
work efficiently. In 1993, Bartholdi first presented his idea to
address the 2S-ALBPs. He discussed some theoretical prop-
erties of the 2S-ALB and proposed the first-fit heuristic algo-
rithm method of assigning tasks to workstations [15, 30].
Since then, numerous researches concerning the ALB solution
problems using different methods have been introduced. The
mathematical model and heuristic and metaheuristic methods
were developed to solve the ALB for different problem types.
Table 1 summarizes the optimization method used in previous
researches of the 2S-ALB problems. Meanwhile, Fig. 5 below
shows the number of research papers that have successfully
implemented the different types of algorithm by using differ-
ent soft computational methods.

The number under the graph (Fig. 5) represents the differ-
ent types of optimization in the 2S-ALB research paper (see
Table 1 legend). Mostly all of these metaheuristic algorithm
methods were inspired by natural phenomena. Among them,
the effectiveness in solving the NP-hard optimization problem
became necessarily important. The ALB problem type be-
came complex day after day and the high capability of the
algorithm method seems more needed. From the survey, the
most (metaheuristic) frequent optimization algorithms used
are genetic algorithm (GA) and ant colony optimization
(ACO) algorithm (used five times from 30 papers) followed
by simulated annealing (SA). The high applied value of GA
and ACO in Fig. 5 shows the popularity and stability of these
methods in solving the 2S-ALB problems. Others might be

less studied because the relatively new algorithm and efficien-
cy of the method was not well proven yet.

3.1 Genetic algorithm

Genetic algorithm was formally introduced in 1970s in the
University ofMichigan by JohnHolland. GA has been proven
to be very efficient and powerful in a wide variety of applica-
tions [44]. It provides a method to find the best sequence of
assembly process among the possible sequences that have
been generated either in constrained or unconstrained condi-
tion. GA is also considered as one of the artificial algorithm
methods or artificial intelligence-based algorithms in solving
the ALB problems. The accomplishment of GA in solving
difficult and complex combinatorial problems is seen to have
outperformed the other algorithms in terms of solution quality
and convergence speed [46]. Genetic algorithm is believed to
be able to find the optimal or nearly optimal assembly plans
for the model structure generated by analyzing the small num-
ber of possible solutions.

Algorithm starts with a set of solutions (represented by
chromosomes) called population. Solutions from one popula-
tion are taken and used to form a new population [32]. This is
motivated by a hope that the new population will be better
than the previous one. Solutions which are selected to form
new solutions (offspring) are selected according to their fit-
ness—the more suitable they are, the more chances they have
to reproduce. This process is repeated until some conditions
(improvement of the best solution) are satisfied.

In solving 2S-ALB problems, many researchers have used
the GA method [12, 44–46, 60]. The reputation of GA was
first addressed by Kim and Kim et al. [44, 46] in solving the
2S-ALB problems. They successfully implemented the GA
method with the objective of minimizing the number of sta-
tions with a given cycle time. In 2009, Song et al. used a
mathematical model and GA for the 2S-ALB problem with
different objectives of minimizing the cycle time [45]. Both
studies have inspired other researchers to implement GA in
solving other types of balancing problems in assemblies.

Many compliments and praises were given to the perfor-
mance of the GA method in solving different kinds of com-
plex combinatorial problems nowadays [32]. However, some
weaknesses arise since GA has been used in the ALB prob-
lems [6]. The premature convergence turned into an issue [68,
69]. This appears to be due to that GA sequences heavily
depend on the initial generating sequence. Besides, it requires
a high amount of computational time in order to find the final
solution [70]. Conversely, in a study by [71], the GA method
behavior has been discussed to greatly depend on numerous
control parameters and only used simple test data. The disad-
vantage and weaknesses of the GA method should be consid-
ered for future research direction.
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3.2 Ant colony optimization

Ant colony algorithm is one of the most famous metaheuristic
methods that have already been used successfully for solving

various problems in ALB. It was introduced in the early 1990s
by Marco Dorigo [72]. The ACO algorithm method studied
by [6] was also considered to have high reputation following
under the GA fame in solvingmany types of ALB problems. It

Table 1 Method of optimization
for 2S-ALB problems Author/s, Year Ref. Optimization method

1 2 3 4 5 6 7 8 9 10 11 12 13

Yuan, Zhang et al. 2015 [4] x

Kucukkoc and Zhang 2015 [59] x

Kucukkoc and Zhang 2015 [60] x

Chiang, Urban et al. 2015 [15] x

Ağpak and Zolfaghari 2015 [53] x

Tuncel and Aydin 2014 [29] x

Purnomo and Wee 2014 [30] x

Kucukkoc and Zhang 2014 [55] x

Kucukkoc and Zhang 2014 [54] x

Chutima and Naruemitwong 2014 [56] x

Purnomo, Wee et al. 2013 [12] x

Khorasanian, Hejazi et al. 2013 [48] x

Tapkan, Ozbakir et al. 2012 [61] x

Roshani, Fattahi et al. 2012 [49] x

Chutima and Chimklai 2012 [16] x

Ağpak, Yegül et al. 2012 [36] x

Taha, El-Kharbotly et al. 2011 [46] x

Özbakır and Tapkan 2011 [17] x

Xiaofeng, Erfei et al. 2010 [67] x

Özcan and Toklu 2010 [51] x

Özcan, Gökçen et al. 2010 [66] x

Özcan 2010 [13] x

Simaria and Vilarinho 2009 [14] x

Özcan and Toklu 2009 [50] x

Özcan and Toklu 2009 [52] x

Kim, Song et al. 2009 [45] x

Hu, Wu et al. 2008 [62] x

Baykasoglu and Dereli 2008 [47] x

Lee, Kim et al. 2001 [11] x

Kim, Kim et al. 2000 [44] x

Optimization method: 1—genetic algorithm, 2—ant colony optimization, 3—simulated annealing, 4—bee algo-
rithm, 5—particle swarm optimization, 6—harmony search, 7—teaching learning based optimization, 8—Pareto
biogeography based optimization, 9—lexicographic optimization method, 10—branch and bound, 11—Tabu
search, 12—goal and fuzzy goal, 13—other heuristic methods
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was already assessed to be fit in overcoming and solving even
in high combination problems.

The ACO algorithm was inspired by the behavior of a real
ant colony finding a path between the food source and its nest.
The pheromone trail released by the other ants will be follow-
ed. Each ant from the colony will come out with a different
path. The ants which pick the shortest path will return to the
nest faster; hence, there will be muchmore pheromone trail on
the shortest path. It influences other ants to follow that path
[54]. The pheromone trail of an ant path was considered a
solution in the algorithm, and the performance will be evalu-
ated according to its quality of accomplishment in obtaining
the final execution or solution [55].

Previous studies that successfully presented and used the
ACO method from the literature provided essential trend in
solving the 2S-ALB problems. The study by Baykasoglu and
Dereli (2008) [47] followed by Simaria and Vilarinho (2009)
[14] presented the successful achievement in balancing the
2S-ALB problems. While in 2014, Kucukkoc and Zhang be-
came the first pioneer to address the ACOmethod through the
mixed-model parallel two-sided assembly line balancing
problem with model variations [54, 55]. They were practically
successful in implementing this algorithm method into large-
sized products. Then, in 2015, the knowledge of the type-E
parallel two-sided assembly line balancing problem was intro-
duced [59] for the first time in literature by Kucukkoc and
Zhang in their research; type-E parallel two-sided assembly
line balancing problem: Mathematical model and ant colony
optimization-based approach with optimized parameters.

From the previous published literature, the ACO algorithm
contributed to be competitive in solving different kinds of
ALB problems, despite its strong global search ability.
However, this evolutionary algorithm also holds its own
weakness and limit. For example, the pheromone trail path
made by the ant always evaporates and disappears if the path
is bad [6]. Therefore, it will also cause premature conver-
gence. Nevertheless, the premature convergence in the ACO
algorithm method has been solved by [73].

3.3 Simulated annealing

Numerous studies on ALB performed different approaches on
the optimization method for solving the assembly problems.
The heuristic, metaheuristic, and also exact approach solutions
were introduced and have been reported in literature. The SA
algorithm became one of the leadingmetaheuristic approaches
in solving multiple cases or problems of ALB. It was first
applied by Kirkpatrick et al. in 1983 in solving a combinato-
rial optimization [13].

The simulated annealing algorithm was originally inspired
by the annealing process in metal works [74]. The heating and
cooling process were involved against the material to alter the
physical properties due to the changes in the internal structure.

In the SA optimization method, it was initially set high and
then allowed to cool slowly. The chance of accepting solutions
actually gives the algorithm the ability to find early execution
before generating the optimal solution.

The simulated annealing algorithm in solving the ALB
problem is currently studied by many researchers. The review
of such study was given by [13, 48–50]. They successfully
implemented the SA method in their studies in minimizing or
maximizing something through their objectives. The SA
method provides several advantages in the ALB such as the
reasonable computational time and good performance in de-
termining the optimal solution on every sized problem [49].
This has outperformed other methods in terms of solution
quality.

However, this iterative random search technique (SA) also
has its weakness. The SA method is believed to be able to
jump into a local optimal solution by accepting the bad solu-
tion [13, 50]. This condition will create an opportunity for the
bad solution to be selected as the optimal and final solution.
Other drawbacks in the SA method are stated as follows:

1. The procedure method will stop when the stopping crite-
rion is reached in getting the optimal solution.

2. The initial solution starts with low solution value.

The two above drawbacks need a proper attention with
respect to the 2S-ALB problems and for getting the optimal
solution.

3.4 Other optimization methods

Besides the three optimization methods discussed earlier,
there are other metaheuristic approaches used by researchers
in solving the 2S-ALB problems. These algorithms are the
hybrid honey bee mating optimization (HHBMO) algorithm
[4], bee algorithm (BA) [17, 61], particle swarm optimization
(PSO) [15], teaching learning based optimization (TLBO)
[29], harmony search (HS) [30], Pareto biogeography-based
optimization (PBBO) [56], particle swarm optimization with
negative knowledge (PSONK) [16], lexicographic optimiza-
tionmethod (LOM) [36], branch and bound (B&B) [67], Tabu
search (TS) [33, 66], and goal and fuzzy goal programming
(G&FG) [52]. Otherwise, in some researches, they applied the
heuristic (problem-dependent) approach such as in [11, 47, 51,
53, 62].

As far as the search methods are concerned with the popu-
larity efficiency, other optimization methods become
neglected. However, this is different with the GA and ACO
algorithm methods. They were introduced more than decades
ago and the performance of optimization in various kinds of
ALB problems are well known. The optimization algorithm
recognition is basically based on the performance efficiency
and robustness in solving differently sized (small, medium,
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and large) problems. Hence, it requires a long time for re-
searchers to find and test other methods that are considered
relatively new. Nevertheless, the evolutionary combination of
the optimization method seems to be able to raise the new
algorithm to be getting highlighted through better
performance.

3.5 Comparison of different optimization methods

Among the previous researches, the optimization method in
ALB strongly gives an impact to the industries. Different
methods of optimization either heuristic or metaheuristic suc-
cessfully develop prior to each research study. In ALB prob-
lems, GA, ACO, SA, and other relatively new algorithm op-
timization methods definitely attempt to balance the assembly
line with high values of line efficiency. However, all those
optimizationmethods already serve with their own advantages
and some weaknesses.

A successful GA method has been recently presented with
a complex combinatorial problem with more numbers of stud-
ies possessing the searching method ability. It does not require
examination of all the possible solutions but uniquely, it is still
able to obtain the best feasible result [6]. In [75], GA is also
believed to be able to handle complex and multiple constraint
problems very well, even though the premature converge [76,
77] and high amount of computational time [70, 78] became
an issue. Therefore, another study has been developed to over-
come the raised issues by introducing dynamic partitioning
(DPa) in chromosome [76] and the combination with other
soft computing algorithms [68, 69]. Kucukkoc and Zhang
[60] successfully compared the obtained result with the result
of Gökçen et al. [66]. By this, they have obtained a very
encouraging performance as shown by GA.

Meanwhile, similar to the ACO method, it also contributes
in solving various kinds of discretized ALB problems.
Besides, this method is also believed to directly be able to
present in a completed ACO graph [6, 79]. Furthermore, the
ACO method also appears as the maximum citation paper
after GA in five applied journals (Fig. 5). Despite the ACO
sensation, it also comes with some confusion. In [80], a pre-
mature convergence is stated as a drawback when
implementing the rule of the ACO method. For this reason,
[73] have introduced a summation updating the rule to over-
come this matter. Besides, an adopted particle swarm updating
position has also succeeded in solving this outcome matter
[80]. The hybridization of ACO and PSO method is able to
solve the premature convergence and then significantly reduce
the computational time. Baykasoglu et al. [81] have proposed
a novel ant colony optimization-based algorithm for PALBP.
They compared their test results with three other existing ap-
proaches from the literature to prove the efficiency of the
proposed algorithm.

This forward to the SA optimization method presented on
1983 which is the reasonable period of computational time
being recognized greatly in ALB optimization. This method
outperforms the other methods by allowing faster solving so-
lution even for a larger problem [49]. The high reputation of
the SA method is practically easy to use and extremely popu-
lar in solving practical problems such as job-shop scheduling,
traveling salesman, and timetabling problem [82]. Nowadays,
the SA method is frequently compared with GA, besides hy-
bridization of these two optimization methods. The main aim
of hybridization is to avoid being trapped by a local minima
and to have faster convergence. By this, the advantage of both
methods could be developed [83]. In Cercioglu et al. [65], a
simulated annealing approach in solving the PALBP is pro-
posed. A comparison between the obtained results with the
existing heuristic algorithm proposed by Gökçen, Agpak, and
Benzer (2006) [64] has also been reported.

Besides the three abovementioned methods, there are many
other optimization methods that have successfully shown its
accomplishment. Bee algorithm applied by Ozbakir and
Tapkan [17] presented for balancing the 2S-AL has effectively
compared the optimization result with four other research re-
sults in seven differently sized problems. Considerably, it is
best to know that the GA method has performed better solu-
tions in computational time than other approaches did includ-
ing ACO. This is followed by the PSO started by Kennedy
and Eberhart in 1995 [84]. Although PSO algorithm is rela-
tively new compared with GA and ACO, this method also
holds a good criterion for being selected as an optimization
method. Inspired by the social behavior of birds flocking to-
gether, the PSO has a simple algorithm with a single velocity
formula to evolve and less computational resource compared
with GA [6]. Chutima and Chimklai [16] have compared PSO
with two different optimizations and significantly showed that
results by the PSOmethod were much better with a simple but
robust algorithm performance. This means that the other new
algorithms also show a favorable appearance besides those
former algorithms.

4 Objective function

Objective function is the computed measure used to eval-
uate the performance of assembly line. It is widely used
mainly in decision analysis, operation research, and opti-
mization studies [85]. The objective function is critically
important for a research mainly in the optimization study.
Conversely, in the ALB optimization research, objective
function becomes necessarily important. These will strict-
ly guide researchers to keep their direction in finding the
best solution to their problems. In most studies, the ob-
jective function will define the optimization problems and
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either the tasks or even the installation requirement setup
would need to be minimized or maximized.

All the earlier studies possess their own objective through
their research. Most of them have been studied and used the
multiobjective function approach rather than the single objec-
tive function. Table 2 shows the objective function used in the
previous researches; Fig. 6 presents the number of researches
that successfully implemented the different types of objective
functions in the ALB problems.

The numbers under the graph represent different types of
objective function of 2S-ALB problem (see legend of
Table 2). The most popular objective function in 2S-ALB
problems is to minimize the number of workstations with 21
counts from 30 papers, while the minimization of the mated
station number has taken the second place in the objective
function popularity.

4.1 Minimizing the workstation number

During the last decade, researchers have begun to study the
2S-ALB problems recognized to be crucially important in real
life. They have developed numerous techniques and assump-
tions to fulfill their objective function. Even in the simple
assembly lines, the number of workstations has been taken
into consideration and already classified into two types [53]:

Type 1:Minimizes number of workstations for a given cy-
cle time

Type 2:Minimizes the cycle time for a given number of
workstation

Some researchers believe these two classifications can be
applied into other ALB problems. Özbakır and Tapkan (2011)
[17] found that the bee algorithm method in 2S-ALB has
taken the Type-1 group in minimizing the number of worksta-
tions into their research objective. While Özcan and Toklu
(2010) [51] also considered Type-1 objective function for their
heuristic approach method.

The evaluations on minimizing the workstation number
were discussed in some researches. As in Kim et al. (2000)
[44] study, they have successfully determined the fitness of
potential solution.

Eval ¼
X
j∈ J

WSj ð1Þ

where J is the set of workstations and 0; if F j ¼ 0; 1; if 0

< F j≤CT ; 1þ F j

CT
þ 1

� �
; if F j > CT .

The evaluation measure (Eq. 1) intends to select more fit
individual characteristics for the next generation.

The related studies that applied the objective function
to minimize the number of work stations in the ALB
problems have been reported in literature [4, 13–17, 36,
44, 46–48, 50–55, 59–61, 66]. However, there is one

objective function that seems to be related to the above
function in minimizing the workstation number (i.e., min-
imize mated station number) as discussed in the following
section.

4.2 Minimizing the mated station number

Formally, in two-sided assembly line, there will be a pair
of lines placed opposite each other such as that shown in
Fig. 2. In the 2S-ALB, both sides of the lines either right
or left will perform its individual task. A mated station is
represented by a pair of station or workstation that faces
each other [47, 48]. In some researches, it is also called as
the companion [44, 47]. Therefore, the 2S-ALB minimi-
zation of mated station number is generally able to reduce
the number of stations as well. Most of the researches will
take the minimization of station number into consider-
ation when assigning the minimization of the mated sta-
tion number as their objective function [46, 48, 51, 52].

In Özcan and Toklu (2009) [50] study, Eq. 2 becomes the
mathematical formulation model for minimizing the mated
station number besides being able to assist in minimizing the
number of stations or workstations.

Minimize ¼
X
j∈ J

F j þ Gj

� �þ ℰ :
X
j∈ J

:
X
k¼1;2

Ujk ð2Þ

where
jmated station
kside of the line; k ¼ 1; indicates a leftf 2; indicates a right
Jset of mated station; J = {1, 2,. .., j
Fj1, if mated station j is utilized for both sides of the line; 0,

otherwise
Gj1, if mated station j is utilized for only side of the line; 0,

otherwise
ℰa small positive value, 0 < ℰ ≤ 1/ (2 * nms + 1)
Ujk1, if stations j is utilized for only side of the line; 0,

otherwise
The researches that choose the minimization of mated sta-

tion number as their objective function have been reported in
literature [4, 13, 16, 46, 48, 50–52]. The significant result has
proven their accomplishment in the ALB studies.

4.3 Minimizing line length

Formerly, in the SALB production line, the longer and larger
space are actually needed as only one side of assembly is used
since 2S-ALB looks more reliable in dealing with this kind of
problem. The 2S-ALB provides shorter length of line length
than single-sided ALB [15]. This is due to the workstation
dispensed on both sides of the assembly production systems,
as shown in Fig. 2. A set of 2S-ALB assemblies will distribute
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all of the tasks in between a mated station; therefore, it allows
the length of the lines to be shortened [54]. Besides, a short-
ened line may provide other additional benefits [15] like the
following:

1. Reduces the cost of material handling
2. Able to reduce the equipment of tools and fixture by

implementing tool sharing approach for opposite
workstation

Table 2 Objective function for
2S-ALB problems Author/s, year Ref. Objective Function

1 2 3 4 5 6 7 8 9 10 11 12

Yuan, Zhang et al. 2015 [4] x x

Kucukkoc and Zhang 2015 [59] x x

Kucukkoc and Zhang 2015 [60] x

Chiang, Urban et al. 2015 [15] x x

Ağpak and Zolfaghari 2015 [53] x x

Tuncel and Aydin 2014 [29] x x x

Purnomo and Wee 2014 [30] x

Kucukkoc and Zhang 2014 [55] x x x

Kucukkoc and Zhang 2014 [54] x x

Chutima and Naruemitwong 2014 [56] x x x

Purnomo, Wee et al. 2013 [12] x

Khorasanian, Hejazi et al. 2013 [48] x x x

Tapkan, Ozbakir et al. 2012 [61] x

Roshani, Fattahi et al. 2012 [49] x

Chutima and Chimklai 2012 [16] x x x x

Ağpak, Yegül et al. 2012 [36] x x

Taha, El-Kharbotly et al. 2011 [46] x x

Özbakır and Tapkan 2011 [17] x

Xiaofeng, Erfei et al. 2010 [67] x

Özcan and Toklu 2010 [51] x x

Özcan, Gökçen et al. 2010 [66] x

Özcan 2010 [13] x x

Simaria and Vilarinho 2009 [14] x

Özcan and Toklu 2009 [50] x x

Özcan and Toklu 2009 [52] x x

Kim, Song et al. 2009 [45] x

Hu, Wu et al. 2008 [62] x

Baykasoglu and Dereli 2008 [47] x x

Lee, Kim et al. 2001 [11] x x

Kim, Kim et al. 2000 [44] x

Objective function: 1—min. number of workstation, 2—min. number of mated station, 3—min. line length, 4—
min cycle time, 5—workload/task smoothness, 6—max. work relatedness, 7—min. production variance, 8—min.
idle time, 9—max. slackness, 10—max. production rate, 11—cost oriented, 12—optm. specific constraints
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3. Reduce the overhead cost
The formulation of line length minimization was pre-

sented in a study by Urban et al. (2015) [15]. They have
formulated their objective function on minimizing the line
length with w1 and w2 as the weight-associated
parameters.

minxjk w1*maxk
∪
j x

j
jk

� �
*

k

2

� 	� 	
þ w2*

X
k

∪
j x

j
jk

� �
 �
ð3Þ

where

j ¼ 1; 2;…; n tasks

k ¼ 1; 2;…;m station

w1 ,w2 objective function weights for the line length and
the number of stations, respectively

xjkassignment variable, equal to one if task j is assigned to
station k; equal to zero otherwise

In some studies, the minimization of line length was
also called as the minimization of position number [36,
67]. The position number actually indicates the worksta-
tion in which it will reallocate and open in a row order
[53]. Ağpak and Zolfaghari also succeeded in introducing
a different evaluation in minimizing the line length. The
formulation is as follows:

Minimize Z2 ¼ ∑
K

k¼1
k: Pk or Z2 ¼ ∑

K

k¼1
Pk ð4Þ

where
kposition, k=1 , 2, …, K
Pk1, if any station at position k is open; 0, otherwise
The minimization of the line length could be suggested as

the additional objective function in 2S-ALB or could be the
secondary objective. In certain researches, the minimization of
line length was performed after the minimization of worksta-
tion or number of mated station [53, 55]. Hence, a different
idea and formulation has been built to represent 2S-ALB with
success.

4.4 Minimizing cycle time

According to [59], the duration of cycle time is greatly
related with workstation. In ALB, the minimization num-
ber of cycle time alternatively classifies performance as a
type-2 ALB problem. The relation between the number of
cycle time and the number of workstations in objective
function has influenced various studies throughout their
researches. Cycle time is commonly defined as the maxi-
mum time to complete any task allowed on each line of
workstation. Such in 2S-ALB problem which definitely

has two sides, either left or right of workstation, the cycle
time will be strictly set as to not exceed the limit value of
the processing task time. However, in many cases, the
cycle time could not be filled by the task and it has cre-
ated some gap on the workstation due to some restriction.
Thus, the processing task time will not be equal to the
assessed cycle time. In such cases, the gap associated with
a void space is naturally called idle time.

The minimization of cycle time has been discussed in some
previous researches. As in [45], they have set the minimiza-
tion of cycle time as the single objective function. Eq. 6 is
presented as the restriction for Eq. 5 to achieve the cycle time
minimization.

Minimize ct ð5Þ
t fi ≤ct ð6Þ

where

ct cycle time
t fi finish time of the task i

The summation of processing and idle time were actually
performed as the general operation of calculating the number
of cycle time [12], and it must be equal or smaller than the
actual value [11, 36], which cannot exceed the designated
cycle time. The minimization of cycle time is mentioned as
equivalent to maximization of the assembly line efficiency
(workstation efficiency) that reduces the idle time value.
Workstation efficiency (WE) in Eq. 7 is defined by the total
processing time of all tasks divided into time allocated in the
workstation (cycle time) [12]. In measuring the workstation
efficiency, the number of cycle time is also needed and be-
comes a factor for calculating the efficiency value.

WE ¼
∑
n

i¼1
ti

2:m: CT
; i ∈ I ð7Þ

where
stisetup time
tiprocessing time
Ia set of tasks assigned to the workstation
CTcycle time
In 2S-ALB, each line, left (L) and right (R), may have

different numbers of cycle times [46]. Hence, it may have
different throughput rates too. In addition, the sum of process-
ing and idle time was actually performed as the general oper-
ation of calculating the number of cycle time [12] and it must
be equal or smaller than the actual value [11, 36], which can-
not exceed the designated cycle time. In measuring the work-
station efficiency, the number of cycle time is also needed and
becomes a factor for calculating the efficiency value [12].
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The cycle time formulation determined by the researchers
is normally connected with some restriction. In [29, 45, 56],
they have prescribed the cycle time value into an amount
which could not be greater. By this, the cycle time will not
be exceeded and might be dropped. However, [59] has suc-
cessfully applied a strict expression which combines two ob-
jective functions, that is, the cycle time and workstation min-
imization. The expression has also built together certain re-
striction constraints.

4.5 Workload/task smoothness

For any workstation onALB problems, the assignedworkload
will not be same. Considering that, between the distributed
tasks in industrial problems, the processing tasks are normally
not equal. The assigned workload/task to the workstation ini-
tially is unbalanced. As in [29], the main goal is to improve the
line balance implemented by the company for the given cycle
time. Thus, considering the workload smoothness comes as
another additional aim [14, 54]. Referring to [54, 55] that
minimizes weighted idle times (WITs) also means ensuring a
smooth workload among the workstations. Equation 8 below
shows the expression of WIT.

WIT ¼ ∑
ϕ

φ¼1
∑
H

h¼1
∑
k¼1

Kh

∑
x∈ 0;1f g

C− ∑
j¼1

Mh

∑
i¼1

Thj

ophj pthjiY
φ
hjikx

 !
ð8Þ

where
xSide of the line; x=0, which indicates left side of relevant

line; 1, indicates right side of relevant line
φproduction cycle (φ=1 , … ,ϕ), whereϕ=LCM(S1, . . .,SH)
Ccommon cycle time for all lines
ophjoverall proportion of the demand of assembled product

model
pthji processing time of task of thji model mhj on line Lh
Yφ
hjikx 1, if task thji of model mhj is assigned to station Whkx

on side x of line Lhin the production cycle φ; 0, otherwise
Smoothing the workload evenly is able to balance the

workstation and the assembly line. In fact, it is successfully
presented in [29], which balances using the Teaching–learn-
ing-based optimization (TLBO) algorithm. The smoothness
index (Eq. 9) among the workstation is calculated within
ranged value. The formulation is as follows:

Cb ¼ ∑
K

k¼1

I k
T

� �
− 1=Kð Þ

� 	2
ð9Þ

where
Cbline smoothness index
Ktotal number of workstations utilized on the line
Ttotal idle time of all workstation
I k idle time at workstation k

Once the calculation of smoothness index Cb is done, the
line efficiency is shown to improve as well. Another equation
contributed to the balance workload is illustrated in [16]
whereby they assigned workload plus idle time for any work-
station. Moreover, a uniform distribution across open work-
station trusted has the same meaning as uniform idle time
distribution. Therefore, the balance workload can be calculat-
ed from the following equation:

Minimize Bb ¼ Nw

Nw−1
∑
LL

k¼1
∑
R

b¼L

Skb
WIT

−
1

Nw

� �2

ð10Þ

where
Bb workload balance between workstations
Nw the number of operators
Skb the average idle time of workstation k on side b
WIT weighted idle time
The workload balance distribution among workstation is

taken as counted measure since it is recommended in [14].
The recommendation is also highlighted in [16] and has been
successfully presented in Bb formulation equation in terms of
balancing the workload among the workstations.

4.6 Other objective functions

Another significant objective function prescribed by the re-
searcher besides the above five examined earlier could have
a big potential. They have noticed other critical objective
function that could be used and applied in optimizing the
assembly line, for instance, theminimization of the production
variance [56] and the minimization of idle time [62]. Besides,
the maximizing work relatedness [11, 16, 47], maximizing
slackness [11], maximizing production rate [30], optimization
of specific constraints [29], and cost oriented [49] can also
bring great influence to other research.

5 Constraint

Normally, for every research on 2S-ALB, it will consist of
feasible assignment with certain restrictions. In order to acquire
more sensible and effective solution, the presented studies have
considered the real non-obligatory relationships between tasks
in assigning them to the workstations on the assembly lines [35,
48] such as the precedence relation constraint that indicates
each operational process for every assigned task. It practically
could not be considered because of the influences against all of
the assembly operations. However, other constraints used in the
2S-ALB as the restriction will be discussed based on its popu-
larity. Table 3 shows the constraints considered on the previous
research of the 2S-ALB problems.
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Figure 7 above has illustrated the frequency for each dif-
ferent type of constraints in 2S-ALB. The number under the
graph represents the difference between optimization method
types (see legend of Table 3). Zoning constraint leads the
frequency graph (Fig. 7) by 16 counts followed by 13 cycle
times and operation direction constraints with only 9 counts.

5.1 Zoning constraint

Large numbers of researches on ALB problems have been con-
sidered both by the academics and industry. While in 2S-ALB
problems, various types of solution approach were suggested by
the researcher in solving the faced problems. In order to reach
the specified objective and succeed in the studies, most of the

researchers strictly applied certain restrictions or constraints. As
an example, Baykasoglu andDereli (2008) studied theminimiz-
ing of the number of workstations in the 2S-ALB problems
[47]. Some restrictions and constraints were built such as zon-
ing. In some other researches, the zoning constraint was also
known as the positional constraint.

Zoning constraint actually is a preference of task to be
assigned on which workstation [16] on the assembly line.
Respectively, the zoning constraints are divided into two, ei-
ther positive or negative, zoning [30, 53, 60]. In general, pos-
itive zoning is a restriction for assigning more than one task
into a workstation, while negative zoning strictly controls to
not to be assigned with any set of tasks into the same work-
station. Positive zoning is usually related to the common tools

Table 3 Constraints in 2S-ALB
problems Author/s, Year Ref. Constraint

1 2 3 4 5 6 7 8 9 10 11 12

Yuan, Zhang et al. 2015 [4] x

Kucukkoc and Zhang 2015 [59] х x x

Kucukkoc and Zhang 2015 [60] x x x

Chiang, Urban et al. 2015 [15] x x x

Ağpak and Zolfaghari 2015 [53] x x

Tuncel and Aydin 2014 [29] x x x x

Purnomo and Wee 2014 [30] x

Kucukkoc and Zhang 2014 [55] x x

Kucukkoc and Zhang 2014 [54] x x x x x

Chutima and Naruemitwong 2014 [56] x

Purnomo, Wee et al. 2013 [12] x x x x x x x

Khorasanian, Hejazi et al. 2013 [48] x x

Tapkan, Ozbakir et al. 2012 [61] x x

Roshani, Fattahi et al. 2012 [49] x x x

Chutima and Chimklai 2012 [16] x

Ağpak, Yegül et al. 2012 [36] x x

Taha, El-Kharbotly et al. 2011 [46] x

Özbakır and Tapkan 2011 [17] x

Xiaofeng, Erfei et al. 2010 [67] x

Özcan and Toklu 2010 [51] x x

Özcan, Gökçen et al. 2010 [66] x

Özcan 2010 [13] x

Simaria and Vilarinho 2009 [14] x x x x

Özcan and Toklu 2009 [50] x x

Özcan and Toklu 2009 [52] x

Kim, Song et al. 2009 [45] x x

Hu, Wu et al. 2008 [62] x x

Baykasoglu and Dereli 2008 [47] x

Lee, Kim et al. 2001 [11] x x

Kim, Kim et al. 2000 [44] x x

Constraints: 1—zoning, 2—cycle time, 3—operation direction, 4—capacity, 5—synchronous task, 6—worksta-
tion; 7—resource, 8—occurrence, 9—assignment, 10—distance, 11—completion probability, 12—sequence
dependent task time
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and fixture; therefore, the operational process could be
assigned on the same workstation [29]. Meanwhile, negative
zoning is something that is related to technology and equip-
ment. Hence, it could not be assigned to the same workstation
due to safety reasons or different required equipment [30].

There are two types of formulation in the zoning constraint,
positive and negative. In studies by Simaria and Vilarinho
(2009) [14] and Tapkan, Ozbakir et al. (2012) [61], they suc-
cessfully performed both positive and negative zonings re-
spectively for the same and different workstations. Equation
11 represents the positive zoning constraint where the set of
tasks must be assigned at the same workstation, while Eq. 12
is the negative zoning constraint that the task must not be
assigned to the same workstation.

∑
K
k xik1 þ xik2ð Þ−∑

K
k xjk1 þ xjk2
� � ¼ 0 i; jð Þ ∈ ZPij ð11Þ

∑
K
k xik1 þ xik2ð Þ−∑

K
k xjk1 þ xjk2
� �

≠0 i; jð Þ ∈ ZNij ð12Þ

where

K the set of workstations (k=1, … , I)
ZPij the set of pairs of tasks that must be assigned to the

same workstation
ZNij the set of pairs of tasks that cannot be assigned to the

same workstation
xikb

1; if task i is assigned to workstation k at side b;f
0; otherwise

However, different formulations of zoning constraint have
been used by Wee et al. (2013) [12] and Yegül et al. (2012)
[36] in their studies. Both formulations of Eqs. 13 and 14 were
constructed based on the positive and negative zoning con-
straints (PZ and NZ) as well.

xgjk−xijk ¼ 0 g; ið Þ ∈ PZ ð13Þ

xgjk þ xijk≤1 g; ið Þ ∈ NZ ð14Þ

where

xijk a decision variable
g; ið Þ distance between task g and i

The positive and negative formulations of the zoning con-
straints have been applied by numerous researchers throughout
the significant ALB in different problem types [12, 14, 16, 17,
29, 30, 36, 44, 47, 50, 52–55, 60, 61].

5.2 Cycle time constraint

Another significant constraint to the line system is the duration
of the entire processing time or usually called cycle time.
These constraints were considered as one of the most impor-
tant criteria to successfully balance the two-sided assemblies.
Commonly, the cycle time is subjected for balancing purposes
such as in simple ALB problems of type 1 and type 2. Both of
these problems seriously considered cycle time as their
objective.

Type 1:Tominimize the number of workstations for a given
cycle time

Type 2:To minimize the cycle time for a given number of
workstations

From the two objectives above on the ALB problem,
the cycle time could be best regarded as purely important
either for retention (Type 1) or for reduction (Type 2).

Cycle time becomes important especially in measuring
workstation efficiency (Eq. 7). For instance, it is required
and becomes a factor for calculating the efficiency value
[12]. Workstation efficiency (WE) in Eq. 7 is defined by the
total processing time of all the tasks divided into the time
allocated in the workstation (cycle time), while the response
of changes on cycle time is formulated as the equation below
[49]. Equation 15 is represented as the constraint that ensures
the task will be finished before the cycle time ends.

sti þ ti≤CT ; i∀∈ I ð15Þ

where

sti setup time
ti processing time
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I a set of tasks assigned to the workstation
CT cycle time

The other cycle time formulation that takes idle time as the
measure is shown in the equation below [12]. Equation 17 is
the formulation of measuring the total of idle time in the
workstation; meanwhile, the sum of processing and idle time
is show in Eq. 16. The summation in Eq. 16 must be smaller
than or equal to the cycle time while performing the cycle time
restriction.

∑
n

i¼1
tixijk þ sjk ≤CT ð16Þ

sjk ¼ ∑
U

u¼1
xujk tsuþ1−t

f
u

� �þ CT−t fu
� �

u ∈ Qjk ð17Þ

where

ti processing time for task i
xijk a decision variable
sjk total idle time at workstation j, side k
tsu the starting time of task u
t fu the finishing time of task u
CT cycle time
Qjk a set of task that is assigned in workstation j side k

Recently, the cycle time constraint has become imperative
to researchers in balancing purposes [11, 36, 44, 45, 51]. The
high recommendations in every future study impacts the di-
verse utilization of the formulation. These are subjected to the
different types of ALB problems that brought different ideas
by different researchers in calculating the cycle time.

5.3 Operation direction constraint

A feasible balance line in 2S-ALB will be assigned with pre-
ferred sides of the line [15]. Therefore, allocating the task to
the preferred workstation becomes crucial. This is the most
challenging issue before completely running the assembly line
throughout the desired task due to the 2S-ALB problems
which are already categorized into three groups: left side
(L), right side (R), and either sides (E) of the line [46, 49].
For this reason, the selection of the side was studied by the
researcher. These are commonly called the operation direction
constraint, and it should be fulfilled by the relations between
every task. For example, the automotive assembly line which
consists of the two-sided assembly operation. The left side
usually will perform the task which prefers the left-hand han-
dling, while the right side will perform the right-handed task.
However, there are some tasks that do not have any preferred
operation direction [49]. Hence, the proper selection of (left,
right, or either) sides was greatly studied by researchers for
optimization purposes.

The three equations below are the rule and formulation in
selecting the preferred side (left, right, or either side) of the 2S-
ALB problems [67]. The first equation, Eq. 18, will perform
either side as the selection after calculating the total processing
task ti and t j (cycle time). Then, Eqs. 19 and 20 will perform
the left or right side of the selection after either side is filled
(Eq. 18).

D ið Þ ¼ E; if ti þ t j > C ∀ j ∈ CTIi ;

then tiis increased to C;

ð18Þ

D ið Þ ¼ L; if ti þ t j > C ∀ j ∈ CTIi;D jð Þ ∈ L;Ef g;
then ti is increased to C;

ð19Þ

D ið Þ ¼ R; if ti þ t j > C ∀ j ∈ CTIi;D jð Þ ∈ R;Ef g;
then ti is increased to C;

ð20Þ

where

C cycle time
i; j task number
ti processing time of task i
t j processing time of task j
D ið Þ operation direction of task i
D(j) operation direction of task j

The operation direction constraint has been formulated
with a definite purpose to allocate the preferred workstation
whether left, right, or either side of the assembly line. Another
research by Urban et al. (2015) also formulated its operation
direction constraints in three main rules [15]. Each task will be
assigned to only one station either left or right, starting with
the left side. In Eq. 21, which is for the left operation side, the
formulation is labeled with odd numbers (1, 3, 5,…,m−1) and
even numbers (2, 4, 6, …, m) for the right-sided operation
(Eq. 22). Therefore, Eq. 23 will be choosing either side of
the assembly after both sides are filled.

∑
k∈
n
1;3;5;…;m−1

xjk ¼ 1 ∀ j ∈ L ð21Þ

∑
k∈ 2;4;6;…;mf g

xjk ¼ 1 ∀ j ∈ R ð22Þ

∑
m

k¼1
xjk ¼ 1 ∀ j ∈ E ð23Þ

where

xjk assignment variable, equal to one if task j is assigned to
station k, equal to zero otherwise
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j 1, 2, …, n tasks
k 1, 2, …, m stations

The researchers who have taken the operation direction
constraint into consideration significantly have been reported
in the literature [4, 11, 15, 46, 49, 55, 62, 67]. Most of the
studies that considered operation direction into their constraint
from general ALB problem were due to the additional line to
the assemblies.

5.4 Other constraints

Some other significant constraints that were used other than
those reviewed above also possess their own abilities and
advantages such as the capacity constraints that are commonly
used in the line balancing problems, and they need to be sat-
isfied. Commonly, the capacity constraint is developed by the
total processing time of the assigned tasks to the workstation.
If the next sequence task does not satisfy the restriction of the
capacity constraint, a new workstation will be opened for the
next assigned task [59, 60]. The capacity constraint also will
ensure that the execution of each task is within the cycle time
[55]. Other considered studies on capacity constraint are
reviewed in other literature [14, 49, 54].

Besides that, the workstation constraints are also consid-
ered by some of the researchers in the 2S-ALB problems as
the restriction. This constraint means, for each specific task, it
will be assigned to a specific workstation. Therefore, the
assigned task is strictly for a workstation where the task is
really required [12, 86]. In a study by Tuncel and Aydin
(2014), they have associated the workstation with particular
equipment and material for the assembly operation. Thus, it
also means a specific task could only be assigned to a certain
and required workstation [29]. By this, workstation constraint
seems absolutely essential in all ALB problem optimizations.

The assignment constraint to determine which
task/assignment could be assigned in which location of the
workstation was also studied. It also determines the duration
of time in which the assignment must be executed at the same
workstation when the current side task is lower than the op-
posite side task [54]. The assignment constraint could also
ensure that each task will be assigned exactly once in com-
pleting the 2S-ALB operation [59]. The mated station in 2S-
ALB always becomes another factor that may affect the com-
pletion probability. The completion probability constrain is
constantly related with time. It is necessary for a mated station
to complete the task given within the cycle time [15].
Therefore, the completion of time distribution must be deter-
mined explicitly in 2S-ALB for optimization purposes.

The synchronism of task in the single-sided ALB may not
be very important, but in 2S-ALB, it is different. If a synchro-
nization constrain is considered in 2S-ALB, the task will be
divided to satisfy the synchronization constrain [29]. The

identical task time for every mated station will perform the
synchronism working experience, and it is only presented in
2S-ALB operating line. By doing this, the idle time of product
processing will be minimized [12]. Other considered re-
searches on the synchronization constraint are [14, 50, 61].
Another remarkable constraint in the 2S-ALB problems is
the sequence-dependent task time. The existence of this type
of constraint is to allocate each task into a workstation based
on the preferred operational directions and precedence rela-
tionships [56]. The mated station factor could also affect the
performance in the 2S-ALB; hence, this sequence-dependent
task time constraint will allocate the task within the limited
setup time.

The distance between tasks is formally able to become as a
constraint, due to the important and affected factor regarding
space and cycle time. Distance could be measured by the
length of space, duration of time, and even workstation posi-
tion, from the initial task to the next preferred task [12, 48].
Distance constraint will be set to the maximum or minimum
with the aim to get prepared for the next task. For example, a
painting process that needs a high duration of time to dry.
Therefore, maximizing the distance will come into a way of
preparing the paint before further tasks are done.

Different ALB operation requires different machines and
tools. These will turn into an issue in ALB. Any equipment
and tools for conducting a task are considered as a resource.
Some researchers take resources as a restriction and consider
them as constraints. Resource constraints might be in many
forms such as space and operator [29]. An operator could be a
resource to take the action to conduct the assembly operation.
In Wee et al. (2013), the resource restriction is believed to be
able to reveal the inadequate space for allocating the required
machines on a workstation [12]. Meanwhile, several studies
have highlighted the occurrence constraint in 2S-ALB.
Occurrence constraint is to ensure that every task is assigned
just only for one workstation [12, 45]. The researchers come
with some formulation to control and act as desired for the
optimization purposes.

Literally, different constraints actually come with a certain
objective function. To meet the desired objective function, it
needs a strict condition of constraint as a constraint will be set
according to the considered objective function. For instance,
the minimization number of workstations and the minimiza-
tion of line length [61, 67] are also affected. The methods of
choosing constraints are definitely different from one another.
This is because the constraints will act as a strict condition to
acquire the objective function value. Hence, the selection of a
suitable constrain is seriously needed.

Besides, for more complex objective function, the con-
straint is significantly complex too. In [15, 53], the assessed
objective function is presented in biobjective which aims at
different targets. Although both studies searched for a similar
objective function, the methods of choosing constrains are still
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quite different. Each study has provided their own way to
specify how each selected constraint should behave in meet-
ing the needs of objective function. Moreover, every con-
straint lives with a strength indicating how important it is to
satisfy the considered objective function. A single constraint
might still be a weak restriction to enforce the direction of the
choosing objective function. Therefore, by picking a different
constraint, it will ensure that the constraint becomes stronger
and influences the other constraints to provide a good result in
the objective function.

6 Discussion and research potential

Assembly line balancing (ALB) is a production planning
problem concerned with allocating each task to the worksta-
tions on the assembly line. The purpose is to balance and
optimize the assembly line to increase the productivity mea-
sure. Various methods have been established with different
useful optimization techniques, and it has been expending a
lot with new improvement and additional capability of solving
methods. In identifying the research issue, four main specifi-
cations have been summarized and discussed accordingly.
Considering the growing number of publication in solving
ALB problems, this study was focusing only on the two-
sided assembly line balancing (2S-ALB) problems because
of its benefit and priority in solving large-manufactured prod-
ucts. The researches which deal with 2S-ALB problems on the
algorithm optimization are classified as the NP-hard prob-
lems. However, as time goes by, more complicated types of
problems appear. A different solving approach of different
complex problems was presented. The complex combinatorial
problems between two or three or even more problems were
vigorously studied by the researcher to diversify the problem
types and inspire other researchers for future studies.
However, there are still a few unfilled potential and gaps
through the ALB problem studies.

In ALB, there are two problem types which are simple
and general that have been questioned by the researcher.
Simple ALB is quite famous and extremely studied be-
cause of its ability to balance with only a single side of
the operation line. Besides, it is able to optimize the op-
eration line by simply allocating for the workstation with-
out much hesitation. However, in manufacturing indus-
tries nowadays, a complex combination of problems is
introduced. Because of the market and customer needs,
the researcher has been extremely dedicated to the inven-
tion of a new ALB combinatorial problems, known as the
general ALB, such as in Chutima and Chimklai (2012)
and Zhang et al. (2015), who presented the combination
of mixed-model and two-sided problems in ALB [4, 16].
Meanwhile, Kucukkoc and Zhang (2014) introduced the
mixed-model parallel two-sided assembly line balancing
problem [54, 55]. Figure 8 presents the problem combi-
nation graphs of 2S-ALB that have been considered by
researchers since 2008. These absolutely change the as-
sembly configuration but successfully provide more ben-
eficial advantages. From these, it was noted that re-
searchers were more interested in combining the 2S-
ALB with the other ALB models. Hence, this paper fo-
cused on the study of 2S-ALB problems.

From most of the published works, the genetic algorithm
(GA) has successfully dominated the 2S-ALB problem. As
presented in Fig. 5, GA is found competitive in solving the
different types of combinatorial ALB problems. The success-
fulness of the GAmethod in solving complex problems is well
known, with the presented control parameter, such as popula-
tion size and crossover probability. Besides GA, the popular-
ity in solving the complex combinatorial 2S-ALB problem is
followed by the ant colony optimization (ACO) algorithm
method. The pheromone trail of the ant path by the ACO
method became the idea to find the solution and solving meth-
od. The simulated annealing (SA) followed after both the
above methods. Even so, numerous other metaheuristics such
as bee algorithm (BA) and particle swarm optimization (PSO)
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greatly had a big potential in solving the 2S-ALB combinato-
rial problems. From the assembly line balancing perspective,
we also noted that the implementation of advanced computa-
tional method such as metaheuristic approaches are broadly
studied compared with the heuristic, a problem-dependent so-
lution approach.

Another issue that has been highlighted by researchers is
the objective function consideration. It is a necessity for an
ALB optimization research to indicate and point the objective
function itself. This precisely will make sure the direction of
the optimization research study. Most of the literature con-
siders either maximizing or minimizing the appropriate task
in fully optimizing the assembly line. Figure 6 illustrates the
trend of objective function considered by researchers.
Practically, in 2S-ALB, the majority considered the minimi-
zation number of workstation as the main objective. It is
followed by the minimization of mated station number. The
minimization number of workstation always looks significant-
ly able to optimize the assembly line; however, it is not that
simple. In other cases, the minimization of the number of
workstations also might delay certain processes that would
seriously reduce the productivity. By this, the automation
and integration of assembly optimization has potential.
Nowadays, a multiobjective function is widely studied, rather
than a single-objective function. Figure 9 illustrates the trend
of the multiobjectives that have been studied. This is due to
the modern manufacturing system which always tries to fulfill
the demands.

Besides that, in filling the needs of the objective function
and plant configuration, some constraints will be counted.
Therefore, normally, in every research of 2S-ALB, it will con-
sist of certain restrictions. The considered constraint among
the 2S-ALB researchers is shown in Fig. 7. The trend is to start
with the zoning constraint, followed by cycle time and oper-
ation direction constraint. With this restriction on every con-
straint, it will effectively be presented by a certain rule or
mathematical formulation. Because of the existence of a com-
plex combination problem type with different designs of plant

configuration, various constraints have been introduced re-
cently. The presented constraints will act as the restriction to
completely acquire the main objective of the research.

In dealing with various types of complex combination
problems, various approaches of the optimization method
and objective have been established. This is because the
ALB problems are getting more complicated day after day.
Hence, the growing of 2S-ALB researches in solving the
manufacturing issues shall be supported by the manufacturing
industry itself. Besides, the researcher might be able to man-
age and introduce more combinations or hybridized optimiza-
tion methods on the ALB problems.

Since 2S-ALB is classified as an NP-hard combinatorial
optimization problem, it consequently possesses a big concern
to the researcher in finding the best solution. NP in fact stands
for nondeterministic polynomial time, commonly informed as
the hardest problem to solve and needs a large amount of time
[44, 54]. Therefore, nowadays, the ALB problem has received
widespread attention among researchers and industrial practi-
tioners. At once, the hybridization technique between two
algorithms successfully minimizes the computational time
and makes the solving period faster. Most of the time, none
of the researchers have guaranteed an optimal solution for the
ALB problems, but they always relatively offer a good solu-
tion in reducing the computing period. Therefore, different
solving approaches have been found, including
metaheuristics, as the deficiency of the possible solving meth-
od should be considered for the enhancement as the potential
research study.

7 Conclusions

Lately, the studies on ALB problems are growing very rapidly
if compared to the previous decades, and most of the studies
are focusing on the manufacturing industries. Industries, espe-
cially those manufacturing large-sized products, like cars, bus-
ses, or trucks, always need to keep improving, and the
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productivity will act as the measure. Thus, one of the ways to
increase the company profit is by optimizing the assembly
line. It is crucially important, especially in the assembly of
large-sized products. In order to develop and optimize the
ALB problems that are becoming complex day after day, dif-
ferent methods and solution approaches should be presented.
There are still plenty of chances even in the algorithm devel-
opment which is not being exposed yet.

In future research direction, various kinds of improvements
that are precisely able to modify and develop the ALB prob-
lems are needed. The combination of certain general assembly
lines are found to be competitive for being the best on making
a closer model to the actual industrial circumstances. Besides
that, the hybridization of an algorithm method also seems to
be able to improve the assembly line problem. This method
should also be implemented in 2S-ALB problems which for-
merly have been applied to the simple ALB problem. The
potential of other heuristic or metaheuristic solving ap-
proaches also require a lot of attention. This can provide more
alternative ways and methods in solving the ALB problems
and thus able to hybridize and compare the effectiveness of the
new algorithm method. Another direction should be focused
to solve and optimize the customized problem/combination
problem because the assembly line/production becomes more
complex. Besides, the importance of automation is seen to be
crucial. Further study related to ALB and automation is be-
lieved to be able to help to improve and provide more confi-
dence to the industrial practitioner.
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CHAPTER 3 

 

PROBLEM MODELLING 

This chapter present the problem modelling and formulation for ALB problems. This consists 

of modelling for ALBRC. The detail of the problem modelling were presented in two papers 

as follow: 

1. Razali, M.M., Ab. Rashid, M.F.F. and Abdullah Make, M.R. (2016), “Mathematical 

Modelling of Mixed-Model Assembly Line Balancing Problem with Resources 

Constraints”, IOP Conference Series: Materials Science and Engineering, Vol. 160, No. 

1, pp. 1-10.  

2. Abdullah Make, M.R., Ab. Rashid, M.F.F. and Razali, M.M. (2016), “Modelling of 

Two-sided Assembly Line Balancing Problem with Resource Constraints”, IOP 

Conference Series: Materials Science and Engineering, Vol. 160, No. 1, pp. 1-9. 
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Abstract. Modern manufacturing industries nowadays encounter with the challenges to 
provide a product variety in their production at a cheaper cost. This situation requires 

for a system that flexible with cost competent such as Mixed-Model Assembly Line. 

This paper developed a mathematical model for Mixed-Model Assembly Line 
Balancing Problem (MMALBP). In addition to the existing works that consider 

minimize cycle time, workstation and product rate variation, this paper also consider 

the resources constraint in the problem modelling. Based on the finding, the modelling 
results achieved by using computational method were in line with the manual 

calculation for the evaluated objective functions. Hence, it provided an evidence to 

verify the developed mathematical model for MMALBP. Implications of the results and 

future research directions were also presented in this paper. 

1. Introduction 

Over the year, assembly line balancing (ALB) problem has earned a lot of attention. The purpose of 

ALB is to distribute different tasks to the operators for a various workstation on the line in a way where 

the tasks do not violate any of the precedence restrictions and some measurements of effectiveness are 
being optimized [1]. ALB has been evaluated widely in the relevant literature by Becker and Scholl [2, 

3]. Mixed-Model ALB is categorized under general assembly line balancing which produce several 

models having similar characteristics on a single assembly line [4]. Usually in a mixed-model assembly 
line, the models being assembled have differences in the set of tasks associated with each model, the 

processing times, precedence relations, and amount of production. With all due respect to all of these 

conditions, Mixed-Model Assembly Line Balancing Problem (MMALBP) has been categorized as an 
NP-hard combinatorial optimization problem as well as CPU time-consuming [5]. 

 

Mixed-model assembly lines solution procedures in the relevant literature was proposed by 

Thomopoulos [6]. Thomopoulos classify the procedures into three categories: meta-heuristics and 
heuristics, hybrid, and mathematical model solutions. In general, there are MMALBP-I and MMALBP-

II, which aim to minimize number of workstations for a given amount of cycle time and to minimize 

cycle time for a given number of workstations respectively [7]. Due to the current scenario of global 
market, companies changed single model lines into mixed-model lines in order to provide diversity and 
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meet customized customer needs on time in a perceptive manner [8]. In addition to that advantage, 

mixed-model lines do not require a new set-up process between model changes, provide a continuous 

flow of materials, reduce the inventory levels of final items, and very flexible with respect to model 

changes [9]. 
 

In MMALBP context, different problem model has been proposed with various objective functions. 

A mixed integer linear programming model has been proposed by Akpinar and Baykasoglu with the 
objectives to minimize the total number of workstations subjected to assignment, capacity and zoning 

constraints [10]. Two objectives being handled by Yagmahan that utilized an approach of multi-

objective ant colony optimization which is maximizing the smoothness index between stations and 

minimizing the number of workstations by considering the precedence constraints [11]. Tiacci considers 
buffer allocation problem and assembly line balancing problem simultaneously by using genetic 

algorithm approach. The objective function called normalize design cost (NDC) is introduced and 

subjected to precedence restriction [12]. 
 

The mixed-model parallel two-sided assembly considered by Kucukkoc consist an objective function 

of minimize total number of utilised workstations, as well as to ensure a smooth workload (WS) among 
the stations from cycle to cycle and the constraints are model and task occurrence constraint, task 

assignment, and operation direction constraint [13]. Ant colony optimization algorithm for balancing 

mixed-model assembly lines (ANTBAL) is used by Vilarinho and Simaria together with an objective 

function to balance the workloads within each workstation and maximize weighted line efficiency by 
considering zoning and capacity constraints [14]. Hamzadayi aims at minimizing the number of the 

stations required on the line, smoothing the workload of stations between cycles as well as smoothing 

the workload of all stations within any cycle by take into account the restriction of parallel and zoning 
constraints [15].  

 

Based on the literature review, there are some published works considering the resource constraint 

in their work but limited to a specific constraint. This paper will focus to propose a mathematical model 
for MMALBP-II to minimize general resource constraints along with the cycle time and product rate 

variation. MMALBP-II has been chosen because one of the objective functions in this paper is to 

minimize the cycle time for a given number of workstations and categorized under MMALBP-II 
problems. 

2. Problem description and formulation  

In this paper, the MMALB problem is formulated with the aims to minimize total cycle time, resources 
and product rate variation (PRV) by considering the resources constraint. In order to explain the problem 

formulation, an example of assembly problem consists of six tasks for three different models as shown 

in Fig.1. The general assumptions of the problem are as follows: 

 

 A number of J models will be assembled on a mixed model assembly line. 

 Assembly tasks for different models are almost similar, so we can suppose a combine 

precedence diagram for all of the models. Now, if some models do not use some tasks in their 

assembly process, the relevant task time will be 0. 

 Operating or processing times related to a task is the same for each different models. 

 Each task type is assigned to only one station regardless of models. Hence, tasks are not 

assigned to different stations for different models. 

 Each operator works only on a single station, only one operator carries out the assembly tasks 

on each station and the tasks are undividable. 

 Assembly models will be assembling with the same rate and consecutively. 

 

By referring the above mentioned assumptions, the parameters and indices of the model will be as: 
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Notation Definition 

S number of workstations(fixed)  s=1,2…, S 

J number of product models to be assembled  j=1,2…, J 
Ne number of task   e=1,2…, Ne 

prei predecessor for task i based on precedence diagram 

ti execution time for task i 
DT total quantity of units or total demand 

dj demand for product j, j = 1, 2, . . ., a 

Xi,k total quantity of product/produced over stages 1 to k, k = 1, 2, . . ., Dt 
maxR maximum resources  r=1,2,…,maxR 

CT cycle time 

Tej shift task model time 

Te shift task time 
te task time 

Nj demand schedule for each model 

U production rates variation of production sequence 

Decision variables 

Uej 1 if task, e is used on model j ; 0,otherwise 

Xes 1 if task, e is assigned to workstation s; 0, otherwise 

Yrs 1 if resource, r is used in workstation s; 0,otheriwse 

 

 
2.1. Mathematical modelling 

A sample problem used in this paper for a modelling purpose is adapted based on Thomopoulos [16].  

The assembly data being considered are consist of six tasks for three different models as shown in Fig.1 
and indirectly depict the build relationship among all the tasks. The models consist of six tasks (denoted 

by 1 to 6). The task is represented by circles and the connecting arrows identify the immediate 

predecessor tasks. It shows which tasks can begin without any predecessor tasks, and which tasks have 

predecessor tasks. The sequence of tasks moves from left to right. 
 

Model 1      Model 2 

 
 

 

 

 
 

 

 
 

    Model 3 
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Figure 1. Precedence diagram for model 1, 2 and 3 
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Model 1: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 

begin until Task 1 is completed. Also for instance, Task 5 cannot begin until Task 2 and 3 are completed. 

Lastly, Task 6 cannot begin until Task 4 and 5 are completed. 

Model 2: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 
begin until Task 1 is completed. Task 5 cannot begin until Task 3 is completed. Lastly, Task 6 cannot 

begin until Task 2 and 5 are completed. 

Model 3: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 
begin until Task 1 is completed. Task 4 and 5 cannot begin until Task 2 is completed. Lastly, Task 6 

cannot begin until Task 3, 4 and 5 are completed.  

 

The other important data are needed such as assembly time, type of resources used on the line, and 
model demands. Each model has their own task time as well as precedence relation but with the help of 

the anticipated model mix, a joint precedence graph is deduced from Figure 1. 

2.2. Objectives function 
The first objective function considered is to minimize cycle time. In our work, the cycle time is based 

on the product demand. Second objective function is minimizing total number of resource. The usage 

of resources such as tool, worker, and workstation is inevitable in an assembly line. However, based on 
the literature review less attention has been paid to minimize total number of resources even though the 

effect it can give to the operation cost is significant. Third objective function is product rate variation 

(PRV) which is common problem in the MMALB based on [17] . The problem formulation for this 

problem is presented as follows: 
 

 

𝑓1 = 𝑚𝑖𝑛 ∑ ∑ 𝐶𝑇

𝐽

𝑗=1

𝑁𝑒

𝑒=1

 

 

(1) 

 

𝑓2 = 𝑚𝑖𝑛 ∑ ∑ 𝑌𝑟𝑠

𝑚𝑎𝑥𝑅

𝑟=1

𝑆

𝑠=1

 

 

(2) 

 

𝑓3 = min ∑ ∑ (𝑥𝑗,𝑘  − 𝑘  ×
𝑑𝑗

𝐷𝑇
)

2𝐽

𝑗=1

𝐷𝑇

𝑘=1

 

 

(3) 

 

Objective function 1, f1 in equation (1) is aim to minimize cycle time for a given number of 
workstation.  Equation (2) targeted to minimize resources used on assembly line and equation (3) aim 

to minimize product rate variation (PRV). These objective functions are subjected to these constraints:  

 
2.3. Constraints 

 
 

∑ 𝑋𝑒𝑠 = 1, 𝑒 = 1, … , 𝑛

𝑆

𝑠=1

 

 

(4) 

 

∑ 𝑋𝑎𝑠

𝑆

𝑠=1

− ∑ 𝑋𝑏𝑠

𝑆

𝑠=1

≤ 0, 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑝𝑟𝑒𝑖 

 

(5) 

 
∑ 𝑡𝑖(

𝑖∈𝑤𝑘

𝑋𝑒𝑠) ≤ 𝐶, 𝑠 = 1, … , 𝑆 
 

(6) 
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Constraint (4) is to ensure that each task can only be assigned to one workstation [18]. Inequality (5) 

describes the precedence constraints among the tasks. It ensures that no successor of a task is assigned 

to an earlier station than that task. Constraint (6) ensures that the sum of task times assigned to each 

station does not exceed the cycle time. The maximum cycle time being considered here is stated as 
reference cycle time, RefCT which is expressed as: 

 
 

𝑅𝑒𝑓𝐶𝑇 =
∑ 𝑠ℎ𝑖𝑓𝑡 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒, 𝑇𝑒

𝑛𝑜.  𝑜𝑓 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠 
,    𝑠 = 1, … , 𝑆 

  (7) 

Since this paper involve multi-objective optimization, the weighted sum approach is used as follows: 
 

 

    ∑ 𝑤𝑖𝑓𝑖 (𝑥)

𝑀

𝑖=1

     ;  𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝜔𝑛𝑓𝑛(𝑥) 

 

   (8) 

In this case, the objective functions in equation 1, 2 and 3 needs to be normalized to ensure a 
consistent scaling to each of objective function. This is conducted by dividing the fitness value with the 

maximum value for each objective function. Thus, for future work the solution methods for solving this 

multi-objective problems are more simple and used a direct computation [19]. Equation (9) below 
represent the normalized fitness functions after using weighted sum approach. 

 
     𝐹(𝑋) = 𝑤1𝑓1

′(𝑥) + 𝑤2𝑓2
′(𝑥) + 𝑤3𝑓3′(𝑥)    (9) 

 

3. Numerical example 

The generation of a joint precedence graph based on a combination for all three models are demonstrated 

in Figure 2 whereas Table 1 depicts the precedence matrix for this example. All known solution 
procedures for MMALB problem rely on the joint precedence graph which is, thus, indispensable for 

solving such problems. In short, this joint precedence diagram is like a blueprint on how to assemble the 

unit.  

 
 

Figure 2. Joint precedence diagram 
 

The example problem contain six tasks and three different model overall as referring to Table 1 and 

Table 2. Both shows the precedence table and model usage, Uej respectively. Model is represented by 

model 1, 2 and 3 and the demand for each model is 5, 3, and 2 respectively. For the model usage, if any 
of the task e is used on certain model, it is marked with 1, and 0 if otherwise. 
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Table 1. Task, e, task time, te, predecessor element, p 

e te p 

1 25 - 

2 17 1 

3 8 1 

4 40 2 

5 11 2,3 

6 33 4,5 

 

Table 2. Task, e, task time, te, model usage, Uej 

e te Uej 
               1                                 2                                  3 

1 25 1 1 1 
2 17 1 1 1 

3 8 1 1 1 

4 40 1 0 1 

5 11 1 1 1 
6 33 1 1 1 

 

The modelling here also considers a resource that was used on the assembly lines. In this particular 

case, there will be three types of resources, RT included tools, machines, and jigs. Table 3 summarizes 
the resources usage. 

 

Table 3. Resources data tabulation 

T1: Tool 1, T2: Tool 2, T3: Tool 3, M1: Machine 1, M2: Machine 2, M3: Machine 3, J1: Jig 1, J2: Jig 2, J3: Jig 3 
 

Referring to mathematical model coded into MATLAB, all the selected sequence subjected to RefCT 

of 956.6667 minutes. Mean that, the specific tasks time that will be grouped into specific workstation 
must not exceed RefCT and only the last workstation can discard that rule since we will have the 

remaining task time to be converge at the last workstation which in this case workstation 3 (noted that 

maximum number of workstation is predetermined with total of three workstation). 

 
In order to determine the performance for a particular assembly sequence, an evaluation needs to be 

conducted by comparing the objective functions. For assembly sequence [1 2 4 3 5 6], the procedure to 

e te Resources, RT 

1 25 T1 T2 J1 T3 - 

2 17 T1 M2 J2 - - 

3 8 J1 - - - - 

4 40 T2 M1 T1 - - 

5 11 T3 J3 - - - 

6 33 T3 M1 J2 M3 - 
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calculate objective functions are presented in the following sections. For this particular assembly 

sequence, the computational test from MATLAB give a result of 1300 minutes for cycle time, 15 

resources, and 2.9 rate of product variation. Based on the demand of 5, 3, and 2 for model 1, 2, and 3 

respectively, the mathematical model construct here can be calculated manually in order to verify the 
results for each objective function with the result obtained from computational model.  

3.1. Cycle time calculation 

For the sequence of task stated above, the task time for each task is tabulated in Table 4 below and the 
task distribution for each workstation is described together. 

Table 4. Task time for each sequence 

Sequence of task 1 2 4 3 5 6 

Model task time(minute) 625 425 520 200 275 825 

 

 625 }WS 1 

 425 + 520 = 945 }WS 2 

 200 + 275 + 825 = 1300 }WS 3 

 

Based on the manual calculation above, the maximum cycle time for the selected sequence is 1300 

minutes and we can assign the task to its own workstation subjected to RefCT. Task 1 is assigned to 

workstation 1, task 2 & 4 to workstation 2, and task 3, 5, & 6 to workstation 3 as shown in the Table 5 

below. 
 

Table 5. Workstation distribution 

 

Sequence of task 1 2 4 3 5 6 

Model task time(min) 625 425 520 200 275 825 

Workstation time(min 625 945 1300 

Workstation, s 1 2 3 

 

3.2. Resources used on the line 

Based on the assembly tasks assignment in section 3.1, the second objective function can be calculated. 
The manual calculation for the number of resources is illustrated in Table 6. The number of resources is 

determined by the different resource type in a workstation. For example, in workstation 2, since tasks 2 

and 4 used similar T1 resource, the total resources in this workstation is equivalent to 5.  
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Table 6. Resources used by each workstation 

Workstation 1                  2 3 

Sequence of task 1 2 4 3 5 6 

 

Resources type 

T1 T1 T1 J1 T3 T3 

T2 M2 T2 - J3 M1 

T3 J2 M1 - - M2 

J1 - - - - J2 

Yrs 
  ∑= 4                ∑= 5 ∑= 6 

 

Therefore, by using the objective function definition for resource used on assembly line given in 
equation (2), the summation of resources used by each workstation are as followed: 
 

                 𝑓2 = 𝑚𝑖𝑛 ∑ ∑ 𝑌𝑟𝑠

𝑚𝑎𝑥𝑅

𝑟=1

𝑆

𝑠=1

 

 = 4 + 5 + 6  

                = 15 resources 

 
3.3. Product rate variation (PRV) 

Product rate variation exist due to the nature of MMALBP itself which capable to assemble more than 

one product at a time and in this paper three different model being assemble on the same assembly 
line. The objectives of PRV problem is to achieve a stable production rate for each product. For 

instance, the target is to assemble 10 unit of particular product denoted by k, and we have a sequence 

of product, j. 

 
 

 

Based on the definition of objective function in (3), the value for each parameter have been calculated 
and summarized in Fig. 3. 

 

 

Figure 3.  Product rate variation summarization 
 

Hence, the summation of (𝑥𝑗,𝑘  − 𝑘  ×
𝑑𝑗

𝐷𝑇
)

2

 in the table is the PRV value that needed which resulted to 

2.9 for the selected sequence of product, j. 
 

Sequence of product, j 1 2 3 1 2 1 1 3 2 1 

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012002 doi:10.1088/1757-899X/160/1/012002

8



 

 

 

 

 

 

4. Conclusion and future work 

This paper proposed a mathematical model on MMALBP which consider minimize cycle time, 

minimize resources used on assembly line and minimize product rate variation (PRV) as the objectives. 

The computational model was developed using MATLAB software. In order to verify the output from 
the computational model, manual calculations had been carried out to compare the output.  

 

From the output of both methods, we can conclude that the objective function in term of its 
mathematical expression is valid to be used since the acquired results for each objective function is the 

same either for computerized method or manual computation. Future work will consist of an 

optimization procedure for the proposed models earlier by using an artificial intelligence approach such 

as genetic algorithm, particle swarm optimization and simulated annealing. 
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Abstract. Two-sided assembly line balancing (2S-ALB) problems is practically useful in 

improving the production of large-sized high-volume products. Many published papers have 

proposed various approaches to balance this well-known ALB problem. However, little 

attention is given in formulating the 2S-ALB problems. In this paper, 2S-ALB is modelled 

with four different objective functions comprising minimization of workstations, mated-

workstation, idle time and resource constraints. In different with existing model, this paper also 

considers resource constraint with a mathematical modelling formulation in solving the 2S-

ALB problems. The modelling procedures are present for each objective functions with a 

simple 2S-ALB example problem. Then, the anticipated performance solution is obtained from 

the test problem. 

1.  Introduction 

The assembly line was firstly introduced in manufacturing system by Henry Ford in 1913. The aim of 

his idea is to develop the automobile plants for mass production used, with some sort of lines 

customization. Basically assembly line will consist of a set of a workstation that connected each other 

in linear fashion. Considering the much numbered of task and workstation presented in assemblies, the 

problem balancing approach are made. Assembly Line Balancing (ALB) problem formally presented 

with optimization objective and capable of enhancing the production rate or even the assembly lines. 

In 1993 Bartholdi has successfully become a pioneer initiating a new type of ALB problem consists 

with two sides of assemblies, known as Two-sided Assembly Line Balancing (2S-ALB) problem [1]. 

The 2S-ALB is classified under the General Assembly Line Balancing (GALB) problem, besides 

the Simple Assembly Line Balancing (SALB) problem. Further research on 2S-ALB is continued in 

[2-4] studies after Bartholdi in 1993, since the importance of 2S-ALB is highly recognized in the 

manufacturing industries. Importantly as 2S-ALB for being highlighted through its strength and 

potency in the manufacturing of a large-sized product. It is definitely managed to improve the 

assembly productivity throughout the installation. Compared to SALB, with single line operation the 

2S-ALB remarkably advantageous since able to shortens the assembly line, save spaces, reduces the 

cost of tools and fixtures, reduces the throughput time and fit to cut the material handling [1]. These 

clearly give a good reason for utilizing the 2S-ALB into the assembly line. 

In practice, 2S-ALB has firstly proposed in 1993 by Bartholdi in using an interactive computer 

program with the first fit heuristic method [1]. The successful study focusing on the large-sized 

product has continued by Kim, Kim et al. (2000) by adopting a genetic algorithm (GA) method [2]. 
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Then, in 2001 a study on maximizing the work relatedness and slackness using a group assignment 

procedure has been developed by Lee, Kim et al. in solving the 2S-ALB problem [3]. Meanwhile, in 

2008 another meta-heuristic approach for 2S-ALB has been proposed by Baykasoglu and Dereli [4]. 

They have applied an ant colony optimization (ACO) method in the 2S-ALB problem for a domestic 

product. The highly potential 2S-ALB problem has successfully influenced the other researcher to start 

a new stage in ALB problem studied. A complex combination with the 2S-ALB problem has been 

reported through several presented types of research. Such in Simaria and Vilarinho (2009), Özcan and 

Toklu (2009), Chutima and Chimklai (2012) and Yuan, Zhang et al. (2015) who previously proposed 

the combination of mixed-model and two-sided ALB problem adopting a different meta-heuristic 

method as their solving approach [5-8]. Meanwhile, in Kucukkoc and Zhang (2014) a mixed-model 

parallel two-sided assembly line balancing problem with an agent-based ant colony optimization 

approach was firstly introduced [9]. The idea of combining 2S-ALB problem with the other ALB 

model seem totally change the assembly configuration, however it effectively gives more favourable 

advantages. 

This paper is focused on presenting the mathematical modelling for minimizing a multi-objective 

function implementing the 2S-ALB optimization problem. Our 2S-ALB is a general model emphasize 

four objective functions, comprising the minimization number of the workstation, mated-workstation, 

idle time and resource constraint. Besides, the particular feature of 2S-ALB also will be highlighted 

with a certain model as the numerical examples. 

2.  2S-ALB Problem modelling 

The 2S-ALB problem has been effectively studied using a specified method since last two decades. 

The recognition of 2S-ALB problem crucially influences numerous researcher to look forward 

adopting this ALB problem in their studies [10, 11]. The workstation of the one-sided assembly line is 

prepared in the linear line of the production system. Figure 1 illustrates the example of the one-sided 

assembly line with several numbers of the workstation. Each workstation will have certain assigned 

task and must be completed before moving to another workstation for another task or job. The product 

will be prepared after all tasks on every workstation are executed. 

 

workstation 1 workstation 2 … workstation (n-1) workstation (n) 
 

Figure 1. One-sided assembly line 

 

However, a different arrangement of workstation has been offered by two-sided assembly line. The 

illustration of two-sided assembly line has been depicted in figure 2. For two-sided assembly line the 

length of workstation logically is shorter than a one-sided assembly line [12, 13], since the tasks and 

the workstation is divided into two parallel lines. Therefore, it rationally shows some space efficient of 

the two-sided assembly line. A shorter line is able to reduce the material handling cost, besides the 

tools and fixture might be placed in the middle between the two parallel workstations (mated-

workstation) [1, 12-14]. Furthermore, the two-sided assembly line allowed the task to be executed at 

the same time for both parallel workstations (left and right) along the assembly lines. However, the 

precedence relation for each assigned tasks should seriously be assessed before being executed on a 

specific workstation. The precedence relation among tasks will be discussed in the following 

subsection. 

 

workstation 1 workstation 3 … workstation (n-3) workstation (n-1) 

Conveyor 

workstation 2 workstation 4 … workstation (n-2) workstation (n) 
 

Figure 2. Two-sided assembly line 
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On the other hand, Bartholdi also expressed the difficulty in permitting the two parallel mated-

workstations to work for the same time [1]. The idle workstation will turn into a problem in order to 

attempt a balanced assembly line. Besides, for each assigned tasks it also possesses with a different 

particular duration that seems hard to be aligned and balance the assembly lines. Therefore, a 

comprehensive study is needed in making the two-sided assembly line be balanced and completely 

able to optimize the ALB problems. 

 

2.1  Precedence relation 

A precedence relation graph is constructed to shows an overview of the tasks to be performed. Figure 

3 presents the precedence relation graph with some details. As shown below (figure 3) the circle 

indicates as the assigned task and each task is associated with a processing time and operational 

direction label (t, d). While the arrows linked represent the relation between each task. 

In two-sided assembly lines, the operational direction is allowed to be carried out on the same 

parallel workstation of both sides (left and right) on the same product. Due to the use of both sides of 

the lines, the additional operating direction has been classified into three different groups and must be 

obeyed. Three classified group of the operational direction: the left side (L), the right side (R), and 

either side (E). For left and right side the task execution is absolute and need to be implemented in the 

following position. Meanwhile, for either side, the execution of tasks is practicable to be performed on 

any side of the workstation. All the information concerning the assembly processes is disclosed on top 

of each precedence task 

 

 

Figure 3. Precedence relation graph (9 task example problem) 

 

2.2 Computational data presentation 

From the precedence diagram in figure 3, the relation between each task is important to be 

transformed into a digital format. The aim is to establish the precedence matrix that could be 

understood by the computer. Table 1 indicates the information of the precedence graph that being 

changed into a language for the computational purpose. This precedence matrix consists of ones and 

zeros values. The value of one indicates the precedence between task  and the next task . While, 

zero means no precedence between both task  and . 
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Table 1. Precedence matrix 

/   1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 1 1 0 0 0 

3 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 1 1 0 

6 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

 

Besides, the information of time and operational direction (t, d) on the precedence relation graph 

also needs to be modified for the computational purpose. The data matrix on Table 2 presents the 

example of detail data of assembly information, in which each value brings a particular meaning. The 

time column on Table 2 represents the processing period of each task, while on side column three 

different values indicate different sides of the operational direction (1=left side, 2=either side, 3=right 

side). The other columns denoted as resource constraint data details. 

 

Table 2. Data matrix 

task time side resource constraint 

   1     2    1 1 2 0 0 0 

   2     3    3 3 0 0 0 0 

   3     2    2 2 3 0 0 0 

   4     3    1 1 0 0 0 0 

   5     1    3 3 0 0 0 0 

   6     1    2 2 3 0 0 0 

   7     2    2 1 2 3 0 0 

   8     2    1 2 0 0 0 0 

   9     1    2 1 3 0 0 0 

 

2.3 Multi-objective modelling and execution 

In this paper, the 2S-ALB is evaluated with four objectives; to minimize the number of the 

workstation, mated-workstation, idle time and resource constraint. The general assumptions of the 

problem are as follows: - 

 The workstation numbers are not fixed and no absence of any workstation either left 

or right along the assembly line. 

 The maximum operational cycle time is fixed and could not be exceeded. 

 Three different operational directions of the left side, either side and the right side are 

presented in numerical order.  

 The assembly operation /task can be started at the same time on both sides for every 

mated-workstation. 

 The low level of operator skills is ignored, for the assembly tasks will be assembled at 

the same rate and pace. 

 Each workstation can only be assigned by a single operator. 
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Considering the above assumptions, the parameters that are involved in permitting all the objective 

functions are as follow. 

 

 : number of mated-workstation  

I : number of one-sided workstation  

 : 1, if there is any space availability on the operating time, otherwise, 0 

 : number of resource utilization  
 : 1, if mated-workstation j is utilized for both side of the line, otherwise, 0  

 : 1, if mated-workstation j is utilized for only one side of the line, otherwise, 0 
 : maximum processing time  

 : operational time of the task on the workstation  

 : maximum gap value in space availability 
 : minimum gap value in space availability  
 : 1, if resource is utilized in workstation , otherwise, 0  

 

The mathematical model of the problem can be formulated as follows. 

 

 

The objective function in equation (1) aims to minimize the number of mated-workstation. Where 

 shows the sum of utilized number of mated-workstations. Objective function (2) indicates the 

other aims of minimizing the number of utilized workstations. Meanwhile, objective function (3) 

represent the minimization of idle time value, considering the operational processing time  and 

the space time availability  on each workstation. Then, in objective function (4) the minimization 

of resource constrain is described with the summation of resource utilization . 

3.  Numerical example 

This section presents a numerical example to explain the objective functions in section 2. For this 

purpose, the example in figure 3 is considered. In this example, the cycle time is fixed with 6 units of 

times. Therefore, each workstation completely allowed to have the unlimited assign task but it should 

not exceed 6 unit of cycle time. Figure 4 illustrates the task distribution layout of 2S-ALB problems. 

In distributing the tasks to both sides of the lines formerly the assembly sequence associated with tasks 

will firstly be generated. As the example, one assign sequence is proposed comprising of 9 assembly 

tasks: 2,1,3,6,5,4,9,8,7. Then, according to each time and side data (t, d), the task will be assigned to 

the appropriate workstation. However, in filling the job for workstation sometimes the precedence will 

turn as a constraint, thus causing an idle time. The shaded area represents as idle time with no assigned 

 
(1) 

 
(2) 

 
(3) 

 

(4) 
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task /job. The task distribution and layout will be different if the generated sequence is changed. 

Means that, the total idle time will also change, either turned into a longer or shorter period of time. 

 

                         Side 

 

 

 

 

 

 

 

 

          Time 

 

  

     L 1 3     

R 2   6 5 

 
  

     L 4 8   

R 9 7       

 

  

     

 

            

 

1 2 3 4 5 6    

Figure 4. 2S-ALB task distribution 

 

The analysis and evaluation of this 2S-ALB problem modelling also depicted from figure 4. Along 

the assembly line, four different aim will be calculated associate to the 9 assigned task (problem 

example) from figure 3. 

 

3.1 Minimize the number of mated-workstation 
The particular equation of this aims is subjected to equation (1), while the assembly line illustration is 

depicted in figure 4. The calculation of the first objective function  of minimizing the number of 

mated-workstation is presented below. The two-sided workstation consists of left (L) and right (R) is 

recognized as mated-workstation. Thus the computation of  is calculated by the summation of 

utilized mated-workstation . It will be summed before multiplied by  condition, either 1 or 0. 

As the sum of mated-workstation , then it is multiplied by 1 as both side utilization of the 

workstation. 

 

2.4 Minimize the number of workstation 
While the second objective function is subjected to equation (2). The assembly line illustration also 

depicted from figure 4. The totalled of mated-workstation will be multiplied by 2 and  condition. 

Then it should be added to the total of one-sided utilized workstation as its evaluation. As  is equal to 

, the number of mated-workstation is set to be two. The value of  will be multiplied by 2 and 1 as 

the condition of both sided workstation utilization, . After that, the total of one /single 

sided utilized workstation will be summed with the previous value for  values.  is the condition 

for single sided utilized workstation, either 1 or 0. 

 

 

 

 

(1) 
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2.5 Minimize idle time 
Idle time is a wasted duration with no assigned task. Associated as a void space its graphically shown 

in figure 4 with shaded area. The best balanced line approximately has equal processing time. 

Therefore, minimizing the idle time is able to enhance the assembly operation line. The idle time 

formulation is presented in equation (3). The total subtraction of maximum processing time (cycle 

time) and the task time of each workstation, will be added together with the space availability on every 

workstation if any. The value of maximum processing time will be fixed on 6 unit of time before 

subtracting with the operation task time for each workstation (4,6,5,3). As the example on the first 

workstation with 4 unit of processing time, . Then, the total needs to add with another total 

gap /space along the assembly line for each workstation if any, such on the second workstation 

. The deduction of maximum and minimum gap space will be summed for every workstation 

and multiplied with the  condition. The value will be totaled and come out as  value 

 

2.6 Minimize resource constraint 

As shown in Table 3, the tasks and resource have divided into four number of workstation. Since that, 

the resource utilization of machine and tools seem is repeated even for the same workstation. The 

minimization of the resource used significantly help in reducing the cost of tools and fixture. For this 

example, it has 3 types of fixtures that used in completing all of the tasks. The resource row indicated 

the fixtures used with one type of machine (M1) and two types of tools (T1 and T2). However, the 

same machine and tools which located in the same workstation practically turned into a waste. The 

calculation on minimizing the resource constraint is presented below. The total resource used for every 

workstation is calculated emphasizing machine and tools. Such in workstation 1 possessing with 1 

type of machine and 2 type of tools. Therefore, as the total 3 resource is considered from workstation 

1. The resource used for another workstation also calculated to be summed before its multiplied with 

 condition which either 1 if the resource is utilized in the workstation  or , otherwise. 
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Table 3. Resource utilization 

Workstation (w) 1 2 3 4 

Tasks (s) 1 3 2 6 5 4 8 9 7 

Resource 

(Machine & tool 

used), (r) 

M1 T1 T2 T1 T2 M1 T1 M1 M1 

T1 T2   T2       T2 T1 

                T2 

Machine (m) M1  - M1 M1 

Tool (t) T1,T2 T1, T2 T1 T1,T2 

 

4.  Discussion 

A slight different have shown in 2S-ALB compared to one-sided assembly. The deterministic 

performance time with a specific order of precedence tasks leads to the idle time formation. Previously 

in one-sided assembly, the ordered task and workstation are presented on a single straight line (figure 

1). The preferred task will be assign to the workstation one to another until the product is complete 

and ready to use. But compared to two-sided assembly a short duration of idle time might be available 

on a certain workstation. This happens because of the precedence preferred assigned side along the 

assembly line. Although the idle time is issued in the 2S-ALB problem, it is believed more effective 

for improving the productivity. Such as able to avoid the excessive workload, minimize wasted or over 

processing leads to excess inventory, and have less processing time with higher production rate 

compared to one-sided assemblies. 

Another different initiated from this 2S-ALB modelling paper is the resource constraint utilization. 

Table 3 demonstrates the resource utilization on every workstation with assigned task. The repeated 

used of the resource (machine and tools) in executing the task along the assembly line could be 

reduced by implementing the 2S-ALB operation. By installing 2S-ALB configuration the resource 

utilization of machine and tools used definitely will be minimized when that fixture are placed in the 

middle (left and right) between two mated-workstation. The minimum number of machine tools and 

fixture surely reduced the maintenance cost apart of adding the same machine and tools. Over 

numerous benefit and advantages, the 2S-ALB is known from the literature to successfully provide the 

high efficiency in operational lines. Practically the accomplishment of 2S-ALB has abundantly proven 

in the assembly of a large-sized product, such bus and trucks [2] and automobile [3]. Even so, the 

success has been continued for a domestic product and is presented in Baykasoglu and Dereli in 2008 

studies [4]. From all of the success, it shown the 2S-ALB is potentially could be used in another field 

of studies, such printing and food processing industry. This could potentially enhance the 2S-ALB 

implementation in other various fields. 

5.  Conclusion 

In this paper, the model of two-sided assembly line balancing (2S-ALB) problem was discussed. This 

study was undertaken to design a multi-objective problem with four different objective functions. The 

minimization number of workstation, mated-workstation, idle time and resource constraint was 

introduced based on the real world problem. Further on the 2S-ALB modelling evaluation of four aims 

is presented in details with a particular equation and calculation. The obtained results have described 
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the 2S-ALB features. In addition, the comparison of the performance of 2S-ALB modelling is also 

stated in this study to give some clear explanation with its advantages. From the results of this 

modelling, it shows the 2S-ALB could have a better performance in optimization. 

For future work, we might extend the proposed model of the 2S-ALB problem for another 

optimization phase. Its involve with the implementation of computational optimization approach such 

GA and ACO method. This modelling also fits for other optimization problem in the area dealing with 

other objectives. Besides, a larger 2S-ALB problem, with more number of assign task associate to the 

assemblies is necessary to discuss in the future.  

Acknowledgments  

The authors would like to acknowledge the Ministry of Higher Education, Malaysia and Universiti 

Malaysia Pahang for supporting this research under the FRGS grant RDU140103. 

References 

[1] Bartholdi, J.J., Balancing two-sided assembly lines: a case study. International Journal of 

Production Research, 1993. 31(10): p. 2447-2461. 

[2] Kim, Y.K., Y. Kim, and Y.J. Kim, Two-sided assembly line balancing: A genetic algorithm 

approach. Production Planning & Control, 2000. 11(1): p. 44-53. 

[3] Lee, T.O., Y. Kim, and Y.K. Kim, Two-sided assembly line balancing to maximize work 

relatedness and slackness. Computers & Industrial Engineering, 2001. 40(3): p. 273-292. 

[4] Baykasoglu, A. and T. Dereli, Two-sided assembly line balancing using an ant-colony-based 

heuristic. The International Journal of Advanced Manufacturing Technology, 2008. 36(5-6): 

p. 582-588. 

[5] Simaria, A.S. and P.M. Vilarinho, 2-ANTBAL: An ant colony optimisation algorithm for 

balancing two-sided assembly lines. Computers & Industrial Engineering, 2009. 56(2): p. 

489-506. 

[6] Özcan, U. and B. Toklu, Balancing of mixed-model two-sided assembly lines. Computers & 

Industrial Engineering, 2009. 57(1): p. 217-227. 

[7] Chutima, P. and P. Chimklai, Multi-objective two-sided mixed-model assembly line balancing 

using particle swarm optimisation with negative knowledge. Computers & Industrial 

Engineering, 2012. 62(1): p. 39-55. 

[8] Yuan, B., et al., An effective hybrid honey bee mating optimization algorithm for balancing 

mixed-model two-sided assembly lines. Computers & Operations Research, 2015. 53: p. 32-

41. 

[9] Kucukkoc, I. and D.Z. Zhang, Simultaneous balancing and sequencing of mixed-model parallel 

two-sided assembly lines. International Journal of Production Research, 2014. 52(12): p. 

3665-3687. 

[10] Abdullah Make, M.R., M.F.F. Ab. Rashid, and M.M. Razali, A review of two-sided assembly 

line balancing problem. The International Journal of Advanced Manufacturing Technology, 

2016: p. 1-21. 

[11] Rashid, M.F.F., W. Hutabarat, and A. Tiwari, A review on assembly sequence planning and 

assembly line balancing optimisation using soft computing approaches. The International 

Journal of Advanced Manufacturing Technology, 2011. 59(1): p. 335-349. 

[12] Khorasanian, D., S.R. Hejazi, and G. Moslehi, Two-sided assembly line balancing considering 

the relationships between tasks. Computers & Industrial Engineering, 2013. 66(4): p. 1096-

1105. 

[13] Tuncel, G. and D. Aydin, Two-sided assembly line balancing using teaching–learning based 

optimization algorithm. Computers & Industrial Engineering, 2014. 74: p. 291-299. 

[14] Purnomo, H.D. and H.-M. Wee, Maximizing production rate and workload balancing in a two-

sided assembly line using Harmony Search. Computers & Industrial Engineering, 2014. 76: 

p. 222-230. 

International Engineering Research and Innovation Symposium (IRIS) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 160 (2016) 012005 doi:10.1088/1757-899X/160/1/012005

9



59 
 

 

CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

Computational experiment were conducted separately for three version of ALB problems. 

Some of the result was published, while some of the papers were still under review as follow: 

1. Jusop, M. and Ab. Rashid, M.F.F. (2016),”Optimisation of Assembly Line Balancing 

Type-E with Resource Constraints using NSGA-II”, Key Engineering Materials, vol. 

701, pp 195-199. 

2. Jusop, M. and Ab. Rashid, M.F.F. (2017), “Optimization of Assembly Line Balancing 

with Resource Constraint using NSGA-II: A Case Study”, International Journal of 

Applied Engineering Research 12 (7), 1421-1426. 

3. Kamaruddin, N.H. and Ab. Rashid, M.F.F. (2017), “Assembly Line Balancing with 

Resource Constraints using New Rank-Based Crossovers”, ICADME 2017 Conference 

4. Razali, M.M., Ab. Rashid, M.F.F. and Abdullah Make, M.R. (2017), “Optimization of 

Mixed-Model Assembly Line Balancing Problem with Resource Constraints”, Journal 

of Mechanical Engineering (Under review). 

5. Abdullah Make, M.R., Ab. Rashid, M.F.F. and Razali, M.M. (2017), “Optimization of 

Two-Sided Assembly Line Balancing with Resource Constraints using Modified PSO”, 

International Journal of Advanced manufacturing Technology (Under review).  
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Abstract. Assembly line balancing of Type-E problem (ALB-E) is an attempt to assign the tasks to 

the various workstations along the line so that the precedence relations are satisfied and some 

performance measures are optimised. A majority of the recent studies in ALB-E assume that any 

assembly task can be assigned to any workstation. This assumption lead to higher usage of resource 

required in assembly line. This research studies assembly line balancing of Type-E problem with 

resource constraint (ALBE-RC) for a single-model. In this work, three objective functions are 

considered, i.e. minimise number of workstation, cycle time and number of resources. In this paper, 

an Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) has been proposed to optimise the 

problem. Six benchmark problems have been used to test the optimisation algorithm and the results 

are compared to multi-objective genetic algorithm (MOGA) and hybrid genetic algorithm (HGA). 

From the computational test, it was found NSGA-II has the ability to explore search space, has 

better accuracy of solution and also has a uniformly spaced solution. In future, a research to 

improve the solution accuracy is proposed to enhance the performance of the algorithm. 

Introduction 

Assembly Line Balancing (ALB) refers to the decision problem of optimally partitioning the 

assembly task among the workstations with respect to some objectives [1]. This research studies 

ALB-E with resource constraints, such as machine, tool and worker that are needed to conduct the 

assembly process for a particular product. In a real-world problem, there are limited numbers of 

machines and tools that can be used to assemble a certain product. In order to maximise the 

resource utilisation in assembly line, the number of resources must be taken into consideration 

while assigning the task in any workstation. Traditional Genetic Algorithm may give an accurate 

solution but it may not be able to search for an optimal solution for a more complex problem. For 

the purpose of finding one single optimal solution for multi-objective optimisation problem, Deb et 

al [2] suggested to convert the problem into a single-objective optimisation problem. In this paper, 

an Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) has been proposed to optimise the 

problem. ALB-E is a type of NP-hard optimisation problems with an extremely large number of 

feasible solutions [3-6]. Advanced approach of algorithm is necessary to solve large-scale problems. 

The NSGA-II was developed to accommodate multi-objective optimisation problems. Other than 

the capability to solve a more complex and real world multi-objective optimisation problem, the 

other reason for choosing NSGA-II is its ability to find a better spread of solutions [7]. 

 In summary, it can be concluded that only a few researcher consider ALB-E in their research 

due to the complexity of the problem. To the best of author knowledge, no attempt has been carried 

out to implement NSGA-II in ALB-E with resource constraint (ALBE-RC). However, it is 

important to be concerned about these constraints because of limited number of resources in 

industry.  

 

ALBE-RC Modelling 

This section presents an approach for the optimisation of ALBE-RC problem through a simple 

representation diagram. The problem representation step starts with establish a liaison matrix which 
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is used to generate feasible assembly sequences. Once the liaison matrix has been established, 

DeFazio’s question and answer procedure is applied for the purpose of identifying the existence of 

precedence relations in assembly tasks. There are two questions that must be considered while 

evaluating each of the assembly task: (i) what tasks must be done prior to doing task i? (ii) what 

tasks must be left to be done after doing task i? [8]. The precedence graph mapping later can be 

formed after DeFazio’s question and answer is applied. Then, the assembly data for proposed 

representation can be tabulated in n×4 table where n is the number of assembly task. The first 

column t denotes task time whereas the other three columns RA, RB and RC correspondingly 

represent type of resource used. Finally, a feasible assembly sequence need to be evaluated 

according to the objective functions. In this study, there are 3 objective functions that have to be 

measured: (i) minimise number of workstation (ii) minimise the cycle time (iii) minimise number of 

resources. 

 

NSGA-II for ALBE-RC 

 

Deb et al [2] first introduced an Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) as an 

improved version of NSGA. NSGA-II procedure starts with initializing a random population Pi of 

size N. The parent population Pi is sorted by the non-dominated sorting approach. New population 

Qi of size N is obtained by selection, crossover and mutation. New population Ri of size 2N is 

formed by combining population Pi and Qi (Ri = Pi U Qi). The Ri population is sorted by the non-

dominated sorting approach. Population belonging to the best non-dominated set Fi is filled as a 

new population Pi+1. The counter i is set, i=1. The remaining non-dominated solutions are sorted 

again. This process continues until all the solutions are filled according to the non-domination level. 

The crowding distance of each solution with different non-domination levels is calculated. The 

population is sorted in descending order of magnitude of the crowding distance values. The 

flowchart of NSGA-II is shown in Fig. 1.  

 

Computational Experiment. Six benchmark problems are used to test the optimisation algorithm. 

All the test problems except the problem by Ağpak & Gökçen [9] have been modified by including 

the resources but the original informations are preserved. Small size problems are taken from 

Ağpak & Gökçen [9] and Ponnambalam et al [10] whereas medium and large problems are 

available on an online database for assembly line balancing research: www.assembly-line-

balancing.de. The proposed algorithm is coded in Matlab 7.14 and the experiments are executed on 

a Windows 8, Intel® Core™ i5-4210U CPU 1.70 GHz with 4 GB of RAM. The following 

parameters have been used to run the experiments: Population size, 20; Number of generations, 200; 

Crossover probability, 0.8; Mutation probability, 0.3.  

Comparison algorithms. Genetic algorithms (GAs) are mainly used by researchers for 

optimisation of large and complex problems specifically in ALB problem [11-13]. In order to 

measure the performance of the optimisation algorithm, three genetic algorithms, namely Non-

dominated sorting genetic algorithm (NSGA-II), Multi-objective genetic algorithm (MOGA) and 

Hybrid genetic algorithm (HGA) are tested with six test problems taken from open literature. Multi-

objective Genetic Algorithm (MOGA) has been introduced by Fonseca and Fleming [14] in 1993. 

MOGA has the abilities to find a diverse set of non-dominated solutions and to explore a nearly-true 

to the optimal set of solutions [15, 16]. It has also been widely used in real-world optimisation 

problems to solve assembly line balancing problems. In the paper presented by Ponnambalam et al 

[10], the researchers concluded that MOGA take more time in finding the global optimal solutions. 

A hybrid GA has been proposed by Chen et al [17] to solve the assembly line planning problem. 

The proposed GA is able to search for many feasible solutions in a short time. Genetic algorithm is 

an approach used in finding an optimal solution for a complex optimisation problem [12]. Valls et 

al [18] stated that hybrid genetic algorithm is high in quality and is a fast algorithm that is better 

than all state-of-the-art algorithms. 
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Figure 1 Flowchart of NSGA-II 

Results and Discussion 

To evaluate the performance of the proposed algorithms, five performance indicators are measured. 

The results of the performance measure of the algorithms are presented in Table 1 and the 

discussions are given in the following sections. 

Performance Indicators. The number of non-dominated solution (NDS) is measured to identify the 

ability of the algorithm to explore the search space. Meanwhile, Error Ratio (ER) and Generational 

Distance (GD) metrics measure the accuracy of solution. Spacing metric measures the uniformity of 

solution whereas maximum spread (Spreadmax) is evaluated in order to determine the spread of 

solution. Details on these performance metrics can be referred in [15]. The results from the 

computational tests show that NSGA-II performs better in finding the non-dominated solutions for 

all six problems. It can be concluded that NSGA-II has the ability to explore the search space 

compared to MOGA and HGA. Small ER and small GD will increase the accuracy of the solution. 

In comparing with MOGA and HGA, NSGA-II has the smallest ER. Therefore, it can be stressed 
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that NSGA-II has better accuracy of solution. In addition to the result of Error Ratio, the result of 

GD also showed that the performance of NSGA-II dominates the performance of MOGA and HGA 

in having high accuracy of solution. From Table 1, it is apparent that NSGA-II has the smallest 

value of GD for all problems compared with MOGA and HGA 

Table 1 Results of performance mesure of the algorithms MOGA, HGA and NSGA-II 

Problem Algorithm NDS ER GD Spacing Spreadmax 

Problem 1 

MOGA 1 0.5 0.5 0 1.7321 

HGA 1 0.5 0.5 0 1.7321 

NSGA-II 3 0 0 0 2.8284 

Problem 2 

MOGA 3 0 0 0.4714 4.1231 

HGA 3 0 0 0.4714 4.1231 

NSGA-II 3 0 0 0.4714 4.1231 

Buxey 

MOGA 5 0.1667 0.1667 1.2134 10.247 

HGA 5 0.5 0.6243 0.5 13.9642 

NSGA-II 7 0 0 0.4949 10.247 

Kilbridge 

MOGA 0 1 1.9255 0.3499 15.3623 

HGA 1 0.8333 0.9714 1.2134 14.0712 

NSGA-II 6 0 0 0.7454 11.5758 

Wee-Mag 

MOGA 1 0.875 2.903 1.9365 20.3224 

HGA 7 0.5882 1.1236 2.5219 31.7805 

NSGA-II 10 0 0 7.8358 29.0172 

Lutz2 

MOGA 5 0.6154 0.855 1.8138 33.8526 

HGA 6 0.5714 0.8257 1.2778 34.7131 

NSGA-II 8 0.2 0.2 1.005 27.2029 

Out of five performance measures that have been used to compare the algorithms, NSGA-II 

consistently performed well in three indicators; (i) Number of Non-Dominated Solution, NDS (ii) 

Error Ratio, ER (iii) Generational Distance, GD. In consequence, it is adequate to prove that the 

proposed NSGA-II has overcome the performance of the other two comparison algorithms, MOGA 

and HGA for multi-objective optimisation problem. 

Conclusion 

This paper focuses on assembly line balancing of Type-E problem with resource constraint (ALBE-

RC) for a single-model. In this paper, an Elitist Non-dominated Sorting Genetic Algorithm (NSGA-

II) is proposed to optimise the problem. Based on the computational test that has been carried out, 

NSGA-II has the ability to explore the search space and has better accuracy of solution compared to 

other algorithms. In future, a research to improve; (i) uniformity of solution (ii) spread of solution 

are proposed to enhance the performance of the algorithm for all sizes of problem. 
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Abstract 

Abstract Assembly line balancing type-e problem with 

resource constraint (ALBE-RC) is an attempt to assign the 

tasks to a minimal number of workstation with minimum cycle 

time by considering the resource constraint. Due to rapid 

growth in manufacturing and limited number of resources in 

industry, all the tasks that used the same resources will be 

performed in the same workstation such that the precedence 

relations are not violated. In this work, an implementation of 

an elitist non-dominated sorting genetic algorithm (NSGA-II) 

is proposed to optimise ALBE-RC case study. An industrial 

case study was conducted in an electronic company and a 

product known as HM72A-10 series model has been selected 

for the case study. The results from the optimization shows 

that all the optimisation parameters i.e. number of 

workstations, cycle time and number of resources used could 

be minimised. The improvement of line efficiency also 

indicated that the optimization results are better that the 

existing one. The validation from industrial expert provides 

evidence that the proposed method is applicable and can be 

implemented for line balancing. 

Keywords: Assembly Line Balancing, Type-E, Resource 

constraint, NSGA-II. 

 

INTRODUCTION  

An assembly line is one of manufacturing process comprises 

of a sequence of workstation in which a set of necessary task 

to assemble a product are performed. The aim of line 

balancing is to assign the tasks to an ordered sequence of 

workstations, such that the precedence relations are not 

violated and some performance measures are optimised (eg: 

maximise the line efficiency, minimise the number of 

workstations and minimise the cycle time). ALB is the 

decision problem of optimally partitioning the assembly tasks 

among the workstations related to some objectives [1]. 

Previous researchers make an assumption that any of assembly 

task can be performed and can be assigned to any workstation 

[2-5]. However, in reality each workstation has their own 

capabilities and specialization.   

To the best of author knowledge, there is only a small number 

of research which consider resource constraint in ALB works 

[6-9]. Interestingly, none of them consider resource constraint 

in assembly line balancing type-e (ALB-E) problem itself. 

Most of previous researcher used traditional GAs as an 

optimization technique in ALB problem [10-12]. Yet, the 

implementation of NSGA-II in ALBE-RC has not been given 

great attention by the researchers [13]. In this work, assembly 

tasks that used the same resources i.e. machine, tool, and 

worker will be assigned in one workstation according to the 

precedence and cycle time constraint. Deb et al. introduced 

NSGA-II to accommodate a complex and real-world 

optimization problem for multi-objective function [14, 15]. 

Besides than incorporate elitism-preserving technique, NSGA-

II also has the capabilities to find better solutions. 

This paper presents an optimization of assembly line balancing 

type-E problem with resource constraint (ALBE-RC) on a 

selected industrial case study by using NSGA-II. The case 

study was conducted in an electronic company, which 

produced electronic components in Malaysia.  

 

ELITIST NON-DOMINATED SORTING GENETIC 

ALGORITHM (NSGA-II) 

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 

is an optimization algorithm developed by Deb et.al in the year 

of 2000. This algorithm was developed based on evolutionary 

algorithm, with modification in determining the leader in 

evolution process. Instead of having the best solution leader, 

the NSGA-II calculate the Crowding Distance to determine the 

leader [14-16].  

NSGA-II procedure starts with initializing a random 

population Pi of size Npop. The algorithm is then decoded into 

feasible sequences using topological sort. The fitness of 

feasible chromosomes is calculated by evaluate the objective 

functions. Later, a non-dominated sorting approach is applied 

to generate Pareto-optimal set. The entire population is sorted 

using non-dominated sorting approach to identify the non-

dominated set F = (F1, F2,…, Fi). The parent population is 

filled with set F according to non-domination rank. If F > Npop, 

the last front will be selected based on higher crowding 

distance (CD). Since NSGA-II used the selection strategy 

based on crowding distance, it will gives an estimation of the 

density of selected solutions.  

The tournament competition between two random-pair of 

solutions from parent population is performed to determine the 

domination rank. The population will be sorted in decreasing 

rank of level according to each objective function. Solution 

with better rank is filled in parent pool. Meanwhile, the 

solution with the same rank but remains in a less crowded area 

will be selected. The tournament selection is repeated until the 

parent pool is fully occupied to generate children. New 

offspring population Qi of size Npop is generated from Pi by 
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crossover and mutation operators. Later, Pi and Qi are 

combined to form new population Ri of size 2Npop. The 

NSGA-II procedure is repeated until the termination criteria is 

met.  

As mentioned previously, the aforementioned algorithm 

implements an elitism-preserving technique. It will ensures 

that the best solution found in each generation will never be 

lost until the better solution is discovered [17-19]. The 

flowchart of NSGA-II is illustrated in Fig. 1. 

START

Initialised random population Pi of size Npop

Calculate fitness value

Sorting Pi using non-dominated sort

F > Npop

Sort the last front based on higher CD Select other front based on CD

Generate children population Qi of size Npop by 

crossover and mutation

Ri = Pi U Qi (size 2Npop)

i = i + 1

If i > max gen

END

Yes No

Yes

No

 

Figure 1. Flowchart of NSGA-II 

 

INDUSTRIAL CASE STUDY 

A. Product and Company Background 

TT Electronics is a United Kingdom based manufacturer that 

produces sensing and control for industrial and car makers, 

advanced components and integrated manufacturing services 

(IMS). The advanced components provide engineered 

components solutions such as resistors, power and hybrid 

devices, magnetics and connectors. The magnetics components 

are handled by BI Technologies Corporation Sdn. Bhd. that 

was located in Kuantan, Malaysia. BI Technologies 

Corporation is wholly owned subsidiary by TT Electronics. 

Their product design team are focused on custom and semi-

custom product based on customers’ needs. The products that 

have been produce by the company are magnetic components, 

power and signal, inductors SMD (Surface Mount Device) and 

through hole, molded inductor, and lamination transformer. 

For this case study the moulded inductor production section is 

selected as the product running on the line is a type of single 

model. Only HM72A-10 series model was running on the line 

during the data collection. HM72A-10 series is a type of 

moulded inductor. This class of product is a high power low 

cost moulded SMD inductor which is typically used in 

electronic device such as computer. Table I presents the 

summary of the production line of HM72A-10 series model. A 

total of 13 workers were assigned in all workstations to 

perform all the tasks with a number of 30 machines and tools 

that had been used throughout the process.  

 

Table I: SUMMARY ON HM72A-10 PRODUCTION 

Work element ST Resources (machine, 

tool and worker) 

pt (s) 

a1 Aircoil winding ST1 Auto CNC 

Aircoil Machine 

W1 5.1 

a2 Aircoil leadout 

flatenning 

ST2 Pneumatic press 

1 

W2 7.8 

a3 Aircoil leadout 

trimming 

ST3 Pneumatic press 

2 

W3 6.1 

a4 Aircoil leadout 

stripping (upper 

side) 

 

ST4 

Stripping 

machine 1 

W4 8.3 

a5 Aircoil leadout side 

stripping 

(lower side) 

 

ST4 

 

Stripping 

machine 2 

W5 7.8 

a6 Leads dip soldering ST5 Solder pot 

Tweezer 

Flux 

W6 4.5 

a7 Flux cleaning ST6 Dish washer W6 0.8 

a8 Aircoil leadout 

forming 

ST7 Pneumatic 

Forming 

Machine 

W7 4.4 

a9 Rod core assembly 

to aircoil 

ST8 Bent tip tweezer 

Varnish 

container 

W8 4.6 

a10 Rod curing ST9 Oven 

Baking tray 

W8 4.0 

a11 Moulding press  

ST10 

Double acting 

compression 

moulding 

W9 8.1 

a12 Inductor clamping ST11 Tongs 

Clamping 

machine 

W10 3.2 
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Work element ST Resources (machine, 

tool and worker) 

pt (s) 

a13 Unit curing ST12 Oven 

Baking trolley 

PC profiler 

W10 9.0 

a14 Unit unclamping 

from tongs 

ST13 Tongs 

Clamping 

machine 

W10 1.6 

a15 Lead cropping and 

forming 

ST14 Semi-auto crop 

& form machine 

W11 4.7 

a16 Part number 

marking 

ST15 Video jet printer W12 2.2 

a17 IR-reflow ST16 IR-Reflow 

machine 

Baking tray 

W12 2.3 

a18 VMI, 

Inductor/DCR + Q-

factor 

ST17 Mantis scope 

Height Gauge 

LCR meter 

W13 6.4 

a19 Packaging ST17 Tape & reel 

machine 

W13 1.5 

 

Indicator: ST = Workstation, W = Worker, pt = processing 

time 

 

B. Results and Discussion 

An industrial data collection for a selected product which is 

HM72A-10 series model has been conducted to collect the 

necessary data such as precedence relations, tasks time and 

resources used. The current layout of the selected product 

consist of 19 tasks that were assigned to 17 workstations with 

a total of 48 resources were used. A simulation of existing 

layout had been conducted using Witness™ software to 

simulate the assembly line. Witness™ is a simulation software 

that commercially used to provide overall view on all the 

process in terms of busy, idle, blocked and output. The 

purpose of existing layout simulation is to validate the 

simulation model with actual layout.  

Table II shows the proposed task assignment. It clarifies the 

details on what task has been assigned in each workstation and 

their respective total processing time. However after the 

validation stage, the industrial expert decided that task a1 

(aircoil winding) and task a2 (aircoil leadout flattening) cannot 

be assigned in one workstation. Yet, it should be in two 

different workstations. The highest processing time recorded 

in Table 2 is 13.1 seconds which is in workstation 4 (ST4). 

 

 

 

Table II. PROPOSED TASK ASSIGNMENT 

ST Task Resources Total 

processing 

time (s) 

ST1 a1 – aircoil winding W1, W2 Auto CNC 

aircoil machine 

Pneumatic press 1 

12.9 

a2 – aircoil leadout 

flattening 

ST2 a3 – aircoil leadout 

trimming 

W3 

Pneumatic press 2 

6.1 

ST3 a4 – aircoil leadout 

stripping 

W4 

Stripping machine 1 

8.3 

WS Task Resources Total 

processing 

time (s) 

ST4 a5 - aircoil leadout 

side stripping 

W5 

Stripping machine 2 

Solder pot 

Tweezer 

Flux 

Dish washer 

13.1 

a6 – leads dip 

soldering 

a7 – flux cleaning 

ST5 a8 – aircoil leadout 

forming 

W6 

Pneumatic forming 

machine 

Bent tip tweezer 

Varnish container 

Oven 

Baking tray 

13.0 

a9 – rod core 

assembly to aircoil 

a10 – rod curing 

ST6 a11 – moulding press W7 

Double acting 

compression moulding 

Tong 

Clamping machine 

 

11.3 

a12 – inductor 

clamping 

ST7 a13 – unit curing W8 

Oven 

Baking tray 

PC profiler 

10.6 

a14 -  unit 

unclamping from 

tongs 

ST8 a15 – lead cropping 

and forming 

W9 

Semi auto cropping and 

forming machine 

Video jet printer 

IR-reflow machine 

Baking tray 

9.2 

a16 – part number 

marking 

a17 – IR-reflow 

ST9 a18 – VMI, 

inductor/DCR + Q-

factor 

W10 

Mantis scope 

Height gauge 

LCR meter 

Tape and reel machine 

7.9 

a19 - Packaging 

 

Table III indicates the task assignment after have been 

validated. The table clearly shows that aircoil winding (a1) and 

aircoil leadout flattening (a2) are individually assigned in 

workstation 1 and workstation 2. Therefore, the number of 

workstation has been increased from 9 workstations to 10 

workstations after the validation. The highest processing time 

is remained unchanged which is 13.1 seconds meanwhile, the 

lowest processing time is 5.1 seconds. 
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Table III. TASK ASSIGNMENT AFTER VALIDATION 

ST Task Resources Total 

processing 

time (s) 

ST1 a1 – aircoil winding W1 

Auto CNC aircoil 

machine 

5.1 

ST2 a2 – aircoil leadout 

flattening 

W2 

Pneumatic press 1 

7.8 

ST3 a3 – aircoil leadout 

trimming 

W3 

Pneumatic press 2 

6.1 

ST4 a4 – aircoil leadout 

stripping (upper 

side) 

W4 

Stripping machine 

1 

8.3 

ST Task Resources Total 

processing 

time (s) 

ST5 a5 - aircoil leadout 

side stripping (lower 

side) 

 - W5 

- Stripping 

machine 2 

- Solder pot 

- Tweezer 

- Flux 

- Dish washer 

13.1 

a6 – leads dip 

soldering 

 

a7 – flux cleaning 

ST6 a8 – aircoil leadout 

forming 

- W6 

- Pneumatic 

forming     

machine 

- Bent tip tweezer 

- Varnish container 

- Oven  

- Baking tray  

 

a9 – rod core 

assembly to aircoil 

13.0 

a10 – rod curing 

ST7 a11 – moulding press -W7 

- Double acting 

compression 

moulding 

- Tong 

- Clamping 

machine 

 

a12 – inductor 

clamping 

11.3 

ST8 a13 – unit curing -W8 

- Oven 

- Baking tray 

- PC profiler 

 

a14 -  unit 

unclamping from 

tongs 

10.6 

ST9 a15 – lead cropping 

and forming 

-W9 

- Semi auto 

cropping and 

forming machine 

- Video jet printer 

- IR-reflow 

machine 

- Baking tray 

 

a16 – part number 

marking 

9.2 

a17 – IR-reflow 

ST10 a18 – VMI, 

inductor/DCR + Q-

factor 

-W10 

- Mantis scope 

- Height gauge 

- LCR meter 

- Tape and reel 

machine 

 

a19 – Packaging 7.9 

 

 

Table IV shows the simulation results of existing layout, after 

optimization using NSGA-II and the result after validation. 

The validation is conducted by an interview and discussion 

session to determine either the optimization result using the 

proposed method is acceptable or not. For the validation 

purpose, some queries has been raised during the interview 

and discussion session; (i) Do the proposed layout is possible 

to be implemented in the production line? (ii) Do the 

effectiveness of the line achieved the industrial target?  

The most striking observation to emerge from the results of 

comparison was the number of workstations are extensively 

decreased after the NSGA-II optimization from 17 

workstations that were used for the existing layout to 9 

workstations. The rapid decrease in the number of workstation 

is because of all the tasks that used same type of resources will 

be assigned to one workstation subject to the constraints i.e. (i) 

the precedence relations are not violated (ii) total processing 

time in each workstation does not exceed the cycle time.  

However, the number of workstations has been increased to 10 

after the validation. This is due to some of the tasks cannot be 

assigned to the same workstation. This situation caused the 

value of busy percentage in workstation after the validation 

turn out to be less (70.5%) compared with after the 

optimisation (78.3%). However, both values remain lower 

compare to the busy percent of workstation of the existing 

layout which is 33.7%.  In fact, the number of resources being 

used also show a reduction of 3 resources both after the 

optimization and validation.  

The efficiency of the line is calculated using (1) as follows: 

        (1) 

where E: Line efficiency 

     m: Number of workstation 

      c: Cycle time 

    : Total processing time of the th workstation 

 

The simulation results indicates that the line efficiency of the 

existing layout is the worst among the three results i.e. existing 

layout, 33.8%; after optimization, 78.4%; after validation, 

70.5%. This can be concluded that the most efficient line was 

after the optimization. Meanwhile, the percentage value of 

blocked in workstation is the lowest after the optimization 

(9.7%), compared to the result after the validation and existing 

layout which is 18.8% and 10.5% correspondingly. Besides, 

the results show that the percentage busy of worker after the 

optimization is the same as after the validation which is 

70.5%. This is due to the reason of the number of worker 

assigned to all workstations in the both phases are the same. 

The idle percentage of worker for both stages are also 

comparable which is 29.5%. 
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Table IV. COMPARISON OF EXISTING, NSGA-II 

OPTIMIZATION AND VALIDATION RESULTS  

Data Existing After NSGA-II 

optimization 

After 

validation 

NWS 17 9 10 

CT 16.1 13.1 13.1 

Resource 43 40 40 

% Line eff. 33.8 78.4 70.5 

%Busy 

(Workstation) 

33.7 78.3 70.5 

%Idle 

(Workstation) 

55.7 12.0 10.7 

%Blocked 

(Workstation) 

10.5 9.7 18.8 

%Busy (Worker) 44.1 70.5 70.5 

%Idle (Worker) 55.9 29.5 29.5 

Daily output 4914 6039 6039 

  

In the meantime, the existing layout shows the worst reading 

for busy percentage of worker (44.1%) and also the percentage 

of idle of worker (55.9%). The results obtained from the 

NGSA-II optimization shows that the proposed method can be 

implemented in manufacturing industry for the target to 

enhance the industrial productivity as well as increase the line 

efficiency. The validation from industrial expert concluded 

that the proposed layout was a worthy plan as it can minimise 

the number of resources used and number of workstations. On 

top of that, the efficiency and the productivity of the line also 

can be increased. 

As we can see from Table IV, the daily output obtained from 

the existing layout is 4914 units, while the output achieved 

after both the optimisation and validation is 6039 units per 

day. Apart from the optimisation parameters, the output of the 

production was increased as well. Thus, the proposed method 

and the optimisation algorithm are applicable for industrial 

application. 

 

CONCLUSION 

This paper presents a case study to optimize assembly line 

balancing type-e problem with resource constraint (ALBE-

RC) by using elitist non-dominated sorting genetic algorithm 

(NSGA-II). The finding from the industrial case study 

provides evidence that the results of optimization have 

improvement in term of line efficiency, daily output, number 

of workstations, cycle time and also the usage of resources 

compared with the existing layout. The validation from the 

industrial expert also shows that the proposed method is 

applicable and can be implemented for industrial application. 
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Abstract. Assembly line balancing (ALB) is about distributing the assembly tasks into 

workstations with the almost equal workload. Recently, researchers started to consider the 

resource constraints in ALB such as machine and worker, to make the assembly layout more 

efficient. This paper presents an ALB with resource constraints (ALB-RC) to minimize the 

workstation, machine and worker. For the optimization purpose, genetic algorithm (GA) with 

two new crossovers is introduced. The crossovers are developed using ranking approach and 

known as rank-based crossover type I and type II (RBC-I and RBC-II). These crossovers are 

tested against popular combinatorial crossovers using 17 benchmark problems. The 

computational experiment results indicated that the RBC-II has better overall performance 

because of the balance between divergence and guidance in the reproduction process. In future, 

the RBC-I and RBC-II will be tested for different variant of ALB problems. 

1. Introduction 

Assembly line balancing (ALB) plays a vital function in a production system. The installation of an 

assembly line is a long-term decision and requires large capital investments. It is important that such a 

system is designed and balanced so that it works as efficiently as possible [1]. The simplest version of 

ALB problem is known as simple assembly line balancing problem (SALBP) which also known as 

One-sided ALB [2]. SALBP deals with a serial assembly line which processes a unique model of a 

single product. In previous research, a lot of attention has been given to this type of problem.  

 However, in the majority of the previous works, researchers make assumptions where any of 

assembly tasks can be processed or assembled in any workstations. This is certainly true for the 

product which only requires a common or simple tool to be assembled. However, when the complexity 

of a product increased, it requires a special tool, machine or highly skilled labor to assemble that 

particular component. Therefore, the limitation of resources will be another constraint for the industry. 

In fact, the issue of line balancing with the minimum number of resources has always been a serious 



 

 

 

 

 

 

problem in the industry [3]. This problem is known as assembly line balancing with resource 

constraints (ALB-RC) 

 Previously, researchers had studied the line balancing with resource constraints. [4] started the 

ALB-RC by considering two resources and solve the problem using integer programming. Next, [5] 

proposed a model to support generalized constraints problem. [6] later on model and optimize the 

ALB with worker skill constraint. The purpose is to match the assembly task with the level of the 

worker skill. Besides that, [7] optimize the multi-objective ALB with general resources using 

domination concept.  

 Researchers also implemented different algorithms to optimize the ALB-RC problem. [8] combined 

priority rule-based method (PRBM) and genetic algorithm (GA) to optimize this problem. The PRBM 

is used to generate initial chromosomes for GA. Meanwhile, [9] implement the hybrid multi-objective 

genetic algorithm (MOGA) to optimize the problem to obtain Pareto front. In addition, [10] 

implemented elitist non-dominated sorting GA (NSGA-II) to optimize this problem. 

This paper extends the existing ALB-RC by considering the worker selection, besides the workstation 

number and tool resource. In this problem, the engineer has a different option for workers with 

different ability to conduct assembly task. The problem is later optimized by GA with new crossover 

operators.   

2. ALB-RC Problem Modelling 

 

The ALB problem is represented using a precedence graph. The number inside the node represents the 

assembly task. The directed edge means the precedence between task i and j. In ALB, the assembly 

tasks need to be assigned into workstations, so that the workstation time is almost equal. To presents 

the ALB-RC, the following example is used. Figure 1 shows a precedence graph that represents an 

assembly process. Each of nodes represents the assembly task while the arrows represent the 

precedence. 

 
Figure 1. Example of precedence graph 

 

 Table 1 meanwhile shows the assembly information which includes the task time, tool and also 

worker. The worker columns with tick mark meaning that the worker is able to conduct a specific 

assembly task. To assemble an assembly task, only one worker is required.  

 

Table 1. Assembly information for Figure 1 

Task Time Tool 
Workers 

1 2 3 4 5 6 7 

1 18 A / 
 

/ / 
 

/ / 

2 22 B 
 

/ 
 

/ 
 

/ 
 

3 9 B / / / 
 

/ 
 

/ 

4 7 A 
  

/ 
 

/ / / 

5 12 A / 
  

/ 
 

/ 
 

6 6 B 
 

/ / 
 

/ 
  

7 20 A / / 
 

/ 
  

/ 



 

 

 

 

 

 

 For clarity of the ALB-RC evaluation, let consider a feasible assembly sequence f1 = [1 4 3 2 6 5 7]. 

For this example, the maximum cycle time, ctmax is 34 time unit. It means that the workstation time 

cannot exceed the ctmax or otherwise, the demand for the product cannot be fulfilled. In Table 2, the 

Worker row shows the entire workers that capable to conduct a specific assembly task.  

 

Table 2. Example of a feasible assembly sequence 
Sequence 1 4 3 2 6 5 7 

Time 18 7 9 22 6 12 20 

Tool A A B B B A A 

Worker 1,3,4,6,7 3,5,6,7 1,2,3,5,7 2,4,6 2,3,5 1,4,6 1,2,4,7 

 

 The assembly tasks were assigned into the workstation as shown in Table 3. The station time row 

shows cumulative time to conduct assembly process for all tasks in a specific station. The Tool row 

shows the required tool to conduct assembly process in a specific station. Meanwhile, the worker 

selection is made based on the number of workers frequency in a workstation. For example, in 

workstation 1, workers 3 and 7 have the highest frequency. In this case, the worker is select randomly.  

 

Table 3. Assembly task and workstation assignment 
Workstation 1 2 3 

Task 1, 4, 3 2, 6 5, 7 

Station time 34 28 32 

Tool A,B B A 

Worker 3 2 1 

 

Based on the presented approach, the objective function can be measured as follow: 

 Number of workstation = 3 

 Number of tool = 4 

 Number of worker = 3 

 

3. Genetic Algorithm 

 

Genetic algorithm is an optimization technique that mimics the survival for the fitness concept. 

Solutions with better fitness have larger possibilities to remain in the population, while the solution 

with bad fitness will be eliminated from the population [11]. In general, GA consists of five main 

steps; Initialization, Evaluation, Selection, Crossover and Mutation. The algorithm is coded using 

permutation number to represent the assembly tasks. However, due to the randomness of permutation, 

the generated number may violate the precedence relation in assembly. Therefore, topological sort 

based on the earliest task appearance is implemented to decode the solution.  

 The purpose of selection step is to choose the chromosome to be placed in the mating pool. The 

selected chromosome will be the parent of the children in a new generation. The selection process is 

conducted using Roulette wheel selection (RWS) mechanism. Meanwhile, for the crossover, we 

introduced two crossover operators, named Rank based crossover type I and II (RBC-I and RBC-II). 

The proposed crossovers are compared with popular crossover operator for permutation problem, i.e. 

ordered crossover (OX), partially matched crossover (PMX) and Moon crossover [12]. 

3.1. Proposed Rank Based Crossover 

 Both of the proposed crossovers taken into account the best chromosome from the population in the 

reproduction process. In both of the proposed crossover, each of the assembly tasks will be given a 

rank according to their position in the chromosome. Then the rank for parent and best chromosome 

will be summed up to form a new rank. The child solution will be generated based on the new rank. 

By using this approach, the new child will inherit the gene from their parent and also the best solution. 

 



 

 

 

 

 

 

3.1.1. Rank based crossover type-I (RBC-I) 

 In RBC-I, the parent rank (R1) and the best solution rank (Rbest) will be added (Figure 2). Next, the 

rank is sorted according to the parent (P1) and the best solution (Xbest). The sorted parent rank (R’1) 

and the best rank (R’best) is added to form sorted offspring rank (R’O1). Finally, the P’1 is sorted 

according to the R’O1 to generate offspring solution, O1. In the case where the rank is tied, the selection 

is made randomly. The numerical procedure for RBC-I is presented in Figure 2. 

 

 
Figure 2. Numerical procedure for RBC-I 

3.1.2. Rank based crossover type-II (RBC-II) 

 The RBC-II applied the same rank concept as in RBC-I, but this crossover considers two parents. 

The early steps where the rank is assigned and sorted is the same with RBC-I as shown in Figure 3. To 

calculate the rank for offspring solutions (R’O), the following formula is used in RBC-II. 

 R’O = Cbest (R’best) + C1(R’1) + C2(R’2)      (1) 

Cbest, C1 and C2 are the coefficients for the Xbest, P1 and P2 respectively. The Cbest is fixed at 0.2. 

Meanwhile, the C1 and C2 coefficient is depend on the offspring. To generate offspring 1 (O1), the C1 

and C2 are as follow. 

 C1 = 0.7(1 – Cbest)        (2) 

 C2 = 0.3(1 – Cbest)        (3) 

On the other hand, to generate offspring 2 (O2), the following coefficients are used. 

 C1 = 0.3(1 – Cbest)        (4) 

 C2 = 0.7(1 – Cbest)        (5) 

 The offspring solutions (O1 and O2) are generated by sorting the R’O in the ascending orders. As in 

RBC-I, in the event of tie rank, the selection is made randomly. The numerical example for RBC-II is 

shown in Figure 3. 

 



 

 

 

 

 

 

 
Figure 3. Numerical example of RBC-II 

 

4. Computational Experiment 

 

A computational experiment has been conducted to measure the performance of RBC-I and RBC-II. 

For this purpose, a set of ALB benchmark problem by Scholl is used [13]. The benchmark set consist 

of 17 problems that varies in term of the size. The benchmark test problem is divided into three 

categories; small (n ≤ 20 task), medium (20 < n ≤ 70) and large (n > 70). For comparison purpose, the 

RBC-I and RBC-II are compared with popular crossover operators for the combinatorial problem. The 

comparison crossovers are the ordered crossover (OX), partially matched crossover (PMX) and Moon 

crossover. The OX and PMX are among popular crossover operator for the combinatorial problem. 

Meanwhile, the Moon crossover is used since it was claimed to be the best crossover for the 

combinatorial problem [12]. For the computational experiment, the population size is set to 30, 

maximum generation is 300, probability of crossover is 0.7 and probability of mutation is 0.2. The 

optimization is run for ten times to reduce the pseudorandom effect. Table 4 presents the best fitness 

obtained by GA using different crossover strategies. 

 Based on the results in Table 4, all the crossovers were able to search for an optimum solution for 

the small size problems. However, when the problem size is increased, the RBC-I and RBC-II has 

better performance compared with other crossovers, except in Hahn problem. In medium size problem, 

the RBC-II has better fitness in 83% of the problem. Meanwhile, in large size problem, the RBC-I and 

II individually has better fitness in 50% of the problem. 

 To have better view from the computational experiment result, a standard competition ranking 

approach is used. The crossover with the best fitness will be given rank 1, followed by the next as rank 

2 etc. If the crossover performance is equivalent, the following rank is ignored. The summary of the 

standard competition ranking is presented in Table 5. 

 

 



 

 

 

 

 

 

Table 4. Optimization results 

No Problem 
No. of 

Task 

Given Cycle 

Time 

Crossover type 

OX PMX Moon RBC-I RBC-II 

1 Mertens 7 8 8.7500 8.7500 8.7500 8.7500 8.7500 

2 Bowman 8 20 8.5000 8.5000 8.5000 8.5000 8.5000 

3 Jaeschke 9 18 3.5000 3.5000 3.5000 3.5000 3.5000 

4 Mansoor 11 48 2.9286 2.9286 2.9286 2.9286 2.9286 

5 Jackson 11 13 2.2857 2.2857 2.2857 2.2857 2.2857 

6 Buxey 29 54 4.0457 4.0576 4.0517 3.7789 3.5181 

7 Sawyer 30 75 1.6800 1.6800 1.6800 1.8000 1.4400 

8 Gunther 35 69 2.7952 2.8952 2.7810 2.6738 2.5881 

9 Kilbridge 45 69 3.8831 3.9642 3.9599 3.8789 3.7999 

10 Hahn 53 2004 5.6467 5.5190 5.5815 5.6495 5.6440 

11 Warnecke 58 111 3.4024 3.5080 3.8168 3.5628 3.1858 

12 Wee Mag 75 56 4.1857 4.1303 4.0446 4.0053 3.8964 

13 Arc83 83 6540 2.4743 2.5198 2.5879 2.4320 2.5132 

14 Lutz 2 89 19 3.0760 2.9237 3.0062 2.5626 2.9492 

15 Mukherje 94 263 3.2866 3.3370 3.2747 3.4274 3.0903 

16 Arc111 111 6540 6.7874 6.6003 6.5334 6.4993 5.5394 

17 Barthol2 148 170 3.2254 3.1278 3.1912 2.9669 3.1034 

 

Table 5. Summary of standard competition ranking 
Crossover Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Average rank 

OX 5 3 3 2 4 2.8235 

PMX 6 2 2 4 3 2.7647 

Moon 5 3 3 4 2 2.7058 

RBC-I 8 5 0 1 3 2.1764 

RBC-II 13 1 3 0 0 1.4117 

 

 Based on Table 5, the RBC-II was most frequently ranked as 1, followed by RBC-I and PMX. 

Meanwhile, the OX has the most frequently ranked as 5. The average rank for each of crossover is 

then calculated. Based on the average rank the best crossover is RBC-II. The RBC-II is only ranked 

from 1 until 3. In the meantime, RBC-I is in the second best according to the average rank. For RBC-I, 

besides ranked as 1 and 2, this crossover was also ranked as 5 in three cases. On the other hand, the 

OX is the worst crossover based on the average rank.  

 The RBC-I and II have shown better performance because of the involvement of the best 

chromosome in the reproduction process. This makes the search direction is more guided compared 

with other crossovers. In the OX, PMX and Moon crossovers, the reproduction process solely depend 

on the parents. Even though the parents were selected among the best, the variation in the 

chromosomes makes the search direction become too diverse.  

 Meanwhile, in the comparison between RBC-I and II, the RBC-I is too dependent on the best 

solution because a single parent is mated with the best solution for the regeneration. This makes the 

chance for the chromosome to trap in local optima is slightly higher. In RBC-II, the regeneration 

process involved a pair of parents and the best solution. Two chromosomes from parents make the 

regeneration is not too relied on the best solution. Furthermore, the generated offspring only inherit 

20% of the gene from the best solution (since Cbest = 0.2). This makes the RBC-II able to generate 

more varied offspring, but in the guided mode.  

 



 

 

 

 

 

 

5. Conclusions 

This paper presents an assembly line balancing with resource constraints. In particular, besides 

balancing the assembly workload in the station, this work also consider to minimize the number of 

machines and workers in an assembly line. For optimization purpose, two crossover operators for 

genetic algorithm were introduced. The proposed crossovers were based on the assembly sequence 

rank, known as Rank-based crossover type I and II (RBC-I and RBC-II). In different with other 

crossover operators, the RBC-I and II consider the best chromosome in the regeneration process. 

 The computational experiments using 17 benchmark problems indicated that the RBC-II has better 

overall performance compared with comparison crossovers in the genetic algorithm. The RBC-II 

performance is because of the balance between divergence and guidance during the reproduction 

process in the crossover. In future, an industrial case study will be conducted to validate the problem 

modeling and the RBC-II performance. 
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ABSTRACT 

 

In this study, mixed-model assembly line balancing problem (MMALBP) is 

optimized using four Meta-heuristic Algorithms (MAs), namely particle 

swarm optimization (PSO), simulated annealing (SA), ant colony 

optimization (ACO) and genetic algorithm (GA). Three categories of test 

problem (small, medium, and large) is used ranging from 8 to 100 number of 

tasks. For computational experiment, MATLAB software is used in 

investigate the MAs performances to optimize the designated objective 

functions. The results reveal that ACO algorithm performed better in term of 

finding the best fitness functions when dealing with a large number of tasks. 

Averagely, it has produces better solution quality than PSO by 5.82%, GA by 

9.80%, and SA by 7.66%. However, PSO more superior in term of processing 

time compared to ACO by 29.25%, GA by 40.54%, and SA by 73.23%. 

Hence, future research directions such as using the actual manufacturing 

assembly line data to test the algorithm performances are likely to happen. 

 

Keywords: Mixed-model Assembly Line Balancing; Meta-heuristic 

algorithm; Resource constraints, Optimization Algorithm 

 

 

Introduction 
 

Assembly line balancing problem (ALBP) is a matter of decisions that arise 

when designing or redesigning the assembly line and it involves finding the 

optimum assignment of tasks. In the recent decades, ALBP has been one of 

the major interesting research subjects due to its importance to the 
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manufacturers nowadays. This subject is important because manufacturers 

able to increase the efficiency, productivity as well as gain profit and reduce 

operational cost by applying assembly line balancing [1]. Mixed-model 

assembly line balancing problem (MMALBP) is categorized under ALBP. It 

differs with the other problem in ALBP classification because it deals with an 

assembly line that capable to assemble more than one different model of 

product at the same time on the same assembly line [2]. 

 In context of MMALBP, various other factors are considered. As an 

example, the number of models which will be assembled and total demand 

throughout planning horizon. There are a few methods that have been used by 

previous researcher to propose an effective solution for this problem. For 

instance, researcher utilize a mathematical approach namely mixed integer 

linear programming and mathematical programming techniques that aimed to 

optimized MMALBP [3]. However, problems associated with the use of 

optimization in large-scale problems frequently reach local optimum 

especially when facing NP-hard problems. The NP-hard problem contains 

massive number of variables as well as non-linear objective functions make it 

complicated for the conventional method to deliver a decent solution [4]. 

 In order to counter this problem, some alternative solutions are 

proposed. Researchers have presented meta-heuristic algorithms to find near-

optimal solution to the MMALBP. Meta-heuristic algorithms (MAs) are 

stochastic optimizer programming that capable to solve multi-objective 

optimization problems. They able to deal with the multi-objective problems 

with a set of possible solutions simultaneously [5]. The algorithms can find 

the near-optimal solution in a single run compared with traditional techniques 

that need to be executed in a series of separate runs.  

 MAs are a method that imitate the metaphor of natural biological 

evolution and the social behavior of species [6]. As an example to that 

metaphor, in order to find a source of food, ants search the shortest route that 

can lead to it and how the flock of birds work together to get to destination 

during their migration. However, the first reported MAs in the previous 

literature was the genetic algorithm inspired from the Darwin’s principle 

which is based on natural evolution back in 1970s [7]. Same as the metaphor 

mentioned before, simulated annealing optimization technique is to imitate 

the physical process of annealing also known as heat treatment process 

whereby a metal is heated to a specific temperature and then left to cool 

slowly [8].   

 In the interest to mimic the behavior of this species effectively, 

various researchers have developed a computerized system that capable to 

find solutions for complex optimization problems encourage by 

aforementioned natural biological evolution and the social behavior of 

species such as ant colony optimization and particle swarm optimization. 

Then, measuring the performance of these MAs has been given a wide 

attention from researchers generally to verify the applicability of a particular 
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algorithm to that particular ALBP. The objectives function is used as the 

evaluation criteria to measure the performance of a meta-heuristic algorithm 

that studied. Most common objectives function being studied in the existing 

literature such as minimize cycle time [9], minimize number of workstation 

[10], minimize total idle cost [11], balancing the workload [12]  and etc. 

 Despite all the prior effort by the researchers, there was some 

limitation on the existing works. This include the assumption that all 

workstation has the same capability in term of resources such as tool, 

manpower, machine and etc. Furthermore, lack of consideration on existing 

resources on the manufacturing line and not to mention, recent studies only 

considered on specific resource constraint in their research. 

 This paper investigates the mixed-model assembly line balancing 

problem (MMALBP) with resource constraints. Then, a computational study 

to compare the performance of four meta-heuristic algorithms in term of 

fitness value, processing time and quality of the solutions was conducted. 

These four MAs technique inspired by different natural process namely ant 

colony optimization (ACO), genetic algorithm (GA), particle swarm 

optimization (PSO), and simulated annealing (SA). Three objectives function 

are chosen which is minimize total cycle time, minimize product rate 

variation, and minimize number of resources used on the assembly line. The 

selection of these three objective functions were based on literature in 

MMALBP where it is the most studied by previous researcher. 

 
Problem Modelling 
 
In order to evaluate the performance of selected MAs, a problem modelling 

was constructed with the objective functions to minimize cycle time, 

minimize product rate variation (PRV) and resources used on the assembly 

line [9]. Mixed-model assembly line consists more than one product which 

will be assembled on the same line. Each model has its own precedence 

relation diagram that shows an arrangement of task which needed to be 

completed to produce final finished product. A joint precedence diagram is 

formed from the combination of two or more product models. A simple 

illustration on how the join precedence is formed presented in Figure 1. 

 Each model has six tasks which needed to be completed but may be 

different in term of the task arrangement. For example, in Model 1, task 2 

and 3 must be finished first before able to proceed with task 5 meanwhile in 

Model 3 only task 2 is needed to be completed before moving to task 5. 

Then, Error! Reference source not found. shows how the joint precedence 

diagram is formed based on these three models. It shows the proposed 

sequence of the task that must be followed to assemble the products from 

start until the final product. All known solutions for MMALBP are relied on 

the joint precedence diagram which is crucial for solving such problems [13]. 
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Figure 1: Precedence diagram for model 1, 2, and 3 

 

 
 

Figure 2: Join precedence diagram 

 
The parameters and indices of the model will be as: 

 

Notation Definition 

S number of workstations(fixed)  s = 1, 2…, S 

J number of product models to be assembled  j = 1, 2…, J 

Ne number of task  e = 1, 2…, Ne 

prei predecessor for task i based on precedence diagram 

ti execution time for task i 

DT total quantity of units or total demand 

dj demand for product j, j = 1, 2, . . ., a 

Xi,k total quantity of product/produced over stages 1 to k, k = 1, 2, . 

. ., Dt 

maxR maximum resources  r = 1, 2,…, maxR 
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CT cycle time 

Tej shift task model time 

Te shift task time 

te task time 

Nj demand schedule for each model 

U production rates variation of production sequence 

Decision variables 

Uej 1 if task, e is used on model j ; 0,otherwise 

Xes 1 if task, e is assigned to workstation s; 0, otherwise 

Yrs 1 if resource, r is used in workstation s; 0,otheriwse 

 

Objectives function and constraints  
In this paper, three objective functions are used as the evaluation criteria. The 

first one is minimizing the cycle time. Second is to minimize product rate 

variation (PRV) and third is to minimize resources used on the assembly line. 

These selected objectives function and its related constraint are formulated as 

below [9]: 

 

𝑓1 = 𝑚𝑖𝑛 ∑ ∑ 𝐶𝑇

𝐽

𝑗=1

𝑁𝑒

𝑒=1

 

 

      (1) 

𝑓2 = 𝑚𝑖𝑛 ∑ ∑ 𝑌𝑟𝑠

𝑚𝑎𝑥𝑅

𝑟=1

𝑆

𝑠=1

 

 

      (2) 

𝑓3 = min ∑ ∑ (𝑥𝑗,𝑘  − 𝑘  ×
𝑑𝑗

𝐷𝑇

)

2𝐽

𝑗=1

𝐷𝑇

𝑘=1

 

 

       (3) 

 
 Objective function f1, in equation (1) is to minimize cycle time 

meanwhile f2, in equation (2) aim to minimize resources used on assembly 

line and f3 in equation (3) is to minimize product rate variation (PRV) based 

on the demand of planning horizon. These three objective functions are 

bound by these following restriction: 

 

∑ 𝑋𝑎𝑠

𝑆

𝑠=1

− ∑ 𝑋𝑏𝑠

𝑆

𝑠=1

≤ 0, 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑝𝑟𝑒𝑖  
 

 (4) 
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 ∑ 𝑡𝑖(

𝑖∈𝑤𝑘

𝑋𝑒𝑠) ≤ 𝐶, 𝑠 = 1, … , 𝑆 (

5) 

       
∑ 𝑋𝑒𝑠 = 1, 𝑒 = 1, … , 𝑛

𝑆

𝑠=1

 
 

 (6) 

 Constraint (4) is to assure the precedence constraints among the 

tasks is followed, which is to guarantees that no successor task is appointed 

to an earlier station. Meanwhile, inequality (5) is to ensure that total task 

times assigned to each station does not surpass the designated maximum 

cycle time. Restriction of each task can only be assigned to one workstation 

is created by using constraint (6). The maximum cycle time mentioned in this 

paper is stated as reference cycle time, RefCT and can be expressed as: 

 

𝑅𝑒𝑓𝐶𝑇 =
∑ 𝑠ℎ𝑖𝑓𝑡 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒, 𝑇𝑒

𝑛𝑜.  𝑜𝑓 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠 
,    𝑠 = 1, … , 𝑆   (7) 

 

 A multi-objective optimization is involved as a result of multiple 

objective functions considered in this paper. Due to this, a weighted sum 

approach is employed to give a better control on the final output based on our 

preferment. The approach is expressed as follows: 

 

∑ 𝑤𝑖𝑓𝑖 (𝑥)

𝑀

𝑖=1

     ;  𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝜔𝑛𝑓𝑛(𝑥) 
     

(8) 

 

 For the general purpose, we need to normalize all three objective 

functions in equation (8) to provide constant proportion for each objective 

function. This can be accomplished by distributing the fitness value with the 

maximum value for every objective function being measured. After applying 

weighted sum approach, the normalized fitness functions represented as 

below: 

 

    𝐹(𝑋) = 𝑤1𝑓1
′(𝑥) + 𝑤2𝑓2

′(𝑥) + 𝑤3𝑓3′(𝑥)      (9) 

 
Optimization Algorithm 
 
In general, MAs share the same approach to their application for a given 

problem. First and foremost, the problem needs some representation in 

accordance with each method. Then, meta-heuristic search algorithms are 
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used iteratively to reach a solution that is near-optimal. Due to basis on 

literature review that govern mixed-model assembly line balancing problem, 

GA, PSO, ACO, and SA are the most studied algorithm by previous 

researchers. This can be ranked by GA with the most used algorithm in 

solving MMALBP, then followed by SA, ACO, and PSO in second, third and 

fourth respectively. This is among the possible reason why these four MAs 

was chosen for comparison [14]. The following subsections presented a brief 

description governing this four MAs framework.  

 

Ant colony optimization  
ACO algorithms evolve not in their designated genetics only, but also in their 

social behavior. Look back in history of ACO, it led to Marco Dorigo [15] 

who first developed this algorithm. Taken from the metaphor on how the ants 

are able to search their source of food and nest by using the shortest route. 

The real framework on ACO algorithm is by using a pheromone trails, which 

scientifically deposited by ants when they navigate to find sources of food. 

This pheromone trails are used as some sort of communication medium 

between the ants. 
 As shown in Error! Reference source not found., at the point 

when ants leave their homes looking for sources of food, they arbitrarily turn 

around an obstacle, and on the primary store of pheromone will be the same 

for the left and right directions. However, when the ants in the shorter 

direction discover the food, they carry it together and start returning back, 

following their pheromone trails, and still spare more pheromone. As 

indicated in this figure, an ant will most likely choose the shortest route when 

returning back to their home with food as this path will have the most 

deposited pheromone. 

 

 
 

Figure 3 Ants searching for their food [6] 

 
Particle swarm optimization 
Based on the original literature, PSO was originally invented in the mid-

1990s by Kennedy and Eberhart [16]. PSO is inspired by the behavior of 

flocks of bird in their journey to find the sources of food. Their social 

behavior helps them to adapt to the current environment as well as avoiding 
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predators by using an approach called ‘information sharing’, hence, created 

an evolutionary advantage.  

 

 
 

Figure 4 Flocks of bird looking for ther destination [6] 

 

Genetic algorithms   
GA recorded as the first evolutionary algorithm presented by John Holland in 

1970s. Inspired from the principal of ‘survival of the fittest’, it is developed 

in a way which over a number of generation, the populations evolved by 

following the concept. Naturally, individual which possess a highest survival 

rate is likely to have a larger number of offspring. Hence, in each succeeding 

generation, the genes from the fittest individuals will increase in number. In 

this manner, species become more and more well-adapted to their current 

environment as they evolve [17]. 

 

 
 

Figure 5  Concept of survival of the fittest (i.e., tallest) [6] 

 
Simulated annealing 
SA algorithm is a meta-heuristic search technique which first invented by 

Kirkpatrick, Gelatt, and Vecchi in 1983. It serves a purpose for solving the 

NP-hard optimization problems, specifically to enhance the objective 

functions value. In fact, the ‘annealing’ term comes from the concept of 

annealing process used in metallurgical industry. Annealing is a process of 

slow cooling cast-off to metals in order to get a low energy-state 



Optimization of Mixed-Model ALBP with Resource Constraints 

 

9 

crystallization and produce a better aligned finished metal product. The 

optimization procedure of SA searches for a near-optimum solution 

impersonating the slow cooling procedure in the physical annealing process 

[18]. 

 
Results and Discussions 
 
In order to evaluate the performance of ACO, GA, PSO, and SA algorithm to 

an extend limit, a benchmark dataset in MMALBP must be tested. The test 

problems used in this paper is taken from the website http://www.assembly-

line-balancing.de under the categories of mixed-model assembly line 

balancing problem. In addition, this test problem is widely used to test the 

algorithm in searching for quality solution to MMALBP. 
 The dataset contains small-size test problem (STP), medium-size test 

problem (MTP) and large-size test problem (LTP) ranging from 8 to 100 

number of tasks. Specifically, small size problem contains 8 tasks to 20 tasks, 

medium size problem ranges from 25 to 50 tasks and large size problem from 

60 to 100 number of tasks. All these four algorithms are developed based on 

its own features and targeted to optimize the selected objective functions. 

 Hence, all these four MAs is being tested by using the chosen test 

problem using MATLAB simulation. Environment of the computational 

experiment including: Intel(R) Core(TM) i7 2.40GHz, 8 GB memory, 

Windows 8.1. Considering that all four algorithms might be influenced by 

random characteristics, each optimization process is run for 20 times under 

the same parameter and experimental environment. Mean from the test result 

of each algorithm are listed. The result from this comparison of performance 

is presented as follows: 

 
Table 1  MAs computational result (STP) 
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Table 2  MAs computational result (MTP) 

 
 

Problem(no.of task) Algorithm PSO ACO SA GA

Min. Fitness 0.9443 0.8166 0.9443 0.8166

Max.Fitness 0.9443 0.8166 0.9443 0.8193

Mean Fitness 0.9443 0.8166 0.9443 0.8169

Std.Deviation 0.0000 0.0000 0.0000 0.0007

Mean Cputime 82.9557 88.0041 98.2792 89.3140

Min. Fitness 0.7051 0.5773 0.7051 0.5773

Max.Fitness 0.7051 0.5773 0.7051 0.5787

Mean Fitness 0.7051 0.5773 0.7051 0.5775

Std.Deviation 0.0000 0.0000 0.0000 0.0004

Mean Cputime 49.3870 107.9176 161.7723 143.5887

Min. Fitness 0.7026 0.9499 0.9443 0.8166

Max.Fitness 0.9077 0.9513 0.9443 0.8179

Mean Fitness 0.8120 0.9500 0.9443 0.8166

Std.Deviation 0.0727 0.0004 0.0000 0.0003

Mean Cputime 52.3941 131.1931 161.1315 140.1623

Small size (8-20 tasks)

Bowman(8)

Mansoor(11)

Instance_small(20)

Problem(no.of task) Algorithm PSO ACO SA GA

Min. Fitness 0.7138 0.6395 0.6538 0.8658

Max.Fitness 0.9634 0.7517 0.8493 0.9268

Mean Fitness 0.8401 0.6969 0.7906 0.8800

Std.Deviation 0.0454 0.0272 0.0354 0.0275

Mean Cputime 101.4522 101.7651 264.7180 243.4568

Min. Fitness 0.5888 0.7368 0.5842 0.8318

Max.Fitness 0.9742 0.8427 0.8743 0.9671

Mean Fitness 0.7973 0.7792 0.6199 0.9242

Std.Deviation 0.1101 0.0351 0.0673 0.0599

Mean Cputime 137.1709 136.9874 257.1917 153.3631

Min. Fitness 0.5673 0.6888 0.6499 0.6182

Max.Fitness 0.7318 0.8304 0.7834 0.7723

Mean Fitness 0.6359 0.7600 0.7162 0.6106

Std.Deviation 0.0464 0.0204 0.0382 0.0697

Mean Cputime 276.8158 337.7413 658.4571 405.0386

Medium size (25-50 tasks)

Buxey(29)

Gunther(35)

Instance_medium(50)
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Table 3  MAs computational result (LTP) 

 
 
 Based on the result presented in Error! Reference source not 

found., Error! Reference source not found., and Error! Reference source 

not found., the value which being bold are the best value in each parameter 

being measured. In the perspective of problem category included small, 

medium and large size test problem, each MAs resulted a different solution 

quality which will be discussed next. 

 Referring to STP in Error! Reference source not found., the result 

are varies among ACO, PSO, SA and GA. The results being measured based 

on minimum fitness, maximum fitness, mean fitness, standard deviation and 

CPU time. For instance, in Bowman’s problem, ACO and GA gives the best 

value for minimum fitness meanwhile for maximum fitness and mean fitness 

ACO performed better compared to the other three MAs. On the other hand, 

PSO mean CPU time is the most superior  in this problem. Likewise, the 

same result analysis are produced for Mansoor’s problem. However, the 

different result was found for  the Instance_small’s problem with 20 number 

of tasks. PSO at its best performance in this problem when performed better 

for minimum fitness, maximum fitness, mean fitness and mean CPU time 

than the other three MAs. The only parameter its lacking is standard 

deviation which give an early view eventhough its performed better but the 

solution quality may vary for each single run. 

 Moving from STP, MTP analysis diplayed in Error! Reference 

source not found. gives us more diversified result. For example, better 

solution quality for Buxey’s problem pointed to ACO algorithm but mean 

cpu time come off second-best to PSO. Meanwhile for Gunther’s problem, 

SA algorithm outperformed its competitors by yielded better minimum 

fitness and mean fitness but lack to ACO in term maximum fitness, standard 

Problem(no.of task) Algorithm PSO ACO SA GA

Min. Fitness 0.6947 0.6475 0.6742 0.6505

Max.Fitness 0.8411 0.7859 0.8247 0.7595

Mean Fitness 0.7690 0.7513 0.7630 0.7777

Std.Deviation 0.0397 0.0329 0.0393 0.0458

Mean Cputime 1038.8310 1024.2880 1090.0520 1365.3380

Min. Fitness 0.5274 0.3807 0.5279 0.7264

Max.Fitness 0.6475 0.4835 0.6503 0.9647

Mean Fitness 0.5903 0.4412 0.5832 0.7953

Std.Deviation 0.0316 0.0286 0.0290 0.0614

Mean Cputime 1632.6530 2631.1140 3044.7990 6313.9020

Min. Fitness 0.5527 0.4858 0.4974 0.5772

Max.Fitness 0.7298 0.6743 0.7358 0.8384

Mean Fitness 0.6525 0.6107 0.6161 0.7012

Std.Deviation 0.0517 0.0510 0.0710 0.0874

Mean Cputime 2148.1490 2389.1640 2897.1870 3650.2650

Large size (65-100 tasks)

Wee-mag(75)

Arc(83)

Instance_large(100)
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deviation, and mean CPU time. Next in Instance_medium’s problem, PSO 

algorithm offered better minimum fitness, maximum fitness and mean CPU 

time whereas ACO present better standard deviation with GA produce the 

best mean fitness. 

 Result tabulation in Error! Reference source not found. represent 

LTP which contain the highest number of tasks in this study ranging from 65 

to 100 tasks. Wee-Mag’s problem shows that ACO algorithm achieved better 

result for each parameter except maximum fitness which come off second-

best to GA. Based on Arc’s problem with 83 number of tasks, ACO 

algorithm performed better in terms of minimum fitness, maximum fitness, 

mean fitness, and standard deviation than the other three MAs. The only 

shortcomings is in term of its mean CPU time which trailing behind PSO 

algorithm. Lastly, all four MAs are tested using Instance_large’s problem 

contained 100 number of tasks. Once again ACO algorithm give a result with 

a better solution quality and only lack in term of mean CPU time to PSO. In 

addition, LTP gives a better view on which MAs finish the optimization  with 

a constant solution quality over a multiple run. The best standard deviation 

value in LTP clearly dominated by ACO algorithm. Hence presented an early 

view on term of its solution reliability compared to PSO, GA, and SA.  

 There is a pattern can be identified in this experiment which is PSO 

and ACO performed better when dealing with STP and MTP covering a 

range from 8 till 50 number of tasks. However surprisingly, when being 

tested with LTP, PSO algorithm’s performance is decreased. On the other 

hand, ACO algorithm proved its reliabilty when solving LTP compared to the 

others three MAs. The phenomenon happened to PSO algorithm in this 

experiment however can be related to the mechanisms of PSO itself. Since 

LTP is used, it brought a larger solution space with it that need to be 

explored. The designated inertia, ω in PSO framework takes place and affect 

the solution quality over generation. Generally, ω is equal to 1, then at the 

later period of the several generations, there is a lack of the searching ability 

of the particle for a better solution quality which produced poorer result for 

PSO [19]. In order to calculate the percentage difference of performances by 

this four MAs in every category, an average value for best fitness solution is 

tabulated in Table 4. 
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Table 4  Mean of solution quality by each MAs for every categories 

 
 

As mentioned earlier, each optimization for each MAs is repeated 20 times 

and each single run returned the best fitness. Hence, to plot the convergence 

graph, mean value of solution output for each algorithm is used. Figure 6 

Convergence plot for MAs in STPFigure 6, Figure 7, and Figure 8 

present the mean convergence of four MAs for each categories.  

 

 
 

Figure 6 Convergence plot for MAs in STP 
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Figure 7 Convergence plot for MAs in MTP 

 

 
 

Figure 8 Convergence plot for MAs in LTP 

 
Based on the graph in Figure 6, all the algorithms show rapid convergences, 

even though the ACO presents better performance. The rapid convergence in 

this class of problem is due to the small search space in small size problem. 

In contrast, with the increasing number of tasks from small size to medium 
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and large size problem, the search space is become larger. Therefore, the 

convergence was occured more frequent since the choices of solutions were 

much larger.  

 

Conclusion 
 
The performance represented by fitness function and processing time of four 

meta-heuristic algorithms (ACO, PSO, GA, and SA) in MMALBP with 

resources constraint has been presented. The comparison between these MAs 

were made and selected objective functions has been evaluated which are to 

minimize cycle time, minimize product rate variation and minimize resources 

used on the assembly line. One of the significant findings to emerge from this 

study suggested that ACO algorithm performed better in term of finding the 

best fitness functions when dealing with a large number of tasks. Averagely, 

it has produces better solution quality than PSO by 5.82%, GA by 9.80%, and 

SA by 7.66%. However, PSO more superior in term of processing time than 

ACO by 29.25%, GA by 40.54%, and SA by 73.23%. 

 The present study however, has some limitation included the 

parameter settings for the algorithms. In this study, the parameter tuning is 

not considered. A proper parameter settings for algorithm could possibly 

return a better solution quality. Further investigation also can be implement 

by consider actual assembly line such as manufacturing industry. Based on 

the listed limitation, a further experimentation to measure the performance of 

these four MAs is strongly recommended. Besides that, it would be 

interesting to assess the effects of increasing the number of test problem to 

the solution quality produced as well as the results when applying to the 

actual problems in an actual assembly line. 
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Abstract  

Two-sided Assembly Line Balancing (2S-ALB) is important in the assembly plants that produce a 

large-sized high-volume product, such in the automotive production. Many of the existing publication 

on 2S-ALB however, ignored the assembly resources such as worker skills, tools and machines that 

required for the assembly in the problem modeling. This research model and optimize the 2S-ALB 

with resource constraints. In the end, besides having good workload balance, the number of resources 

also can be optimized. For optimization purpose, Particle Swarm Optimization is modified to reduce 

the dependencies on a single best solution. This is conducted by replacing the best solution with top 

three solutions in the reproduction process. Computational experiment result using 12 benchmark test 

problems indicated that the 2S-ALB with resource constraints model able to reduce the number of 

resources in an assembly line. Furthermore, the proposed modified Particle Swarm Optimization 

(MPSO) capable to search for minimum solutions in 11 out of 12 test problems. The good 

performance of MPSO is because of ability to maintain the particle diversity over the iteration. In 

future, Pareto optimality concept is proposed to deal with multi-objective optimization problem.    

Keywords: Assembly line balancing, Two-sided, Particle Swarm Optimization 
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1. Introduction 

Assembly line is a system that considered the arrangement of workstation, workers, tools or 

machine that successively outline the operation for being completed. It has been widely used in many 

manufacturing industries to cope with the increase of demands in manufacturing. The assembly line is 

set up for the most optimum design to meet the production demand. The assembly line system was 

introduced around 1900 by Henry Ford for his automobile plants [1]. Since then, various evolutions 

and progress has been reported towards the assembly line. Commence from that idea, the balancing 

approach has been developed for the assembly line, known as Assembly Line Balancing (ALB). 

Balancing an assembly line can be difficult for most of the industries. It not only refers to assigning 

each of the tasks into the workstation but also concern towards to enhance the production rate with 

desired performance level [2]. Nowadays, the ALB has become more important to cope with global 

competitiveness in the industry. It classically started in 1955, when Salveson firstly describe the 

typical ALB problem focusing on efficient and fast solution approach for solving the line balancing 

problem [3]. The great progress developed from time to time has extended the classification of the 

ALB problem.  

Later, various version of ALB problems has been formulated to suit with different assembly 

line problems. One of the ALB branches is the assembly line that assembled large-sized and high-

volume product like an automotive assembly line. The assembly process is conducted on both left and 

right sides of the product. This problem is known as two-sided assembly line balancing (2S-ALB). 

This problem was first exposed by Bartholdi in 1993 [4]. This early work on 2S-ALB has inspired the 

other researcher to study and extend this work to the next level. The 2S-ALB was built from a single 

line production system which identically paired parallel to the first sided of the assembly line. Figure 

1 illustrates the 2S-ALB station features along conveyor belt. Different from one sided line, the 

assembly process in 2S-ALB could be conducted either from the left or right side, depends on various 

constraints. The 2S-ALB system able to shorten and saves some space of the assembly lines, besides 

reduce the material handling of tools and fixture.  
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Figure 1. Two-sided assembly line 

Nowadays, the 2S-ALB problem has widely grown and adopting different ALB version as the 

variation of the 2S-ALB problem. The 2S-ALB variation started with the general of 2S-ALB as 

illustrated in Figure 1. The general 2S-ALB consists of two workstations facing each other along the 

assembly line. This version of the problem has its advantages such as shorten the assembly line, save 

some spaces, reduce throughput time and material handling, besides the cost of tools and fixtures. This 

general 2S-ALB is well addressed in several research studies [3], [5]–[8].  

Besides studying on the general 2S-ALB, researchers also combined the 2S-ALB with the 

mixed-model assembly line balancing (MALB). The MALB its particularly considered to level the 

workload in every workstation on the line, besides leveling the part usage. It literally to achieve a 

balanced workload at specific processing times for each assembly task, while attempting to minimize 

the variation used by the different parts over time. This combination of 2S-ALB with MALB has 

broadly introduced implementing towards different optimization and line balancing solution approach 

[9]–[11]. Another combination with the 2S-ALB was parallel assembly line balancing (P-ALB). The 

P-ALB is the combination of two or more lines placed parallel to each other became an idea of sharing 

tools and fixtures to complete the entire job. The two-sided parallel assembly line balancing which is 

the combination of 2S-ALB and P-ALB is to shorten the assembly line while steadily runs during 

breakdown [12]–[15]. This combined problem was discussed by Ozcan, Gokcen, and Toklu (2010) 

[16] providing much more benefits: (i) It can help to produce similar products or different models of 

the same production of the adjacent lines. (ii) It can reduce the idle time and increase the efficiency of 
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the assembly lines. (iii) It is able to make production with a different cycle time for each of the lines. 

(iv) It can improve visibility and communication skills between operators. (v) It is also able to reduce 

operator requirements. 

Many studies have been conducted to work out with the best optimum seeking approach 

implementing either heuristic or meta-heuristic method for 2S-ALB. In the early study, Kim et al. in 

2000 used Genetic Algorithm (GA) as the optimization algorithm [17]. Then in 2001, it has been 

continued by Lee, Kim et al. employing group assignment procedure [18]. The GA approach was also 

implemented by [15], [19], [20] to optimize 2S-ALB. Meanwhile, Baykasoglu and Dereli adopt Ant 

Colony Optimization (ACO) to optimize the 2S-ALB [21]. They have successfully applied the ACO 

algorithm for a domestic product which influences the other researcher to deal with other sector apart 

from the large-sized automotive products. Apart from that, many other researchers also implemented 

the ACO because of the good performance for the combinatorial problem [14], [22], [23]. From the 

earlier review, GA and ACO algorithm are successfully dominate the other optimization methods in 

term of performance and also frequencies that make these algorithms more popular [12]. Besides that, 

different algorithms were also implemented through several reported research. For instance, Hu et al. 

(2008) were reported to implement the enumerative algorithm combined with the Hoffmann heuristic 

method [24].  

In the meantime, Particle Swarm Optimization (PSO) algorithm was also frequently 

implemented for 2S-ALB. The PSO assisted with Taguchi has been implemented for 2S-ALB with 

multi-skilled worker assignment [25]. Researchers also implement ACO algorithm to optimize 

stochastic 2S-ALB, instead of deterministic time in the majority of 2S-ALB works [26]. While in 

2012, Chutima and Chimklai proposed a Particle Swarm Optimization with Negative Knowledge 

(PSONK) for the optimization of complex combination with the 2S-ALB problem [10]. [27] later also 

implement the PSONK, but proposing a combined selection mechanism for the assembly task. Besides 

that, different approaches have been proposed to improve the PSO performances [28]–[30]. Although 

the advantage of PSO algorithm has been well reported, its application and improvement are still 

needed. Generally, PSO is known as the fast optimizer and a robust algorithm which provide a high 
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quality of the solution. However, the highly focused towards a single best solution in PSO can lead to 

a premature convergence or local optima. This phenomenon is described where the convergence is 

stopped earlier and considers to express the solution as the best. This problem occurred when the 

algorithm tried to figure out the path of searching direction, while still following the best earlier 

solution. The limitation in providing the best solution might occur due to the fewer parameter setting 

as the PSO algorithm only require a simple specification as a setting before generating a solution.  

Despite there were many studies on 2S-ALB have been conducted, the majority of these works 

assumed the assembly workstation has similar capability to conduct the assembly process. In a real 

situation, there are various constraints that need to be considered during the assembly line design. For 

example, the workforce and machine that have different skills and ability in completing the assigned 

task. The proper utilization of resource depending on their skills and precedence has integrated the 

assembly line for to be fully optimized. Besides, with the appropriate use of the machine, it's also able 

to solve the inadequate space problem for the assembly line in allocating the required machines on the 

workstation [31].  

In order to overcome the limitation, this paper will consider the resources that required to 

conduct a specific assembly task. By considering the assembly resource constraints, the number of 

resources could be optimized. For optimization purpose, the PSO will be modified to reduce the 

dependence of algorithm on a single best solution. The proposed modification is expected to improve 

the algorithm exploration ability. Section 2 of this paper presents the 2S-ALB with resource 

constraints problem. Section 3 presents the proposed Modified Particle Swarm Optimization (MPSO) 

algorithm. The computational experiment set up and results are discussed in Section 4. Finally, 

Section 5 summarize and conclude the research work. 

 

2. 2S-ALB with Resource Constraints Problem 

The 2S-ALB is modified structure that essentially born from one-sided ALB problem. The 

main goal of this problem is to enhance the production rate and increase the line efficiency. Flexibility 
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to produce a high volume of large-sized product in two-sided assembly line configuration practically 

provides many beneficial advantages such able to shorten the line length, save spaces on the lines, 

increase the line efficiency by reducing the number of workstation, and able to reduce the material 

handling cost of tools and fixture. Normally in a two-sided assembly line, there will represent by a pair 

of lines placed opposite to each other. Figure 1 has illustrated the two-sided assembly line possessed 

left and right side of the lines in which the workstation are clamped together between the moving 

conveyor. 

The comprehensive study in making the idea of balance 2S-ALB problem has been presented 

in an earlier study [2]. Commence from a particular task relation called ‘precedence relation graph’ 

that built with circle and arrows. The example of precedence relation graph with nine tasks is depicted 

in Figure 2. Each circle represents as the assigned task, while the arrows linked represent each relation 

between the task. The associated data of each processing time and operational direction also specified 

on top of each circle (assign task). Three type of operational direction will be considered: left (L), right 

(R) and either (E). For left and right side the execution is outright and should be actualized for the 

following position. Meanwhile, for either side direction, the task could be executed on any side of the 

workstation either on the left side or the right side. 

 

Figure 2. Precedence relation graph 

Then, an assembly data is presented in precedence matrix as shown in Table 1. This matrix 

consists of ones and zeros values that represent the assembly relation information of the precedence 

graph. In Table 1, the relation of each task is transformed from the precedence relation graph, 
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adopting ‘i’ as the present task and ‘j’ as the next assigned task. The value of one in the precedence 

matrix indicates the predecessor link of ‘i’ task to the next task ‘j’. It means that there is a precedence 

relationship to be examined. Meantime the zeros value implies no precedence relation between task i 

and j. 

Table 1. Precedence matrix 

i/j 1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 1 1 0 0 0 

3 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 1 1 0 

6 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

 

Table 2 Data matrix 

Task Time Side Resources 

1 2 1 1 2 0 

2 3 3 3 0 0 

3 2 2 2 3 0 

4 3 1 1 0 0 

5 1 3 3 0 0 

6 1 2 2 3 0 

7 2 2 1 2 3 

8 2 1 2 0 0 

9 1 2 1 3 0 

 

Besides the precedence matrix, a data matrix is also required to store the assembly information 

for the 2S-ALB with resource constraints. The data matrix (Table 2) express the assembly information 

such as processing time, assembly side and resources detail. For side column, three different 
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operational direction value indicates different sides. In this column, value ‘1’ for left side operation, 

‘2’ for either side operation while ‘3’ for the right side operation. The resources detail also coded in 

numbers to express different resources. It is important to note that the number of resources for one 

assembly task is not limited to three as shown in Table 2. In the case where the number of resources is 

larger, the matrix can be expanded to fit all the data.  

2.1 Problem Assumptions and Notations 

The general assumptions of the problem are as follows: 

 Task times and resource used (machine, tools, worker) are known and deterministic. 

 Tasks have preferences regarding the operational direction (side), i.e., left side, either side or 

right side. 

 Every task can be operated only after all its immediate predecessors are completed. 

 The maximum operational cycle time is fixed and could not be exceeded. 

 Every task cannot be split between workstations and must be assigned to exactly one 

workstation. 

 The tasks with positive zoning must be operated in the same workstation. 

 The tasks with negative zoning could not be assigned to the same workstation. 

 Parallel tasks and parallel stations are not allowed 

 The skills level of each worker is ignored to provide the similar working pace of assembly 

task.  

 The working travel times are ignored and no inventory (work in progress) is allowed. 

 Any breakdowns of machine and tools are not considered and the assembly process is 

constantly performed. 

The notations used in this mathematical formulation are summarized as follows. 

𝐽 : number of mated-workstation 𝑗 = 1, 2, … , 𝐽 

𝐼 : number of one-sided workstation 𝑖 = 1,2, … , 𝐼 
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𝐹 : 1, if there is any space availabile on the operating time, otherwise, 0 

𝑁 : number of resource utilization 𝑛 = 1,2, … , 𝑁 

𝑋𝑚𝑠 : 1, if mated-workstation j is utilized for both side of the line, otherwise, 0  

𝑌𝑠 : 1, if mated-workstation j is utilized for only one side of the line, otherwise, 0 

𝑚𝑡 : maximum processing time 𝑡 = 1,2, … , 𝑇 

𝑟𝑡 : operational time of the task on the workstation 𝑗 

𝑝𝑣 : maximum gap value in space availability 

𝑞𝑣 : minimum gap value in space availability  

𝑅𝑠 : 1, if resource is utilized in workstation 𝑗, otherwise, 0  

2.2 Mathematical Formulation and Constraints 

The mathematical model for 2S-ALB with resource constraints are presented below. In this 

problem, four optimization objectives are considered. The first optimization objective as in equation 

(1) is to minimize the mated workstation, f1. The second optimization objective in equation (2) is to 

minimize the number of the workstation, f2. A mated workstation consists of a pair of left and right 

workstation on the assembly line. Meanwhile, the number of workstation calculate the total individual 

workstation. The third optimization objective is to minimize idle time, f3 as presented in equation (3). 

Finally, the optimization objective to minimize the number of resources, f4  is presented in equation 

(4). By using the number of resources as one of optimization objective, the number of the resources 

can be minimized. This can be achieved by assigning the assembly task that used a similar resource in 

one workstation.   

𝑓1 = ∑ 𝑋𝑚𝑠

𝐽

𝑗=1

 (1) 

𝑓2 = ∑ 2𝐽𝑋𝑚𝑠 + ∑ 𝑌𝑠

𝐼

𝑖=1

𝐽

𝑗=1

 (2) 

𝑓3 = ∑(𝑚𝑡 − 𝑟𝑡)

𝑇

𝑡=1

+ ∑ 𝐹(𝑝𝑣 − 𝑞𝑣)

𝑇

𝑡=1

 (3) 
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Besides the optimization objectives in equation (1) to (4), several constraints also being 

considered to ensure the feasibility of generated solution. Constraint (5) enable different task for to be 

assigned to the same workstation. Meanwhile, constraint (6) limits the assigned task on the same 

workstation as different prescribed equipment. Constraint (7) and (8) are related to controls and ensure 

the maximum operational cycle time for not be exceeded. Constraint (9), (10) and (11) engaged to 

assigned each task to only one workstation which is either left or right. 

In this work, weighted sum approach is used to deal with the multi-objective problem. 

Therefore, the optimization objectives that considered in this work need to be normalized because they 

have different ranges. For this purpose, the fi is normalized into [0, 1] range as follow: 

𝑓�̂� =
𝑓𝑖−𝑓𝑖𝑚𝑖𝑛

𝑓𝑖𝑚𝑎𝑥−𝑓𝑖𝑚𝑖𝑛

        (12) 

The minimum and maximum optimization objectives are defined as follow: 

𝑓4 = ∑ 𝑅𝑠

𝑁

𝑛=1

 (4) 

∑ 𝑘(𝑥𝑖𝑘1

𝐾

+ 𝑥𝑖𝑘2) − ∑ 𝑘(𝑥𝑗𝑘1 + 𝑥𝑗𝑘2) = 0

𝐾

          (𝑖, 𝑗) 𝜖 𝑍𝑃𝑖𝑗  (5) 

∑ 𝑘(𝑥𝑖𝑘1

𝐾

+ 𝑥𝑖𝑘2) − ∑ 𝑘(𝑥𝑗𝑘1 + 𝑥𝑗𝑘2) ≠ 0

𝐾

          (𝑖, 𝑗) 𝜖 𝑍𝑁𝑖𝑗  (6) 

∑ 𝑡𝑖𝑥𝑖𝑗𝑘

𝑛

𝑖=1

+ 𝑠𝑗𝑘 ≤ 𝐶𝑇 (7) 

𝑠𝑗𝑘 =  ∑ 𝑥𝑢𝑗𝑘(𝑡𝑢+1
𝑠 − 𝑡𝑢

𝑓
)

𝑈

𝑢=1

+ (𝐶𝑇 − 𝑡𝑢
𝑓

)    𝑢 𝜖 𝑄𝑗𝑘  (8) 

∑ 𝑥𝑗𝑘 = 1

𝑘𝜖{1,3,5,…,𝑚−1

  ∀𝑗 𝜖 𝐿 (9) 

∑ 𝑥𝑗𝑘 = 1

𝑘𝜖{2,4,6,…,𝑚}

  ∀𝑗 𝜖 𝑅 (10) 

∑ 𝑥𝑗𝑘

𝑚

𝑘=1

= 1   ∀𝑗 𝜖 𝐸 (11) 
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𝑓1𝑚𝑖𝑛
 = 0         (13) 

𝑓1𝑚𝑎𝑥
 = 𝑓2𝑚𝑖𝑛

          (14) 

𝑓2𝑚𝑖𝑛
=

∑ 𝑡𝑖
𝑛
𝑖=1

𝑐𝑡𝑚𝑎𝑥
          (15) 

𝑓2𝑚𝑎𝑥
=

∑ 𝑡𝑖
𝑛
𝑖=1

max
𝑖=1:𝑛

(𝑡𝑖)
         (16) 

 𝑓3𝑚𝑖𝑛
= 0          (17) 

𝑓3𝑚𝑎𝑥
= 𝑓2𝑚𝑎𝑥

. 𝑐𝑡𝑚𝑎𝑥 − ∑ 𝑡𝑖
𝑛
𝑖=1        (18) 

𝑓4𝑚𝑖𝑛
= 𝑟𝑡𝑦𝑝𝑒 − 1         (19) 

𝑓4𝑚𝑎𝑥
= ∑ 𝑟          (20) 

 

The fitness function for this problem is presented as follow. The w1, w2, w3 and w4 is set at 0.25. 

𝑓 = 𝑤1𝑓1 + 𝑤2𝑓2+𝑤3𝑓3+𝑤4𝑓4       (21) 

 

 

3. Modified Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a meta-heuristic searching method that inspired from 

the swarming behavior of flocking birds. This mechanism particularly respect to migrating birds 

population and its flying directions. For every single migrating bird is considered a particle which 

usually adjusts their searching or flying direction according to the previous flying experience. Each 

particle represents as the potential solution with a certain position (current solution), velocity 

(magnitude and direction towards the optimal solution) and fitness value (performance measure of the 

specific problem). While compared to another evolutionary approach such ACO and GA method, PSO 

is respectively known has a faster convergence towards the optimal solution [32]. 

The PSO algorithm begins with initialization procedure in which each particle represents the 

population in a D-dimensional vector as the constructed possible solution, 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷) and 

velocity, 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷). Then, each solution is evaluated according to the objective function. 

Since the PSO is coded using real number, a topological sort procedure is applied to match with 
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combinatorial problem in 2S-ALB. For the example in Figure 2, let the X1 = (4.81, 7.90, 2.12, 6.91, 

6.63, 4.09, 0.27, 3.54, 3.95). The topological sort begin with identify the candidate task without 

precedence. In Figure 2, task 1, 2 and 3 are the candidate tasks. In this situation, the x11, x12 and x13 is 

compared to determine the selected task. Since x12 is the highest, task 2 is selected and stored in 

feasible solution, F1 = [2]. The selected task is then being removed from the precedence graph. This 

approach is repeated until all the task from the graph is selected. For this example, the decoded 

feasible solution is F1 = [2 5 1 4 8 3 6 9 7]. 

Next, the particle best solution (Pbest) and global best (Gbest) are updated. Pbest refers to the 

current best solution for a particular particle, while the Gbest is the overall best solution. The Pbest 

and Gbest solutions are used to update the velocity and position of the solution. The following formula 

used to update velocity (22) and position (23): 

𝑉𝑖
𝑡+1 = 𝑤𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)    (22) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1         (23) 

In equation (22), t denotes the iteration number, while 𝑤 is the inertia weight for regulating the 

previous effect of historical velocities. On the other hand, 𝑐1 and 𝑐2, there are the acceleration 

coefficients, while 𝑟1 and 𝑟2 are the random number between [0, 1]. The Pbest, Gbest and particle 

position are updated until the specific iteration number is reached.  

Previously, a lot of research papers proposed different approaches to reduce premature 

convergence in PSO. Premature convergence in soft computing occurred because lack of the diversity 

in the solution during the iteration process. In PSO, this phenomenon is directly related with velocity 

and position updating procedure. The solution position is influenced by the Pbest and Gbest with some 

randomness by r1 and r2. The Pbest however only influence a specific particle, compared with Gbest 

that affect all of the particles to move towards it. In the case where Gbest is not been updated (no 

better solution found) in a few consecutive iterations, there is a possibility for the majority of particles 

to reach the Gbest. This situation will reduce the solution diversity.  
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To overcome this problem, this work proposed to consider top three best solutions instead of 

the only single solution in Gbest. For this purpose, the single solution in Gbest is replaced with the 

average of three best solutions. 

𝐺𝑏𝑒𝑠𝑡𝑡 = (𝑔1
𝑡 + 𝑔2

𝑡 + 𝑔3
𝑡)/3        (24) 

In equation (24) 𝑔1
𝑡 ,  𝑔2

𝑡  and 𝑔3
𝑡 refer to the solution particle in the first, second and third ranks 

respectively for the tth iteration. In the modified PSO, the Gbest is replaced with the new Gbest in 

equation (24). The reason to consider three top solutions for Gbest is to improve the solution diversity. 

In the proposed mechanism, the particle position will follow the average position from three best 

solutions. Furthermore, the possibility for all three solutions not been updated is small compared with 

single Gbest solution in the original PSO. This mechanism makes the search direction become more 

diverse, and the chance to trap in local optima can be reduced.  

To prove this concept, a simple test using Rastrigin function is conducted. For this function, 

the optimum point is (0, 0). In this test, only six particles are used. The first particle is set as (0, 0) 

while the remaining five particles are randomly generated using the same pseudorandom for both PSO 

and MPSO. The purpose to set the first particle as the optimum point is to observe the particle 

movement over the iteration. For this purpose, the iteration is only set to 10. The particle position for 

the first, fifth and tenth iteration are captured. All other parameters for PSO and MPSO are the same. 
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Figure 3(a). Particle movement for PSO 

 

Figure 3(b). Particle movement for MPSO 

Figure 3(a) and 3(b) present the particle movement for PSO and MPSO. In Figure 3(a), all 

particles move directly towards the Gbest (i.e. point (0, 0)) during the fifth iteration. During iteration 

10, the particles only search the solution around the Gbest within a limited range. Meanwhile in 

MPSO, the particles capable to maintain the diversity in fifth and tenth iteration (Figure 3(b)). 
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Although the searching range over the iteration becomes smaller, the particles in MPSO not directly 

move towards the best solution. Therefore, it is expected that the MPSO will have better exploration 

ability. The procedure of MPSO is presented as follow: 

Procedure of Modified PSO 

Initialize MPSO parameters: Population size (npop), coefficients (w, c1, c2), iteration counter 

(iter = 0) and maximum iteration (itermax) 

Initialize random velocity, Vi and position, Xi for i = 1,2,…, npop 

While iter ≤ itermax  

iter = iter +1 

Decode the Xi into feasible assembly sequence, Fi 

Evaluate the fitness function for ith solution, fi 

  Update personal solution, Pbesti 

  Update top three global solutions, g1, g2 and g3 

  Update Gbest = (g1 + g2 + g3)/3 

 Update velocity 

  𝑉𝑖
𝑡+1 = 𝑤𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) 

 Update position 

  𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 

End 

 

4. Results of Computational Experiment 

A computational experiment is conducted to measure the performance of modified PSO 

(MPSO) to optimize 2S-ALB with resource constraints. For this purpose, 12 benchmark test problems 

are selected according to small, medium and large size. The test problems are adopted from different 

sources [3], [4], [7], [17], [18], [33], [34]. Based on the range of problem size used in literature, the 

small size problem is the assembly problem with less than 20 tasks. Meanwhile, the large size problem 

is the problem with more than 80 tasks. The assembly problem in between 20 to 80 tasks is considered 

as medium size. The detail of the test problems is presented in Table 3. Due to the lack of large size 

test problems, problem T83 and T111 are adopted from simple assembly line balancing problem and 

the assembly direction (i.e. left, right or either) are randomly generated. These benchmark problems 
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however did not consider the resources required to conduct assembly task. Therefore, the assembly 

resources are also randomly generated for each of the assembly tasks.  

Table 3. Test problem category and sources 

Size Problem Number of task Data source 

Small T4 4 [7] 

T9 9 [17] 

T12 12 [17] 

T16 16 [18] 

Medium T24 24 [17] 

T47 47 [33] 

T65 65 [18] 

T70 70 [3] 

Large T83 83 [34] 

T111 111 [34] 

T148 148 [4] 

T205 205 [18] 

 

The performance of MPSO is then compared towards Genetic Algorithm (GA), Ant Colony 

Optimization (ACO) and Particle Swarm Optimization (PSO). These algorithms are chosen because of 

their popularity in optimizing 2S-ALB problem. According to the earlier survey on the ALB problem, 

70% of the problem was optimized using GA, ACO and PSO algorithms [35]. The recent survey on 

2S-ALB also reveals that the GA and ACO were the popular algorithms to optimize 2S-ALB 

according to the frequencies [12]. For the computational purpose, the population size for all algorithms 

is 30 and the maximum iteration is 500. The optimization run is repeated for 20 times with different 

pseudorandom for each of the cases. 

The optimization results for the 2S-ALB with precedence constraints were presented in Table 

4 until Table 6 based on the problem size. For the result of small size in Table 4, all algorithms able 

to generate the same fitness and objective function value for T4 and T9 problems. On the other hand, 

for T12 problem, the MPSO shows the best fitness compared with other algorithms. For this problem, 

the MPSO able to search for a solution with a smaller number of resources, while maintaining other 

optimization objectives. In T16 problem, all algorithms able to converge to the best solution, but the 
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ACO has better performance in term of the consistency. For this problem, ACO able to reach the 

optimum solution for every optimization run.  

Table 4. Small size problem comparison  

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T4 

ACO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

GA 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

PSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

MPSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

T9 

ACO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

GA 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

PSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

MPSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

T12 

ACO 0.2531 0.2531 0.2531 0.0000 2 4 3 11 

GA 0.2531 0.2531 0.2531 0.0000 2 4 3 11 

PSO 0.2531 0.4380 0.3051 0.0733 2 4 3 11 

MPSO 0.2455 0.2531 0.2470 0.0031 2 4 3 10 

T16 

ACO 0.2151 0.2151 0.2151 0.0000 2 4 6 12 

GA 0.2151 0.4710 0.2506 0.0873 2 4 6 12 

PSO 0.2151 0.5076 0.4099 0.1065 2 4 6 12 

MPSO 0.2151 0.4068 0.2343 0.0590 2 4 6 12 

The result of medium size problem in Table 5 indicated that the MPSO and ACO lead the 

performance of the algorithm. The MPSO reached to minimum fitness and minimum average fitness 

in three cases. In the meantime, the ACO found the minimum fitness in two cases, while the minimum 

average in only one case. In T24, all algorithms able to search for minimum fitness, but again the 

ACO had better consistency. In T47 and T65 problems, the MPSO dominates the best minimum and 

average fitness compared with other algorithms. Meanwhile, in T70, the was ACO able to search for 

better minimum fitness, but the proposed MPSO had better average fitness and standard deviation.  
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Table 5. Medium size problem comparison  

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T24 

ACO 0.1899 0.1930 0.1920 0.0011 2 4 4 26 

GA 0.1899 0.1970 0.1927 0.0025 2 4 4 26 

PSO 0.1899 0.2144 0.2023 0.0096 2 4 4 26 

MPSO 0.1899 0.2073 0.1925 0.0053 2 4 4 26 

T47 

ACO 0.2697 0.3186 0.2989 0.0216 5 9 11702 88 

GA 0.3031 0.3270 0.3164 0.0079 5 10 13415 90 

PSO 0.2973 0.3231 0.3059 0.0077 5 10 10945 95 

MPSO 0.1731 0.1776 0.1753 0.0020 4 8 2237 73 

T65 

ACO 0.2586 0.2718 0.2674 0.0041 6 12 565 118 

GA 0.2612 0.3857 0.3332 0.0566 6 12 649 113 

PSO 0.2524 0.3822 0.2725 0.0388 6 12 469 113 

MPSO 0.2491 0.2603 0.2569 0.0052 6 12 385 116 

T70 

ACO 0.4230 0.4432 0.4339 0.0052 6 10 273 97 

GA 0.5492 0.6939 0.6205 0.0577 6 11 646 106 

PSO 0.4277 0.4556 0.4379 0.0096 6 10 303 99 

MPSO 0.4260 0.4393 0.4316 0.0048 6 10 293 98 

Table 6 presents the optimization result for the large size problem. For this class of problem, 

the MPSO consistently able to search for better minimum fitness compared with comparison 

algorithms. Interm of average fitness, the MPSO had a better average in three cases, while the ACO 

had a better average in the remaining one case. The MPSO consistently found the minimum mated 

workstation, number of workstation and idle time in all cases of the large size problem.  
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Table 6. Large size problem comparison 

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T83 

ACO 0.4420 0.4497 0.4472 0.0032 6 11 39716 109 

GA 0.4886 0.4917 0.4906 0.0014 6 12 47593 118 

PSO 0.4329 0.4951 0.4598 0.0309 6 11 37109 107 

MPSO 0.4324 0.4524 0.4400 0.0079 6 11 36944 107 

T111 

ACO 0.3931 0.4206 0.4115 0.0109 7 13 67520 144 

GA 0.3212 0.4126 0.3737 0.0474 6 12 50709 136 

PSO 0.3177 0.4249 0.3952 0.0439 6 12 48681 135 

MPSO 0.2989 0.3276 0.3200 0.0120 6 12 37365 135 

T148 

ACO 0.2648 0.3682 0.3070 0.0553 5 10 565 119 

GA 0.2609 0.4228 0.3580 0.0865 5 10 515 118 

PSO 0.3623 0.4134 0.4003 0.0214 6 11 938 123 

MPSO 0.2533 0.3608 0.3092 0.0460 5 10 405 122 

T205 

ACO 0.2343 0.2399 0.2362 0.0023 5 10 4375 127 

GA 0.2363 0.3532 0.3236 0.0492 5 10 4575 126 

PSO 0.2343 0.3514 0.2990 0.0594 5 10 4375 127 

MPSO 0.2308 0.2366 0.2348 0.0023 5 10 4055 126 

 

Next, a standard competition ranking method is used to analyze the results. In this approach, 

the algorithm with the best result will be assigned as rank 1, while the worst is rank 4. In the case the 

performance is tied, a similar rank will be given, and the next position will be left empty. Table 7 

present the frequency of the rank for every algorithm in term of minimum and average fitness.  

Based on Table 7, the proposed MPSO was only ranked in rank 1 and rank 2 for both 

minimum and average fitness. For minimum fitness, the MPSO able to search for the best solution in 

91.6% of the problems. At the same time, the MPSO was obtained better average fitness in 75% of the 

problems, while the remaining 25% in the second place. The MPSO also had a better average rank for 
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minimum and average fitness. In both categories, the MPSO obtained 1.08 and 1.25 average rank 

respectively. 

Table 7. Frequency of the rank for different algorithms 

  
Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Average Rank 

Minimum fitness 

ACO 5 3 3 1 2.00 

GA 4 2 1 5 2.58 

PSO 4 5 2 1 2.00 

MPSO 11 1 0 0 1.08 

Average fitness 

ACO 5 6 0 1 1.75 

GA 2 2 3 5 2.92 

PSO 2 0 6 4 3.00 

MPSO 9 3 0 0 1.25 

The nearest challenger to MPSO is the ACO algorithm. The ACO had obtained the average 

rank 2.00 for minimum fitness, while 1.75 for average fitness. Meanwhile, the PSO algorithm also had 

the same average rank as ACO for minimum fitness, but in the last position for average fitness. It 

shows that the PSO converge to the different angle in the search space for the different optimization 

run. For this reason, the PSO come out with a different solution for the different run that made the 

fitness too diverse. In a different angle, this behavior has its own advantage, because the algorithm 

will explore a different side of the search space. However, it required a high number of repetition for 

the optimization run.  

Figure 4 and Figure 5 present the average rank by problem size for minimum and average 

fitness. In general, these figures show that for ACO, GA and PSO, the performance of the algorithm 

become worse when the problem size increased. This trend is related to the size of the search space. 

When the problem size increased, the number of possible solutions were excessively increased 

because of permutation combination. This made the searching process become harder and required for 

an efficient algorithm. In contrast, the MPSO is able to maintain the performance throughout the 

different problem size. 
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Figure 4. Minimum fitness by the problem size 

 

Figure 5. Average fitness by the problem size 

Figure 6, 7 and 8 present the mean convergence for small, medium and large size problems 

respectively. For small size problem, the MMFO convergence was almost stagnant from iteration 180. 

Meanwhile in medium size problem, the MMFO convergence roughly stable at iteration 300. Then, a 

few small improvement still occurred until the end. For the large size problem, the convergence can be 

observed still occurred until the end of the run.  
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Figure 6. Convergence plot of small size problem 
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Figure 7. Convergence plot of medium size problem 
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Figure 8. Convergence plot of large size problem 

In small size problem, where the search space is also relatively small, the MMFO algorithm 

manages to converge faster. This can be observed from the steep slope for the first 75 iterations in 

Figure 6. On the other hand, the early MMFO convergence in medium size problem was intermixed 

between steep and short flat slopes. Meanwhile, the longer flat slope can be observed in large size 

problem with periodical steep slopes. The patterns of convergence in small, medium and large size 

problems were affected by the size of search space. When the problem size increased, the number of 

possible solution was also increased. Furthermore, in the smaller problem, tiny changes in the 

assembly sequence gave more effect on the fitness value compared with the larger problem because of 

the ratio between the changes and problem size.  

 

5. Conclusion & Future Work 

This paper modeled and optimized the two-sided assembly line balancing (2S-ALB) with 

resource constraints. In different with the majority of existing works that assume all workstations have 

similar capabilities, this research considers the assembly resources including tools, machines and 

workers to be minimized during the line balancing. For optimization purpose, Modified Particle 



24 

 
 

Swarm Optimization (MPSO) was introduced by considering top three solutions as the global best 

(Gbest) instead of one best solution in PSO algorithm. This changes made to maintain the solution 

diversity over the iterations.  

A computational experiment was conducted by using 12 benchmark test problems from small, 

medium and large size. The optimization results of MPSO were compared with results from popular 

algorithms for 2S-ALB, including Genetic Algorithm (GA), Ant Colony Optimization (ACO) and 

PSO algorithms. The computational experiment results indicated that the proposed MPSO able to 

search for the best solution in 11 out of 12 test problems. Unlike the comparison algorithms, the 

MPSO is capable to maintain the performance when the problem size increased. Besides that, the 

results also indicated that the proposed model for 2S-ALB with resource constraints able to reduce the 

number of resources in an assembly line. This is important to set up the assembly line in an efficient 

way. 

The modification on the Gbest has made the MPSO become more dynamic in terms of the 

search direction. This change has two-fold advantages. The first advantage is the proposed MPSO had 

better exploration that makes the chances to obtain an optimum solution is higher. Meanwhile, the 

second advantage is the possibility for the algorithm to trap in local optima can be reduced. This work 

however has a drawback in terms of the multi-objective handling. Since this work implemented the 

weighted sum approach for the multi-objective problem, the result is highly depended on the weight 

used for each optimization objective. Currently, a similar weight is assigned to all optimization 

objectives. In future, a study to determine a suitable weight for different optimization objectives is 

proposed. Finally, the Pareto optimality concept for multi-objective handling is suggested to have a 

better view on the optimum solution. 
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CHAPTER 5 

 

CONCLUSIONS 

This chapter summarises the research works and highlights the contribution of the 

research to knowledge. Lastly, some recommendations for the future research are suggested. 

5.1 SUMMARY OF RESEARCH 

This section summarises the work that had been done throughout the research.  The first 

phase in this research is conductance of literature review. The literature review presented the 

classification of assembly line balancing. The literature review focus on the problem modelling 

for simple ALB type E (ALB-E), two-sided ALB (2S-ALB) and mixed-model ALB 

(MMALB). Besides identify the problem modelling, the optimization objectives, algorithms 

and benchmark test problem were also identified in the literature.  

Next, the ALB with resource constraints was modelled in mathematical form. This 

phase includes how to transform the assembled product into mathematical form. Then proposed 

suitable mathematical model and constraints to deal with combinatorial problems. Besides that, 

this phase also involved the objective function formulation. In different ALB variation, 

sometimes the different objective function were used. For example in MMALB, one of the 

optimization objective is to minimize production rate variation (PRV) that related with the 

sequence of different model to be assembled. Meanwhile, in 2S-ALB, the number of mated 

workstation is important to minimize the assembly space in the plant.  

Computational test were conducted to separately for ALB-E, 2S-ALB and MMALB to 

test the performance of the optimization algorithm. The computational test were conducted 

using standard benchmark test problems. In some cases, the algorithm need to be modified to 
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meet the optimum solutions. In 2S-ALB for instance due to the early convergence of PSO, this 

algorithm were modified by adding top three solutions instead of a single best for the 

reproduction purpose.  

Apart from that, an industrial case study was conducted in BI Technologies Sdn. Bhd. 

to validate the applicability of optimised algorithm as well as the mathematical model. The 

related assembly data had been collected to be simulated in WITNESS™ Simulation Software. 

The existing layout simulation is used to validate the simulation model with actual layout. The 

feedback from the industrial expert indicated that the output from the optimised algorithm 

cannot be fully implemented due to the fact that their equipment is isolated and cannot be 

moved to another place. Nevertheless, the industrial expert concluded that the proposed 

algorithm and model is applicable and can be implemented for industrial application as it can 

minimise the usage of resources and the number of workstation in production line. In fact, it 

also can enhance the line efficiency by minimising production time. 

5.2 CONCLUSIONS 

 Based on the research that was conducted, there were a few important points to be 

highlighted. The first one is the problem modelling for ALB with resource constraints can be 

generalized for different ALB problems. In this context, the simple ALB type E (ALB-E), two-

sided ALB (2S-ALB) and mixed-model ALB (MMALB) can be generalized for the resource 

constraints. However, the fundamental problem formulation must be made separately. The 

establishment of the ALB with resource constraints model was a clear indicator of the 

achievement for the first research objective.  

The second conclusion is regarding the optimization algorithm that related with the 

second research objective. In this context, no single algorithm that has better performance in 

all ALB problem type. In 2S-ALB, the Particle Swarm Optimization (PSO) performed better, 

while in MMALB, the Ant Colony Optimization (ACO) algorithm has better solution. This 

finding was also in line with the “No Free Lunch Theorems” that no single algorithm is suitable 

for all problems.  
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Next, the industrial case study results indicated that the proposed ALB with resource 

constraints is able to reduce the number of resources, while maintaining the capability to 

balance the assembly line. It confirmed that the proposed model is capable to be implemented 

in real industry. The result from case study also conclude the third research objective. 

5.3 LIMITATION AND RECOMMENDATION 

Even though the objectives of this research were successfully achieved, there were a 

few limitations that need to be point out. The first limitation is related with the software and 

machine capability. In this research, the optimization algorithms were programmed in 

MATLAB. Since MATLAB is for the prototype development, it requires longer CPU time. 

Furthermore, the limitation of the CPU also contributed to the high CPU time. Therefore, in 

this research, the optimization is only run for 500 iteration, considering the time limit that the 

researchers have. 

The second limitation is the algorithm comparison was limited to robust and popular 

metaheuristic algorithms (i.e. GA, PSO and ACO). Recently, there were various new 

optimization algorithms that proposed by researchers for different application. These 

algorithms have the potential to be explored for the line balancing problem.  

Finally, the research limitation is in term of the application of the results in industry. In 

this research, the industrial case study was conducted by collecting the data, optimize using the 

proposed model and simulate using the discrete event simulation tool. The output later was 

validated by the expert from industry. The implementation of the result in real assembly line 

will enhanced the assembly efficiency. 


