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ABSTRACT (120 words) 
 
In this project, the nonlinear force appropriation identification approach is applied to the 
detection of nonlinear or piecewise linear stiffness. The methodology will demonstrate 
using both simulations and experiments by hanging the car body structure with proper 
elastics bungee cord. The finite element models of the body structures will built in finite 
element package and perform model updating to minimise error between experimental 
and numerical results. Mass and stiffness matrices can be extracted after model 
updating process. The force appropriation method is implemented to determine the 
force vector that would excite a single mode of the underlying linear structure a time. At 
the end of the research, the propose method is expected to identify nonlinearity of car 
body structure. 
 
 
1. INTRODUCTION 
 
Linear identification in structural dynamics is matured and well established [1-3]. 
Nowadays, nonlinear identification is become a very popular area in structural 
dynamics.  Most of engineering structures exhibit some degree of nonlinearity 
characteristics especially when the deformations are large [4-5]. Nonlinear systems 
have a range of behaviour not seen in linear vibrating systems. Furthermore, nonlinear 
dynamic analysis becomes very important for the identification of damage in structures. 
Detection, localisation and quantification of nonlinearity are very common in nonlinear 
structural dynamics area [6-7]. Five typical sources of nonlinearities in structural 
dynamics were as follows: geometric nonlinearity, inertia nonlinearity, material 
nonlinearity, damping dissipation and boundary conditions. This research presents the 
identification of nonlinear body in white structure using combination force appropriation 
and restoring force method. Test structure in this research represents the configuration 
body in white (BIW) structure hanged with bungee cord. 

2. RESEARCH METHODOLOGY 
 
Research methodology for this project as stated below:  
 

a) Phase 1: 
 Selection of materials and purchasing equipment for proposed studies 
 Physical measurement and test rig fabrication 

 
b) Phase 2: 

 Numerical Study 
 Finite Element Modeling 
 Finite Element: Normal Mode Analysis 

 
c) Phase 3: 

 Experimental Setup 
 Conduct modal test: impact hammer and single shaker 
 Conduct MIMO Normal Mode Test: multi-shaker 

 
d) Phase 4: 

 Develop algorithm for nonlinear identification 
 Analysis Result 

 

 



3. LITERATURE REVIEW 
 
There have been many studies on the use of system identification methods to identify 
structural nonlinearity, which include changes in natural frequencies, mode shapes and 
damping ratios. Masri and Caughey [8] introduced the restoring forces surface (RFS) to 
identify nonlinearity in single-degree of freedom (SDOF) systems by exploiting 
Newton’s 2nd law to directly measure restoring and dissipative forces in the system. 
RFS was extended by [9] to identify multi-degree of freedom (MDOF) systems by 
transforming the equations of motion from physical to modal coordinate space. RFS is 
more efficient than the Weiner-kernel approach in identifying nonlinear dynamic 
systems of the types considered. The parametric identification method by force state 
mapping technique was developed [10], which is similar to RFS.  Dimitriadis and 
Cooper [11] attempted to identify MDOF systems using a variant of RFS method, which 
considers time response at similar amplitudes, and subsequently, constant nonlinear 
restoring forces could be achieved. Kerschen et al. [12] applied RFS method for two 
different cases: a symmetrical nonlinear beam with piecewise linear stiffness and an 
asymmetrical nonlinear beam with bilinear stiffness. The nonlinear identification 
method recently proposed [13-14] is based on the measured linear and nonlinear 
Frequency Response Functions (FRFs). The method is easy to implement and requires 
standard testing methods. The data required is limited with measured linear and 
nonlinear FRFs. A method or procedure for the identification of non-linear single and 
multi-degree of freedom using restoring forces method with three types of nonlinearity 
was simulated by [15]. Noel et al. [16] demonstrated that the Restoring Force Surface 
(RFS) method can provide a reliable identification of a nonlinear spacecraft structure. 
The nonlinear component comprises an inertia wheel mounted on a support, the 
motion of which is constrained by eight elastomer plots and mechanical stops. Several 
adaptations to the RFS method are proposed, which include the elimination of 
kinematic constraints and the regularization of ill-conditioned inverse problems. 

Detection, localization and identification of nonlinearity are very significant in 
nonlinear structural dynamics area observed that an identification process involved 
three stages [17-18]: detection, characterisation and parameter estimation as shown in 
Figure 2.1. Identification of nonlinear systems is an essential part of the verification and 
validation process. Roache [19] showed that verification is a process where 
computations in mathematics are performed correctly. On the other hand, validation 
refers to formulating mathematical model and selecting coefficient to describe the 
systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Identification Process [18] 



 
There have been many studies on the use of system identification methods to identify 
structural nonlinearity, which include changes in natural frequencies, mode shapes and 
damping ratios. Kerschen et al., classified nonlinear identification methods into seven 
categories: bypassing nonlinearity, linearisation, time domain method, frequency 
domain method, modal methods, time-frequency analysis, black box modelling and 
structural model updating [20]. The following is a brief description of the most popular 
techniques that have been carried out in the last thirty years. 
 
Ibanez seemed to be a pioneer in nonlinear identification research area. Authors 
obtained dynamic properties such as damping, eigen-frequencies, mode shapes, and 
nonlinear effects from experimental data [21]. Masri and Caughey introduced the 
restoring forces surface (RFS) to identify nonlinearity in single-degree of freedom 
(SDOF) systems by exploiting Newton’s 2nd law to directly measure restoring and 
dissipative forces in the system [22]. This technique expresses the nonlinear 
component of SDOF systems by measuring three different parameters; displacement 

( ), velocity ( ), and time ( .  These parameters are plotted with 3D diagram with 

three axes; restoring forces (RF) versus displacement ( ) versus velocity ( ). 
Chebyshev polynomials can be used to characterize the resulting surface. The shape 
of the diagram can reveal the type of nonlinearity such as cubic stiffness, bilinear 
stiffness, saturation, clearance or blacklash, Coulomb friction or nonlinear damping.  
 
RFS was extended by Masri et al. [23] to identify multi-degree of freedom (MDOF) 
systems by transforming the equations of motion from physical to modal coordinate 
space. The method can be used with deterministic or random excitation to identify 
dynamic systems with arbitrary nonlinearities, including those with hysteretic 
characteristics. Authors claimed that RFS is more efficient than the Weiner-kernel 
approach in identifying nonlinear dynamic systems of the types considered. The 
parametric identification method by force state mapping technique was developed by 
Crawley and Aubert [24], which is similar to RFS.  They carried out experiments to 
demonstrate the technique and the results showed strong structural nonlinearities, 
which were cubic hardening spring, friction, and impact phenomena. In addition, 
Dimitriadis and Cooper attempted to identify MDOF systems using a variant of RFS 
method, which considers time response at similar amplitudes, and subsequently, 
constant nonlinear restoring forces could be achieved [25]. This approach allows the 
identification of small systems with the least-squares method. Nevertheless, there is a 
limitation to large systems that requires the try-and-error method to detect the location 
of nonlinearity. Kerschen et al. applied RFS method for two different cases: a 
symmetrical nonlinear beam with piecewise linear stiffness and an asymmetrical 
nonlinear beam with bilinear stiffness [26]. The polynomial model identifies a significant 
cubic stiffness with mean square error (MSE) of 1.70% and the non-polynomial model 
achieved an MSE of 1.80%. It shows that both models gave similar results. For bilinear 
stiffness, the authors concluded that reliable identification has been achieved with 
similar MSE and good fitting of restoring forces.   
 
Simon and Tomlinson used the Hilbert transform (HT) method to identify linear and 
nonlinearity of structures in frequency domain [27]. The HT approach has been shown 
to be a suitable tool to identify nonlinearity and it has the capacity to quantify 
nonlinearity, subject to the input excitation being sinusoidal. Tomlinson described the 
development in the use and application of HT for identifying and quantifying 
nonlinearity using simulated and experimental FRF. Calculation of HTs was carried out 
in the time domain employing the fast Fourier transform (FFT) procedures and new 
correction terms were proposed. Linearisation with HT and random excitation methods 



were applied to experimental data to reveal similar trends in the extracted modal 
parameters [28]. 
 
Feldman proposed a new method for analysing and identifying nonlinear vibration of 
structures by considering the primary and higher harmonics of the solution [29] The 
method is based on two other HT methods: the method for extracting instantaneous 
frequency and Hilbert Vibration Decomposition (HVD) method that splits non-stationary 
wideband oscillating signal into separate components. Instantaneous modal 
parameters from nonlinear systems are oscillating functions due to divergences from a 
linear relationship between specific input and output of the system. These nonlinear 
distortions are characterised by the appearance in the output of a system of 
frequencies, which are linear combinations of the fundamental frequencies and all the 
high harmonics present in the signals. Furthermore, HVD considers the high super 
harmonics, which are more precise identification of nonlinear systems, including 
nonlinear elastic and damping force characteristics. 
 
Reverse path (RP) method allows proper estimate of frequency response functions 
(FRF) and distributed nonlinearity coefficients. Bendat was introduced the RP method 
and was followed by Rice and Fitzpatrick who used this method for MDOF systems 
[30-31]. Nevertheless, this method requires external force to be applied at the location 
of nonlinearity.   
 
In addition, reverse path spectral approach was studied by Richard and Singh [32] for 
identifying nonlinear systems using Gaussian random excitation. They developed the 
technique for the underlying linear systems without contaminating effects from the 
nonlinearities. The authors estimated the conditioned FRF and identified nonlinearities 
by estimating the coefficients of analytical functions. This method was successfully 
simulated in several systems: a three-degree-of-freedom system with an asymmetric 
nonlinearity, a three-degree of freedom system with distributed nonlinearities and a 
five-degree-of-freedom system with multiple nonlinearities and multiple excitations. 
Marchesiello was extended this method to conditioned reverse path (CRP) to separate 
nonlinear part of the equation of motion from the linear part and construct the ranking 
of uncorrelated response part in the frequency domain [33]. The author claimed that 
CRP was very straightforward to identify nonlinearity for MDOF system using random 
excitation. However, some refinement is needed to improve the discrimination 
performance and to reduce analyst interaction. 
 
Lin et al. proposed an extension of the method to detect nonlinearity from analysis of 
complex modes. For SDOF systems, two complex nonlinear equations are built by 
considering two points of equal magnitude before and after resonance [34]. They also 
considered MDOF systems and successfully solved a numerical case for a two-degree 
of freedom system. However, Siller tried a similar approach, but concluded that the 
method only applied to systems with friction damping or weak stiffness nonlinearity. He 
explained further that for strong cubic stiffness systems, it is impossible to locate a 
point of similar magnitude after resonance [35]. 
 
Slaats et al. put forward three mode types: tangent modes, modal derivatives and static 
modes for reducing nonlinear dynamical from finite element discretisation [36]. Tangent 
modes are acquired from an eigenvalue analysis with a tangent stiffness matrix where 
modal derivatives (second order terms) with respect to modal coordinates containing 
the reduction information. However, integration of nonlinear dynamic system was 
reduced by a set of tangent modes, which would contribute to poor results of large 
displacement. Static modes can be obtained by an incremental Newton-Raphson 
iteration rule, which ignores the inertia terms. In this paper, positive influence on 



computational time was highlighted for nonlinear dynamic reduction technique by 
numerical examples. 
 
Shaw and Pierre developed a systematic approach to identify only weak nonlinear and 
continuous systems using nonlinear normal modes (NNMs) [37]. This method 
conserves the physical nature of nonlinear mode shapes and modal dynamics 
parameter. By using asymptotic series expansions and transformation, the authors 
demonstrated how an approximate nonlinear superposition could be employed to 
rebuild the overall motion from individual nonlinear modal dynamics. Subsequently, 
Boivin et al. introduced some modifications to this method, which allows performing a 
legitimate modal analysis from free response of nonlinear systems [38]. They 
discovered some desirable properties for the modal analysis of linear system based on 
geometric approach. This methodology ignores the modelled modes invariant from 
non-modelled ones to reduce the set of equations. Pesheck et.al investigated the 
multimode invariant manifold method to generate reduced order models for MDOF 
nonlinear vibration systems [39]. This method is useful for modelling complex structure 
responses and is important when internal resonances are present between the modes. 
 
An identification of weak nonlinearity of structure has been developed by Rice using 
the first order function of cubic stiffness nonlinearity [40]. The author described an 
approach where underlying nonlinear differential equation governing the system is 
identified. This approach receives the input data in time domain with different levels of 
excitation and builds the variations of stiffness and damping ratios. A mounted 
commercial aircraft trim panel was tested to demonstrate this technique. 
 
Soize and Le Fur presented an identification formula based on a stochastic 
linearization method with random coefficients [41]. The model was defined as a 
multidimensional linear second-order dynamic system with random coefficients. 
Furthermore, an optimisation technique was developed to identify the parameters of 
the probability law of random coefficients. However, the authors concluded that this 
method could be improved by introducing some statistical dependence between the 
components of the random coefficients expressed in the modal coordinates in order to 
model the coupling of the eigenvectors induced by the weak nonlinearities. 
 
Rosa et al. developed an optimization approach to estimate the modal parameters of 
nonlinear systems using goal programming [42]. This method is performed in the 
frequency domain in order to minimise the total squared error between experimental 
and estimated values of nonlinear FRFs. Its main purpose was to obtain better 
accuracy than classical methods in complex cases: highly damped systems, systems 
of high modal density and noisy experimental data. The results from this goal 
programming were compared with those obtained from a classical estimation method, 
the orthogonal polynomials method. They found that this algorithm could produce high-
accuracy results even when using poor initial estimates. 
 
The force-state mapping technique for nonlinear systems was developed by Al-Hadid 
and Wright [43]. They simplified the identification procedure by Masri and Caughey [22] 
in order to identify nonlinearity for SDOF and MDOF systems. In addition, the authors 
used a simple methodology, faster and more accurate for identifying the type and 
location of discrete nonlinear elements in a lumped-parameter system.  
 
McEwan et al. proposed a method for modelling large-deflection beams using a 
combined modal or finite element analysis of dynamic response [44]. They developed a 
special code to construct static nonlinear test cases subjected to prescribed modal 
forces and resultant modal displacements. Then, regression analysis is applied in order 
to extract the nonlinear stiffness coefficients. The beam problem can then be solved for 



any force-time history in the reduced degree of freedom modal system. Singular value 
decomposition (SVD) is required for finding the pseudo-inverse of a rectangular matrix 
and solving systems that are suspected to be ill-conditioned. 
 
Siller presented two methods: direct path and hybrid modal techniques (HMT) in order 
to identify nonlinearity from FRF as the input data [35]. The direct path method is a 
technique to manipulate physical coefficients stored in system matrices. The author 
stated that optimisation of this method was validated against real measurement and it 
was found that the nonlinear characteristic was predicted with good accuracy. HMT is 
similar to a nonlinear superposition technique, in which the underlying linear system is 
expressed in generalized modal coordinates, while the nonlinearities are kept in the 
physical domain. The function of the hybrid coordinates is a significant feature to 
localize the nonlinearities of the system. The author also introduced fast approximation 
technique (FAT) to allow analytical derivation via newly developed expressions, which 
establish a link with other nonlinear methods and standard modal analysis techniques. 
 
The auto regressive moving average with exogenous inputs (ARMA) model is one of 
the popular identification methods in time domain. Based on ARMA, Leontaritis and 
Billings proposed the nonlinear auto-regressive moving average with exogenous inputs 
(NARMAX) model [45]. This model works on discrete time and is a nonlinear version of 
the discrete time ARMA model used in a number of linear methods. It allows the 
estimation of higher order FRFs by harmonic probing (Billings et al., 1989). Basically, 
most of the works carried out using this model were based on single input/output data, 
and it looks most suited to relatively low order complex nonlinear systems. This model 
does not lend itself simply to acquire a significant physical parametric model and large 
order multi input-multi output (MIMO) systems that would lead to a massive number of 
terms. Nevertheless, Thouverez and Jezequel attempted to identify a modal space 
model using NARMAX by reducing the model order and catering for larger systems 
[46]. Billings et al. applied orthogonal estimator in order to improve model selection and 
parameter estimation methods in NARMAX model [47]. Genetic algorithms approach in 
NARMAX model was successfully developed by Chen et al. [48]. 
 
 
 
4. FINDINGS 
 
4.1 Introduction 
In this section, the results obtained through finite element analysis and experimental 
modal analysis is shown and discussed. Firstly, the findings of the frequency analysis 
in finite element of the BIW structure with and without joints modelling strategy is 
presented. Next, are the results obtained through experimental works using several 
different settings are shown. After that, correlation of those data before and after 
performing model updating procedure is presented. 
 
4.2 Finite Element Analysis of BIW Structure 
 
4.2.1 Finite Element Analysis of BIW Model without Joint Modelling Strategies 
Although the real BIW structure consists of numerous of joint components such as 
bolted and welded joints, the initial model of the BIW structure does not include any 
strategies for modelling the available joint components. The intention is to observe 
whether the prediction data obtained from a simplified modelling of the BIW structure 
have an acceptable correlation to the experimental data that are acknowledged as the 
actual data for the BIW. 
 
 



Table Error! No text of specified style in document..1 shows the value of the first 
five natural frequencies obtained through finite element analysis carried out using SOL 
103 in MSC.Nastran/Patran software. The type of vibrational mode for each of the 
natural frequencies is stated in the table as well. The type of vibrational mode, which 
indicates whether the structure is subjected to bending or torsional mode is stated by 
referring to Figure Error! No text of specified style in document..1 to Figure Error! 
No text of specified style in document..5. 
 
 
Table Error! No text of specified style in document..1  Finite element natural 
frequencies of BIW model without joint modelling 

Mode Natural frequencies (Hz) 
1 29.37 
2 41.30 
3 52.55 
4 67.15 
5 74.59 

 
In the first mode, the BIW structure is subjected to bending deformation at floor and 
body side area while roof area was subjected to a combination of bending and torsional 
deformation as shown in Figure Error! No text of specified style in document..1. In 
the second mode, the structure undergoes second bending motion throughout roof and 
floor area as shown in Figure Error! No text of specified style in document..2. In the 
third mode, as exhibited in Figure Error! No text of specified style in document..3, 
the different area on the structure experiences bending translation. In Figure Error! No 
text of specified style in document..4, which shows the fourth mode, the body side, 
roof and floor area undergo bending motion while the front structure area undergoes 
torsional motion. In the fifth mode as displayed in Figure Error! No text of specified 
style in document..5, the structure undergoes bending deformation at body side and 
roof area, while the front structure and floor area undergo torsional deformation. 
 
 
 

 
Figure Error! No text of specified style in document..1  First FEA mode shape at 
29.37 Hz 
 



 
Figure Error! No text of specified style in document..2  Second FEA mode shape 
at 41.30 Hz 

 
Figure Error! No text of specified style in document..3  Third FEA mode shape at 
52.55 Hz 

 
Figure Error! No text of specified style in document..4  Fourth FEA mode shape at 
67.15 Hz 
 



 
Figure Error! No text of specified style in document..5  Fifth FEA mode shape at 
74.59 Hz 
 
4.2.2 Finite Element Analysis of BIW model with different joint modelling 
approaches 
 
The finite element analysis of the BIW model is broadened to be performed on BIW 
model that includes the modelling of joint components. In this case, the first approach 
of modelling the joint components are by using CBAR elements as the connector, while 
the second approach is using CELAS elements as the connector. The same analysis of 
SOL 103 is carried out on both BIW model. In order to enact the rigidity of the joint 
components, CBAR elements are assigned with high value of Young’s modulus, and 
CELAS elements are assigned with immense value of spring constant. 
In  
Table Error! No text of specified style in document..2, the value of natural 
frequencies of BIW model that uses different approaches of joint modelling are 
displayed. The value of natural frequencies of the BIW model without joint elements as 
described in previous section are included in the table as well for comparison purpose. 
 
Table Error! No text of specified style in document..2  Finite element natural 
frequencies of BIW model using different approaches of joint modelling elements 

Mode 
Natural frequencies (Hz) 

CBAR CELAS 
Without joint 
elements 

1 29.29 29.30 29.37 
2 43.22 43.27 41.30 
3 55.70 55.91 52.55 
4 62.14 62.41 67.15 
5 69.35 69.48 74.59 
 
Meanwhile,  
Table Error! No text of specified style in document..3 displays the finite element 
mode shapes of BIW model that uses CBAR and CELAS as its joint element. As shown 
in the table, the mode shapes show similar pattern of deformation even though the 
direction of translation differ from each other visually. 
 
Table Error! No text of specified style in document..3  Finite element mode 
shapes of BIW model using different approaches of joint modelling elements 

Mode 
Mode shapes 

CBAR CELAS 



1 

 

2 

3 

4 

5 

 
4.3 Experimental Modal Analysis of the BIW Structure 
 
When conducting impact hammer test, the concerns on the excitation process is one of 
the important things. The first issue is about pre-trigger delay which without considering 
to include this step, some input frequency spectrum distortion which will have an effect 
on the computed FRF. Another issue in impact testing problem is the double hit during 
the impact. The double hit generally causes a non-uniform and non-flat input spectrum 
which cause undesirable ripple in in the spectrum. Figure Error! No text of specified 



style in document..6 show the input time pulse of the impact hammer during the 
impact testing. As seen on the figure, the signal shows specified single pulse with 
specified pre-trigger. Therefore, there are no double hit and pre-trigger delay issue 
when conducting the impact test. In addition, there was no undesirable ripple on the 
frequency spectrum which signify that the excitation input was done properly. 
 

 
Figure Error! No text of specified style in document..6 Impact hammer time pulse 
graph 
 
4.3.1 Data Acquisition Using 1 Tri-axial Accelerometer 
Experimental modal analysis is performed on the BIW structure by carrying out impact 
hammer test on the structure. To ensure the accuracy of the measured experimental 
results, several factors related to experiments are given serious view and consideration 
before measuring the modal properties of the BIW structure through impact hammer 
test. Among the concerned factors are the number of accelerometers employed, 
number and location of the measuring points, method of support, hanging alignment, 
and location and method of excitation. In this case, as the accelerometers are 
lightweight, there are no any mass loading issues when it comes to the arrangement of 
accelerometers during each experiment since the BIW structure has immense weight. 
Impact hammer test was made by using two different approaches which are the roving 
accelerometer method and roving hammer method. For each method, the impact 
hammer test was carried out twice. Figure Error! No text of specified style in 
document..7 and Figure Error! No text of specified style in document..8 shows the 
superimposed FRFs based on the 61 measurement points using roving accelerometer 
method. The available mode indication function in the pre-processing software 
(ME’scope VES) is used to count peaks from the FRF graph. Mode indicators are 
useful to estimate the effective number of modes in the frequency range of interest and 
to determine appropriated force vectors to isolate undamped normal modes of 
structure. The mode indicator functions (MIF) shows the natural frequencies of the 
structure. MIFs are defined by the eigenvalues of these matrix products, plotted against 
frequency. Usually, the existence of a mode of vibration is indicated by distinct peaks in 
the MIF plot. The range of frequency of interest is set from 0 to 100 Hz. 
 

Peak 1 



 
Figure Error! No text of specified style in document..7  Overlayed X, Y, and Z 
direction traces of FRF using roving accelerometer method with 1 tri-axial 
accelerometer (Test 1) 
 

 
Figure Error! No text of specified style in document..8  Overlayed X, Y, and Z 
direction traces of FRF using roving accelerometer method with 1 tri-axial 
accelerometer (Test 2) 
 
The FRF graphs in Figure Error! No text of specified style in document..7 and 
Figure Error! No text of specified style in document..8, which are obtained through 
the same method, show almost the same shape and location of the peaks. According 
to both figures, peak 1 and peak 2 are closely spaced and lightly damped. Thus, MDOF 
fit is used for curve fitting process. Peak 3 and peak 4 are well separated and lightly 
damped, so SDOF fit is employed. Peak 5 and upcoming peaks are heavily damped 
compared to the earlier peaks. Some of the peaks are well separated and some of the 
peaks are closely spaced. Therefore, the usage of MDOF fit is employed at first but the 
outcome is still compared to the outcome obtained when using SDOF fit. However, 
while determining the available mode from the computed FRFs using the MIF indicator 
available in the software, peak 1 and 2 in the FRF graphs are not indicated as one of 
the modes. In addition, the value of natural frequencies shown by the first and second 
peak is relatively small and shows different numerical value for natural frequencies in 
first and second test. In addition, the experimental model showed free translation and 
rotation without undergoing any significant internal deformation at all when the mode 
shape was simulated on those peaks which associate the peaks with rigid body mode. 
Therefore, the first vibrational mode of the BIW structure is indicated by the peak 3, the 
second mode is the peak 4 and so on. In the case of close peaks such as peak 6 and 
peak 7, those peaks are curve fitted into one single mode as both peak simulated 
similar mode shapes. Therefore, those peaks are considered as close mode. 

Peak 2 

Peak 3

Peak 4 Peak 5
Peak 6

Peak 7

Peak 8 

Peak 9 
Peak 10 

Peak 11

Peak 1 

Peak 2 

Peak 3

Peak 4Peak 5Peak 6Peak 7



Meanwhile, in Figure Error! No text of specified style in document..9 and Figure 
Error! No text of specified style in document..10, the superimposed FRFs obtained 
using roving hammer method is displayed. Although both tests are carried out using the 
same measurement point and tri-axial accelerometer, the FRF graph in the second test 
is noisier and the available peaks look less clear compared to the FRF graph shown in 
the first test. While using roving hammer method, the response from all directions and 
locations as gathered through roving accelerometer method cannot be done. This is 
due to the location of the accelerometer failed to receive excitation from certain point 
on the BIW structure. Therefore, the response obtained is not as stable as shown in 
FRF graph obtained through roving accelerometer method.  
 

 
Figure Error! No text of specified style in document..9  Overlayed X, Y, and Z 
direction traces of FRF using roving hammer method with 1 accelerometer (Test 1)  
 

 
Figure Error! No text of specified style in document..10  Overlayed X, Y, and Z 
direction traces of FRF using roving hammer method with 1 accelerometer (Test 2) 
 
Although the peaks shown from 50 Hz and above is less clear than the peaks shown 
below 50 Hz, the curve fitting process has proceeded with the aid of available MIF 
indicator. Similar to the response obtained through roving accelerometer method, peak 
1 in both FRF graphs are not considered as mode as it was not indicated by the MIF 
and the location of peaks are different in each test. Furthermore, the behaviour of rigid 
body mode was detected when simulating the mode shape. SDOF fit is used for the 
peak 2 to obtain the natural frequency of the first mode and MDOF fit is used for the 
next available peak. 
The coherence data for each test is as shown in Figure Error! No text of specified 
style in document..11. The obtained data were well coherent for the frequency range 
up until 200Hz. Imperfect coherence results were obtained as the frequency range 
goes higher because the hammer tips that were used during testing are less feasible to 

Peak 1 

Peak 2 Peak 3 Peak 4

Peak 5
Peak 6

Peak 1 Peak 2
Peak 3

Peak 4
Peak 5Peak 6



obtain better signal at high frequency. As the results are mainly focused on lower 
frequency range, the imperfect coherence results that has been shown for higher 
frequency value were ignored. 
 
 

 
Figure Error! No text of specified style in document..11 Coherence data for FRF 
when using 1 accelerometer 
 
The value of the natural frequencies of the BIW structure obtained through curve fitting 
process in all test while using 1 tri-axial accelerometer is compiled and tabulated as 
shown in  
Table Error! No text of specified style in document..4. According to the table, the 
measurement of the natural frequencies obtained while using roving accelerometer 
method is more stable than using roving hammer method. Even so, the average for all 
readings is calculated for the purpose of correlation with the results from other 
experimental approach. 
Although roving accelerometer and roving hammer are considered as two different 
approaches of conducting the impact hammer test, there is actually no difference 
between those two tests when it comes to providing the measurements during 
experiments. Based on the discussion provided by Schwarz et al. regarding the 
experimental modal analysis, the only difference between those two methods are its 
experimental configuration and the way responses are recorded into FRF matrices 
which only affect the generation of mode shapes in certain modes (Schwarz & 
Richardson, 1999). In addition, Schedlinski et al. provided the comparison of different 
measurement scenarios in experimental modal analysis. Different test procedure such 
as impact hammer and shaker test as well as roving accelerometer and roving hammer 
are carried out and the tests results are evaluated (Schedlinski et al., 2014). Based on 
this study, there are no significant differences between roving hammer and roving 
accelerometer. Therefore, taking the average reading can be considered as practical. 
 
Table Error! No text of specified style in document..4  Experimental natural 
frequencies of BIW structure when using 1 accelerometer 

Mode 
Natural frequencies (Hz)

Roving accelerometer Roving hammer
Average 

Reading 1 Reading 2 Reading 1 Reading 2 



1 28.4 28.4 28.4 28.8 28.5 
2 42.4 42.4 44.4 45.6 43.7 
3 55.1 57.9 59.3 55.1 56.9 
4 66.4 67.4 69.1 68.8 67.9 
5 76.3 76.4 75.6 71.9 75.05 
 
4.3.2 Data Acquisition Using 3 Tri-axial Accelerometers 
 
The next approach of conducting impact hammer test is by using 3 tri-axial 
accelerometers simultaneously while measuring response on BIW structure. Similar to 
the previous approach, two different methods of conducting impact hammer test, which 
is the roving accelerometer and roving hammer method, are employed while using 3 
sensors. For each method, the impact hammer test was carried out twice. 
Figure Error! No text of specified style in document..12 and Figure Error! No text of 
specified style in document..13 show the FRF measured using the roving 
accelerometer method for the first and the second test respectively. As seen in both 
figures, the location of peaks that indicate the modes of the structure shows no huge 
difference when compared to the FRF obtained previously while using 1 accelerometer. 
Peak 1 in both figures, similar to previous test, is not indicated as mode by MIF 
indicator and showing the characteristic of rigid body mode. Therefore, the first mode of 
the structure is indicated by peak 2 and SDOF fit is used for curve fitting process. Peak 
3 and peak 4 is considered as closed mode as the peaks are closely spaced. Thus, 
MDOF fit is employed on those peaks. The same case is applied to the next peaks as 
they are considered as closely spaced. 
 

 
Figure Error! No text of specified style in document..12 Overlayed X, Y, and Z 
direction traces of FRF using roving accelerometer method with 3 tri-axial 
accelerometer (Test 1) 
 

 

Peak 1 

Peak 2

Peak 3 Peak 4

Peak 5 Peak 6

Peak 1 

Peak 2
Peak 3 Peak 4

Peak 5
Peak 6



Figure Error! No text of specified style in document..13 Overlayed X, Y, and Z 
direction traces of FRF using roving accelerometer method with 3 tri-axial 
accelerometer (Test 2) 
 
Figure Error! No text of specified style in document..14 and Figure Error! No text of 
specified style in document..15 show the FRF obtained using the roving hammer 
method for the first and the second test respectively. Based on the figures, although 
the same method of roving hammer is used, the response obtained when using 3 
accelerometers in the test is more stable than using only 1 accelerometer. In addition, 
the location of peaks that indicates the modes of structures is less different when 
compared with the FRF obtained in all previous tests. Similar to all previous cases, 
peak 1 is not considered as the first mode. Moreover, the numerical values for natural 
frequencies shown by the first peaks in all FRF graph are clearly different each time 
curve fitting process is carried out. This indicates that the mode shown by the first peak 
is not stable unlike all other consistent peak, and cannot be considered as one of the 
vibrational mode of the structure. In addition, there are no vibrational deformation when 
simulating the mode shape but rather the experimental model showed the movement 
that indicate the rigid body mode. For curve fitting process, SDOF fit is used for the 
second peak. MDOF fit is used on the third and fourth peak, fifth and sixth peak, and so 
on as those peaks are closely spaced. For the peaks that are close to each other, 
those peaks are considered as one mode as similar mode shapes are simulated. 
 

 
Figure Error! No text of specified style in document..14 Overlayed X, Y, and Z 
direction traces of FRF using roving hammer method with 3 tri-axial accelerometer 
(Test 1) 

 
Figure Error! No text of specified style in document..15 Overlayed X, Y, and Z 
direction traces of FRF using roving hammer method with 3 tri-axial accelerometer 
(Test 2) 
 

Peak 1 
Peak 2

Peak 3
Peak 4

Peak 5

Peak 5

Peak 6 

Peak 1 
Peak 2 Peak 3 Peak 4

Peak 6 



The coherence data for each test is as shown in Figure Error! No text of specified 
style in document..11. Similar to previous case when using 1 tri-axial accelerometer, 
the obtained data were well coherent for the frequency range up until 200Hz. The 
signal then was not very coherent as the frequency range goes higher as the hammer 
tips used is less suitable for obtaining good high frequency ready. In comparison, the 
coherence data was better and shows smooth curve up until 100 Hz of frequency 
range which signify better signal was acquired when employing 3 accelerometers 
during test. 
 

 
Figure Error! No text of specified style in document..16 Coherence data FRF 3 
accelerometers 
 
The value of natural frequencies obtained through curve fitting process in all tests while 
using 3 accelerometers, including the average for all readings, are exhibited in Table 
Error! No text of specified style in document..5. According to the table, the nominal 
value for the natural frequencies obtained when using 3 accelerometers in impact 
hammer test is more stable compared to the value obtained when using 1 
accelerometer. The calculated average reading is used for correlation. 
 
 
Table Error! No text of specified style in document..5  Experimental natural 
frequencies of BIW structure when using 3 accelerometers 

Mode 
Natural frequencies (Hz)

Roving accelerometer Roving hammer
Average 

Reading 1 Reading 2 Reading 1 Reading 2 
1 28.6 28.6 28.8 28.7 28.7 
2 45.8 41.5 42.8 42.0 43.0 
3 55.1 55.1 59.2 60.0 57.4 
4 66.4 66.4 66.6 66.6 66.5 
5 70.4 70.8 71.8 71.7 71.2 
 
Meanwhile, while the nominal values of natural frequencies of the BIW structure show 
diverse reading, the generated mode shapes for every mode remain robust. This 
indicates that the translation on each point that is measured during testing is stable. 
The mode shapes for the first, second, third, fourth and fifth mode of the BIW structure 
are displayed in Figure Error! No text of specified style in document..17. 



 
Figure Error! No text of specified style in document..17 Experimental mode shape 
of BIW structure at each mode 
 
 
 
4.4 Finite Element and Experimental Data Correlation 
 
In order to observe how far the results obtained through finite element analysis agree 
with the one obtained through experimental work; correlation of the gathered modal 
properties is carried out. The nominal value of the natural frequencies obtained through 
both finite element and experimental are compared. In furtherance of choosing the 
better experimental data for further correlation process, the data obtained while using 3 
accelerometers for measuring the response from BIW structure is preferred because of 
the responses obtained when more accelerometers are utilized is more stable and 
robust. This is decided with reference to the FRF graphs shown in previous section. In 
Figure Error! No text of specified style in document..14 and Figure Error! No text of 
specified style in document..15, the peaks that indicate the vibrational modes for the 



BIW structure is clearly visible and contain less noise than the FRF graphs shown in 
Figure Error! No text of specified style in document..7 and Figure Error! No text of 
specified style in document..8.  
With the set of experimental data of the BIW structure available, the validation for the 
predicted data, which is the finite element data, can be executed. As the experimental 
modal properties is acknowledged as the actual modal properties of the BIW structure, 
while the finite element modal data are the predicted data, the correlation of those sets 
of data can disclose the level of agreement of the different approaches of finite element 
modelling of BIW to the actual structure. There are three different strategies of 
modelling the BIW structure in finite element. For each model, the modal properties of 
the BIW model are extracted using SOL 103 in MSC.Nastran/Patran software. Table 
Error! No text of specified style in document..6 presents the correlation of 
experimental and finite element natural frequencies of BIW model with different 
modelling strategies, which include the BIW model without any joint strategies, and 
BIW model with joint elements modelled using CBAR and CELAS elements. 
 
Table Error! No text of specified style in document..6  Experimental and finite 
element natural frequencies of BIW model with different modelling strategies 

Mode 

Natural frequencies (Hz) 

Experimental 
Finite element (with different modeling strategies) 

No joint 
Error 
(%)

CBAR 
joint

Error 
(%)

CELAS 
joint 

Error 
(%)

1 28.7 29.37 2.33 29.29 2.06 29.30 2.09
2 43.0 41.30 3.95 43.22 0.51 43.27 0.63 
3 57.4 52.55 8.45 55.70 2.96 55.91 2.60
4 66.5 67.15 0.98 62.14 6.56 62.41 6.15 
5 71.2 74.59 4.76 69.35 2.60 69.48 2.42

  
Average 
error

4.10 
Average 
error

2.94 
Average 
error 

2.78 

 
From the data in Table Error! No text of specified style in document..6, the average 
error for each mode of the BIW model without joint modelling is 4.10 %, for the BIW 
model that use CBAR elements for joint modelling is 2.94 %, and for the BIW model 
that used CELAS elements for joint modelling is 2.78 %. It apparent that BIW model 
without joint strategies shows higher average error for each mode compared to when 
joint elements such as CBAR and CELAS are included in the model. Meanwhile, 
between CBAR and CELAS as joint elements in the BIW model, the average error for 
each mode does not differ very much which is about 0.16 %. However, numerically, 
better correlation is achieved while employing CBAR elements to model the joints 
compared to CELAS elements. Obviously, the results shown in the initial finite element 
as shown in Table Error! No text of specified style in document..6 can be updated in 
order to achieve better correlation to the experimental results.  
According to Table Error! No text of specified style in document..6, the highest 
percentage of error is shown by the third mode of BIW model without joint elements 
which is 8.45%. On the other hand, the highest percentage of error shown by the BIW 
models with joint elements is found in the fourth mode. In the fourth mode, BIW model 
with CBAR elements shows 6.56% while BIW model with CELAS elements shows 
6.15%. Comparison with other study is made in order to verify the accepted value of 
error percentage. Sani et al. (2008) in the correlation of dynamic properties of go-kart 
structure shows the highest error percentage of 33.70%. It was commented that due to 
the complexity of the model, some simplification on the design was done and resulting 
the large value of error. In another study carried out by Nehete et al. (2015), the 
highest percentage of error found in the finite element model of cavities is 15.7%. In a 
study performed by Husain et al. (2010), the highest initial percentage of error of finite 



element model of hat-plate structure is 7.69%. Therefore, for this study, the error found 
in all model for each mode in study can be considered as acceptable since there are no 
mode showing error of more than 10%. After all, the constructed finite element models 
of BIW are the simplified models which are different from its actual counterpart. 
Visual comparison of the experimental mode shapes and the mode shapes obtained in 
finite element analysis that use different approaches is exhibited in Table Error! No 
text of specified style in document..7. As the experimental mode shapes are 
displayed through wireframe model rather than the model with surface as viewed by 
finite element mode shapes, it is harder to make visual comparison with just stationary 
picture just as shown in Table Error! No text of specified style in document..7. 
In the first mode, the finite element mode shapes of the BIW model with joint elements 
are showing bending deformation at floor, roof, body side and front structure area and 
the amplitude of the movement is lower, while in the finite element mode shape of the 
BIW model without joint element shows combination of bending and torsional 
deformation at the roof area and the amplitude of the movement is higher. On the other 
hand, the experimental mode shape is showing bending movement in each wireframe 
component. In the second mode, the experimental and all finite element mode shapes 
are showing similar pattern of deformation even if the direction of bending movement in 
BIW with CELAS element is differing from others. The same case is shown in the third 
mode where the finite element mode shape of the BIW model without joint elements is 
showing the bending motion, though at the same place, but in different direction. In the 
fourth mode, the deformation shown in finite element mode shape of BIW model with 
CBAR elements is the same but in opposite direction to the mode shape of the BIW 
model with CELAS elements. Experimental and finite element mode shape of BIW 
model without joint elements show similar pattern to the shape shown by BIW model 
with CELAS elements even if the amplitude of the deformation is different. In the fifth 
mode, the pattern of all mode shapes shown by all finite element models is in similar 
pattern, direction and amplitude. However, the experimental mode shape, though 
shows similar deformation, is deformed in lower amplitude compared to the one shown 
in finite elements. In addition to this, the results of MAC correlation between the 
experimental and all the finite element mode shapes are showing the value of more 
than 80% which indicates that all the modes are well correlated. 



Table Error! No text of specified style in document..7  Experimental and finite element mode shapes of BIW model with different modelling 
strategies 

Mode 
Mode shapes 

Experimental 
Finite element (with different modeling strategies) 
No joint CBAR CELAS 

1 

 

2 

 

3 

 



4 

 

5 

 



4.5 Finite Element Model Updating of BIW Structure 
 
Although the results obtained from finite element analysis are sometimes efficient 
enough to predict the dynamic behaviour of the tested structure, experimental data is 
always needed in order to validate the predicted data. Consequently, model updating 
process is essential in order to improve the predicted data so as to represent the actual 
data more accurately. The parameterization of the finite element model that is using the 
sensitivity analysis which is based on SOL 200 available in MSC.Nastran/Patran 
software identifies the sensitive parameters that are selected as the updating 
parameters. 
 
4.5.1 Updating of the BIW Model without Joint Elements 
 
Based on the sensitivity analysis performed on the selected parameters as described in 
previous chapter, it appears that Young’s modulus and thickness is the most sensitive 
parameters. Table Error! No text of specified style in document..8 exhibits the 
sensitivity coefficients of selected updating parameters. According to the data from the 
sensitivity analysis, from all the thickness parameters included in the analysis, it can be 
summarized that Thickness 2 is the most sensitive among all. Thickness 4, on the other 
hand, shows sensitive coefficient for the fourth mode only while Thickness 1 and 
Thickness 3 is less sensitive for all modes. Some argument can be made that correction 
of thickness can be performed manually rather than included as an updating parameter. 
In this case, however, the thickness properties are not only assigned to represent the 
thickness on the actual structure, but also to replicate the stiffness and rigidity of the 
surface component. Therefore, the thickness parameter is included as one of the 
updating parameters so that the suitable value for thickness that should be assigned on 
the surface so that the rigidness of the surface on the actual structure can be identified 
and replicated in the finite element model. It also appears that sensitivity coefficient of 
Young’s modulus and density is both showing the same level of sensitivity. However, 
only one of these two parameters is selected, which is the Young’s modulus, as the 
updating parameter due to their direct relation in the calculation of the natural frequency. 
In addition, the number of parameters should be kept to be minimum in order to avoid ill-
conditioning problem (Husain et al., 2009) 
 
Table Error! No text of specified style in document..8  Sensitivity coeeficient for 
each potential updating parameter of BIW model without joint elements 

Parameters 
Mode

1 2 3 4 5 
Young’s 
modulus 

1.4372E+01 2.0625E+01 2.6072E+01 3.2056E+01 3.6573E+01 

Poisson 
 ratio 

6.2252E-01 3.3211E+00 2.9448E-01 5.2410E+00 2.3262E+00 

Density -1.522E+01 -2.185E+01 -2.762E+01 -3.396E+01 -3.874E+01
Thickness 1 
(0.001m) 

-2.6369E-01 4.3494E+00 -5.3695E-02 6.0279E-02 1.5513E+00 

Thickness 2 
(0.008m) 

1.2588E+01 3.1145E+01 1.7985E+01 1.8180E+00 2.8395E+01 

Thickness 3 
(0.006m) 

5.0923E-01 9.6746E-03 8.8233E-01 4.9524E+00 2.1093E+00 

Thickness 4 
(0.003m) 

2.4575E+00 4.7598E-01 1.5639E-01 5.7903E+01 8.4075E+00 



 
 
Table Error! No text of specified style in document..9 shows the updated natural 
frequencies of the finite element model of BIW without joint elements and comparison of 
the value from the initial value. Although percentage of error increased after updating in 
the first and fifth mode, the average error for each mode shown by the updated natural 
frequencies is decreased by 0.66 %. Moreover, the error shown in the fourth mode is 
reduced almost to nothing, which is 0.02 %. This is revealing that even if in small 
percentage value, the simplified finite element model that is modelled by neglecting joint 
components can still be improved. 
 
Table Error! No text of specified style in document..9  Comparison of initial and 
updated finite element natural frequencies of BIW model without joint elements 

Mode 

Experimental 
natural 
frequencies 
(Hz) 

Initial FE 
natural 
frequencies 
with no joint 
strategies 
(Hz)

Error (%) 

Updated 
natural 
frequencies 
with no joint 
strategies 
(Hz)

Error (%) 

1 28.70 29.37 2.33 29.43 2.54 
2 43.00 41.30 3.95 42.27 1.70 
3 57.40 52.55 8.45 53.27 7.20 
4 66.50 67.15 0.98 66.51 0.02 
5 71.20 74.59 4.76 75.28 5.73 

  
Average 
error

4.10 
Average 
error

3.44 

 
The changes of the initial and updated value of the updating parameters which consist of 
Young’s modulus and selected thickness are shown in  
Table Error! No text of specified style in document..10. The Young’s modulus shows 
an increment of 5.78 % from the initial value while the selected thickness shows the 
lessening of 5 % and 3.33 % respectively from the initial value. The value of deviation of 
Young’s modulus is greater owing to the reason that the parameter shows higher 
sensitivity coefficient compared to the thickness during sensitivity analysis. Meanwhile, 
the initial change of the updating parameters from the initial normalized value until it has 
achieved a steady value is shown in Figure Error! No text of specified style in 
document..18. Based on the figures, the process of updating becomes complete after 
10 iterations for all updating parameters (Young’s modulus, Thickness 2 and Thickness 
4). 
 
Table Error! No text of specified style in document..10  Updated value of updating 
parameter for BIW model without joint elements 

Parameters Initial value, I Updated value, II 
Changes (%)= 
|(II-I)/I| 100 

Young’s modulus 
(GPa) 

200 211.56 
5.78 

Thickness 2 (m) 0.008 0.0084 5.00 
Thickness 4 (m) 0.003 0.0029 3.33 
 



 
Figure Error! No text of specified style in document..18 The non-convergence of the 
updating parameters for BIW model without any joint elements 
 
4.5.2 Updating of the BIW Model with CBAR as Joint Elements 
 
While carrying out sensitivity analysis on the BIW model with joint elements, the 
parameters of the joint such as the Young’s modulus of the connecting elements and the 
diameter of the beam used for CBAR elements are included as well.  
Table Error! No text of specified style in document..11 provides the outcomes of the 
sensitivity analysis on the several parameters. The sensitivity coefficients shown in the 
table indicate that the parameters of the joint elements are less sensitive. Rather, the 
Young’s modulus assigned to the BIW model and the thickness properties are sensitive. 
For thickness parameters, even if the sensitive coefficient indicates that only certain 
mode is sensitive to the parameter, the thickness is still selected as one of the updating 
parameters as it contributes to the mode it sensitive to. In this case, Thickness 2 
parameter is sensitive to the fourth mode, Thickness 3 is sensitive to third mode and 
Thickness 4 is sensitive to the second mode. 
 
Table Error! No text of specified style in document..11  Sensitivity coeeficient for 
each potential updating parameter of BIW model with CBAR elements 

Parameters 
Mode 
1 2 3 4 5 

Young’s 
 modulus 

1.4616E+01 2.1798E+01 2.8345E+01 3.2689E+01 3.6455E+01

Poisson  
ratio 

2.0315E-01 3.5294E+00 2.5162E-01 1.5448E+00 1.4031E+00

Density 
 

-1.342E+01 -2.001E+01 -2.602E+01 -3.000E+01 -3.346E-04 

Thickness 1  
(0.012m) 

-1.536E-01 5.6285E-02 6.6606E-01 5.3006E-01 3.5155E+00

Thickness 2  
(0.008m) 

6.8212E+00 6.0654E-01 3.7143E+00 3.6428E+01 7.6688E+00

Thickness 3  -8.108E-01 2.973E+00 1.155E+01 1.854E+00 -3.138E-01



(0.006m) 
Thickness 4  
(0.003m) 

-7.065E-01 3.465E+01 2.717E+00 4.201E+00 9.937E+00 

Beam  
diameter (m) 

4.9403E-08 3.3232E-10 3.3514E-08 1.2452E-08 6.7373E-08 

Joint Young’s 
modulus 

1.443E-07 7.1838E-10 7.4853E-08 3.7886E-08 1.4664E-07 

 
Table Error! No text of specified style in document..12 exhibits the natural 
frequencies of the updated BIW model with CBAR joint elements. In this case, the 
updated value of natural frequency for the first and second mode increased by 1.08 % 
and 1.77 % respectively from their initial value. However, the average error for each 
mode for the updated data decreased by 1.2 % from the initial value. In addition, 
compared to the average error for each mode that is obtained after updating of the BIW 
model without joint elements as displayed in  
Table Error! No text of specified style in document..9, the average error for each 
mode shown by this model is obviously lower. 
 
 
Table Error! No text of specified style in document..12  Comparison of initial and 
updated finite element natural frequencies of BIW model with CBAR joint elements 

Mode 

Experimental 
natural 
frequencies 
(Hz) 

Initial FE 
natural 
frequencies 
with CBAR 
joint (Hz)

Error (%) 

Updated 
natural 
frequencies 
with CBAR 
joint (Hz)

Error (%) 

1 28.70 29.29 2.06 29.60 3.14 
2 43.00 43.22 0.51 43.98 2.28 
3 57.40 55.70 2.96 57.35 0.09 
4 66.50 62.14 6.56 65.92 0.87 
5 71.20 69.35 2.60 72.85 2.32 

  
Average 
error

2.94 
Average 
error

1.74 

 
Meanwhile, the updated value of the chosen updating parameters for the BIW model 
with CBAR elements are shown in  
Table Error! No text of specified style in document..13. The Young’s modulus shows 
the decreased of 7.5 % from the initial value, while the thickness 2 and 3 show higher 
increment of 25 % and 21.7 % respectively from their initial value. Thickness 4 however, 
shows only little increment of 3.33 %. Meanwhile, in Figure Error! No text of specified 
style in document..19, the initial change of the updating parameters from the initial 
normalized value to convergent value is displayed. The process of updating achieves 
convergence after 8 iterations for all updating parameters. 
 
Table Error! No text of specified style in document..13  Updated value of updating 
parameters for BIW model with CBAR elements 

Parameters Initial value Updated value 
Changes (%)= 
|(II-I)/I| 100 

Young’s modulus 
(GPa) 

200 185 
7.5 

Thickness 2 (m) 0.008 0.01 25.00 



Thickness 3 (m) 0.006 0.0073 21.67 
Thickness 4 (m) 0.003 0.0031 3.33 

 

 
Figure Error! No text of specified style in document..19 The convergence of the 
updating parameters for BIW model with CBAR elements as joint elements 
 
4.5.3 Updating of the BIW model with CELAS as joint elements 
 
In the sensitivity analysis carried out on the parameters available on the BIW model with 
CELAS element, the only parameter that can be included for analysis that concerns the 
properties of joint element is the assigned spring constant. Unlike CBAR element that 
contains the material and physical properties of the elements, CELAS element only 
consists of the spring constant value in its element input.  
Table Error! No text of specified style in document..14 illustrates the results of the 
sensitivity analysis on several selected parameters. Similar to the results obtained from 
model with CBAR elements, the parameter associated with CELAS elements turns out to 
be not sensitive to be included as one of the updating parameters. Meanwhile, apart 
from Young’s modulus which shows high sensitivity coefficient as shown in the table, 
several thickness properties, which are Thickness 2, 3 and 4, are selected as the 
updating parameter. Similar to previous cases that are described in previous sub-
section, the thicknesses are not showing satisfactory sensitivity coefficient for all modes 
in study. However, Thickness 2 shows high sensitivity towards the fourth mode, 
Thickness 3 shows high sensitivity towards the third mode, and Thickness 4 shows high 
sensitivity towards the second mode. It is due to this situation that the thickness 
properties are included as updating parameters. 
 
Table Error! No text of specified style in document..14  Sensitivity coefficient for 
each potential updating parameter of BIW model with CELAS elements 

Parameters 
Mode 
1 2 3 4 5 

Young’s 
modulus 

1.7242E+01 2.5764E+01 3.3546E+01 3.8597E+01 4.3234E+01

Poisson ratio 2.0919E-01 3.5227E+00 2.6779E-01 1.5809E+00 1.2860E+00



Density -1.578E+01 -2.357E+01 -3.072E+01 -3.541E+01 -3959E+01
Thickness 1 
(0.012m) 

-1.282E-01 4.802E-02 4.642E-01 5.893E-01 3.4477E+00

Thickness 2 
(0.008m) 
 

6.8693E+00 5.8854E-01 3.6417E+00 3.5389E+01 8.0408E+00

Thicknes 3 
(0.006m) 

-8.221E-01 2.9712E+00 1.1916E+01 1.6767E+00 2.4106E-02 

Thickness 4 
(0.003m) 

-7.020E-01 3.4650E+01 2.3123E+00 3.7314E+00 9.2612E+00

Spring constant 
 

8.2102E-03 4.5076E-04 2.4698E-02 8.5638E-02 2.9939E-02 

 
 
Table Error! No text of specified style in document..15 displays the natural 
frequencies of the updated BIW model with CELAS joint elements. In this case, only the 
first and second mode is showing the increase of natural frequencies value after 
updating. For the first mode, the natural frequency value increased by 1.01 % from its 
initial value while for the second mode, the value of natural frequency increased by 
1.72 % from its initial value. The average error for each mode after updating is reduced 
by about 1.05 % from the initial value of average error for each mode. 
 
Table Error! No text of specified style in document..15  Comparison of initial and 
updated finite element natural frequencies of BIW model with CELAS elements 

Mode 

Experimental 
natural 
frequencies 
(Hz) 

Initial FE 
natural 
frequencies 
with CELAS 
joint (Hz)

Error (%) 

Updated 
natural 
frequencies 
with CELAS 
joint (Hz)

Error (%) 

1 28.70 29.30 2.09 29.59 3.10 
2 43.00 43.27 0.63 44.01 2.35 
3 57.40 55.91 2.60 57.38 0.03 
4 66.50 62.41 6.15 65.96 0.81 
5 71.20 69.48 2.42 72.87 2.35 

  
Average 
error

2.78 
Average 
error

1.73 

 
Next, the updated value of the chosen updating parameters for the BIW model with 
CELAS elements are shown in  
Table Error! No text of specified style in document..16. The updated value of 
Young’s modulus lessens by 7.58 %. Other updating parameters however, are showing 
the exact increment as the updated value of model with CBAR elements as shown in  
Table Error! No text of specified style in document..13. Meanwhile, Figure Error! No 
text of specified style in document..20 shows the initial change of the updating 
parameters from the initial normalized value to convergent value. The process of 
updating achieves convergence after 8 iterations. 
 
Table Error! No text of specified style in document..16  Updated value of updating 
parameter for BIW model with CELAS elements 

Parameters Initial value Updated value 
Changes (%)= 
|(II-I)/I| 100 



Young’s modulus 
(GPa) 

200 184.84 
7.58 

Thickness 2 (m) 0.008 0.01 25.00 
Thickness 3 (m) 0.006 0.0073 21.67 
Thickness 4 (m) 0.003 0.0031 3.33 

 

 
Figure Error! No text of specified style in document..20 The convergence of the 
updating parameters for BIW model with CELAS elements as joint elements 
 
 
The equations of motion of discretised structures in the physical space can be 
expressed as  
 

     (Eq 1) 
 

where M, C and K are n×n mass, damping and stiffness matrices; gnl is an n×n nonlinear 
stiffness matrix, f(t)is applied nodal force vector and x(t) is the vector of physical 
displacements. The equations can be obtained for example, from finite element 
modelling of a structure. Transformation by leads to 

 
   (Eq 2) 

 
where  is the modal vector matrix. By using orthogonality of the modes, equation (2) 
become 

 
    (Eq3) 

 
where  and  are diagonal matrices, and . If 
the structure has proportional damping,  is also a diagonal matrix and 
equation (3) reduces to 
 

(Eq 4) 
 



where  is the rth modal displacement and other parameters in modal expression. 
Nonlinear terms,  refer to rth mode nonlinear restoring force and others mode allow 
for nonlinear cross-coupling terms.  
 
 
 
5. CONCLUSION 
 
A nonlinear simple structure was identified using the force appropriation and restoring 
forces method. Algorithm has been developed for mutiple degree of freedom. Finite 
element model of BIW has been developed in MSC Nastran Patran and run for normal 
mode analysis in order to determine modal properties such as natural frequency, mode 
shape and damping ratio.  
 
The aim of this work is to develop nonlinear identification method of BIW structure. Force 
appropriation method is developed to excite single mode of structure by applying 
multiple forces. If the response of the system could be reduced to that of the mode of 
interest, then a single degree of freedom restoring force identification could be 
performed to identify any nonlinearity present. Beside of that several method of modal 
testing are used such as impact hammer, single shaker (spectral test), double shaker 
(spectral test), MIMO sine testing and MIMO normal mode were carried out to obtain 
dynamics properties and other parameters. Finite element modelling and model updating 
was applied to minimise the discrepancies between numerical and experimental 
dynamic result. As conclusion, this thesis covered numerical works (finite element), 
experimental works and programming works (matlab coding) to present the nonlinear 
identification method of the engineering structure. 
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