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CHAPTER 1 

INTRODUCTION AND GENERAL INFORMATION 

 This chapter serves as an introduction to the thesis. Throughout this chapter, subtopics 

such as purpose of the thesis, background of study, problem statement, research objective, 

research scope, research outcome and organization of the thesis will be presented. 

 

1.1 PURPOSE OF THE THESIS 

The aim for this thesis is to bridge the gap between Sequence Diagram, Petri Nets and 

SD2PN. Sequence Diagram is a behavioral type of UML diagram widely used by software 

developers to show dynamic interactions in a system, while Petri Net is a modelling language 

that is able to carry out mathematical analysis for a system that is also capable of expressing 

dynamic interaction in a system. SD2PN is a tool that enables software developers to map 

Sequence Diagram to Petri Nets. Software developers are able to map Sequence Diagram to Petri 

Nets and perform mathematical analysis using Petri Net tools to check for any error before the 

actual coding phase. This will in turn result in less error during the coding phase. However, 

SD2PN only supports one way mapping, which is from Sequence Diagram to Petri Nets. Users 

have to manually update the Sequence Diagram if any error is to be found when analyzing the 

Petri Nets. This thesis aims to find a way to map Petri Nets back to Sequence Diagram, so that 

software developers are able to map the Petri Nets back to Sequence Diagram instead of 

updating the Sequence Diagram manually. This is the main motivation for this thesis, which is to 

create an algorithm for mapping Petri Nets to UML Sequence Diagram. This thesis is also been 

done to fulfill the requirement of my masters study. 

  

1.2 BACKGROUND OF STUDY 

Software engineering is the application of engineering technique to design, develop and 

maintenance for the software. Software engineering can be divided into ten sub disciplines which 

are software requirements, software design, software construction, software testing, software 



maintenance, software configuration management, software engineering management, software 

engineering process, software engineering tools and methods and software quality [1]. Software 

design is one of the vital stages of a software development life cycle. It is the blueprint of the 

design and architecture of the software. Implementation of the coding will refer to the software 

design. Hence, it is important for the software design to have as minimal error as possible as it 

might lead to errors during implementation phase.  

In software design, the designer creates specifications of a software artifact based on the 

requirements given by stakeholders [2]. It usually involves problem solving and planning a 

software solution. It is important to have as minimal error as possible in the software design 

phase. Hence, languages in the form of models like Petri Nets [3] are used because of its ability 

to perform formal, mathematical analysis of the software designs. These formal modelling 

languages are able to perform mathematical analysis of the software design such as liveness, 

deadlock detection and reachability. This in turn will be able to reduce the amount of design 

errors being carried into the implementation phase.   

Petri Nets is a formal modeling language that can be represented graphically with a 

strong mathematical foundation [4]. It is represented graphically in the sense that it serves as a 

visual communication aid to model the system behavior. It is based on a mathematical 

foundation in the sense that it represents the equations, algebraic equations and algorithms in the 

systems. Petri Nets can be used to model control flow in a system and is capable of modeling 

diverse set of parallel, asynchronous, concurrent, hierarchical, stochastic as well as dynamic 

behaviors. 

However, the Unified Modelling Language (UML) is the go-to modelling language for 

software designers. UML is a general informal modelling language used to describe the software 

both structurally and behaviorally [5]. UML diagrams can be classified into structural and 

behavioral diagrams. An example of the structural diagram is the Class Diagram, it models the 

classes in the systems, attributes and operations and how are they related to each other. While an 

example of behavioral diagram is the Sequence Diagram which models the dynamic interactions 

in terms of messages passed between objects in the systems. 



SD2PN is a tool for transforming Sequence Diagram into Petri Nets. There are similar 

properties between Sequence Diagram and Petri Nets where both is able to model dynamic 

interactions and behaviors in terms of messages passed between objects in the system [6]. 

SD2PN provides a tool for transforming Sequence Diagram to Petri Nets. This is useful for 

software designers to transform the Sequence Diagram into Petri Nets and performs 

mathematical analysis using Petri Nets tools such as CoopnBuilder [7], GreatSPN [8] and 

Petruchio [9]. However, there are some limitations to the SD2PN tool which will be discussed in 

the following part.  

 

1.3 PROBLEM STATEMENT 

There appears to be a gap between the knowledge of Sequence Diagram, Petri Nets and 

SD2PN. SD2PN is only capable of performing one way mapping which is from Sequence 

Diagram to Petri Nets. This will lead to tedious repeated modeling each time a change has been 

made. Users need to manually update the Sequence Diagram each time a change has been made 

to the Petri Nets model.  

SD2PN partially solved the problem of heterogeneity between Sequence Diagram and 

Petri Nets. Software developers can use SD2PN to perform model transformation from Sequence 

Diagrams to Petri Nets. Since it is only a one-way mapping process, the communication is only 

from Sequence Diagram to Petri Nets. This also means that Petri Nets are not able to 

communicate with Sequence Diagram. Hence, users are still required to update the Sequence 

Diagram manually after performing analysis on the Petri Nets generated. It is not a fully 

automated or a reversible process.  

This study will address the problem of SD2PN, which is it only supports one way 

transformation from Sequence Diagram to Petri Nets. A solution will be look into to create an 

algorithm for mapping Petri Nets to Sequence Diagram. A standalone tool or an algorithm might 

be the outcome of the study to map Petri Nets models to Sequence Diagram models. 

 

 



1.4 RESEARCH OBJECTIVES 

• To create an algorithm to transform Petri Nets to Sequence Diagram 

• To develop a rule-based MDD model transformation that transforms Petri Nets fragments 

to Sequence Diagram fragments. 

• To show correctness of the model transformation based on existing frameworks.  

The research objectives were made based on the problem statement state in Section 1.3. As 

stated in the problem statement, SD2PN has a limitation of one way transformation, which is 

from Sequence Diagram to Petri Nets. This is tackled by the first objective, which is to create an 

algorithm that transforms Petri Nets to Sequence Diagram. While transforming a model to 

another model, a rule-based Model Driven Development (MDD) model transformation needs to 

be created, which leads to the second objective of this research. Upon successfully transforming 

Petri Nets into Sequence Diagram, a common semantic domain is needed to compare if the 

semantics of the models are preserved. This is shown in the third objective which is to show the 

correctness of the model transformation based on existing frameworks.  

 

1.5 RESEARCH SCOPES 

In order to achieve the outlined objectives, the specific scopes of this research are: 

1. To study the techniques used in SD2PN. 

2. To study Petri Nets and UML Sequence Diagram. 

3. To introduce a way to identify fragments in Petri Nets.  

4. To introduce a rule-based Model Driven Development model transformation to represents 

Petri Nets fragments as Sequence Diagram fragments.  

5. To develop an algorithm to transform Free Choice Petri Nets into UML Sequence 

Diagram.  

6. To proof that PN2SD preserves semantics. 

 

 



1.6 RESEARCH OUTCOMES 

As a summary, the main aims of the research are as follows:  

 The research focuses on improving the limitation of SD2PN and aims to introduce an 

algorithm to transform Petri Nets to Sequence Diagram. A new method to identify fragments in 

Petri Nets is introduced and a rule-based MDD model transformation to represent Petri Net 

fragments as Sequence Diagram is utilized. Other than that, relevant publication will be 

produced. This thesis explains in detail how the algorithm works, how the fragments in Petri 

Nets are identified and how is Petri Net fragments represented as Sequence Diagram fragments.  

 

1.7 ORGANIZATION OF THESIS 

The remainder of the thesis will be structured as follows: 

Chapter 1: This chapter focuses mainly on the brief introduction to software design, 

Petri Nets, Sequence Diagram and SD2PN. Besides that, this chapter also introduces the 

limitation of SD2PN. 

Chapter 2: In this chapter, preliminary and some basic foundation information on Petri 

Nets, Petri Nets tools, Sequence Diagram and SD2PN will be presented. Similar works such as 

UML2Alloy and UML-B / U2B are also introduced.  

Chapter 3: The research methodology on the concept of Multi Paradigm Modelling is 

presented in this chapter. Other than that, the concept of Labelled Event Structures is also 

introduced in this chapter.  

Chapter 4: PN2SD is presented in this chapter. A new method is introduced in 

identifying fragments in Petri Nets, and the transformation rules to transform Petri Nets 

fragments into Sequence Diagram fragments is presented in this chapter. The full algorithm to 

transform Free Choice Petri Nets to Sequence Diagram is also presented in this chapter. This 

chapter also shows how PN2SD preserves semantics.  



Chapter 5: This chapter shows how the algorithm can be applied on a Free Choice Petri 

Net. An example is given which involves the behavior of a Personal Area Network (PAN). A 

discussion is also available in this chapter. 

Chapter 6: This chapter presents the conclusion, contribution and limitation of the 

research work.  Recommendations for future work are also available in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

FOUNDATION 

 This chapter presents preliminary information also known as the basic foundation of the 

language and the technology used throughout this thesis which includes Petri Net, Petri Net tools, 

UML, Sequence diagram, UML Tools, SD2PN and also some similar works.  

2.1 PETRI NETS 

 Petri Net is a formal modeling language that can be represented graphically with a strong 

mathematical foundation [10]. Petri Nets are mostly used to model control flow in a system and 

is capable of modeling conflicts and concurrencies. There are four main components of a Petri 

Net, which are places, transitions, arcs and tokens.  
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Figure 1: Example of Petri Net 
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 Figure 1 is an example of a Petri Nets with six places, four transitions and nine 

connecting arcs. A place in Petri Net may contain any number of tokens. A place must be 

connected to a transition via an arc or vice versa, while an arc can be classified as either an input 

arc or an output arc. An input arc is characterized as an arrow with the arrowhead pointing 

towards the place, while an output arc is characterized as an arrow with the arrowhead pointing 

away from the place. The precondition for a transition to be enabled or ready to fire is that the 

place connected to the transition needs to be marked with at least one token. In figure 1 case, 

transition t1 and t2 is enabled and ready to fire, while transition t3 and t4 do not have a marked 

place with token connected to them, hence t3 and t4 is not enabled and not ready to fire. The 

firing of the token will be further illustrated in figure 2.  
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Figure 2: Example of Petri Net token firing sequence 

 Figure 2 (a) shows a marked place, s1 with output arcs connecting to transition t1 and t2. 

Hence both t1 and t2 becomes enabled since the place that is connected to them via input arcs are 

marked. Both t1 and t2 are now enabled but only one of them may fire, this shows a conflict. 

Figure 2 (b) shows the scenario where t1 fires the token to s2. This action removes the token 

from s1 and places the token in s2 which is connected via an output arc to t1. The transition t2 is 

now no longer enabled as s1 is not the marked place anymore. As a result, s2 is now a marked 

place and t3 is now enabled and ready to fire. In Figure 2 (c), since t3 is the only transition 

connected to s2, t3 fires the token from s2 and places a token each in s4 and s5. This is defined 

as a concurrency or parallel relationship where one token is split into two or more (depending on 

the number of concurrent nodes). Figure 2 (d) shows an alternative scenario where t2 fires the 

token instead of t1. The token in s1 is removed and placed in s3. The transition t4 now becomes 

enabled and the firing sequence is continued as there are no conflicts. In Figure 2 (e), the 

transition t4 fires the token from s3 into s6. The firing of t4 will only occur following the firing 

of t2. This creates a causal relationship between t2 and t4.  
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Figure 3: Petri Net Metamodel 

 Figure 3 shows the metamodel of Petri Net. Each Petri Net consists of at least one place, 

one transition, one arc and one marking. Each place or transition can have any number of input 

and output arcs and each place has a mark in the form of the integer number of tokens. Petri Nets 

can also be represented formally as below: 



A Petri Net is a triple N = (S, T, F), where S is a finite set of places and T is a set of transition 

where S ∩ T = ∅. F is a relation on S ∪ T where F ∩ (S x S) = F ∩ (T x T) = ∅. A marking of N 

is a function m:S → {0,1,2,3, …}, where each place s ∈ S is assigned the number of tokens. M0 

is used to show the initial marking, the number of tokens in each place at the beginning of 

execution. 

 

2.1.1 PETRI NETS TOOLS 

 Petri Nets tools are software tools used to design and perform analysis on Petri Nets 

models. With Petri Nets tools, users are able to analyze the performance of the system. Users are 

also able to use Petri Nets tools as a graphical editor or code generator. Some of the Petri Nets 

tools can also be used to simulate the system and provide model checking for it. Based on a 

recent survey [11], the table below shows a comparison between twenty Petri Nets tools in terms 

of Petri Nets supported, components, type of analysis, environment to be ran in and price.  

 

 

 

 

 

 



Table 1: Comparison of twenty Petri Net Tools 

 Table 1 shows twenty Petri Nets tools compared in terms of 5 main categories which is 

Petri Nets supported, components in the tool, analysis type available, environments to run in and 

availability of the tool. The first group of comparison is the Petri net supported. In this category, 

the Petri net tools are compared in terms of what kind of Petri net is supported. Most of the tools 

support Place/Transition Petri net with some supporting high-level Petri net (i.e. AlPiNA, 

CoopnBuilder, PROD, and QPME). However, QPME stands out in this category as it supports 

Queuing Petri net (a combination of Queuing Network and Petri net). For Continuous Petri net, 

only Snoopy and Charlie support it. 

The second categories compared are the components available in each tool. Majority of 

the tools provide a graphic editor and a fast simulation on Petri net. Tools that provide graphic 

editor and fast simulation on Petri net can be good education tools. Users will be able to create, 

edit Petri net and simulate different Petri net while learning about Petri net. Amongst all the tools 

Petri Net Tool              Petri Net Supported                        Component             Analysis                  Environments
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MARCIE × × × × × ×
CHARLIE × × × × × × × × × × × ×
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ARP × × × × × × × × × ×
JPetriNet × × × × × ×
Petri .NET Simulator × × × × × × × ×
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compared, PEP has the most number of components which includes graphical editor, state spaces, 

condensed state spaces, token game animation, place invariants, transition invariants, net 

reduction, model checking, Petri net generator and interchange file format. Users will be able to 

explore more about Petri Nets while using PEP compared to the other tools. 

The next form of comparison is the types of analysis for Petri net. Some of the tools 

surveyed deliver simple performance analysis, while tools such as GreatSPN, PEP, Charlie, 

JSARP, Xpetri, ARP and JPetriNet offer structural analysis. GreatSPN and QPME are also able 

to carry out advance performance analysis. The reachability graph based analysis is however 

only able to be performed by MARCIE.  

The next sort of comparison is the environment types that the Petri net tools support. 

LoLA, PETRUCHIO and QPME have the highest amount of environment types supported for 

their tools with six environments for each of them including Windows, Macintosh and MS Dos. 

However, tools like AlPiNA, CoopnBuilder, MIST, Yasper, PAPETRI, ARP and Petri .NET 

Simulator is very environment specific with each of them only supporting one specific 

environment to be run on.  

The final criterion of comparison is the pricing of the Petri net tools. All of the Petri net 

tools are either free of charge or free of charge for academic purpose to be downloaded. 

This thesis aims to create an algorithm to map Petri Nets to Sequence Diagram. The 

algorithm created might be similar to the functions of the Petri Net tools surveyed above as code 

generation is also one of the many functions of the Petri Net tools. The survey of Petri Net tools 

will also benefit the users in choosing which Petri Net tools to be used in analyzing Petri Nets.  

 

2.2 Unified Modeling Language (UML) 

 Unified Modeling Language (UML) is an informal modeling language used to offer a 

standard and unified way to visualize the design of a system. [12]. It has been accepted as a 

standard by the Object Management Group (OMG). UML are used to show the structural and 

behavioral view of the design in a system. Many UML tools have been created to carry out 

different function such as diagramming, round-trip engineering, code generation, reverse 



engineering, model transformation and model and diagram interchange. As of August 2014, 

there are 19 registered OMG members for UML vendor, 43 nonmembers UML vendor and a lot 

more UML tools that are not registered under OMG [13]. 

There have been numerous versions of the UML, such as UML 1.0, UML 1.4 and UML 

1.5 which were all merely minor revisions of UML 1.0. UML 2.0 is a major revision for the 

UML 1.5 version. To date the latest formal UML version is the UML 2.4.1 [14].  

UML can model the system in two types of diagrams, which is structural and behavioral 

diagram. Structural diagram emphasizes on the fixed structure of the system using objects, 

operations and relationships. Examples of structural diagrams include class diagrams and 

composite structure diagrams. Behavioral diagram shows the dynamic behavior of the system. 

The behavioral view shows the relationship and interactions between the objects in the system. 

Examples of behavioral diagrams include sequence diagrams, activity diagrams and state 

machine diagrams. 

UML 2.0 consists of different types of diagrams which are divided into two main 

categories, one is the structural diagram and the other one is the behavior diagram. The figure 

below illustrates how UML 2.0 is categorized. 

 

 

 

 

 

 

 

Figure 4: UML 2.0 Hierarchy 

 Different diagrams provide different type of perspectives to the developer. For example, 

by analyzing a class diagram (structural diagram), developer can focus solely on the system’s 

classes, attributes, operations and the relationship between the objects. While analyzing a 
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sequence diagram (behavior diagram), developer can focus on how the object interacts with each 

other and the sequence of the processes in the system. UML enables software engineers to break 

down a system into different diagrams which describes the system from different perspectives. 

 

2.2.1 SEQUENCE DIAGRAM 

 Sequence diagram is an interaction diagram that shows how processes work with each 

other and in what order. It is a construct of a message sequence chart [15]. It illustrates object 

interactions arranged in time sequence. Components in a sequence diagram are lifeline, message, 

interaction operator, event and combined fragment. The figure below is an example of sequence 

diagram,  
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Figure 5: Example of Sequence Diagram 

 Figure 5 is an example of Sequence Diagram with two lifelines (objects) and four 

messages. The messages indicates communication between Object A and Object B. Message m1 

and m4 shows interaction from Object A to Object B, while message m2 and m3 shows 

interaction from Object B to Object A. Lifelines are vertical lines that represent objects or an 

instance of a class in a system while messages are horizontal arrows that begins and ends at a 
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lifetime. These messages denote the communication among the objects that are represented by 

the particular lifelines. Messages are normally used as a sign or a call for procedure or function 

in the system. 

 Figure 5 also shows a concept of events labelled as e1, e2 … e8. In a normal Sequence 

Diagram, events are not labelled. The label in Figure 5 is done deliberately so that it can 

familiarize readers with the concept of events used and described later on in this thesis. The 

mapping of Petri Nets to Sequence Diagram will be based on the concept of events. Events are 

attached to the lifelines and represent the sending and receiving of messages. Referring to [16], 

there are two main rules in the sequencing of events in a Sequence Diagram: 

1. The events on each lifeline must be ordered from top to bottom. 

2. The event that denotes the sending of a message must occur before the event that denotes 

the receiving of the same message. 
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Figure 6: Sequence Diagram Metamodel 
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 Figure 6 illustrates the metamodel for UML Sequence Diagram. The main components of 

a Sequence Diagram are lifelines, messages and Combined Fragments that are defined by 

Interaction Operators. Combined Fragments are high level additions introduced to Sequence 

Diagrams. A Combined Fragment is defined by the Interaction Operator that is attached to it, as 

well as the amount of operands it has. As shown in Figure 5, a Combined Fragment with the 

Interaction Operator alt is presented with two operands. The numbers of Operands are 

determined by the number of fragments in the Combined Fragment. Interaction Operators are 

used as a mechanism to provide structure in the communication between lifelines. In Figure 5, 

the Interaction Operator alt refers to alternative (conflicting) behavior where only messages in 

one of the two operands would be executed. Hence, if the message m2 is sent, then the message 

in the second operand, m3 would not be sent or vice versa. There are eleven types of Interaction 

Operators as shown by [17]; however only four types of the Interaction Operators will be used in 

this thesis, which will be introduced in the following Table 2.  

Table 2: Types of Interaction Operator 

Interaction 
Operator 

Abbreviation Semantics Description 

Alternative alt Alternative Interaction Operator is a choice of behavior 
where at most only one of the operands in the Combined 
Fragment is chosen. The operands of the Combined 
Fragment could be assigned a guard or constraint that has 
to be evaluated to be true for it to be chosen. 

Option opt The Option Interaction Operator is similar to the 
Alternative Interaction Operator, which is a choice of 
behavior occurs. The default for an option Interaction 
Operator is one operand, where either the operant happens, 
or nothing happens.  

Break - A Break Interaction Operator is a choice of behavior where 
an operant occurs, or the remainder of the interaction is 
disregarded (i.e. the termination of the system). The 
operands could be attached to a guard to determine the 
chosen behavior. However, a Break Interaction Operator 
without a guard leads to a non-deterministic choice of 
behavior. 

Parallel par The Parallel Interaction Operator shows that a parallel 
merge between all the operands of the Combined Fragment 
occur. The order of the messages within each operand of 
the Combined Fragment is preserved. However, the order 
of the messages between operands can be interleaved in 



any variations. 
 

2.2.2 UML Tool 

A UML tool is a tool that supports some or all of the semantics associated with UML, 

such as the structural diagram or behavioral diagram. There are two sorts of UML tools, either a 

standalone software tool or a plugin tool for existing software.  

Basically, UML tools can be characterized based on their functionality. The figure below 

shows the categories of UML tools.  

 

 

 

Figure 7: Types of UML Tools 

UML tools based on diagramming function are used to create and edit UML diagrams. 

Developers can use diagramming tools to draw diagrams of object-oriented software as long as 

UML notations are followed. UMLet, ArgoUML and Visio are some examples of UML 

diagramming tools.  

A round-trip engineering UML tool is able to perform code generation from models and 

also model generation from code, while keeping both the model and the code semantically 

consistent. A few examples of round-trip engineering UML tools are Altova UModel and UML 

Lab.  

In code generation UML tool, UML diagrams are used to generate codes. The code 

generation function will provide a rough structural code in response to the UML diagrams 

provided. This in turn will benefit the programmer as one do not need to code from scratch. 

Examples of code generation UML tools are Acceleo and AthTek Flowchart to Code.  

For reverse engineering UML tools, the UML tool reads source code as an input and 

creates corresponding UML diagrams based on it. An example for reverse engineering UML tool 

is the Architexa.  
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In model and diagram interchange UML tool, UML models are represented by XML 

Metadata Interchange (XMI). XMI is not supported by UML diagram interchange; hence it 

allows the importation of UML diagrams from one model to another. Examples of UML tools 

that supports model and diagram interchange are Poseidon, Adobe SVG plugin and Batik.  

For model transformation UML tool, the concept is to associate it with model-driven 

architecture. Hence, the tool is capable of transforming a model into another model. Examples of 

model transformation UML tools are UMT-QVT and UML RSDS. 

 A survey on UML tools [18] was carried out recently with the tabulated result as of 

below. The reason for carrying out the survey is to have an updated list of comparison between 

the latest versions of ten UML tools  

Table 3: A survey of UML tools 
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Latest 
supported 
version 

UML 1.4 x       x   

UML 2.0       x  x  

UML 2.4  x x x x x    x 

Diagrams 
supported 

Structur
al 

x x x x x x x x x x 

Behavior x x x x x x x x x x 

Model Driven 
Architecture  

x x x x x x x  x x 

XML Metadata 
Interchange  

x x x x x x x  x x 

Languages 
code 
generated 
 

C# x x x x x x x    

C++ x x  x x x x  x x 

JAVA x x x x x x x  x x 

PHP x   x  x x  x  

Visual 
Basic 

  x        

VB.Net    x  x     
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Languages 
code 
generated 

SQL  x   x x x  x  

C#  x x x  x x    

C++  x  x x  x  x  

JAVA x x x x x x x  x x 

PHP 
 

   x  x   x  

Visual 
Basic 

  x        

VB.Net    x  x     

Type Standalo
ne tool 

x x x x x x x x x x 

Plugin/ 
Integrati
on 

  x x x  x x  x 

Price Free x x  x  x x x  x 

Paid  x x x x x   x  

Platform Windows x x x x x x x x x x 

Linux x x  x x x x x x x 

Mac OS 
X 

x x  x x  x x x x 

 

 The table above compares ten UML tools in terms of the latest versions of UML 

supported, diagrams supported, model driven architecture supported, XML Metadata Interchange 

supported, languages code generated, languages reverse engineered, type of tools, price and the 

type of platform.   

The first type of comparison is the version of UML supported. In this part, ArgoUML, 

Modelio, Visual Paradigm for UML, Rational Software Architect, Software Ideas Modeler and 

Papyrus has the best support for providing the latest UML 2.4 standard to the users. In terms of 

diagrams supported, all the UML tools surveyed support both structural and behavior diagrams. 

The tools also support model driven architecture and XML Metadata Interchange except for 



UMLet. Nine out of the ten UML tools surveyed supports JAVA programming languages in 

code generation and reverse engineering. All of the surveyed UML tools can also work as a 

standalone tool while UModel, Visual Paradigm for UML, Rational Software Architect, 

Umbrello UML Modeler, UMLet and Papyrus provides plugin or integration with another IDE 

tool such as Netbean or Eclipse. Most of the UML tools surveyed have free version to be used 

non-commercially, while the rest have free trial versions which will expire after a few months of 

usage. For some of the UML tools to be fully utilized, users are recommended to purchase the 

license to unlock the full function of the UML tool. Most of the UML tools can be installed in 

cross platform (Windows, Linux and Mac OS X) as long as that particular platform supports Java. 

Based on the survey [18], UML tools that are free of charge will be used in this research. 

After transforming Petri Nets back to Sequence Diagram, users will be able to choose which 

UML tool to be used in editing the Sequence Diagram created.  

 

2.3 SD2PN 

SD2PN is a tool used to perform model transformations from Sequence Diagram to Petri 

Nets [19]. It also functions as a framework for Sequence Diagrams to be transformed into Petri 

Nets. The model transformation from Sequence Diagram is broken down into three stages to 

illustrate the stages involved in the process; they are Decomposition, Transformation and 

Composition. The three stages are further explain as below,  

Stage 1 (Decomposition) : Decomposing the Sequence Diagrams into fragments. The 

Sequence Diagram inputted into SD2PN is decomposed into several small fragments based on 

the Sequence Diagram metamodel. 

Stage 2 (Transformation) : Transforming each fragment of Sequence Diagrams into blocks 

of Petri Nets. Sequence Diagram fragment obtained from Step 1 is transformed into a Petri Net 

block respectively based on a set of model transformation rule.  

Stage 3  (Composition) : The Composition stage consists of two functions, which is 

morphing and substituting. In this step, the blocks of Petri Nets are morphed and substituted to 

create a Petri Net representation of the original Sequence Diagram.  



2.3.1 DECOMPOSITION 

In this decomposition stage, based on [19], a message can be referred to an event, or the 

flow of information between the objects in Sequence Diagrams, so a message is considered to be 

a Sequence Diagram fragment. The four InteractionOperatorKind (alternative, option, break and 

parallel) as shown in Figure 6 are able to change the flow of events in a different way, hence 

they each are designated as a fragment type too. In short, there are five types of Sequence 

Diagram fragments, which are message, alternative, option, break and parallel. The Sequence 

Diagram inputted into SD2PN will be decomposed based on these five types of fragments. The 

decomposition still preserves the causality of the messages or the hierarchical structure of the 

CombinedFragments. 

 

2.3.2 TRANSFORMATION 

In this stage, Sequence Diagrams fragments will be transformed into Petri Net blocks. In 

the transformation stage, five transformation rules must be followed based on each of the five 

types of fragments as shown in the decomposition stage.  

The concept of placeholders and Petri Net blocks are also introduced into the extended 

Petri Nets metamodel before the transformation process. Placeholders are temporary nodes that 

mimic the structure of a place in Petri Nets. Petri Net blocks are blocks of Petri Nets that have 

unique input and output places, which are referred to as precondition and postcondition 

separately.  

           s1 

 t1                               t2 

 s2 

Figure 8: Example of a Petri Net block 

The figure above shows an example of a Petri Net block. Petri Net blocks can also be 

expressed formally as of below.  



A Petri Net block is a four tuple B = (S, T, P, F) where S is a finite set of places, T is a 

finite set of transitions, and P is a finite set of placeholders. F⊆ ((S∪P) ×T) ∪ (T× (S∪P)) is a set 

of arcs. In(B), Out(B) ∈ S are unique places (precondition and postcondition respectively) such 

that In(B) has no incoming arcs and Out(B) has no outgoing arcs. They symbolize the start and 

end places in the Petri Net blocks correspondingly. Petri Net bock can also be textually 

represented as the sum of all its components. As an example, the Petri Net block in Figure 8 can 

be written as  

𝐵𝐵=({𝑠𝑠1,𝑠𝑠2},{𝑡𝑡1,𝑡𝑡2},{ },{(𝑠𝑠1,𝑡𝑡1),(𝑠𝑠1,𝑡𝑡2),(𝑡𝑡1,𝑠𝑠2),(𝑡𝑡2,𝑠𝑠2)}). 

For larger Petri Net blocks where the textual representation such as above may be 

complicated, hence it may also be written as 𝐵𝐵 = (𝑆𝑆, 𝑇𝑇, 𝑃𝑃, 𝐹𝐹) where 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2}  

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}  

𝑃𝑃={ }  

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1, 𝑠𝑠2), (𝑡𝑡2, 𝑠𝑠2)} 

With placeholders and Petri Net blocks introduced, Sequence Diagram fragments can be 

transformed using a set of SD2PN transformation rules which will be explained in the following 

section.  

 

2.3.2.1 SD2PN Rule 1: Transforming Message fragments 

SD2PN Rule 1, the model transformation for message fragments. The execution of a 

message, m in a Sequence Diagram is represented as the firing of a transition in the corresponding 

Petri Net. For each message fragment that exists in the Sequence Diagram, a Petri Net block is 

created. This transformation rule result in a Petri Net block textually as  

B = ({s1, s2},{m},{  },{(s1, m),(m, s2)}) 

 



Figure 9 below illustrates how SD2PN Rule 1 is applied when converting a message 

fragment from Sequence Diagram to Petri Net block.  
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 m      m 
 
                                                                                                 s2 
 

Figure 9: Applying SD2PN to message fragment 

 

For each message fragment that exists in Sequence Diagram, a Petri Net block is created. 

The Petri Net block is made up of two places, s1 and s2. These places indicate the precondition 

and postcondition of the Petri Net block individually. The message, m in the Sequence Diagram 

fragment is transformed into a transition in the Petri Net block and labelled with the same name.  

 

2.3.2.2 SD2PN Rule 2: Transforming Alternative Fragments 

SD2PN Rule 2 is the model transformation rule for alternative fragments. The Interaction 

Operator alternative specifies that a set of event may occur if a condition is satisfied and another 

set of event will occur if otherwise. For each CombinedFragment with the 

InteractionOperatorKind alternative in the Sequence Diagram, a Petri Net block is created. This 

results in a Petri Net block written as B = (S, T, P, F) where 

S = {s1, s2} 

T = {t1, t2, t3, t4} 

P = {ph1, ph2} 

F = {(s1, t1),(s1, t2),(t1, ph1), (t2, ph2), (ph1, t3), (ph2, t4), 

(t3, s2), (t4, s2)} 

 

Figure 10 below shows how SD2PN Rule 2 is applied to an alternative fragment when 

converting a Sequence Diagram fragment to a Petri Net block.  
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Figure 10: Applying SD2PN to alternative fragment 

 

For each CombinedFragment with the InteractionOperatorKind alternative in the 

Sequence Diagram, a Petri Net block is created. The Petri Net block comprises of two places, s1 

and s2 to model the precondition and postcondition. The Petri Net block also have two 

placeholders which are ph1 and ph2 that acts as temporary places that will be swapped by the 

events in the operand alt_fragment1 and alt_fragment2. The behavior of the alternative fragment 

is indicated by two transitions t1 and t2 with incoming arcs from the precondition, only one of the 

two transitions may fire. Transition t1 and t2 are connected to ph1 and ph2 respectively. Then two 

more transition t3 and t4 are created to represent the end of the alternative fragment. Transition t3 

receives an incoming arc from ph1 while t4 receives incoming arc from ph2. Both t3 and t4 are 

connected via an outgoing arc to the postcondition.  

 

2.3.2.3 SD2PN Rule 3: Transforming Option Fragments 

SD2PN Rule 3 is the model transformation rule for option fragments. The Interaction 

Operator option is similar to the alternative fragment. For each CombinedFragment with the 

InteractionOperatorKind option, a Petri Net block is generated. The result is a Petri Net block 

written as B = (S, T, P, F) where 

S = {s1, s2} 

T = {t1, t2, t3, t4} 

P = {ph1, ph2} 

F = {(s1, t1),(s1, t2),(t1, ph1), (t2, ph2), (ph1, t3), (ph2, t4), 

alt Alt_fragment1 

Alt_fragment2 

SD2PN 
Rule 2 

ph1 ph2 



(t3, s2), (t4, s2)} 

 

Figure 11 below illustrates how SD2PN Rule 3 is applied when converting an option 

fragment from Sequence Diagram to Petri Net. 
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 t3                                  t4 
 s2 
  

Figure 11: Applying SD2PN to option fragment 
 

The difference between the generated Petri Net block is that a Combined Fragment of type 

option may contain just one operand. Since only one operand exists, there must only be one 

placeholder in the Petri Net block. Thus the placeholder in ph2 is substituted with a place skip that 

mimics the system where the actions inside the option operand are ‘skipped’. The resulting Petri 

Net block is as show in below,  

 
    s1 
 
  t1                                   t2 
 
 
 skip 
 
  t3                                  t4 
 

    s2 
Figure 12: A Petri Net block with an option fragment with only one operand 

 

Similar to Rule 2, if the CombinedFragment consists of the first message of the Sequence 

Diagram (including inside nested fragments), the precondition of the resulting Petri Net block 

must contain a token.  
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2.3.2.4 SD2PN Rule 4: Transforming Break Fragments 

SD2PN Rule 4 is the model transformation rule for break fragment. The Interaction 

Operator break consist of a condition such that when it is satisfied, the operation breaks 

(terminates). It is a specialization of the ‘if… else…’ construct. Each break fragment is 

transformed into a corresponding Petri Net block. To show termination of the system, a place 

marked with X is created, which is also known as a terminal node. The resulting Petri Net block 

can be written as B = (S, T, P, F) where 

S = {s1, s2, X} 

T = {t1, t2, t3} 

P = {ph} 

F = {(s1, t1),(s1, t2),(t1, ph),(t2, X),(ph, t3),(t3, s2)} 

 

Figure 13 below shows how SD2PN Rule 4 is applied when converting a break fragment 

of Sequence Diagram to Petri Net.  
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Figure 13: Applying SD2PN to a break fragment 

 

A Petri Net block is created for every CombinedFragment of type break that exists in the 

Sequence Diagam. This Petri Net block contains precondition and postcondition modelled as 

places s1 and s2. The operand inside break fragment is modelled by a placeholder in the Petri Net 

block. Alike the rules before this, two transitions t1 and t3 are used to connect the placeholder to 

break 
Break_fragment1 

SD2PN 
Rule 4 

ph1 



the precondition and postcondition. A place marked by X is created to show the termination of the 

system which is also known as a terminal node. The terminal node is connected to the 

precondition via transition t2. But it is not connected to the postcondition as the system is 

terminated at X.  

 

2.3.2.5 SD2PN Rule 5: Transforming Parallel Fragments 

SD2PN Rule 5 is the model transformation rule for parallel fragment. The Interaction 

Operator parallel specifies two or more sets of event should occur concurrently without any pre-

defined set of conditions. There should not be any causality or conflicting event between all the 

operands of the parallel fragment. For each Combined Fragment of type parallel that exists in the 

Sequence Diagram, a Petri Net block is generated. The resulting Petri Net block can be written as 

B = (S, T, P, F) where 

S = {s1, s2} 

T = {t1, t2} 

P = {ph1, ph2} 

F = {(s1, t1),(t1, ph1),(t1, ph2),(ph1, t2),(ph2, t2),(ts, s2)} 

 

Figure 14 below illustrates how SD2PN Rule 5 is applied when converting a parallel 

fragment of Sequence Diagram to Petri Net. 
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Figure 14: Applying SD2PN to a parallel fragment 

The resulting Petri Net block consists of a precondition (s1), postcondition (s2) and 

placeholders ph1 and ph2 that model the operands par_fragment 1 and par_fragment 2. To model 

the concurrency between the operands, a single transition t1 is used to connect all the 

par Par_fragment1 

Par_fragment2 

SD2PN 
Rule 5 ph1 ph2 



placeholders to the precondition. This is due to the firing of t1 will provide tokens to the both 

ph1 and ph2 in parallel. Transition t2 is then created to connect the placeholders to the 

postconditions. 

The description above briefly describes how does SD2PN works when applying it to a 

Sequence Diagram to transform it into Petri Net. The correctness of the model transformation 

performed by SD2PN has been proven mathematically using a common semantics domain in 

Labelled-Event Structures [20] by using the semantic mapping introduced by Kuster-Filipe, J 

and McMillan, K.L in their respective works [21].  

 

2.3.3    COMPOSITION 

After mapping each Sequence Diagram fragment into Petri Net blocks, the Petri Net 

blocks need to be composed into an integrated Petri net that resembles to the original Sequence 

Diagram. Based on an observation, there is a commonality between all the Petri Net blocks 

created via SD2PN, which is each of the Petri Net blocks have a single input and output place, 

also known as precondition and postcondition. This is done purposely to allow a constant method 

of putting the Petri Net blocks back together. In this composition stage, there are two local 

functions used, which is morph and substitute. 

 

2.3.3.1 MORPH 

The morph function is used to combine causal Petri net blocks. In formal descriptions, the 

symbol ⊗ is used to indicate the morph function. Hence the morphing of B1 and B2 can be 

represented formally as B1 ⊗ B2. The causality relationship is derived from the GeneralOrdering 

from the Sequence Diagram metamodel in Figure 6 in section 2.2.1 of this thesis. The morph 

function is used to attach Petri Net blocks by merging the postcondition of a block with the 

precondition of another block, which enforce a causal behavior. Hence the morph function can 

only be called when there are two Petri Net blocks at a time.  

 



 

  s1  s1 

  t1     t1 

 s2  morph               s3  s2 

                                                                        t2    t2 

                                                   s4  s4 

Figure 15: Example of morph function between two Petri Net blocks 

Figure 15 shows the theory of morphing between two Petri Net blocks. When the morph 

functions is called on the two Petri Net blocks, the postcondition of the former is combined with 

the precondition of the latter, creating an integrated Petri Net block. Based on the example above, 

the morphed place will always take the label of the former block and also ignoring the latter 

block. In this case, after the morph process, s2 is chosen to label the place while s3 label is 

ignored. It can also be written formally as of below. 

Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net blocks. The morphing 

of B1 and B2 is represented by B1 ⊗ B2 which results in a new Petri Net block B = (S, T, P, F) 

such that T = T1 ∪ T2, P = P1 ∪ P2, S = (S1 ∪ S2) \ {Out(B1)}, In(B) = In(B1) and Out(B) = 

Out(B2) and 

F = ((F1 ∪ F2) \ {(x,y) | y = Out(B1)} ∪ {(x, In(B2) | (x, Out(B1) ∈ F1}……(*). 

To explain about (*), notice that the arcs in B are acquired by including all the arcs in F1 ∪ F2 

excluding the arcs leading to output places of B1,Out(B1). All arcs that terminates in Out(B1) 

must be redirected to In(B2) in order to morph B1 to B2.  

Based on the example in Figure 15, suppose that the two Petri Net blocks B1 and B2 such 

that B1 = ({s1, s2}, {t2}, { }, {(s1, t1), (t1, s2)}) and B2 = ({s3, s4}, {t2}, { }, {(s3, t2), (t2, s4)}) 

where s1 and s3 are preconditions of B1 and B2 respectively while s2 and s4 are postconditions 



of B1 and B2. Triggering the morph function as B1 ⊗ B2 will combine the postcondition of B1 

and the precondition of B2, creating a Petri Net block represented formally as of below. 

 𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠4}, {𝑡𝑡1, 𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1, 𝑠𝑠2), (𝑠𝑠2, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠4)}) 

 

2.3.3.2 SUBSTITUTE 

Substitute is a function used for composing hierarchical behavior between Petri Net 

blocks. The function is used only to replace a placeholder with a Petri Net block. The substitute 

function is called repeatedly until there are no more placeholders. The function can also be 

written mathematically as B2[B1/p], which means a placeholder p inside B2 is replaced with B1. 

   s1  

   s1 t1    

  s3 t1 s3   

  t3 substitute  t3  

   s4  t2   s4 

 B1     s2   t2 

 B2     s2 

 B3 

Figure 16: Example of substitute function between Petri Net blocks 

Figure 16 shows an example of substitution between two Petri Net blocks and the result 

of the substitution process. Each time the substitute function is triggered, a placeholder (from B2) 

is substituted by another Petri Net block (B1) such that the incoming arc into the placeholder 

(from B2) is transferred into the precondition of the block (B1), while the outgoing arc from the 

placeholder (from B2) is transferred as if from the postcondition of the block (B1). This can also 

be represented formally as of below. 

ph1 



Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net blocks. Let ph1 be a 

placeholder in B2. The substituting of the Petri Net block, B1 into ph1 is represented by the 

notation B2[B1/ph1] which results in a Petri Net block, B = (S, T, P, F), where  

S = S1 ∪ S2, T = T1 ∪ T2, P = (P1 ∪ P2) \ {ph1}, In(B) = In(B2), Out(B) = Out(B2) 

and 

F = (F1 ∪ F2 \ {(x, y) | x = ph1 or y = ph1}) ∪ {(x, In(B1)) | (x, ph1) ∈ F1} ∪ {(Out(B1), y) | 

(ph1, y) ∈ F1} ..... (∗∗). 

The equation (**) means that arcs in B can be acquired by removing all arcs to and from 

ph1 and redirecting them to In(B1) and Out(B2) respectively. Another example is presented in 

Figure 17 below since most cases of substitution in SD2PN involves the necessity for two Petri 

Nets to be substituted into one Petri Net block with two placeholders (alternative, parallel and 

some cases in option fragments). 

        s1 
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                       t5                 substitute                                         substitute                  t6 

 s4                                t3                                t4                                s6 

 B1 s2  B3 

       B2 

Figure 17: Example of two substitute actions between Petri Net blocks 

B1, B2 and B3 can be represented formally as of below.  

B1 = ({s3, s4}, {t5}, { }, {(s3, t5), (t5, s4)}) 

B2 =                             {s1, s2}, {t1, t2, t3, t4}, {ph1, ph2}, 

                                 (s1, t1), (s1, t2), (t1, ph1), 

                                 (t2, ph2), (ph1, t3), (ph2, t4), (t3, s2), (t4, s2) 

ph1 ph2 

( ) { } 



B3 = ({s5, s6}, {t6}, { }, {(s5, t6), (t6, s6)}) 

By triggering the substitute function B2[B1/ph1] and B2[B3/ph2], it results in a Petri Net 

block, B = (S, T, P, F) where 

S = {s1, s2, s3, s4, s5, s6} 

T = {t1, t2, t3, t4, t5, t6} 

P = {  } 

F =       (s1, t1), (s1, t2), (t2, s3), (s3, t5), (t5, s4), (t2, s5), 

           (s5, t6), (t6, s6), (s4, t3), (s6, t4), (t3, s2), (t4, s2) 

 

Figure 17 illustrates the case where the substitution is between three Petri Net blocks 

such that B1 and B3 are substituted into B2. The order by which the substitution takes place is 

arbitrary. The substitution of B2[B1/ph1] followed by B2[B3/ph2] produces the same result as the 

substitution of B2[B3/ph2] followed by B2[B1/ph1]. Hence,  

B2[B3/ph2][B1/ph1] = B2[B1/ph1][B3/ph2] 

 

2.4       Similar Works  

In this section, other model transformation tools will be compared and reviewed. 

 

2.4.1    UML2Alloy 

UML2Alloy is a tool similar to SD2PN which attempts to bridge the gap between model 

design and model analysis [22]. The tool is the result of a research which tries to formalize the 

UML with the aid of Alloy (a declarative specification language for expressing complex 

structural constraints and behavior in a software system) via the concept of Model Driven 

Architecture [23]. In UML2Alloy, UML Class Diagrams are augmented with OCL constraints (a 

textual notation used to enforce constraints over UML model) and then transformed into Alloy 

{ } 



models via Model Driven Development model transformation. The Alloy models created can 

then be analyzed using Alloy Analyzer which is a tool that enables model level analysis using 

first order logic. With UML2Alloy, users are able to benefit from the two critical functionalities 

of the Alloy Analyzer, which is simulation and verification. Simulation function makes sure that 

the model is not inconsistent while the verification function allows modelers to reason that 

certain critical properties of the model are satisfied. 

UML2Alloy was developed on the platform of Java using SiTra [24] as the model 

transformation framework. Alloy is very suited to model static models and constraints; however 

it has certain limitations when it comes to dynamic behavioral models. Some dynamic properties 

could be modelled using pre and post conditions. Alloy does not have the mechanism to model 

complex behaviors such as parallelism. 

 

2.4.2    UML-B/U2B 

Another similar work is the UML-B which was done by Snook and Butler [25]. Via 

UML-B, the authors intended to offer a 'UML-like' graphical front end for B language, a formal 

language. It provides various diagrammatic modelling notations and editors for creating models 

which are then translated into B language for verification. The two notations (UML and B 

language) complement each other very well. The UML offers an accessible visualization of 

models facilitating communication of ideas but lacks of formal and precise semantics, while B 

language has the precision to support animation and rigorous verification. However many 

software engineers find the notation difficult to learn, visualize and communicate. In short, 

UML-B defines a formal modelling notation based on UML and some features borrowed from B 

language. 

With the UML-B notation, U2B translator (a transformation tool) can be used to convert 

a UML-B model into its equivalent B specification [26]. The current version of U2B is 

a Rational Rose script. 

 

2.4.3    Bridging the gap between Design and Analysis 



From the tools above (UML2Alloy and U2B), it is noticeable that efforts are being done 

in bridging the gap between informal modelling language (UML) and formal modelling language 

(Alloy and B language). Informal modelling languages usually are used to design the system 

whilst formal modelling languages are usually used to perform analysis. Two different types of 

models created using two different sets of tools and using two different languages is what is 

described as model heterogeneity. In this case, heterogeneity exists between the two formal and 

informal modelling languages.  

Heterogeneous models cannot communicate with each other under normal circumstances 

and requires a completely different skill-set to design. A software designer might be expert in 

informal modelling language like UML Sequence Diagram but not necessarily familiar with 

other formal modelling languages such as Alloy and B language. Hence this will lead to tedious 

repeated modelling each time a change has to be made between the design and analysis phase. 

This in turn is one of the motivations for this research, which is to reduce the tedious repeated 

modelling work done when two modelling language is involved.  

As shown in 2.3 above, SD2PN consists of a very strong foundation to transform 

Sequence Diagram to Petri Net. However, this is only a one way process. Due to this limitation, 

this serves as another motivation for this research, which is to find a way to transform Petri Net 

back to Sequence Diagram. With SD2PN and the algorithm to transform Petri Net to Sequence 

Diagram, developers will be able to easily transform models between Sequence Diagram and 

Petri Nets. 

The topic of bridging the gap between model design (UML) and model analysis (Petri 

Nets) will be further discussed in the following chapter.                          

 

 

 

 

 



 

CHAPTER 3 

METHODOLOGY 

This chapter discusses the methodology used in this research. The related methodologies 

used in this research includes the concept of Multi Paradigm Modelling and how they could be 

used to solve the problem statement presented in previous part of this thesis. The concept of 

Labelled Event Structures will also be presented in this chapter. 

 

3.1 ROLE OF MODELLING IN SOFTWARE/SYSTEM DESIGN 

The software design phase is not only a process but also a modeling phase. The design 

model is equivalent to the blueprint of the project. It provides guidance for constructing each and 

every detail in a system. By using models in software or system design, level of abstract can be 

raised and different types of views of the system can be observed. According to Van Gigch [27], 

there are three areas involved in system design, which is reality, modeling and metamodeling. 

Reality represents the view of the system in real life. Modelling is an abstraction of the reality by 

converting it into a verbal, graphical or mathematical notation. Lastly, metamodeling represents 

an abstraction of modelling or the modelling of the modelling process.  

Other than raising level of abstract, models also function with different levels of 

formalism. As proven by J. Klein, F. Fleurey and J.M. Jezequel [28], there are three levels of 

formalisms, which are natural language, semi-formal notation and formal notation. Natural 

language models are very expressive and flexible simply because they comprise of descriptions 

and annotations that are easy to read and write. But the lack of semantics in natural language 

causes a major problem, which is the models could be understood differently by each 

stakeholders including the software designer and the client. In contrast, models with semi-formal 

notation use notational semantics to represent the structure and behavior of the system. One of 

the examples for semi-formal notation model is the Unified Modelling Language (UML). UML 

is an informal modeling language used to offer a standard and unified way to visualize the design 

of a system. Last but not least, models with formal notations are recognized for their precise 



semantics with underlying mathematical foundation. Examples of models with formal notations 

are Petri Nets [10], Alloy [29] and Z notation [30]. This type of model with formal notations is 

usually used to perform model analysis due to the fact that they are mathematical based.  

The role of modelling is vital in software or system development. Modelling provides a 

way for developers to perform model design, model analysis and model synthesis. Other than 

performing model design via modelling, developers can also evaluate the structural rigidity and 

the behavioral properties of the system via model analysis modelling. The role of model 

synthesis is where two or more models with mutual elements could be put together in order to 

get a more complete interpretation of the system. The role of model design, model analysis and 

model synthesis will be presented in the following sections to show their importance in the role 

of modelling for software or system development.  

 

3.1.1 MODEL DESIGN 

Model design is the practice of representing a view of the system in the form of models. 

In this stage, developers usually use a semi-formal notational model because it provides a good 

balance between the ease-of-use and precision. Throughout the years, UML has become the go-

to language in the model design phase.  

As presented earlier in the thesis, there are many different types of model in UML that 

are divided into two main types, which is structural diagrams and behavioral diagrams. Examples 

of structural diagrams include class diagram and component diagram. A class diagram describes 

the organization of a system by presenting the system’s classes, their attribute, operations and the 

relationship among objects while a component diagram shows how components are held together 

to form larger components and or software systems. On the other hand, examples of behavioral 

diagrams includes use case diagram and sequence diagram. A use case diagram represents the 

user’s interaction with the system and shows the relationship between the user and the different 

use cases where the user is involved. Meanwhile, sequence diagram shows the interactions 

between the elements in the system.  



The well-established set of semantics for each model type in UML allows developers to 

easily express their views of the system into models. Together with the fact that UML is an 

informal modelling language, UML models are easily understood between any stakeholders of 

the system without any prior knowledge on modelling or programming language.  

 

3.1.2  MODEL ANALYSIS 

Model analysis is an important stage as it can serves as a preliminary analysis of the 

system. By performing mathematical analysis on the models of the system, vital feedback could 

be obtained on whether there are any major structural design flaws or unwanted behavior in the 

system. This will allow the developer to correct the design flaws before the system is built, 

which in turn reduce the time taken and costs from having to re-build the system if any flaws 

were to be detected during implementation phase.  

Due to the mathematical needs in the analysis process, modelling languages with formal 

semantics such as Alloy and Petri Nets are needed in this stage. Alloy is a declarative 

specification language for expressing complex structural constraints and behavior in a software 

system [29]. It is very suitable to perform structural analysis of a system. Petri Nets is a state-

based modelling language that has a strong mathematical foundation. It is capable of modeling 

conflicts and concurrencies while performing different types of performance analysis. Other 

examples of modelling language with formal semantics include B language and Z notation. The 

modelling language mentioned above all has a strong mathematical foundation which makes 

them suitable for accurate computational analysis.  

With model analysis, critical errors can be avoided in the system development process. 

Analysis such as liveness analysis, deadlock detection and boundedness analysis could be carried 

out to make sure that the system is free of unwanted behavior. According to a research done by 

Wieland et al, model analysis is proven to be vital in the computation of dependencies between 

states and risk analysis [31].  

 

3.1.3  MODEL SYNTHESIS 



Model synthesis is also known as model composition. It is the process of allowing two or 

more models to be put together based on a set of common elements. This is important because 

modern complex system needs to be broken down in the design phase, so that each module of the 

system is designed separately and independently of each other to reduce the overall complexity 

of the model. Models could also be built based on a particular perspective such as security or 

quality-of-service (QoS). By performing model synthesis amongst different modules or 

integrating the several perspectives of a system, an integrated view of the system can be 

produced. This in turn highlights the dependencies between the modules and viewpoints.  

Model synthesis can also be used in a more enterprise systems in the form of a plug-in. 

There is also a concept called refinement in model synthesis where by a set of behaviors could be 

plugged into an existing model without having to redesign the whole model. As an example, 

while designing a secure system, a system designer can plug in different security protocols into 

the system design to discover the best fit for needs of the system without needing to create 

various models. 

Notion of model synthesis is well-established in some of the modelling language such as 

Petri Net as shown in researches done by Yakovlev et al [32] and Agerwala and Choed-Amphai 

[33] where different techniques and algorithms are used for different types of synthesis. As an 

example, the refinement of a specific state in the Petri Net calls for a top-down [34] synthesis 

method using a place refinement or transition refinement algorithm [35]. 

 

3.2  HETEROGENEITY BETWEEN MODELLING LANGUAGE IN MODEL 

DESIGN, ANALYSIS AND SYNTHESIS 

As shown in the 3.1, the role of modelling is important in system development in the 

design, analysis and synthesis phase. However, each phase have different requirements which 

leads to the use of different modelling language for each phase. As discussed in 2.4.3, this result 

in a condition called heterogeneity, where two modelling language UML (model design) and 

Petri Nets (model analysis) could not communicate with each other. In model design phase, 

modelling language used is in semi-formal notation, while in model analysis phase, modelling 

language is more mathematical-based as analysis carried out are mathematical-based. Due to the 



heterogeneity between the modelling languages, there is a lack of interoperability between the 

tools of the modelling languages. This presents as a serious challenge to system developers as 

shown in [36] and [37] to provide a platform that allows interoperability between different 

models with different levels of formalisms. One way to tackle this problem is via Multi Paradigm 

Modelling which will be explained in the following section. 

 

3.2.1  MULTI PARADIGM MODELLING 

Multi Paradigm Modelling is a platform that supports interoperability between 

heterogeneous models [38]. Vangheluwe et al applied Multi Paradigm Modelling in modelling 

and simulation [39] and describes Multi Paradigm Modelling as a field that focus on three 

directions of research, which is multi-formalism modelling, model abstraction and metamodeling 

[ ].  

Multi-formalism modelling offers an interoperability platform for models with various 

levels of formalisms based on the foundation of model transformation. Model transformation is 

the practice of translating one model into another using a set of predetermined rules. Model 

transformation plays an important role in Model Driven Development [41]. It is intended to 

generate low-level models from higher level models, synchronize models with different levels of 

formalisms and reverse engineer higher level models to lower level models. The most common 

way to express a model transformation is by using QVT relational language [42] which is a 

standard for model transformation defined by Object Management Group (OMG). The main 

features that is common to all model transformations as shown by Czarnecki and Helsen [43] 

includes specification, such as the pre condition and post conditions for a model transformation, 

the set of transformation rules, the directionality of the transformations and also the source and 

target relationship. In MDD model transformation, the source metamodel and the target 

metamodel are required whereby each source and target model should conform to respective 

metamodels.  

Model abstraction is the practice of removing a certain low-level detail from the model 

while preserving the construct and general behavior of the system. Model abstraction is similar 

to multi-formalism modelling as it also uses model transformation. The major difference 



between the two model transformations is that in model abstraction, the source and destination 

models are of the level of formalism. Model abstraction is usually used in the removing of 

different complicated low-level behaviors in the system according to the requirement of a 

specific perspective. As an example, a complete model of the system with low-level behavior 

might be too complicated for distribution to other stakeholders. Using model abstraction, the 

model of the system could be simplified up to a certain level without losing the structural 

properties and important behaviors of the model.  

Metamodelling is the modelling of models. Metamodel is a model that defines other 

models. As an example, suppose a modelling language ℒ has a metamodel 𝕄𝕄ℒ. As such, 𝕄𝕄ℒ is a 

model that describes the constructs of the language ℒ and every model that is written with the 

language ℒ must be an instance of the metamodel 𝕄𝕄ℒ. The metamodel of a modelling language 

can be considered as a specification for the language which also can be used for documentation 

purpose or a foundation for model analysis. With metamodeling, new languages can be born just 

by modifying or tweaking parts of the existing metamodels. This in turn will allow customization 

of the modelling language to serve for a specific purpose.  

 

3.2.2  USING MULTI PARADIGM MODELLING TO BRIDGE THE GAP BETWEEN 

MODEL DESIGN, ANALYSIS AND SYNTHESIS  

As shown in Chapter 1, the main concern of this research is to bridge the gap between 

Sequence Diagram, Petri Nets and SD2PN. SD2PN provides a set of transformation rules to 

transform Sequence Diagram to Petri Nets which shows that it implements the concept of Multi-

Formalism Modelling in the transformation phase. Similarly, my research will be based on the 

concept of Multi-Formalism Modelling, which means that a set of rules will be created to 

transform Petri Nets to Sequence Diagram.  

UML Sequence Diagram is chosen as the language for model design because of it being 

able to model complex behavioral properties and interaction. Petri Nets is chosen as the language 

of model analysis because it is able to model dynamic behavioral models and its extensive 

capacity in model analysis.  



With Multi Paradigm Modelling as a platform, Petri Nets models from model analysis 

could be transformed into Sequence Diagram models using a set of transformation rules. This in 

turn will create model interoperability between Petri Net models and Sequence Diagram models. 

The model interoperability between Petri Net models and Sequence Diagram models will allow 

system developer to use transformed Petri Net models for model analysis, make altercations to it, 

then perform model transformation and transform it back to Sequence Diagram model instead of 

manually updating the Sequence Diagram model. Figure 18 illustrates how does this proposed 

method improves the current methodology in creating a system.  

Traditionally, 

Design (UML Models)                    Implementation                     Analysis (Petri Net Models)  

 

(a) 

Using SD2PN, 

Design (UML Models)                    Analysis (Petri Net Models)  

                                                         Implementation 

(b) 

With SD2PN + proposed method, 

Design (UML Models)                                 Analysis (Petri Net Models) 

  

                                                                Implementation 

(c) 

Figure 18: Contribution of the Proposed Method 

Figure 18 (a) illustrates the traditional methodology in creating a system. Typically in the 

design phase, UML are chosen to be the modelling language. Details and specifications of the 

SD2PN 

SD2PN 

Proposed Method 



system are modelled in UML during the design phase. The implementation phase is also known 

as the coding phase, where codes are generated based on the UML models provided from the 

earlier design phase. After generating the coding and implementation phase, the analysis phase 

will be carried out to check for any faults in the system. Due to the mathematical nature of the 

analysis, this phase usually involves formal modelling language which is mathematical based, 

such as Petri Nets and Alloy. If any faults or errors are to be found in the analysis phase, 

developers are required to go back to the design phase and back track the problem which is time 

and cost consuming.  

With the aid of SD2PN in Figure 18 (b), developers are able to transform UML Sequence 

Diagram models from design phase into Petri Net models. With the Petri Net models generated, 

developers can now use it to perform analysis. Indirectly, the analysis phased is carried forward 

with the use of SD2PN. Analysis can be performed on the Petri Net models generated from 

SD2PN which in turn will reduce errors in the implementation phase. However, developers still 

need to manually update the Sequence Diagram models as SD2PN only provide one way 

mapping, which is from Sequence Diagram models to Petri Net models. Upon performing 

analysis on the Petri Net models, developers still need to update the Sequence Diagram, which 

might be a tedious and repetitive process.  

Figure 18 (c) highlights how the proposed method when combined with SD2PN will 

benefit the system developers. With the proposed method of transforming Petri Net models to 

Sequence Diagram models, developers can now use the transformation rules to transform Petri 

Net models back to Sequence Diagram. This eliminates the need to manually update the 

Sequence Diagram models after performing analysis on the Petri Net models.  

The proposed method of transforming Petri Net models to Sequence Diagram models will 

be presented in the following chapter. 

 

3.3  LABELLED EVENT STRUCTURES 

In Multi Paradigm Modelling, it is very important to preserve the semantics of the models. 

To proof that semantics of the inputted Petri Nets are preserved in the semantics of the output 



Sequence Diagram, we need a common semantic domain. In this research, labelled event 

structure is used as the common semantic domain since both Petri Nets and Sequence Diagram is 

able to be unfolded into Labelled Event Structure as proven by Küster-Filipe [44] and McMillan 

[45] respectively. Event Structures are models of computational process that allows a system to 

be modelled as a sequence of events, like a flow of events. Event Structure is able to model the 

behavior of a system through the relationship between the different events in the system. In 

Event Structure, there are three main types of relationship between events; they are causal 

relationship, conflicting relationship and concurrent relationship.  

Definition 1: An Event Structure is a triple, E = (Ev, →*, #) where Ev is a set of events, →* and 

# represents binary relation causality and conflict such that →*, # ⊆ Ev×Ev.  

Causality is a partial order while conflict is symmetric, irreflexive and propagates over causality. 

If two events e1, e2∈ Ev are neither in a causality or conflict, then they are concurrent, such that 

e1coe2 iff ¬ (e1→* e2∨e2→* e1 ∨e1 # e2). 

Definition 2: An Event Structure E = (Ev, →*, #) is discrete iff for every e, the local 

configuration of e, ↓e = {en | en→* e} is finite.  

Immediate Causality refers to events such as e1, e2∈ Ev that are causal and there are no other 

events occurring between them. If e1→* e2 has an immediate causality relationship, then e1 is 

the immediate predecessor of e2 and e2 is the immediate successor of e1. Alternatively, this 

relation can also be written as e1 → e2.  

Definition 3: Let E = (Ev, →*, #) be a Discrete Event Structure and L an arbitrary set where l:Ev

→L would be the labelling function that maps each event in E into an element in L. 

From here on, Labelled Discrete Event Structures will be referred to as Labelled Event 

Structures or LES. The following part will introduce the process of unfolding Petri Nets to LES 

and also the process of translating Sequence Diagram to LES.  

The following section briefly introduces and describes the process of unfolding Petri Nets into 

Labelled Event Structures and the process of translating UML Sequence Diagram into Labelled 

Event Structures. 



 

3.3.1    UNFOLDING PETRI NETS INTO LABELLED EVENT STRUCTURES 

McMillan [45] introduces a method that maps Petri Nets into LES based on a branching 

process of Petri Nets called unfolding. In this method, a net is created where the nodes in the net 

created are labelled by the elements of the original net. This net represents the firing sequence or 

a reachable marking of the original net. This net is also referred to as a Labelled Causal Net or a 

Labelled Occurrence Net and it can be interpreted as Labelled Event Structure.  

Definition 4: Based on [45], suppose a Petri Net N = (S, T, F), and a Labelled Occurrence Net 

(unfolding of N) consist of a Petri Net N′ = (S′, T′, F′) with the labelling function L′ which maps 

P′ onto the set of P and T′ onto the set of T while satisfying the following conditions:  

• Well-foundedness: every subset of T must have a minimal element with respect to F*. 

• No forward conflicts: if p ∈ P′, p ∈ ti• and p ∈ t2• then t1 and t2 must be the same. 

• No self-conflicts: if t1, t2, t3 ∈ T, t1F′*t3, t2F′*t3 and •t1∩•t2 ≠ ∅, then t1 = t2 

• No redundancy: if t1, t2 ∈ T, L′(t1) = L′(t2) and •t1 = •t2, then t1 = t2 

The construction of unfolding begins with the creation of a place for each places in the 

initial set and adding transitions for every set concurrent places corresponding to the input set of 

the original transition. From that transition, a place set corresponding to the output set of the 

original transition is generated and this process is done iteratively for the whole Petri Net.  

For a more detailed explanation, an example of the process will be presented in section 

4.3 of this thesis.  

 

3.3.2 TRANSLATING UML SEQUENCE DIAGRAM INTO LABELLED EVENT 

STRUCTURES 

The translation of UML Sequence Diagram into Labelled Event Structure is based on a 

research done by Küster-Filipe [44]. To represent Sequence Diagram as a Labelled Event 

Structure, a formalized notation for Sequence Diagram is required. The notations for a Sequence 



alt 

Diagram followed by the definition of two local functions scope and alt_occ are in Definition 5, 

6 and 7 correspondingly.  

Definition 5: A Sequence Diagram can be represented as a tuple SD = (I, Loc, Locini, Mes, E, 

Path, X1), where 

• I is a set of instance identifiers corresponding to the objects in the diagram 

• Loc is the set of locations 

• Locini is the set of initial locations such that Locini ⊆ Loc 

• Mes is the set of message labels 

• E is a set of edges where an edge (l1, m, l2) represents a message m sent from location l1 

to l2 

• { X1} where i ∈ I is a family of I-indexed sets of constraint symbols 

• Path is a given set of well-formed path terms for the diagram used to capture the 

relative positions of the locations within a diagram 

 

   l0 

                                           l1 

                                           l2 segment 1 

                                                                               l3 

                                                l4 segment 2 

Figure 19: Example of events in a Sequence Diagram 

Definition 6: Scope is a function given by scope: Loc → Path. As show in Figure 19, scope(l2) = 

alt(2)#1 and scope(l3) = alt(2)#2. This can be further explained by showing that l2 and l3 are 

inside an alt fragment with two segments, however l2 is in segment 1 and l3 is in segment 2. 

Scope for l1 and l4 however indicates the start and end of a fragment and are shown as scope(l1) 

= alt(2) and scope(l4) = alt(2).alt(2). 

a: A 



Definition 7: Alt_occ is a local function given by alt_occ: loc(i) → ℕ that returns a possible 

number of alternative scenarios that can lead to a specific location. Based on Figure 19 above, 

alt_occ(l4) = 2 since there are 2 possible scenarios that could lead to l4 from the initial location 

of l0 which are scenarios S1 = {l0, l1, l2, l4} and S2 = {l0, l1, l3, l4}. 

With the local function of scope, messages that are not causal and have a relationship of 

either conflict or concurrent can easily be identified. This information in turn would be important 

in the creation of the LES. Meanwhile with the local function of alt_occ, the number of 

alternative scenarios that leads to a specific location in the diagram can be acquired; this will in 

turn create the branches in the corresponding LES.  

Based on the example in Figure 19, a fragment of LES that resembles to that particular 

Sequence Diagram can be created. Since l4 has an alt_occ of 2, this means that it has two events 

associated to it, which is e4 and e5. The rest of the locations have an alt_occ of one, and is 

represented by e1, e2 and e3 respectively. Hence, with the 5 events Ev = {e1, e2, e3, e4, e5} and 

e2 # e3 as can be seen from the scope, a fragment of LES such that ↓e4 = {e1, e2, e4}, ↓e5 = {e1, 

e3, e5} is the result, as shown in the following figure below.  

e1 

                                                                   e2      #      e3 

                                                                   e4              e5 

Figure 20: Labelled Event Structure created corresponding to the Sequence Diagram in Figure 19 

For a more detailed explanation, an example of the process will be presented in section 

4.3 of this thesis.  

 

 

 

 



CHAPTER 4 

RESULT 

This chapter will be focused on the proposed method in transforming Petri Net models to 

Sequence Diagram models. Mainly on how the algorithm works and what are the steps in 

transforming Petri Net to Sequence Diagram.   

Petri Net is a formal and mathematical modeling language that is used for performing 

various types of analysis [10]. Petri Nets are mostly used to model control flow in a system and 

is capable of modeling conflicts and concurrencies. Sequence Diagram is an interaction based 

modelling language that describes the flow of events between objects in the system. It is a 

construct of message sequence chart [15]. These two modelling languages share some similar 

characteristic when carefully examined. The commonality between the languages makes them a 

candidate for implementing Multi Paradigm Modelling. The mathematical nature of Petri Nets 

provides a platform for analysis and manipulating the formal elements of the system while 

Sequence Diagram provides a user friendly, low-formalism platform for designing the system 

and communicating the system design with other stakeholders without prior knowledge to 

modelling and programming language. In this chapter, PN2SD (Petri Net to Sequence Diagram) 

will be introduced. PN2SD provides a framework for Petri Nets to be transformed into Sequence 

Diagram and serves as a basis for the Multi Paradigm Modelling.  

 

4.1 PN2SD 

Petri Net to Sequence Diagram (PN2SD) is a rule-based MDD model transformation that 

transforms any Petri Nets that conforms to the metamodel in Chapter 2 into Sequence Diagram. 

The process of the model transformation from Petri Nets to Sequence Diagram can be briefly 

explained as of below. 

Step 1: Identify the Petri Net fragments in the inputted Petri Net.  

Step 2: Transform each Petri Net fragments into a Sequence Diagram fragment based on a set of 

model transformation rules.  



The steps involved will be further explained in details in the following sections.  

  

4.1.1  IDENTIFYING THE PETRI NET FRAGMENTS 

In SD2PN, message is considered to be a Sequence Diagram fragment. On the other hand, 

four types of InteractionOperatorKind are taken into consideration; they are alternative, option, 

break and parallel. Each of the four InteractionOperatorKind are able to change the flow of 

events in their own way, hence they are each designated as a fragment type.  In total, SD2PN 

takes into the account of five types of fragments. To conform to SD2PN, this thesis will target 

similarly the five types of fragments in Petri Net; there are message, alternative, option, break 

and parallel.  

To make the process of identifying the Petri Nets Fragments easier, some new elements 

are introduced in the notation of Petri Nets, which is the • symbol which indicates an arc. If the 

symbol appears before a labelling, it represents an incoming arc. If the symbol appears after a 

labelling, it represents an outgoing arc. For example, S1• = 1, this expression indicates the 

outgoing arc for the first state is one. Meaning there is only one outgoing arc attaching to S1. 

Fragments in Petri Nets can be easily identified with the use of this simple notation.  

 

4.1.1.1 PARALLEL FRAGMENT IN PETRI NET 

Assuming there is (n) numbers of S (state) and T (transition) in the Petri Nets, for 

identifying parallel fragments in a Petri Net, the notation below can be used.  

If S1• = 1 and T1• > 1, then it is the start of the parallel fragment. 

If Tn = 1 and •Tn > 1, then it is the end of the parallel fragment. 

 

 

 



 

                                                                      s1 

                                                                t1 

 

                                                                    t2 

                                                                       s2 

Figure 21: Parallel fragment in a Petri Net 

Figure 21 shows a parallel fragment in a Petri Net. Based on the first expression of S1• = 

1 and T1• > 1, the first state (S1) has an outgoing arc and the first transition (T1) has more than 

one outgoing arc, this depicts the start of a parallel fragment. When the transition T1 has more 

than one outgoing arc, this indicates that the token from the earlier state is fired simultaneously 

based on the number of arcs or states connected to T1. As for Tn = 1 and •Tn > 1, this expression 

indicates that the (n)th number of T is one and the incoming arc to Tn is more than one, which in 

this case means when T2 is one and the incoming arc into T2 is more than one. This indicates 

that it is the end of a parallel fragment. In the parallel fragment in a Petri Net, two or more 

placeholders are present which represents the set of events in a parallel fragment. The 

placeholders are represented as ph1 and ph2 in Figure 21. The number of placeholders depends 

on the number of outgoing arc from T1. 

 

4.1.1.2 BREAK FRAGMENT IN PETRI NET 

Assuming there is (n) numbers of S (state) and T (transition) in the Petri Nets, for 

identifying a break fragment in a Petri Net, the notation below can be used.  

If S1• = 2 and S2/3• = ∅, then it is a break fragment. 
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Figure 22: Break fragment in a Petri Net  

Figure 22 shows a break fragment in a Petri Net. The expression of S1• = 2 and S2/3• = ∅ 

indicates that if S1 has two outgoing arc and one of the next two following states S2 or S3 do not 

consist of an outgoing arc, then it is a break fragment. In a break fragment, a state and x symbol 

is used to show the termination of the system which is also known as a terminal node. In a break 

fragment, only 1 placeholder exists since the function of a break fragment is similar to an ‘if… 

else…’ function in programming terms. Since the second choice is a termination of the system, 

no other placeholder is present. 

 

4.1.1.3 ALTERNATIVE FRAGMENT IN PETRI NET 

Assuming there is (n) numbers of S (state) and T (transition) in the Petri Nets, for 

identifying an alternative fragment in a Petri Net, the notation below can be used.  

If S1• ≥ 2, then it is the start of an alternative fragment.  

If •Sn ≥ 2, then it is the end of an alternative fragment. 
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Figure 23: Alternative fragment in Petri Net 

Figure 23 illustrates an alternative fragment in Petri Net. The notation of S1• ≥ 2 indicates 

that if the S1 has two or more outgoing arc, then it is the start of an alternative fragment. While 

the notation of •Sn ≥ 2 means if the incoming arc of the n(th) state has an incoming arc of two or 

more, then it is the end of an alternative fragment. In the example in Figure 23, •S2 = 2, hence it 

depicts the end of an alternative fragment. In an alternative fragment for Petri Nets, there can be 

two or more placeholders depending on the outgoing arc from S1. If there are three outgoing arcs 

from S1, then there will be three placeholders in the alternative fragment.   

 

4.1.1.4 OPTION FRAGMENT IN PETRI NET 

Assuming there is (n) numbers of S (state) and T (transition) in the Petri Nets, for 

identifying an option fragment in a Petri Net, the notation below can be used. 

If S1• ≥ 2, then it is the start of an option fragment.  

If •Sn ≥ 2, then it is the end of an option fragment 
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Figure 24: Option fragment in Petri Net 

Figure 24 shows an option fragment in Petri Net. From the notation and figure above, the 

option fragment is similar to an alternative fragment based on their construct. Similar to 

alternative fragment, the expression of S1• ≥ 2 means that if the S1 has two or more outgoing arc. 

This represents the start of an option fragment. On the other hand, the expression of •Sn ≥ 2 

means if the incoming arc of the n(th) state has an incoming arc of two or more, then it is the end 

of an option fragment. In the example in Figure 24, •S2 = 2, hence it depicts the end of an option 

fragment. In an option fragment for Petri Net, there can be two or more placeholders depending 

on the outgoing arc from S1. 

 

4.1.1.5 MESSAGE FRAGMENT IN PETRI NET 

A message represents the flow of information in the system between two objects. The 

notation below can be used in identifying a message fragment in Petri Net.  

If S1• = 1, T1• =1, •S2 = 1, then it is a message fragment. 
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                                                                  s2 

Figure 25: Message fragment in Petri Net 
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Figure 25 illustrates a message fragment in Petri Net. The expression of S1• = 1, T1• =1, 

•S2 = 1 indicates that the outgoing arc for S1 is only one, the outgoing arc from T1 is one and the 

incoming arc to S2 is one. When these three conditions meet, a message fragment is detected in 

Petri Net. If inside of a parallel, option or alternative fragment, the notation appears generally as 

Sn• = 1, Tn• =1, •Sn+1 = 1. 

The sub_fragment in break, parallel, alternative and option fragment can either be 

substituted with a message or another break, parallel, alternative and option fragment. The 

concept of placeholders will be further explained in the following section. 

 

4.1.2 TRANSFORMATION RULES TO TRANSFORM PETRI NET FRAGMENTS TO 

SEQUENCE DIAGRAM FRAGMENTS 

In this step, the transformation rules to transform the five types of Petri Net fragments to 

Sequence Diagram fragments will be explained. Five transformation rules will be presented, one 

rule for each type of fragment as introduced above.  

In SD2PN, the concept of placeholders and Petri Net blocks are introduced. The concept 

of placeholder will be applied similarly in PN2SD. Each placeholder in a Petri Net fragment will 

be represented as a sub-fragment in a Sequence Diagram fragment. Each Petri Net fragment 

detected will be either transform into a CombinedFragment or a message fragment for Sequence 

Diagram.  

 

4.1.2.1 RULE 1: TRANSFORMING PARALLEL FRAGMENT 

The transformation rule for PN2SD is slightly different compared to SD2PN. In PN2SD, 

the four types of InteractionOperatorKind fragments are transformed first before transforming 

the message fragment. By doing so, the CombinedFragment of the Sequence Diagram can be 

identified first before proceeding to transform message fragments. A parallel fragment in Petri 

Net indicates that two or more sets of event should occur concurrently without any pre-defined 



set of conditions. There should not be any causality or conflicting event between all the operands 

of the parallel fragment. 
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Figure 26: Applying PN2SD to a parallel fragment 

Figure 26 illustrates how a parallel type of CombinedFragment for Sequence Diagram is 

created from a parallel fragment from Petri Net via model transformation rule for PN2SD. For 

each parallel fragment identified in Petri Net, a parallel type of CombinedFragment for Sequence 

Diagram is created. The parallel CombinedFragment consist of sub_fragment which represents 

the set of events in the placeholder (ph1 and ph2) from the parallel fragment in Petri Net. In 

other words, the placeholders from parallel fragment in Petri Nets are represented by 

sub_fragment in the CombinedFragment for Sequence Diagram. The sub_fragment inside a 

CombinedFragment can be substituted with either another CombinedFragment or a message 

fragment.  

 

4.1.2.2 RULE 2: TRANSFORMING BREAK FRAGMENT 

A break fragment in Petri Net consists of two choices, which is something similar to the 

‘if… else…’ plus ‘break’ functions. In a break fragment, one of the transition leads to another 

set of Petri Net fragments while the other transition leads to the termination of the system which 

is also known as a terminal node. To illustrate the termination of the system, a place marked by 

X is shown. For each break fragment identified in Petri Net, a break type CombinedFragment in 

Sequence Diagram is created. 
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Figure 27: Applying PN2SD to a break fragment 

Figure 27 shows how a break fragment from Petri Net is represented as a break type 

CombinedFragment in Sequence Diagram. The placeholder in the break fragment Petri Net is 

represented by the sub_fragment in the break type CombinedFragment. A break 

CombinedFragment consists of a guard (condition) such that when it is satisfied, the operation 

breaks. Notice that there are only one sub_fragment present in the break type 

CombinedFragment, this indicates that if sub_fragment1 is not carried out, then the system is 

terminated.   

 

4.1.2.3 RULE 3: TRANSFORMING ALTERNATIVE FRAGMENT 

An alternative fragment in Petri Net also serves typically as an ‘if… else…’ condition in 

modelling interaction and behavior. For example if the event in placeholder1 is carried out then 

the event in placeholder2 will not be carried out. Alternatively, if the event in placeholder2 is 

carried out, then the event in placeholder1 will not be carried out. For each alternative fragment 

identified in Petri Net, an alternative type CombinedFragment in Sequence Diagram is created. 
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Figure 28: Applying PN2SD to an alternative fragment 

Figure 28 above illustrates how an alternative fragment in Petri Net is represented as an 

alternative type CombinedFragment in Sequence Diagram. The two placeholders from the 

alternative fragment in Petri Net are represented by sub_fragment1 and sub_fragment2 

respectively. Similar to the alternative fragment in Petri Net, in the CombinedFragment of 

alternative type in Sequence Diagram, when sub_fragment1 is carried out, sub_fragment2 will 

not be carried out.  

 

4.1.2.4 RULE 4: TRANSFORMING OPTION FRAGMENT 

The construct of an option fragment in Petri Net is similar to the alternative fragment in 

Petri Net. If the event in placeholder1 is carried out then the event in placeholder2 will not be 

carried out. Optionally, if the event in placeholder2 is carried out, then the event in placeholder1 

will not be carried out. For each option fragment identified in Petri Net, an option type 

CombinedFragment in Sequence Diagram is created. 

 

 

 

 

 

ph1 ph2 
PN2SD 
Rule 3 

alt 
alt_sub_fragment1 

alt_sub_fragment2 



                         s1 

             t1                                 t2 

 

              t3                                t4 

                          s2 

Figure 29: Applying PN2SD to an option fragment 

Figure 29 shows how an option fragment in Petri Net is represented as an option type 

CombinedFragment in Sequence Diagram. The two placeholders from the option fragment in 

Petri Net are represented by sub_fragment1 and sub_fragment2 correspondingly. Similar to the 

option fragment in Petri Net, in the CombinedFragment of option type in Sequence Diagram, 

when sub_fragment1 is carried out, sub_fragment2 will not be carried out.  

 

4.1.2.5 RULE 5: TRANSFORMING MESSAGE FRAGMENT 

A message denotes the flow of information in the system between two objects. For each 

message fragments that exist in a Petri Net, an equivalent Sequence Diagram message is 

generated.  
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Figure 30: Applying PN2SD to a message fragment 

Figure 30 above shows how a message fragment in Petri Net is represented in Sequence 

Diagram. The state (s) in Petri Net depicts the objects involved in the message which is 

represented by a lifeline in a Sequence Diagram. The transition (t) in Petri Net shows the 
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movement of information from an object (s1) to another object (s2), which can be represented by 

an arrow showing the message flow in Sequence Diagram.  

In the sub-topic 4.1, PN2SD which is a rule-based MDD model transformation that 

transforms any Petri Nets that conforms to the metamodel in Chapter 2 into Sequence Diagram is 

presented. Together with PN2SD, a full algorithm to transform Petri Nets to Sequence Diagram 

will be presented in the following part of this thesis.  

 

4.2  ALGORITHM TO TRANSFORM PETRI NET TO SEQUENCE DIAGRAM 

The flow chart below illustrates the algorithm to transform Petri Net to Sequence 

Diagram. 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Algorithm to transform Petri Nets to Sequence Diagram 
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Figure 31 shows the algorithm to transform Petri Nets to Sequence Diagram in the form 

of a flow chart. A detailed explanation of the algorithm will be discussed in the following part of 

the thesis. 

The algorithm begins by user inputting Free Choice Petri Net generated from SD2PN. 

Free Choice Petri Net is defined as a Petri Net where conflicts and concurrency may occur but 

not simultaneously. SD2PN generates only Free Choice Petri Net. Since the algorithm is 

designed to overcome SD2PN’s limitation, hence, this algorithm will only accept Free Choice 

Petri Net as an input.  

Upon inputting the Free Choice Petri Net, Petri Net Fragments are identified based on the 

method introduced in 4.1.1. In 4.1.1, a new concept is introduced whereby a • depicts an arc. If 

the symbol • appears before a labelling (either a state (s) or transition (t)), it represents an 

incoming arc. Where else if the symbol appears after the labelling, it represents an outgoing arc. 

As an example, T1• = 1, this expression indicates the outgoing arc for the first transition is one. 

Meaning there is only one outgoing arc attached to T1. With this newly proposed method, Petri 

Net Fragment such as option, alternative, parallel, break and message fragments can be easily 

identified. Details and examples of how to identify the Petri Net Fragments can be found in part 

4.1.1 of the thesis.  

After identifying the Petri Net Fragments, Petri Net Fragments are tagged to differentiate 

amongst each other. For example, when a message fragment is identified, it is tagged as m1, 

representing the first message. Subsequently, option, alternative, parallel and break fragments are 

tagged respectively as opt(n-th), alt(n-th), par(n-th) and bre(n-th), whereby the first option fragment 

is represented as opt1, second option fragment is represented by opt2 and so on.  

The transformation process is next in line after the tagging process. In this process, each 

Petri Net Fragments that are identified will be transformed into a Sequence Diagram Fragment. 

As shown in 4.1.2, five transformation rules are introduced to transform the five different types 

of Petri Net Fragments detected. The concept of placeholders from SD2PN is also similarly 

applied in PN2SD. In PN2SD, each placeholder in a Petri Net fragment will be represented as a 

sub-fragment in a Sequence Diagram fragment. When compared to SD2PN’s transformation 

process, the transformation process of PN2SD is slightly different. In SD2PN, Sequence 



Diagram Fragments are transformed into Petri Net Fragments in one process and Petri Net 

Fragments are then morphed and substituted in another process. Meanwhile in PN2SD, 

transformations are done based on a top-to-bottom and left-to-right order. This eliminates the 

needs of another process to group the Sequence Diagram Fragments together.  

Upon transforming the Petri Net Fragments into Sequence Diagram Fragments based on a 

top-to-bottom and left-to-right order, the output is a full Sequence Diagram. When a complete 

Sequence Diagram is obtained, the algorithm ends.   

The description above briefly describes how the algorithm works. A more detailed 

application of the algorithm will be presented in the following chapter. 

 

4.3  PN2SD PRESERVES SEMANTICS 

In Multi Paradigm Modelling, preservation of semantics is important. It is important for 

the resulting Sequence Diagram to retain the same behavioral properties as the original input of 

Petri Net. In this part, the term correctness is referred as the preservation of semantics between 

the source model (Petri Net) and the destination model (Sequence Diagram).  

To proof that the input of Petri Net Fragments and the output of Sequence Diagram 

Fragments consist of the same behavior, the semantics of both the Petri Net Fragments and 

Sequence Diagram Fragments are compared. Hence, a common semantic domain is needed in 

this case.  

The chosen common semantics domain is the Labelled Event Structures (LES). Based on 

[44] and [45], we can observe that both Petri Net and Sequence Diagram can be represented as 

LES. Other than that, LES also offers a very similar method to modelling when compared to 

Petri Net and Sequence Diagram. All three languages emphasize on the behavior and the flow of 

the events. 
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Figure 32: Using LES as a common semantics domain to prove correctness 

Figure 32 illustrates how LES is used as a common semantics domain to prove 

correctness. The symbol α depicts a semantic map introduced by McMillan [45] while the 

symbol β represents another semantic map introduced by Kuster-Filipe [44] which is used to 

unfold Petri Nets. Petri Net fragments and Sequence Diagram fragments are able to be mapped 

into LES using the semantic maps introduced by respective authors above. Both LES is then 

compared and used as a proof that the PN2SD model transformation preserves the semantics of 

Petri Nets in the resulting Sequence Diagram.  

The following section shows how Sequence Diagram fragments and Petri Nets are 

unfolded into LES using semantic map introduced by Kuster-Filipe and McMillan respectively.  

 

4.3.1 TRANSFORMING PETRI NET FRAGMENTS AND SEQUENCE DIAGRAM 

FRAGMENTS FROM PN2SD TRANSFORMATION RULES INTO LES 

In this section, Petri Net blocks and Sequence Diagram fragments from PN2SD 

transformation rules are transformed into LES. To prove that PN2SD preserves semantics, both 

the LES generated from the Petri Net and Sequence Diagram needs to be equal. These processes 

will be shown in the following section.  

 

4.3.1.1 MAPPING PETRI NET FRAGMENTS FROM PN2SD TRANSFORMATION 

RULES INTO LES 

PN2SD 



The translation of Petri Net fragments into LES uses the concept of unfolding which was 

proposed by McMillian [45]. Based on PN2SD, only the five types of fragments introduced in 

section 4.1.1 will be taken into consideration when mapping Petri Net fragments into Labelled 

Event Structure.  

Message 

The message fragment in Petri Net can be unfolded in a very straight-forward matter where the 

two states in the Petri Net are represented in the form of places s1 and s2. The causal relationship 

between the places ensures that the LES produced is such as in the Figure 33 in Section 4.3.2. 

Alternative 

The Petri Net fragment that represents the alternative fragment starts with a state represented by 

the place s1 creating e1 in the LES. Though, the conflict represented by the two outgoing arcs 

from s1 signifies two conflicting events in the LES. As the placeholders are added to the LES to 

match the Petri Net, the resulting LES is represented in Figure 33in Section 4.3.2.  

Option 

The unfolding of an option Petri Net fragment is similar to the alternative fragment presented 

above.  

Break 

The unfolding of a break Petri Net fragment is similar to the alternative fragment but with only 

one placeholder. 

Parallel 

For a parallel Petri Net fragments, it starts with a place s1 and ends with a place s2. They can be 

depicted as events e1 and e2 correspondingly with e1 forking out into the placeholders and 

merging at e2. This results in the LES representation shown in Figure 33 in Section 4.3.2.  

 



4.3.1.2 MAPPING SEQUENCE DIAGRAM FRAGMENTS FROM PN2SD 

TRANSFORMATION RULES INTO LES 

The process of mapping Sequence Diagram fragments into LES uses the concept of 

semantics mapping which was proposed by Kuster-Filipe [44]. Based on PN2SD, only the five 

types of fragments introduced in section 4.1.1 will be taken into consideration when mapping 

Sequence Diagram fragments into Labelled Event Structure.  

Message 

In Sequence Diagrams, message fragment is defined by two events, which are e1 the event that 

depicts the sending of the message, and e2 that shows the receiving of the messages. Both events 

are causal, and both belong to the same scope (this is true for any case since messages are in 

horizontal and there can never be a scenario that the sending and receiving event of a message 

exist under different scopes). This will result in the LES as shown in Figure 33 in Section 4.3.2.  

Alternative 

The Sequence Diagram fragment of alternative has an initial location l1 that represents the 

beginning of the fragment. Since an alternative Sequence Diagram fragment signifies two 

operands in the fragment, hence there are 2 scopes; alt(2)#1 and alt(2)#2. The location l2 

signifies the end of the alternative fragment. Since there are no other choices or concurrencies, 

so there is only one alt_loc for location l1; hence the event e1 is the starting point of the LES. 

However in location l2, there are two possible alt_loc since the alternative fragment creates two 

different scenarios. As a result, the location l2 creates two events which are e2 and e3. As e2 and 

e3 are conflicting events, hence there are no sets of execution traces that contain both events; 

subsequently the symbol # is placed between the events denoting conflicting behavior. Upon 

adding placeholders to represent placeholders in Sequence Diagrams, the LES created will be 

presented in Figure 33 in Section 4.3.2.  

Option 

As shown in Section 4.1.2.4, the option fragment is semantically equivalent to the alternative 

fragment, hence the transformation from an option Sequence Diagram Fragments to LES is 

similar to the transformation of an alternative Sequence Diagram fragments.  



Break 

A break Sequence Diagram fragment has a similar construct to the alternative Sequence 

Diagram fragment, but with only one placeholder. However it still consists of two locations 

which is l1 and l2 where l1 has an alt_loc of 1 and l2 has an alt_loc of 2, which in turns generates 

two conflicting events e2 and e3 which will be presented in Figure 33 in Section 4.3.2.  

Parallel 

A parallel Sequence Diagram fragment has an initial location of l1. It indicates the beginning of 

the parallel fragment. There exists 2 scopes inside the fragment, which are par(2)#1 and par(2)#2 

as shown in Section 3.3.2. These scopes represent the parallel events that occur inside the 

fragment. After these events are executed, a location l2 signifies the end of the fragment. Since 

both the l1 and l2 has an alt_loc of 1, so there is only 1 event to represent each of these locations, 

e1 and e2 such that e1 forks into the 2 scopes of events and merge into e2. This will create an 

LES which will be shown in Figure 33 in Section 4.3.2.  

 

4.3.2 PROVING THAT PN2SD PRESERVES SEMANTICS 

Upon generating LES from both Sequence Diagram fragments and Petri Net fragments, 

both of them need to be compared and made sure they are equal. This is proven using the 

following Lemmas.  

Lemma 1: Every Petri Net fragments and its corresponding Sequence Diagram fragments 

created by PN2SD generate the same LES.  

Proof: As established in the earlier part of this thesis, there are five types of Petri Net fragments; 

message, alternative, option, break and parallel. Since both of alternative and option fragments 

are semantically equivalent, they will be grouped as one fragment for the purpose of this proof.  
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Figure 33: LES obtained from Petri Net fragments and each corresponding Sequence Diagram 

fragments 

 

The five types of Petri Net fragments are unfolded into LES based on the semantic 

mapping of α and the corresponding Sequence Diagram fragments are translated into LES with 

the semantic mapping of β. Upon unfolding and translating the Petri Net fragments and Sequence 

Diagram fragments respectively, a Labelled Event Structure for each type of fragment is created 

as showin in Figure 33 above. The semantic maps for unfolding a Petri Net fragment and 

translating a Sequence Diagram fragment was presented in Section 3.3 while the application of 

the semantic maps on the five types of fragments (message, alternative, option, break and 

parallel) were presented in Section 4.3. An example using a parallel type Petri Net fragment is 

presented below.  

In a parallel Petri Net fragment, it starts with a place s1 as an initial location and ends 

with a place s2. They can be represented as events e1 and e2 respectively with e1 branching out 

into the placeholders and merging at e2.  

In a parallel Sequence Diagram fragment, l1 represents the initial location. The location 

depicts the beginning of the fragment. There are 2 scopes inside the fragment, they are par(2)#1 

and par(2)#2 as shown in Section 3.3.2. These scopes signify the parallel events that take place 

in the fragment. Upon the execution of these events, the location l2 shows the end of the 

fragment. Both l1 and l2 has an alt_loc of 1, hence there is only 1 event to represent each of these 



locations, which is e1 and e2 such that e1 branches into the 2 scopes of events and merge into e2. 

This in turn creates the LES as shown in Figure 33. Both of the Petri Net fragments and 

Sequence Diagram fragments can be represented exactly the same as the representation in Figure 

33, hence this proves that the transformation preserves the behavior of the original Petri Net.  

In the following chapter, an example of the application of the PN2SD algorithm will be 

presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

APPLICATION OF THE ALGORITHM  

This chapter shows how the algorithm can be applied on a Free Choice Petri Net. Since 

the main concern of this thesis is to overcome the limitation of SD2PN which is it is only a one 

way process; upon using the algorithm, Petri Nets can be transformed back into Sequence 

Diagram. The algorithm serves as a guideline on how to transform Petri Nets into Sequence 

Diagram.  

 

5.1  PN2SD OVERCOMES THE LIMITATION OF SD2PN 

As proven by M. A. Ameedeen, SD2PN promotes model interoperability between 

Sequence Diagram and Petri Nets. A system designer is able to model a system in Sequence 

Diagram using UML tools, and then uses SD2PN to transform the Sequence Diagram models 

into Petri Nets. Upon transforming Sequence Diagrams into Petri Nets, complex analysis can be 

performed on the system using Petri Net tools. However, system designers are required to update 

the Sequence Diagram manually. PN2SD offers a MDD model transformation that transforms 

Free Choice Petri Nets into Sequence Diagram.  

 

 

 

 

 

 

Figure 34: PN2SD transform Free Choice Petri Nets into Sequence Diagram 
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For system designer who used SD2PN to transform Sequence Diagram to Petri Nets for 

performing mathematical analysis, upon performing the analysis and making changes to the Petri 

Nets, PN2SD can be used to transform the Petri Nets back into Sequence Diagram.  

 

5.2  EXAMPLE 

Based on [46], SD2PN was implemented in a use case scenario which involves the 

behavior of a Personal Area Network (PAN).  The PAN consists of a wireless router and a 

number of stations. With the aid of SD2PN, an integrated Petri Net is generated as shown in the 

figure below.  

 

Figure 35: Petri Net for a station in PAN 



Using the resulting Petri Net as an example, the algorithm to map Petri Nets to Sequence 

Diagram will be used to transform the Petri Net in Figure 35 into Sequence Diagram. 

As shown in Figure 31 from Section 4.2, the algorithm to transform Petri Nets into 

Sequence Diagram begins by accepting Free Choice Petri Net as an input. In this case, SD2PN 

only generates Free Choice Petri Nets, since the author is using the Petri Net generated from 

SD2PN, the Petri Net is accepted as an input. The second step in the algorithm is to identify the 

types of fragments in the Petri Nets; each types of fragment are identified using the method 

presented in Section 4.1.1. Five types of fragment will be identified in this stage, they are 

message, parallel, alternative, option and break fragment. Next up, the fragments will be tagged. 

When a message fragment is identified, it is tagged as m1, representing the first message. 

Subsequently, option, alternative, parallel and break fragments are tagged respectively as opt(n-
th), alt(n-th), par(n-th) and bre(n-th), whereby the first option fragment is represented as opt1, 

second option fragment is represented by opt2 and so on. Upon identifying the fragments, a rule-

based MDD model transformation PN2SD is performed to transform the Petri Net fragments into 

Sequence Diagram fragments. The transformation process of PN2SD is slightly different 

compared to SD2P; in PN2SD, transformations are done based on a top-to-bottom and left-to-

right order. This eliminates the needs of another process to group the Sequence Diagram 

Fragments together. After the transformation process, a Sequence Diagram is generated as shown 

in the figure below.  
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Figure 36: Sequence Diagram generated based on Figure 35 
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Comparison can be made based on the original Sequence Diagram used in [46]. Both 

Sequence Diagrams consist of the same number of messages and alternative operator fragments. 

The original Sequence Diagram used for SD2PN will be presented in Appendix A.  

 

5.3 DISCUSSION 

The example presented in this chapter shows that PN2SD is capable of transforming Petri 

Nets into Sequence Diagram. The algorithm serves as a guideline in transforming Petri Nets into 

Sequence Diagram. Referring to Section 4.3, it is also proven that PN2SD preserves semantics. 

By using the Labelled Event Structure as a common semantics domain, both Petri Nets and 

Sequence Diagram can be represented as LES. Both produce LES that is equal, which indicates 

that PN2SD can preserves semantics. A detailed explanation on how both Petri Nets and 

Sequence Diagrams are represented as LES can be obtained from Section 4.3.1.  

Though, there is a limitation in PN2SD; which is the message fragment produced in 

Sequence Diagram are ambiguous. In a Sequence Diagram, there are lifelines that show the 

instance of the objects involved while sending the message. This means that users can clearly see 

the direction of the message, whether it is from object A to object B or vice versa. However, in a 

Petri Net, there are states which do not indicate which instances of the objects are being involved 

in the flow of event. Meaning that, a message fragment for Sequence Diagram generated via 

PN2SD can be either from object A to object B or vice versa, which is also known as ambiguous. 

In this case, assumptions need to be made such as each message is a continuity from the same 

object.  

 

 

 

 

 



 

 

 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the conclusion, contribution and limitation of the research work.  

Recommendations for future work are also available in this chapter.  

 

6.1  CONCLUSION 

PN2SD fills the knowledge gap between Sequence Diagram, Petri Nets and SD2PN. It is 

able to overcome the limitation of SD2PN, which is it only provides one way transformation 

from Sequence Diagram to Petri Net. PN2SD allow users to transform Petri Nets to Sequence 

Diagram. When used together with SD2PN, users are able to transform Sequence Diagram to 

Petri Nets to perform mathematical-based analysis. Upon performing analysis and modifying the 

Petri Nets, now users are able to use PN2SD and the algorithm to transform Petri Nets back to 

Sequence Diagram. This eliminates the need to manually update the Sequence Diagram each 

time a change is made on the Petri Net during the analysis.  

Other than that, PN2SD provides a rule-based MDD model transformation from Petri 

Nets to Sequence Diagram. This in turn solves the heterogeneity between Petri Net and Sequence 

Diagram.  

In the proposed algorithm, a new method is introduced to identify Petri Nets fragment. 

This is important as Petri Nets are not like Sequence Diagram, where each interaction operator is 

labelled accordingly. In Petri Nets, there are no labels that indicate alternative, parallel, option 

and break fragment. Future researchers will be able to benefit from the newly proposed method 

in identifying fragments in Petri Nets.  



 

6.2  CONTRIBUTION 

The major contribution of this thesis is presenting a way to transform Petri Nets to 

Sequence Diagram. This addresses the limitation of SD2PN with a newly proposed algorithm 

and rule-based MDD model transformation – PN2SD. PN2SD is an MDD model transformation 

that serves as a basis for Multi Paradigm Modelling between the Petri Nets and UML Sequence 

Diagram.  

When PN2SD is used together with SD2PN, the traditional method of creating a system 

(Design, Implementation, and Analysis) can be enhanced. With PN2SD and SD2PN, the analysis 

phase can be carried forward to just before the implementation phase. Upon designing the system 

in UML Sequence Diagram, users now are able to use SD2PN and transform Sequence Diagram 

to Petri Net to perform mathematical-based analysis. This in turns reduces mathematical errors 

such as deadlock and liveness. After performing analysis on Petri Nets and modifying it, users 

can now use PN2SD to transform Petri Nets back to Sequence Diagram. This eradicates the need 

to manually update the Sequence Diagram. In short, mathematical-based errors can be prevented 

during the implementation phase. Cost and time can be saved.  

 

6.3  LIMITATION 

As stated in Section 5.3, the main limitation of PN2SD is the ambiguous message 

produced. When generating message fragments from Petri Net, the message fragment generated 

in Sequence Diagram is ambiguous. Assumptions need to be made when figuring out the 

direction flow of the message in Sequence Diagram.  

Other than that, the fact that PN2SD only consider five types of fragments which is 

message, alternative, option, parallel and break is also a limitation. There exists other behavior 

such as repeat, which were not taken into account when designing the model transformation 

rules for transforming Petri Nets to Sequence Diagram.  

 



6.4  FUTURE WORK 

This section shows the ideas of the author to further continue in the current research 

carried out in this thesis. Firstly, a method to determine the direction of the message fragment 

generated via PN2SD should be looked into. With the proposed method of identifying the 

direction of the message fragment generated, a more accurate result can be obtained.  

Other than that, the author also recommends a tool that integrates both SD2PN and 

PN2SD to provide a fully automated way to seamlessly transform Sequence Diagram to Petri 

Nets and vice versa. This in turn will reduce the time needed to manually transform Petri Nets 

back into Sequence Diagram.  

 

 

 


