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ABSTRAK 

Konsep hasil darab tensor kumpulan tak abelan berasal daripada teori K-algebra dan juga 

teori homotopi. Konsep ini ditakrifkan sebagai tindakan yang serasi antara satu sama lain. 

Pasangan tindakan serasi yang berbeza menghasilkan satu hasil darab tensor tak abelan 

yang berlainan. Bilangan maksimum hasil darab tensor tak abelan yang berbeza 

bergantung kepada bilangan pasangan tindakan yang serasi. Oleh itu, kajian ini memberi 

tumpuan bagi menentukan bilangan pasangan tindakan yang serasi antara dua kumpulan 

kitaran yang berperingkat kuasa-p di mana p adalah nombor perdana ganjil. Penyelidikan 

ini bermula dengan menentukan syarat-syarat perlu dan cukup untuk tindakan-tindakan 

yang berperingkat kuasa-p bertindak serasi. Seterusnya, bilangan automorfisma yang 

berperingkat kuasa-p dicari bagi kumpulan yang sedemikian, yang mana mewakili 

tindakan. Dengan menggunakan syarat-syarat perlu dan cukup, bilangan pasangan 

tindakan serasi telah dikenalpasti berdasarkan peringkat bagi tindakan. Tambahan pula, 

graf tindakan serasi dan ciri-cirinya adalah diperkenalkan bagi kumpulan yang 

sedemikian. 
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ABSTRACT 

The concept of the nonabelian tensor product of groups has its origins in the algebraic K-

theory and the homotopy theory. This concept is defined on the actions which are 

compatible to each other. A different compatible pairs of actions can give a different 

nonabelian tensor products. The maximum different nonabelian tensor product depends 

on the number of compatible pairs of actions. Thus, this research focuses on determining 

the number of compatible pairs of actions between two finite cyclic groups of p-power 

order, where p is an odd prime. This research starts with determining the necessary and 

sufficient conditions for the actions that have the p-power order to be compatible. Then, 

the number of the automorphisms that have the p-power order for such type of groups, 

which present the actions are found. By the necessary and sufficient conditions, the 

number of the compatible pairs of actions has been determined according to the order of 

the action. Furthermore, the compatible action graph and its subgraph were introduced 

for the finite cyclic groups of p-power order, where p is an odd prime. Then, some 

properties of the compatible action graph are also presented. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 An Overview  

This chapter is an introduction chapter to the whole thesis, which contains research 

background, problem statement, research objectives, research scope, research 

significance, and thesis organization. 

       

1.2 Research Background  

The concept of the nonabelian tensor product of groups was introduced by Brown 

and Loday (1984). This concept is defined for a pair of groups G and H, which  acts on 

each other, providing the actions that satisfies the following compatibility conditions: 

 

  1

( ( ))
g h g h gg g



     and  
  1

( ( ))
h g h g hh h



   

 

for all ,g g G  and ,h h H . The originated of this concept was in connection with a 

generalized Van Kampen Theorem. Then, the structure of this concept has its origins in 

the algebraic K-theory and also in the homotopy theory. If G and H are groups that act 

compatibly on each other, then, the nonabelian tensor product G H  is a group 

generated by the symbols g h  with relations:  

( )( )g ggg h g h g h         and    ( ) ( )h hg hh g h g h      

 

for all ,g g G  and , .h h H  
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The research on the group theoretical aspects of the nonabelian tensor product was 

initiated by Brown and Loday (1987). They focused on the group theoretic properties, 

specifically on the computation of the nonabelian tensor square.  Also, they gave a list of 

open problems concerning the nonabelian tensor product and the nonabelian tensor 

square which include a problem in the cyclic group. Thus, the open problems, which have 

been given by Brown and Loday (1987) were the motivation for many researchers as well 

as this research to investigate the group theoretical aspects of the nonabelian tensor 

product of groups.  

 

The nonabelian tensor square G G has been established by Brown and Loday 

(1984), which is finite for the finite group G. Then, Ellis (1987) extended the results to 

the nonabelian tensor product and he showed that the nonabelian tensor product is of p-

power order if G and H are of the p-power order. McDermott (1998) computed the 

nonabelian tensor product G H  when G is a p-group and H is  q-group, where p and q 

are prime numbers. Moreover, Visscher (1998) continued the study on the nonabelian 

tensor product of the p-power order and he focused on the cyclic groups. Mohamad 

(2012) studied the compatibility conditions and the nonabelian tensor product of the finite 

cyclic groups of the p-power order, where p is an odd prime as well as p = 2, and provided 

the necessary and sufficient conditions for the pair of two finite cyclic groups to act 

compatibly on each other. Then, Sulaiman et al. (2015) continued with Mohamad’s work 

and focused only on the compatible pairs of nontrivial actions that have the 2-power order 

for the finite cyclic groups of 2-power order. Thus, this research is focusing on the case 

of the p-power order for such type of groups, where p is an odd prime in order to 

investigate the compatible pairs of nontrivial actions that have the p-power order. 

Consequently, the following table illustrates the different cases that have been discovered 

on the compatibility conditions for such type of groups by the previous works as well as 

this research. 
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Table 1.1       Different cases that have been discovered the compatibility conditions for 

                       the finite cyclic groups of p-power order by different researchers. 

Authors and year Finding 

Visscher (1998) 
Provided an action of p-power order that satisfying the 

compatibility conditions.   

Mohamad (2012) 
Used the order of the action as a condition for the actions to 

be compatible on each other. 

Sulaiman (2017) 
Focused only on the case that the actions have the 2-power 

order. 

Mohammed (2018) 

Provided new action which different from the previous 

results that satisfying the compatibility conditions for such 

type of groups. 

 

1.3 Problem Statement  

The nonabelian tensor product of groups is defined for a pair of groups, which acts 

on each other, such that the actions satisfying the compatibility conditions. According to 

the definition of the nonabelian tensor product, the pair of the actions are required to be 

compatible in order for the nonabelian tensor product to be computed. Thus, different 

compatible pairs of actions can give different nonabelian tensor product. Many 

researchers considered the nonabelian tensor product with trivial actions. However, only 

some of them are considered the nontrivial actions for computing the nonabelian tensor 

product. Others computed the nonabelian tensor product and the compatibility conditions 

of nontrivial actions for the finite cyclic groups of the p-power order, where p is an odd 

prime. In this research, the finite cyclic groups of the p-power order, where p is an odd 

prime are considered in order to find and prove the exact number of the compatible pairs 

of actions for the given nonabelian tensor product for such type of groups, which gives 

the maximum number of different nonabelian tensor product for any two finite cyclic 

groups of the p-power. Then, the results have been extended to introduce a types of graph, 

namely the compatible action graph and its subgraph for the nonabelian tensor product 

of such type of groups by studying the relationship between the group theory and graph 

theory to present all pairs of compatible actions as edges and the actions as vertices.   
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1.4 Research Objectives  

The objectives of this study are: 

(i) to determine the necessary and sufficient conditions for a pair of finite cyclic 

groups of the p-power order, where p is an odd prime to act compatibly on each 

other. 

(ii) to find the number of the automorphisms of the finite cyclic groups of the p-

power order, where p is an odd prime with a specific order. 

(iii) to find the exact number of the compatible pairs of actions for the finite cyclic 

groups of the p-power order, where p is an odd prime. 

(iv) to find the properties of the compatible action graph and the intersection of its 

subgraph for the finite cyclic groups of the p-power order, where p is an odd 

prime. 

1.5 Research Scope   

This research focused on the compatible actions, and the groups considered are 

limited to the finite cyclic groups of the p-power order, where p is an odd prime. 

1.6 Research Significance  

The contribution of this thesis is to provide a necessary and sufficient conditions 

on the pair of finite cyclic groups of the p-power order, which act compatibly on each 

other.  

In addition, new results in determining the number of the compatible pairs of 

actions for the finite cyclic groups of the p-power order, where p is an odd prime are 

presented. Furthermore, the number of the automorphisms with a specific order for such 

type of groups have been determined by using some properties in number theory. 

The results have been extended to introduce a new types of graph, which is called 

the compatible action graph and its subgraph by using the theoretical relationship 

between group theory and graph theory. Some properties of the compatible action graph 

and its subgraph are also provided. 
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1.7 Thesis Organisation  

Chapter one presented as an introduction chapter to the whole thesis. This chapter 

contains research background, problem statement, research objectives, research scope, 

and research significance. 

 Chapter 2 focuses on the details of literature reviews on the compatibility 

conditions and the concept of the nonabelian tensor product of groups with some recent 

works had done on the relation between group theory and graph theory. 

Some definitions and preliminary results of the automorphism groups, 

compatibility conditions, and graph theory are given in Chapter 3. By using Groups, 

Algorithms and Programming (GAP) software, the compatible actions and the number of 

the compatible pairs of actions are found. All results in this chapter are used in subsequent 

chapters to prove the new results.    

Chapter 4 focuses on the automorphism and the compatible actions for the finite 

cyclic groups of the p-power order, where p is an odd prime. This chapter then included 

some properties of the automorphism of such type of groups and the necessary and 

sufficient conditions for a pair of actions that have p-power order to act compatibly on 

each other. Furthermore, some examples are presented when G H  and ,G H  to 

illustrate the compatible actions for the finite cyclic groups of the p-power order, where 

p is an odd prime. 

The main results of this thesis are given in Chapter 5, which is divided into two 

parts. The first part, concerning the number of the automorphisms of the finite cyclic 

groups of the p-power order with the specific order, while the second part is concerning 

the number of the compatible pairs of actions for the finite cyclic groups of the p-power 

order, where p is an odd prime. The results illustrated that the number of the compatible 

pairs of nontrivial actions for a given nonabelian tensor product of such type of groups 

are equal. 

Chapter 6 shows the connection between the group theory and the graph theory. 

In this chapter, a new graph, namely the compatible action graph and its subgraph have 

been presented and some theoretical properties of the compatible action graph for the 

finite cyclic groups of p-power order are given.  
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 Lastly, Chapter 7 contains the summary of this research and some suggestions 

for future research.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the details of the literature review on the compatible actions, 

the nonabelian tensor product of groups and some related results in graph theory. 

2.2 Compatible Actions and The Nonabelian Tensor Product of Groups 

The concept of the nonabelian tensor product of groups has been discussed since 

1984. Brown and Loday in 1984 and 1987 were the researchers who introduced the 

concept of the nonabelian tensor product to extend the ideas of Whitehead (1950). This 

concept is defined by a pair of groups G and H, providing that the groups act on each 

other in such a way where the actions are satisfying the compatibility conditions. The 

paper by Brown et al. (1987) has motivated many researchers to investigate the group 

theoretical aspects of the nonabelian tensor product. 

A study by Brown et al. (1987) focused on the group theoretic properties, 

precisely to compute the nonabelian tensor square. They also provided a list of open 

problems concerning the nonabelian tensor product and the nonabelian tensor square and 

one of the open problems concerning to the cyclic groups, which stated that whether the 

nonabelian tensor product of two cyclic groups is cyclic. Thus, our focus in this research 

is on the compatible actions without computing the nonabelian tensor product. Again, 

Brown et al. (1987) established that the nonabelian tensor square G G  is a finite for a 

finite G. In addition, they showed that the nonabelian tensor square of a nilpotent group 

is nilpotent.  
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In addition, some result on the nonabelian tensor product for both G and H with 

p-power order was proven. Furthermore, the computation of the nonabelian tensor square 

for groups of order up to 30 was given by using GAP programming. Meanwhile, Ellis 

(1987) extended the results for the nonabelian tensor product without any analytical 

proof. Furthermore, he shows that the nonabelian tensor product is of the p-power order 

if G and H are of the p-power order. 

Gilbert and Higgins (1989) studied the concept of the nonabelian tensor product 

of groups and they found that there is an isomorphism from the subgroup ,G H     of 

( , )G H  onto the nonabelian tensor product such that ,g h g h      for g G  and 

.h H  This isomorphism is useful to study the nonabelian tensor product inside of  

( , ).G H  Two years later, Rocco (1991) gives a bound for the order of the nonabelian 

tensor square G G  if G has order .np  Bacon and Kappe (1993) studied the nonabelian 

tensor square G G  and determined the nonabelian tensor square of          2-generator 

p-groups of nilpotency class 2, where p is an odd prime. In addition, they also showed 

that if G is a nilpotent group of class 2, then the nonabelian tensor square G G is 

abelian.  

Ellis and Leonard (1995) modified a method which can be used to compute the 

nonabelian tensor product G H  for all pairs of normal subgroups G and H of order up 

to 14. They also computed the nonabelian tensor square and Schur multiplier of Burnside 

groups, which are B(2,4) and B(3,3) of order 
122 and 

73 , respectively. However, they 

provided an alternative description for the nonabelian tensor product which stated that, 

there is an isomorphism (( ) ) ,H G G JG H H    where  is the semi-direct 

product and J is the subgroup of .G H Then, their results concluded that there is an 

isomorphism ,G H G H  where G  and H are the normal closure in G H J of G 

and H. 

An overview on some of the developments on the nonabelian tensor product of 

groups since the appearance of the paper of Brown et al. (1987) with literature results up 

to 1997 was illustrated by Kappe (1997). After that, McDermott (1998) developed an 

algorithm to compute the nonabelian tensor product G H and implemented the 

algorithm with the help of GAP software. Meanwhile, he also determined the order of the 



9 

nonabelian tensor product G H by using GAP software for all normal subgroup G and 

H of the quaternion group of order 32. In addition, he gave both the nonabelian tensor 

product of quaternion group and dihedral group of order eight and split them into two 

cases, such that the actions act compatibly on each other and the actions do not act 

compatibly on each other. Besides that, Ellis and McDermott (1998) improved the 

Rocco’s bound in 1991 and extended it to the case of the nonabelian tensor product 

G H of prime power groups G and H. 

Extended from Ellis and McDermott’s work, Visscher (1998) continued the study 

on the nonabelian tensor product of the p-power order and he focused on the cyclic 

groups. He clarified more descriptions of the action for the cyclic group of prime power 

order in the first part of his thesis before using the results to compute the nonabelian 

tensor product. Moreover, he computes some of the nonabelian tensor product of cyclic 

groups of the p-power order and presents a complete classification of all nonabelian 

tensor product of cyclic groups of 2-power order with mutual nontrivial actions of order 

two. In addition, Visscher (1998) gave the bounds on the nilpotency class and solvability 

length of ,G H provided such information is given in context with G and H.  The 

bounds are given in terms of ( ),HD G  the derived subgroup of G afforded by the action 

of H on G, and ( ),GD H  the analogue’s subgroup of H. Furthermore, Visscher (1998) 

determined the characterisation of the compatibility condition and provided some 

necessary and sufficient number in theoretical conditions for a pair of cyclic groups of 

the p-power order, where p is an odd prime, as well as      p = 2 to act compatibly with 

each other.  

Nakaoka (2000) studied the nonabelian tensor product of solvable groups, and 

gave the description of the derived and the lower central series of G H . Besides that, 

Nakaoka (2000) obtained the bound for the order of G G  for a finite solvable group G. 

As a result, she obtained that there is an isomorphism from the subgroup  [ , ]G H
of 

( , )G H to G H such that[ , ]g h g h   for g G  and .h H  

Nakaoka and Rocco (2001) studied the nonabelian tensor product for two groups, 

which are the nilpotent groups, where the actions act on each other in the nilpotently way. 

In addition, they also present that the nonabelian tensor square for finite group G is cyclic. 
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Besides that, Morse (2005) gives an overview and literature study on some of the 

developments and computation on the nonabelian tensor square of groups. 

The nonabelian tensor product of polycyclic groups has been studied by Moravec 

(2007) and he showed that the nonabelian tensor product G H is polycyclic where G 

and H are two polycyclic groups that act compatibly with each other. Besides that, 

Moravec (2008) proved that the exponent of the nonabelian tensor product of two locally 

finite groups can be bounded in terms of exponents in the given groups. He presented that 

the exponent of the nonabelian tensor square divides the exponent of G, when G is a 

group of nilpotent of the class 3  and of the finite exponent. 

Blyth and Morse (2009) developed a theory for computing the nonabelian tensor 

square G G  and related computations for finitely presented groups, specialising on the 

polycyclic groups. The results gave the computations and the basis of an algorithm for 

computing the nonabelian tensor square for any polycyclic group. Meanwhile, Moravec 

(2009) studied the nonabelian tensor square for powerful p-groups. He provided some 

fundamental properties of nonabelian tensor square focuses on powerful p-groups such 

like, if G is powerful, then the exponent of G G divides the exponent of G. 

 Thomas (2010) introduced a homology free proof that the nonabelian tensor 

product of two finite groups is finite, which gives an algebraic proof for the study by Ellis 

(1987). Besides that, he provided an explicit proof that the nonabelian tensor product of 

two finite p-groups is a finite p-group. Later on, Blyth et al. (2010) studied the nonabelian 

tensor square G G  for the class of group G and they characterised the exterior square 

G G  in terms of a presentation of G. They also applied the results to some classes of 

groups, such as the classes of free solvable and free nilpotent groups of finite rank, as 

well as some classes of the finite p-groups. Furthermore, Russo (2010) showed that the 

nonabelian tensor product of two Chernikov groups is Chernikov group. Then, Moravec 

(2010) introduced the notion of powerful action of a p-group upon another p-group. In 

addition, he derived some properties of powerful actions and studied faithful powerful 

actions. Then, he showed that the nonabelian tensor product of powerful p-groups acting 

powerfully and compatibly upon each other is again a powerful p-group. 

 Russo (2011) proved that if , ,G H   then ,G H    where  represent a given 

classes of groups, such as the class of all finite groups, nilpotent groups, polycyclic 
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groups, locally finite groups, and Chernikov groups. In addition, Thomas (2012) 

introduced a generalisation to the concept of the nonabelian tensor product, which is 

called the box-tensor product and denoted by G H . However, he extended various 

results for the concept of the nonabelian tensor product to the box-tensor product, such 

as the finiteness of the product when each factor is finite. Besides that, he showed that 

the finiteness of the box-tensor product G H when both G and H are finite. Then, he 

also proved that G H is finite if the mutual actions are half compatible. 

Mohamad (2012) studied the concept of the nonabelian tensor product and 

focused on the finite cyclic groups. He proved that the nonabelian tensor product of finite 

cyclic groups of the p-power order are cyclic when p is an odd prime. Mohamad (2012) 

also showed that the nonabelian tensor product of cyclic groups of 2-power order with 

two-sided actions is also cyclic, when both actions have order greater than two. In 

addition, Mohamad et al. (2012) studied the computation of the nonabelian tensor product 

for cyclic groups of order 
2p  where p is an odd prime. They provided the necessary and 

sufficient conditions for the finite cyclic groups of the p-power order that act on each 

other in the compatible ways where the order of the actions is included as one of the 

conditions. Moreover, they showed that the nonabelian tensor product of the finite cyclic 

groups of order 
2p  is also cyclic when the actions have order p. 

Next, Otera et al. (2013) investigated some algebraic and topological properties 

for the nonabelian tensor product in viewpoint of the classes of a group. Besides that, 

Rashid et al. (2013) studied the nonabelian tensor square and its capability, focusing on 

the groups of order 8q where q is an odd prime. They also computed the capability of the 

group using the Schur multiplier of the groups of order 8q. Fauzi et al. in (2014) computed 

the nonabelian tensor square of Biebierbach group of dimension five with dihedral point 

group of order eight denoted by (5).lB  They also proved that the nonabelian tensor square 

of the first Biebierbach group of dimension five with a dihedral point group of order eight 

can be generated by ten elements and they verified the results by using the GAP software.  

Sulaiman et al. (2015) computed the exact number of compatible pairs of actions 

between the two cyclic groups of 2-power order. In addition, he used some necessary and 

sufficient number theoretical conditions for a pair of cyclic groups of 2-power order with 

nontrivial actions that act compatibly on each other to investigate some properties in 
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finding the exact number of compatible pairs of actions. He also provided some results 

on the compatible pairs of nontrivial actions of order two and four.  In the same year, 

Donadze et al. (2015) investigated the closure and the finiteness properties for the 

nonabelian tensor product of groups. They showed that some classes are closed under the 

formation of the nonabelian tensor product, such as solvable by finite, nilpotent by finite, 

polycyclic by finite, nilpotent of nilpotency class n, and super solvable groups. 

Next, Shahoodh et al. (2016) computed the compatible pairs of nontrivial actions 

for two finite cyclic groups of 3-power order. Meanwhile, Jafari (2016) categorised the 

nonabelian tensor square for the finite p-groups by the order. In addition, he also 

computed the Schur multiplier and showed that G G  for the finite generalised extra 

special p-groups are not capable. In 2016, Russo studied the topology of the nonabelian 

tensor product of profinite groups. Then, he proved the nonabelian tensor products of 

projective limits of finite of such type of groups. In the same year, Sulaiman et al. 

determined the exact number of the compatible pairs of actions for the finite cyclic groups 

of 2-power order and he only focused for a case when one of the actions has an order 

greater than two. In 2016 Sulaiman et al. have studied the compatible pairs of the 

nontrivial actions for the finite cyclic groups of 2-power order. Ghorbanzadeh et al. 

(2017) investigated the nonabelian tensor square of p-groups of order 4 ,p then they 

obtained the Schur multiplier, exterior center and the tensor center of such type of groups. 

However,  Mohamad et al. (2017)  provided the exact number of the compatible pairs of 

nontrivial actions for the same cyclic groups of 2-power order with the actions that have 

the same order.  

Previously, there were only three researchers, which focused on the finite cyclic 

groups, namely Visscher (1998), Mohamad (2012) and Sulaiman (2016). The first two 

researchers, which are Visscher (1998) and Mohamad (2012) investigated the nonabelian 

tensor product of the finite cyclic groups of the p-power order with the compatibility 

conditions and they provided some necessary and sufficient number of theoretical 

conditions for the two finite cyclic groups of the p-power order that the actions act on 

each other in a compatible way. Sulaiman et al. (2016) focused on the compatible pairs 

of actions for the finite cyclic groups of 2-power order with nontrivial actions. Then, they 

only covered for such type of groups with the actions that have 2-power order. In this 

research, we are interested in finding the number of the compatible pairs of actions for 
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the finite cyclic groups of the p-power order, where p is an odd prime with mutual 

nontrivial actions that have the p-power order. 

In the next section, the previous works in the relationship between group theory 

and  graph theory are presented. 

2.3 Some Relations Between Group Theory and  Graph Theory 

The study of an algebraic structure motivated many researchers to investigate the 

properties of the graphs such as Moghaddamfar  et al. (2005) defined the non-commuting 

graph, which is denoted by ( )G  and is defined as follows: the set of vertices of ( )G

is \ ( )G Z G with two vertices x and y joined by an edge whenever the commutator of x 

and y is not the identity. They proved for some finite group G and H if ( ) ( )G H    

then .G H  However, Abdollahi et al. (2006) studied the associate graph, which is 

called the non-commuting graph of G denoted by 
G  where G is the nonabelian group 

and ( )Z G  is the centre of G. As the results, some of the properties of the non-commuting 

graph are determined, such as 
G  are Hamiltonian and planarity when G is an isomorphic 

to one of the groups 
3 8,S D or 8.Q   

 Iranmanesh and Jafarzadeh (2007) constructed some graphs, which are called the 

commuting graph, the non-commuting graph, and the prime graph of the group G,  which 

are denoted respectively by 
( ) , ( )G G  and 

1( ).G  In addition, they studied the relation 

between the commuting graph and the prime graph for the finite groups and they showed 

that if G is any finite group, such that 
( ) ( )M G    then M G , where M be a finite 

simple group. Zhang and Shi (2009) proved the conjecture AAM’s, which stated that, “If 

M is a finite nonabelian simple group and G is a group such that ( ) ( ),G M    then 

,G M ” is also true for some simple groups with the connected prime graph. This 

conjecture was provided by Abdollahi et al. (2006). In the same year, Darafsheh (2009) 

extended the work on the non-commuting graph of G by investigating the groups with 

the same non-commuting graph. Then, he provided that if G H  then .G H  Besides 

that, he illustrated that the graph isomorphism G H   implies .G H  Jahandideh et al. 

(2015) studied the conditions on the edges and vertices of the non-commuting graph. 
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Furthermore, they provided some properties of the non-commuting graph such as the 

number of the edges, which is denoted by ( ) ,GE  the degree of the vertex of the non-

commuting graph and the number of the conjugacy class of the finite group. 

In the connection between the group theory and graph theory, a paper by 

Mansoori et al. (2016) defined the non-coprime graph associated to the group G, which 

is denoted by 
G where the vertex set is  \G e and two distinct vertices are adjacent 

connected by the edge with the orders, relatively the non-prime. Besides that, they 

investigated some properties of the non-coprime graph for the nilpotent and abelian 

groups, and the relation between the non-coprime graph and known prime are presented. 

They determined the general properties of the non-coprime graph, such as diameter, girth, 

connectivity, Hamiltonian, independence number, domination number, and planarity 

when it is isomorphic to one of the groups 
2 3 4 2 2 5 6, , , , ,  or 

3.S  In the same 

year, Sarmin et al. (2016) computed the probability that an element of G denoted by the 

dihedral group of order 2n  fixes the set   under the regular action where   is the set 

of all subsets, which of all commuting elements of size two in the form of ( , )a b where a 

and b commute and 2.a b  The results was obtained by applying the probability into 

the generalised conjugacy and orbit graph .G

  In addition, the properties of the graph, 

such as the chromatic number and the clique are determined. Also in the same year, Zamri 

et al. (2016) computed the probability that a group element fixes a set focused on the 

metacyclic 3-groups of negative type of nilpotency class at least three. By applying the 

orbit graph, the result was obtained. Then, the metacyclic 3-groups of negative type have 

been found by using the conjugate action.  

From the literature some researchers defined the specific graph on the groups and 

studied the graph properties for the group, such as Jahandideh  et al. (2015) and Mansoori 

et al. (2016). Thus, one of the main parts of this research is to investigate the theoretical 

relationship between group theory and graph theory. Therefore, we determine some 

properties of the compatible action graph and its subgraph for the finite cyclic groups of 

the p-power order, where p is an odd prime, and an extension from the compatible actions 

for such type of groups and the number of the compatible pairs of actions by representing 

the vertex as an automorphism and the edge as a compatible pairs of actions.  



15 

2.4 Conclusion 

In this chapter, the literature on compatible actions, nonabelian tensor product of 

groups and graph theory are presented. Some researchers studied the compatibility 

conditions for the finite cyclic groups of the p-power order, where p is an odd prime with 

nontrivial actions, but none of them stated the exact number of compatible pairs of actions 

for a given nonabelian tensor product for such type groups. Furthermore, some 

researchers have investigated the theoretical relationship between the group theory and 

the graph theory but none of them had studied the compatible action graph as an extension 

from the compatible actions for the finite cyclic groups of the p-power order, where p is 

an odd prime. Therefore, this research will focus on the number of the compatible pairs 

of actions. Therefore, some preliminary results on the automorphism groups, number 

theory, compatibility conditions, graph theory, and GAP software are stated in the 

following chapter.      
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CHAPTER 3 

 

 

PRELIMINARY RESULTS 

3.1 Introduction 

This chapter presents the preliminary results of related past works, given by 

several researchers. This chapter contains some definitions and related works on the 

automorphism groups, number theory, compatibility conditions, graph theory and GAP 

software. By using GAP software, the number of the compatible pairs of actions are then 

determined.  The results in this chapter will be used in proving the main results in the 

next chapters. 

3.2 Some Properties of Automorphism Groups 

It is well known that the actions are required to be compatible with each other 

before determining the nonabelian tensor product. Since the finite cyclic groups of the p-

power order are considered in this research, then according to the definition of the 

compatible actions for the cyclic groups, the actions are automorphisms. Hence, an 

automorphism for such type of groups is introduced first. 

 Let G and H be the finite cyclic groups generated by a single element g G  and

h H respectively. Then, the automorphism group of the group G is denoted by Aut( )G

, which is defined as a mapping : G G   such that ( ) tg g   where t is an integer and

gcd( , ) 1.t g   The automorphism group of the finite cyclic group of the p-power order is 

a direct product of two finite cyclic groups as given in the following theorem.  
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Theorem 3.1  (Dummit and Foote, 2004) 

Let p be an odd prime and .  If G is a cyclic group of order ,p then 

1 11 ( 1)
Aut( ) p p p p

G C C C   
    and 

1Aut( ) ( ) ( 1) .G p p p      

The next theorem describes the isomorphism property for the cyclic groups. 

Theorem 3.2  (Fraleigh, 2003) 

Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomorphic 

to ( , ).  If G has finite order n, then G is isomorphic to ( , ).n n  

Now, the Euler Phi-function for a given positive integer is stated in the following 

definition. 

Definition 3.1  Euler’s 𝝋-function (Burton, 2005)   

For 1m  , the Euler’s Phi-function, denoted by ( ),m  is the number of the positive 

integers not exceeding m that are relatively prime with m. 

       The following theorem described the order of any power of any integer a, as stated 

bellow.  

Theorem 3.3  (Burton, 2005)  

If the integer a has order k modulo n and h > 0, then ha  has order 
 gcd ,

k

h k

 
  
 

 modulo 

n. 

Next, all known results on the compatible actions that will be used in the next 

chapters are given.  

3.3 The Compatibility Conditions  

In this section, some definitions and previous results on the compatible conditions 

that are stated. We start with the definition of the action of the group G on the group H, 

which is given as follows. 
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Definition 3.2 Action (Visscher, 1998) 

Let G and H be groups. An action of the group G on the group H is a mapping

: End( )G H   such that  ( )( ) ( )( ( )( ))gg h g g h      for all ,g g G and .h H  

In the case of the groups G and H are finite cyclic groups, the action   of the 

group G on the group H is required to have the property (1 ) ,G Hid   such that it is the 

identity mapping on the group H. Therefore, from this point, the action will be a 

homomorphism   from the group G to the Aut( ).H  

Next, the definition of the compatible pairs of actions between the two groups is 

given.  

Definition 3.3 Compatible Action (Brown and Loday, 1987) 

Let G and H be the groups, which act on each other and each of which acts on itself by 

conjugation.  Then these mutual actions are said to be compatible if  

                                                   
1( )  ( ( ))

g h g h gg g


                                                    (3.1) 

and  

                                                    
1( )  ( ( ))

h g h g hh h


                                                     (3.2) 

for all ,g g G and ,h h H . 

 

In the case of the abelian groups, the compatibility conditions can be simplified 

and given in the following proposition. 

Proposition 3.1 (Visscher, 1998)  

Let G and H be groups, which act on each other. If G and H are abelian, then the mutual 

actions are compatible if and only if 

( )  
g h hg g   and  ( )  

h g gh h   

for all ,g g G and ,h h H . 
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Next,  in order to prove the mutual actions of the groups G and H on each other 

are compatible, it is enough to show that the compatibility conditions is satisfied for the 

generators of the groups G and H. This case is presented in the following proposition. 

Proposition 3.2 (Visscher, 1998)  

Let G X R and H Y S  be groups with generating sets X and Y and relations R and 

S, respectively. Furthermore, suppose G and H act on each other. If the compatibility 

conditions (3.1) and (3.2) hold for elements X and Y, then the mutual actions are 

compatible. 

The following corollary showed that when G is abelian, then the trivial action is 

always compatible with any other action. 

Corollary 3.1 (Visscher, 1998)  

Let G and H be groups. Furthermore, let G act trivially on H. If G is abelian, then for any 

action of H on G, the mutual actions are compatible.  

The next proposition gives the necessary and sufficient conditions for the actions 

of two finite cyclic groups to be compatible on each other. 

Proposition 3.3 (Visscher, 1998) 

Let 
p

G x C    and 
p

H y C    be finite cyclic groups. Then there exist mutual 

actions of G and H on each other such that y kx x  and  x ly y  for ,k l  if and only 

if the conditions (i) and (ii) below are satisfied. These actions are compatible if and only 

if condition (iii) is satisfied as well. 

(i) gcd( , ) gcd( , ) 1k p l p    

(ii) 1 pk


 (mod p
)  and 1 pl



 (mod p
) 

(iii) 1 1 lk   (mod p
)  and 1 1 kl   (mod p

). 

For the case of two finite cyclic groups of the p-power order, where p is an odd 

prime, the following theorem stated the compatibility for the pair of the actions that have 

the p-power order. 
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Theorem 3.4 (Mohamad, 2012)  

Let 
p

G g C   and 
p

H h C   be groups where , 3.    Furthermore, let

Aut( )G   with 
kp  , where 1,2,..., 1k   and Aut( )H   with 

kp
  , 

where 1,2,..., 1.k     Then ( , )    is a compatible pair of actions if and only if 

 min , .k k     

The following corollary shows that for the finite cyclic groups of even order and 

with the actions that have order two, then the actions are always compatible. 

Corollary 3.2 (Mohamad, 2012)  

Let mG x C   and nH y C   where m and n are even integers with both actions of 

y on x and x on y having order two. Then, the actions are compatible. 

The next lemma shows that if G and H are the finite cyclic groups of the p-power 

order, where p is an odd prime and each of which act on the other so that 1x py y    and  

1y px x  , then the actions are compatible with some conditions are fulfilled. 

Lemma 3.1 (Mohamad, 2012)  

Let 2p
G H C  be the finite cyclic groups with G x  and H y , 2p  , where 

1x py y    and  1y px x  , then the actions are compatible and the following conditions 

are hold. 

px y y     and   
py x x                                                            (3.3) 

x p py y      and   y p px x                                                       (3.4) 

 

In the next section, some fundamental concepts in graph theory are used to 

investigate the theoretical properties between the group theory and the graph theory. 

3.4 Basic Properties on Graph Theory  

Let G and H be finite cyclic groups. In order to investigate the compatible action 

graph for the nonabelian tensor product of G and H, we need to use some basic concepts 
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in graph theory in order to define each action as a vertex and each pair of actions as an 

edge in the compatible action graph. Hence, in this section, some of these fundamental 

concepts that are needed in this research are given. These basic concepts can be found in 

(Rosen, 2012) and (Bollobas, 2013). 

A graph G  is a mathematical structure containing two sets, which are denoted by 

( )V G and ( )E G which are called the set of the vertices and the set of the edges 

respectively. Then, the order of the graph G, is the number of the vertices in the graph G 

which is denoted by ( ) .V G  Furthermore, a graph G is connected if there is a path 

between every pair of distinct vertices, and is disconnected otherwise. On the other hand, 

the graph G, is said to be complete if each ordered pair of the vertices are adjacent to each 

other and denoted by ,nK where n is the number of adjacent vertices. 

 

Additionally, a simple graph G is called Bipartite graph, if its vertex set can be 

partitioned into two disjoint sets 
1V  and 

2V  such that every edge in the graph G connects 

vertex in 
1V  and vertex in 

2 ,V  and no edge in the graph G connects either two vertices in 

1V or two vertices in 
2.V  The directed graph, is the graph consist of the set of vertices and 

the set of directed edges, such that the directed edges are associated with the ordered pair 

( , )u v  is said to start at u and end at v, where , .u v V  Moreover, the degree of the vertex 

v in the directed graph has two types, the out-degree and the in-degree. The out-degree is 

denoted by deg ( )v which is the number of the edges with v as their initial vertex, while 

the in-degree is the number of the edges with v as their terminal vertex which is denoted 

by deg ( ).v  For the directed graph G, the path of the length n from u to v, where n is 

positive integer, is defined as a sequence of edges  1 2, ,..., ne e e  of G such that 1e  is 

associated with 0 1( , ),x x 2e  is associated with 1 2( , )x x and so on, with ne  is associated 

with 1( , ),n nx x  where 0x u and 1 .x v  

 

 Next, the definition of the compatible action graph for the nonabelian tensor 

product of two finite cyclic groups of 2-power order is given as follows.  
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Definition 3.11 Compatible Action Graph (Sulaiman, 2017) 

Let G g and H h  be the two finite cyclic groups of 2-power order and ( , )    be 

the pair of the compatible actions for the nonabelian tensor product of G H where 

Aut( )G  and Aut( ).H   Then, ( ( ), ( ( ))G H G H G HV E       is a compatible 

action graph with the set of vertices ( )G HV  , which is the nonempty set of Aut( )G  and 

Aut( )H , and the set of edges ( )G HE  , which is the nonempty set of all compatible pair 

of actions. 

 

The next section, some of the results on the finite cyclic groups of the p-power 

order, where p is an odd prime, by using the GAP software for computing the compatible 

pairs of actions for the finite cyclic groups of the p-power order.  

3.5 The Groups, Algorithms and Programming (GAP) Software  

The Groups, Algorithms and Programming (GAP) is a free software package for 

computation in discrete abstract algebra with particular emphasis on computational group 

theory (GAP, Version 4.8.8, 2017). The GAP software provides a programming language 

with many functions implementing algebraic algorithm written in the GAP language. The 

GAP programming is used in the research and teaching for studying groups and their 

representations, rings, vector spaces, algebras, and combinatorial structures. This system 

includes the source, which is free, can be easily modified and extended for a special use.  

Next, let G and H be the finite cyclic groups of the p-power order, then, the GAP 

code in Figure 3.1, is used to create a conjecture for some of the main results of this 

research such as the number of the automorphisms with respective order and the number 

of the compatible pairs of actions when one of the actions is trivial which have been given 

in Chapter 5 and proved in Proposition 5.1 and Proposition 5.4. Furthermore,  The input 

of GAP code in Figure 3.1, is the finite cyclic groups of the    p-power order. Hence, the 

automorphisms for the finite cyclic groups of p-power order with their specific order 

which satisfies the compatibility conditions and the total number of the compatible pairs 

of nontrivial actions are found and presented in appendix A. 
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NumberCompatibleAction:= 

function(m,n) 

local k,l,ghg,hgh,a,b,x,y,p,q,z ; 

z:=0; 

for k in [2..m-1] do 

for l in [2..n-1] do 

a:=k; 

b:=l; 

if Gcd(m, k)=1 and Gcd(n, l)=1 then 

for x in [1..m] do 

if a<>1 then 

a:=k^x mod m; 

fi; 

if a=1 then 

p:=x; 

break; 

fi; 

od; 

for y in [1..n] do 

if b<>1 then 

b:=l^y mod n; 

fi; 

if b=1 then 

q:=y; 

break; 

fi; 

od; 

fi; 

ghg:=k^l mod m; 

hgh:=l^k mod n; 

if ghg=k and hgh=l then 

z:=z+1; 

Print(“k=”,k,” (order action=”,p,”)”,”,l=”,l,” (order action=”,q,”)”); 

Print(“ Compatible”,”\n”); 

fi; 

od; 

od; 

Print("No of Compatible",z); 

end; 

Figure 3.1  GAP Coding for The Number of Compatible Actions 

Next, by using Theorem 5.1 in Chapter 5, the exact number of the compatible 

pairs of actions that have the p-power order for the finite cyclic groups of the p-power 
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order, where p is an odd prime are given in Table 3.1. Hence, Table 3.1, shows the exact 

number of the compatible pairs of actions for 
p p

C C   with the same prime p and 

, .    

Table 0.1 The Number of Compatible Pairs of Actions for .
p p

C C   

p      
No. of 

Pairs 
 p      

No. of 

Pairs 
 p      

No. of 

Pairs 

 3 

3 3 54 

 3 

4 3 54 

 3 

5 3 54 

3 4 90 4 4 226 5 4 226 

3 5 198 4 5 334 5 5 810 

3 6 522 4 6 658 5 6 1134 

3 7 1494 4 7 1630 5 7 2106 

3 8 4410 4 8 4546 5 8 5022 

3 9 13158 4 9 13294 5 9 13770 

              

5 

3 3 300 

 5 

4 3 300 

 5 

5 3 300 

3 4 700 4 4 2000 5 4 2000 

3 5 2700 4 5 4000 5 5 12500 

3 6 12700 4 6 14000 5 6 22500 

3 7 62700 4 7 64000 5 7 72500 

3 8 312700 4 8 314000 5 8 322500 

3 9 1562700 4 9 1564000 5 9 1572500 

              

7 

3 3 882 

 7 

4 3 882 

 7 

5 3 882 

3 4 2646 4 4 8232 5 4 8232 

3 5 14994 4 5 20580 5 5 72030 

3 6 101430 4 6 107016 5 6 158466 

3 7 706482 4 7 712068 5 7 763518 

3 8 4941846 4 8 4947432 5 8 4998882 

3 9 34589394 4 9 34594980 5 9 34646430 

         

 

Example 3.1 

Let 33
G C and 43

H C be the two finite cyclic groups of 3-power order. Table 3.1, 

illustrates that there are 90 compatible pairs of actions for G H  whereas there are 54 

compatible pairs of actions for H G . Since G H H G   , therefore, the number of 

the compatible pairs of actions for the finite cyclic groups of the p-power for the given 

nonabelian tensor product G H and H G  is not necessary equal when .G H  Only 

the case that all the actions are nontrivial it will be the same number for G H and 
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H G  for the actions that have the p-power order for the finite cyclic groups of  the p-

power order, where p is an odd prime. 

3.6 Conclusion 

In this chapter, all related results by the previous researchers were given. The 

GAP software have been used to find the compatible actions. The GAP outputs can 

provide the compatible actions with their orders for the finite cyclic groups of the p-power 

order. 
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CHAPTER 4 

 

 

AUTOMORPHISM AND THE COMPATIBLITY CONDITIONS   

4.1 Introduction 

In this chapter, the necessary and sufficient conditions of the compatible mutual 

actions for a pair of finite cyclic groups of the p-power order, where p is an odd prime to 

act compatibly with each other are provided. Some results on the automorphism of the 

finite cyclic groups of the p-power order are found and presented before characterising 

the compatible mutual actions. 

4.2 Characterisation of an Automorphism for Cyclic Groups of p-Power Order 

The compatible actions are important before computing the nonabelian tensor 

product of groups. According to Definition 3.3, the actions are automorphisms for the 

finite cyclic groups. In this section, some properties of the automorphism that have the p-

power order for the finite cyclic groups of the p-power order, where p is an odd prime are 

given. We  start with the following number theory result. 

Lemma 4.1 

Let p be an odd prime number. Then  

2 1(2 1) 2 2 1
np n n

np a p p
      

for some integer na where 2.n   
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Proof: 

The proof is by the induction on n. For 2,n  the statement is true by letting 
2 0.a  Next, 

assume that the statement is true for some 2.n   By Corollary of Fermat’s theorem 

(Burton,PP,88, 2005), observe that 

                                        
( 2) 1 2

2 1 2 1
n n p

p p
p p

  

    

          12 2 1
p

n n

na p p     

                                                           11 2 1 .
p

n

na p p     

Now, by using the Binomial theorem, we have 

        
1

1 1 11 2 1 2 1 2
1

p p p
n n n

n n n

p
a p p a p p a p p


   

      
 

 

                                                               11 2 1.
1

n

n

p
a p p

p

 
   

 
 

                                   
1

1 1

1 11 2 1 2
1

p p
n n

n n

p
a p p a p p


 

 

 
     

 
  

                                                                 1

12 2 1.n n

na p p

    

Without loss of generality, let  

       
1

1 1 1 1

1 1 11 2 1 2 2 2 1 2
1

p p
n n n n n

n n n

p
a p p a p p a p p K p


   

  

 
        

 

except the term  1

12 2 1n n

na p p

    for some integer .K  Then,  we have 

                                                        1 1

12 2 2 1n n n

nK p a p p 

    

                                                        1

12 2 1,n n

na p p

    

where
1n na K a   and K is some integer. Thus, the claim is true for 1 2.n   By the 

principle of the mathematical induction, it follows that the claim is true for all 2.n    

 

The automorphism group of the finite cyclic groups of the p-power order is the 

direct product of the two finite cyclic groups as given in Theorem 3.1. Theorem 3.1 also 

proved that, the automorphism of the p-power order is isomorphic to the group 1p
C 

where .   Thus, the generator of the finite cyclic groups of the p-power order that give 
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the order of the automorphisms that have the p-power order need to be found and is given 

in the following theorem. 

Theorem 4.1 

Let 
p

G g C   be a group with p is an odd prime and 2.   Then, 2 1 : g g p   is 

an automorphism of order 1.p  

 

Proof: 

Let 
p

G g C   with  ,1.3By Theorem  2.  an odd prime and  be p , G p  

  1 11 ( 1)
Aut(C ) pp p p p

C C C    
   and 

1Aut(C ) ( 1) .
p

p p

  To prove our claim that 

  is of order 1,p  it can be shown as follows: 

(i) 
1

(2 1)  1pp


     (mod p ), 

(ii) 
2

(2 1)  1pp


     (mod p ). 

By Lemma 4.1, if the equation is raised to the power of p, then 

1 1

1(2 1) 2 2 1  1pp a p p
  



 

       (mod p ) 

which hold for all 2.  Hence, (ii) follows by Lemma 4.1. This implies that 

1

( )p g g





  and 
2

( )p g g





 which is a proof that  is an automorphism of order 1.p                                                                                                               

 

The generators of the automorphism groups of the p-power order are important 

because they explain the structure of the automorphisms of the finite cyclic groups of the 

p-power order, which is defined as an action for the nonabelian tensor product. If G is a 

finite cyclic group of the p-power order generated by the single element, ,g G  then any 

automorphism of the group G is given by the mapping : ,tg g  where t is an integer 

with gcd( , ) 1.t p   

 

Therefore, the general descriptions of the integer t for every automorphisms of 

the finite cyclic groups of p-power order cannot be determined in this research because 

we have seen from Theorem 3.1 that 11Aut(C ) .pp p
C C    We have tried to provide 

the general presentation of an automorphism of the finite cyclic groups of the p-power 
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order but there is no general pattern. Thus, our focuses in this research is the second part 

of the direct product of an automorphism group of the p-power order. In addition, we can 

determine the gcd( 1, )t p , which is the order of the automorphisms of the finite cyclic 

groups of the p-power order that have the order of the p-power. The immediate result on 

the gcd( 1, )t p for the automorphisms of the finite cyclic groups of the p-power order 

that have order 
kp
with 1,2,..., 1k    is given in the following proposition. 

Proposition 4.1 

Let  be an automorphism of a group
p

C g   of order kp with 1,2,..., 1.k   Then 

l   with 2 1( ) pg g   where 1gcd( , ) kl p p   with l is positive integer. 

Furthermore, gcd( 1, ) ,kt p p  where (2 1) .lt p   

Proof: 

Let   be an automorphism of a group
p

C   of order kp with 1,2,..., 1.k    By 

Theorem 4.1, 2 1( ) pg g   is an automorphism of order 1.p  Thus, l   generates 

all automorphisms of p-power order. If |l p
 , then clearly gcd( , ) 1.l p   Consider 

| ,l p then | .kl p Thus 1gcd( , ) kl p p  by Theorem 3.3. Let (2 1) ,lt p   then 

gcd( 1, ) gcd((2 1) 1, ) .l kt p p p p                                                                             

Next, the following corollary contains a pair of number theoretic results, where 

the proof can be found in Bacon (1992). The purpose of this corollary is to rewrite the 

action of p-power order in other form, in order to satisfying the compatibility conditions 

for the  finite cyclic groups of p-power order where p is an odd prime.  

Corollary 4.1  

Let , , ,p r M  where p is an odd prime and gcd( , ) 1.p r   For n , denote with 

 
p

n , the highest p-power dividing n. Then   12 1 1 .
rp

p

p Mp


    
  

 

The next lemma, give a description of the form of the action of one finite cyclic 

group of the p-power order upon the other.  
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Lemma 4.2 

Let 
p

G g C    and 
p

H h C    be finite cyclic groups of the p-power order with p 

is an odd prime and , 3.    If G  acts on H , then there exist l  so that 
g lh h  and 

 2 1
kp

l p


  where ,k    such that gcd( , ) 1k p   and  max (1, 1) 1.         

Proof: 

Since G acts on H, then there exist an action : Aut( ).G H   By Theorem 3.1, 

 1 11 1
Aut( ) pp p p p

C C C C    
    and by Theorem 4.1, the direct factor 1p

C    is generated 

by the automorphism : H H  which is defined by 
(2 1)( ) .ph h   

 

Now, since the action : Aut( )G H   is homomorphism, then ( )G  is a cyclic 

subgroup of Aut( )H  of the p-power order. Thus, ( ) kpg


  for some ,k    with 

gcd( , ) 1.k p   Since 
1p   it follows that 1.    Again, since 

1p   we obtain

1      or equivalently 1.      Since   is positive integer, so we  have the 

bound  max (1, 1) 1.          Finally, with (2 1) ,kpl p


  we have  

(2 1)( )( ) ( ) .
kpg kp p lh g h h h h


                                                                                                               

 

The next section is the necessary and sufficient number theoretical conditions for 

the pair of finite cyclic groups of the p-power order, where p is an odd prime to act 

compatibly on each other are presented.  

4.3 The Necessary and Sufficient Conditions for The Compatible Actions 

In this section, the necessary and sufficient conditions for the compatible mutual 

actions for the pair of the finite cyclic groups of the p-power order to act compatibly on 

each other are given. The characterisation has been developed according to the necessary 

and sufficient conditions. This characterisation includes the new generator for the finite 

cyclic groups of the p-power order, which makes a difference with the previous results 

obtained by Mohamad (2012). The characterisation is presented in the following theorem. 
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Theorem 4.2 

Let 
p

G g C    and 
p

H h C    be finite cyclic groups of the p-power order, where 

p is an odd prime and , 3.    Furthermore, let G  and H act on each other so that  

(2 1)kph pg g


         and       
(2 1)lpg ph h


                   

for , , ,k l     with gcd( , ) gcd( , ) 1.k p l p   Then, G  and H act compatibly on each 

other if and only if      max 2, 2 .    

 

Proof:  

Let  G  and H  be cyclic groups of p-power order and each of which act on the other such 

that 

(2 1)kph pg g


         and       
(2 1)lpg ph h


                                    (4.1) 

for each , , ,k l     with gcd( , ) gcd( , ) 1.k p l p   By Lemma 4.2, the bounds of   and 

  are max( 1) 1        and max( 1) 1         respectively. 

 

Next, let  : Aut( )G H    and  : Aut( )H G   be the actions of G  and H on 

each other. The actions can be written as follows: 

(2 1)( )( )
kpph g g


                                                                      (4.2) 

(2 1)( )( )
lppg h h


                                                                      (4.3) 

By Proposition 3.2, the mutual actions are compatible if and only if the 

compatibility conditions are satisfied on the generators of the groups G  and .H Since the 

groups G  and H  are abelian, by Proposition 3.1, then the mutual actions are compatible 

if and only if  
g h hg g  and  .

h g gh h  Therefore, by the notation of   and   for the 

actions of G  and H act compatibility on each other if and only if 

 ( )( ) ( )  ( )( ).g h g h g                                                         (4.4) 

 ( )( ) ( )  ( )( )h g h g h                                                         (4.5) 

By using Eq (4.3), we obtain for the right-hand side of Eq (4.4), 

  (2 1)( )( ) ( ) ( )( ).
lppg h g h g
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Combining Eq (4.2) and the fact that   is a homomorphism yields the following 

congruence between the exponents of g in Eq (4.4) 

 
(2 1)

(2 1)  (2 1)
lpp

kp kpp p



 

      (mod p
). 

By Corollary 4.1, we have 
1(2 1) 1,lpp Mp

      where M   such that gcd( , ) 1.M p   

Thus,  

   
1(2 1) 1

(2 1) (2 1)
lpp Mp

kp kpp p

 
 

 

    

                                                                      
1

(2 1) (2 1) .kMp kpp p
   

    

Again, by using Corollary 4.1, 
1 2(2 1) 1,kMpp Np

          where N  such that 

gcd( , ) 1.N p   Thus, 

 
(2 1)

2(2 1)  ( 1)(2 1)
lpp

kp kpp Np p



  


      

                                                                  
2 (2 1) (2 1)kp kpNp p p

        

                                                                   (2 1)kpp


  (mod p
). 

Now, notice that gcd( , (2 1) ) 1kpp p


   and recall that 
(2 1)( )( ) ,

kpph g g


   thus we have  

 
2

( )( ) ( )  ( )( ),Kpg h g g h g
  

     

where K  such that gcd( , ) 1.K p   Thus, Eq (4.4) is holds if and only if 
2

1 .Kp

g
g

  

  

Since ,g p  this  holds  if  and  only  if  2 ,       or  equivalently 2.       

Similarly Eq (4.5) holds if and only if 2.      We conclude that G  and H act 

compatibility on each other if and only if      max 2, 2 .                                     

 

The following corollary focuses on the special case in which the groups G and H 

act compatibly on each other when the actions on each other are 2 1.p   
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Corollary 4.2  

Let G g  and H h  be the finite cyclic groups of the p-power order with p is an 

odd prime and 2p
G H C  . Furthermore, let the actions of G and H and on each other 

such that 2 1g ph h    and  2 1h pg g  . Then, the actions are compatible. 

Proof: 

Let G and H be the finite cyclic groups of the p-power order. Let the actions of G 

and H on each other as in the hypothesis. By Lemma 3.1, it follows that the actions are 

compatible.                                                                                                                          

    

In the next section, some examples on the compatibility conditions 

 

4.4 Some Examples on The Compatible Actions  

In this section, some examples of the same and different groups are presented to 

clarify the characterisation of the compatible mutual actions for the finite cyclic groups 

of the p-power order. By using Theorem 4.1, the compatible pair of actions for such type 

of groups have been determined when G H and ,G H then summarized in Table 4.1 

and Table 4.2 respectively. Recall that, if 33
G H C  be the finite cyclic groups of 3-

power order, then the compatible pairs of actions have been determined as follows. 

By Theorem 4.1, the actions on each other such that (2 1)kpg ph h


 and  

(2 1) .
lph pg g


  Furthermore, let 1,k l  then gcd(1,3) gcd(1,3) 1.  Now, since 

3,    then by Lemma 4.2, we have the bounds for  and are as follows. 

max(1,3-3-1) 3 1    and max(1,3-3-1) 3 1    or equivalently 1 2   

and 1 2.   Now, since 1,   then the actions on each other can be written as  

3(7) 19 3 (mod 3 )g h h h  and  
3(7) 19 3 (mod 3 ).h g g g   By Proposition 3.1, the actions 

are compatible if  
g h hg g and  .

h g gh h  Now, consider the first compatibility 

conditions.  
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19

1919

19 19 3

 

          since 19 19 (mod3 )

.

g h h

g

g g

g

g

h





 



                                   

Similarly with the second compatibility conditions. Thus, we conclude that the actions 

19g h h and 19h g g  are compatible in 3 33 3
.C C  Next, if ,G H then by the similar 

way, the compatible pair of actions for the finite cyclic groups of p-power order have 

been determined and presented in Table 4.2.  

Table 0.1 Compatible Pairs of Actions for Cyclic Groups of p-Power Order when 
.G H  

Groups p  k    g  p  l    h  ( , )g h
 

 

33
G H C 

 
 

3 1 1 19 3 1 1 19 (19,19) 

3 4 1 10 3 1 2 1 (10,1) 

3 5 2 1 3 7 1 19 (1,19) 

3 8 2 1 3 7 2 1 (1,1) 

35
G H C 

 

5 1 1 51 5 1 1 51 (51,51) 

5 2 1 101 5 2 2 1 (101,1) 

5 6 2 1 5 8 1   26 (1,26) 

5 12 2 1 5 16 2 1 (1,1) 

37
G H C 

 

7 1 1 99 7 1 1 99 (99,99) 

7 2 2 1 7 4 1 50 (1,50) 

7 6 1 246 7 8 2 1 (246,1) 

7 10 2 1 7 12 2 1 (1,1) 

311
G H C 

 

11 1 2 1 11 1 1 243 (1,243) 

11 2 1 485 11 4 1 969 (485,969) 

11 3 2 1 11 2 1 485 (1,485) 

11 6 2 1 11 10 2 1 (1,1) 

313
G H C 

 

13 1 1 339 13 1 1 339 (339,339) 

13 4 1 1353 13 2 2 1 (1353,1) 

13 6 2 1 13 4 1 1353 (1,1353) 

13 10 2 1 13 8 2 1 (1,1) 

317
G H C 

 

17 1 1 579 17 1 1 579 (579,579) 

17 2 1 1157 17 4 2 1 (1157,1) 

17 6 2 1 17 2 1157 1 (1,1157) 

17 8 2 1 17 10 2 1 (1,1) 

319
G H C 

 

19 1 1 723 19 1 1 723 (723,723) 

19 2 2 1 19 4 2 1 (1,1) 

19 4 1 2889 19 6 2 1 (2889,1) 

19 8 2 1 19 10 1 362 (1,362) 
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Table 0.2 Compatible Pairs of Actions for Cyclic Groups of p-Power Order when 

.G H  

Groups p
 k  


 

g
 

p
 l    h  ( , )g h

 

33
G C

 
and 

43
H C

 
 

3 1 1 19 3 1 1 19 (19,19) 

3 2 2 1 3 4 1 73 (1,73) 

3 4 1 19 3 2 3 1 (19,1) 

3 8 2 1 3 6 2 28 (1,1) 

35
G C

 
and 

45
H C

 

5 1 1 51 5 1 1 426 (51,426) 

5 2 2 1 5 4 1 451 (101,451) 

5 4 1 76 5 2 2 501 (76,501) 

5 8 2 1 5 6 3 1 (1, 1) 

37
G C

 
and 

47
H C

 

7 1 2 1 7 1 2 687 (1,687) 

7 2 1 197 7 4 1 50 (197,50) 

7 10 1 295 7 8 1 99 (295,99) 

7 4 2 1 7 5 3 1 (1,1) 

311
G C

 
and 

411
H C

 

11 1 2 1 11 1 1 12222 (1,12222) 

11 2 1 485 11 4 2 10649 (485,10649) 

11 6 1 122 11 8 2 6656 (122,6656) 

11 3 2 1 11 2 3 1 (1,1) 

313
G C

 
and 

413
H C

 

13 1 2 1 13 1 2 4395 (1,4395) 

13 8 1 508 13 2 1 20450 (508,20450) 

13 2 1 677 13 4 3 1 (677,1) 

13 6 2 1 13 3 1 8789 (1,16394) 

317
G C

 
and 

417
H C

 

17 1 1 579 17 1 2 9827 (579,9827) 

17 6 2 1 17 2 3 1 (1,1) 

17 8 1 4625 17 3 3 1 (4625,1) 

17 10 1 868 17 6 1 28034 (868,28034) 

319
G C

 
and 

419
H C

 

19 1 1 723 19 1 2 13719 (723,13719) 

19 2 2 1 19 3 3 1 (1,1) 

19 8 1 5777 19 2 3 1 (5777,1) 

19 4 2 1 19 10 1 362 (1,362) 

 

In the next section, some related results on the compatible actions are discussed. 

 

4.5 Compatible Actions That Have Even Order of Actions 

In this section, more results on the compatible actions for the finite cyclic groups 

are presented. Thus, the following proposition shows that if the groups of even order that 

act on each other with both actions have order two, then, the actions are compatible.  
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Proposition 4.2 

Let  1pG g C    and 1qH h C   , where p and q are different prime numbers that 

are greater than three with actions of g  on h and h  on g  are having order two. Then, the 

actions are compatible.  

Proof: 

Let  1pG g C    and 1qH h C   , where p and q are different prime numbers that 

are greater than three with actions of g  on h and h  on g  having order two and given by  

  g lh h  and   h kg g  

where l and k are positive integers. We need to prove that the actions satisfy the 

compatible conditions as stated in Proposition 3.1. Since G and H are groups of even 

order then the values of l and k  must be odd since gcd( 1, ) gcd( 1, ) 1q l p k     for the 

automorphisms.  Hence, 2 1l s   and  2 1k t    for the positive integers s and .t  Thus,  

 1l  (mod) 1p   and 1k   (mod) 1.q   Since the actions have order two, it follows 

Corollary 3.2 that  
g h hg g   and  .

h g gh h  Thus, the actions always act compatibly if 

they have order two.                                                                                                           

 

The following corollary is the specific case from Proposition 4.2, where p and q 

are equal. 

 

Corollary 4.3 

Let  1pG H C    be the cyclic groups with p as an odd prime greater than three. If both 

actions of G on H and H on G have order two, then, the actions are compatible. 

Proof: 

Suppose that 1pG H C    with p as an odd prime greater than three and both actions of 

G on H and H on G have order two. From Proposition 4.2, it follows that if the actions 

having order two, then, the actions are always compatible.                                                                                                           
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The following corollary shows the actions are compatible where one of the actions 

is trivial. 

Corollary 4.4 

Let  1pG g C    and 1qH h C     be the finite cyclic groups with p and q are 

different prime numbers and each of which acts on the other. If one of the actions is 

trivial, then any pair of actions of  1pC   and 1qC    are compatible. 

Proof: 

Let 1pG g C    and 1qH h C    be the finite cyclic groups with p and q are 

different prime numbers and each of which acts on the other. Without loss of generality, 

let the action of g  on h is trivial, that is   gh h  and the action of h  on g  be   h kg g  

with k is any positive integer. We need to show that the actions satisfy the compatibility 

conditions in Proposition 3.1. Since   gh h  observe that   
g h hg g , then, the first 

condition is hold. Since the action of g  on h  is trivial, observe that   

( 1) times

( . . . )      .

k

h kg g g g g g gh h h h

 

    

then the second condition is hold. Thus, the actions are compatible.                              

4.6 Conclusion 

In this chapter, the characterisation of the compatible mutual actions for a pair of 

the finite cyclic groups of the p-power order to act compatibility on each other has been 

characterised. Some examples also have been presented to explain the characterisation of 

the compatible mutual actions with same and different groups that act compatibly with 

each other. 
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CHAPTER 5 

 

 

THE NUMBER OF AUTOMORPHISMS AND COMPATIBLE ACTIONS 

5.1 Introduction 

In this chapter, the automorphisms of the finite cyclic groups of the p-power order, 

where p is an odd prime are investigated. Some number theory results are used in order 

to find the number of the automorphisms. This chapter contains the number of the 

compatible pairs of actions for the finite cyclic groups of the p-power order by using the 

necessary and sufficient conditions for a pair of such type of groups to act compatibly 

with each other. 

5.2 The Number of Automorphisms with Specific Order  

In this section, the number of the automorphisms of such type of groups with their 

specific order are found. Since our consideration groups are G and H be the finite cyclic 

groups of the p-power order, then, the action of the group G on the group H is a 

homomorphism from G to Aut(H) and the action of the group H on the group G is a 

homomorphism from H to Aut(G). Therefore, the number of the automorphisms of such 

type of groups need to be found before the number of the compatible pairs of actions can 

be determined. Hence, the number of the automorphisms for the finite cyclic groups of 

the p-power order with the respective order is given in the following proposition. 
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Proposition 5.1  

Let 
p

G C   be a finite cyclic group of the p-power order with p is an odd prime and

2.   Then, there exist 1( 1) kp p   automorphisms of order kp  where 1,2,..., 1.k    

Proof: 

Let  
p

G C   be a finite cyclic group of the p-power order with p is an odd prime and 

2.   Without a loss of generality, suppose that H be a finite cyclic p-subgroup of G 

such that 
kH p where 1,2,..., 1.k    Thus, each element that relatively prime with 

kp  has an order .kp  Since H is a cyclic subgroup, then by Definition 3.1, 

1( ) ( 1)k kp p p   , which gives the number of the automorphisms that have order .kp

                                                                                       

Next, the following proposition gives the total number of the automorphisms that 

have the p-power order for any finite cyclic group of the p-power order where p is an odd 

prime. 

Proposition 5.2  

Let 
p

G C   be a finite cyclic group of the p-power order with p is an odd prime and 

2  . Then, there exists 1 1p   automorphisms that have the p-power order. 

Proof:  

Let 
p

G C   be a finite cyclic group of the p-power order with p is an odd prime and 

2  . From Proposition 5.1, there are 1( 1) kp p   automorphisms of order kp  where  

1,2,..., 1.k   By using the generating function, the total number of the automorphisms 

that have the p-power is   

1 11 1
2 1 1

1 1

( 1) ( 1) 1
( 1) 1 1.

1

k k k

k k

p p p
p p p p p p p

p p p
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The next proposition shows that there is one element that has order two in each 

automorphism group of the finite cyclic group of the p-power order. 

Proposition 5.3 

For any automorphism group of the finite cyclic group of the p-power order, there is only 

one element of order two. 

Proof:  

Let 
p

G g C    be a finite cyclic group of the p-power order with p is an odd prime 

and 2  . By Theorem 3.1, 1 11 ( 1)
Aut( ) pp p p p

C C C C    
    and by Theorem 3.2, any 

finite cyclic group of even order is an isomorphic to 2 .n  Thus, 1 2( 1)
.np p

C 
  

Therefore, the element that have order two in 2n  is the solution of the congruence  0g 

(mod n). Hence, the only element that has order two in 2n  is  
2

.
n

n                                                                                          

 

By Theorem 3.1, the automorphism of the finite cyclic groups of the p-power 

order is the direct product of two finite cyclic groups. Thus, in this research only the 

second part of the direct product which 1p
C  of an automorphism group of such type 

groups are considered because we have focus on the compatible actions that have the p-

power order and the trivial action. However, we include some result on the first part of 

the direct product which 
1pC 
in the following corollary. 

Corollary 5.1 

Let 1pC   be a finite cyclic group of even order. Then, there are ( 1)p   elements that 

have order 1.p   

Proof: 

Let 1pC   be a finite cyclic group of even order. Furthermore, let 1.pg C  Without loss of 

generality, if gcd( , 1) 1,g p    then g  is one of the factors of 1.p   Otherwise, 

1.g p  Thus, by Definition 3.1, there are ( 1)p  elements that have order 1.p                                                                                                                      
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Next, Table 5.1 illustrates the number of the elements with their specific orders. 

Table 0.1 Number of Elements with Specific Orders.  

Order of element Number of elements 

1 1 

2 1 
kp

 
1( 1) kp p 
 

( 1) kp p
 

1( 1)( 1) kp p p  
 

( 1)p 
 

( 1)p 
 

 

The following example provides an explanation for the number of the 

automorphisms with their orders.   

Example 5.1 

Let 33
G g C  . Then   

(i) Aut(G) has only one automorphism of order one. 

(ii) Aut(G) has only one automorphism of order two. 

(iii) Aut(G) has 
3 13 1 8    automorphisms that have 3-power order. 

The next section explain about the number of the compatible pairs of actions for the 

finite cyclic groups of the p-power order. 

 

5.3 The Number of Compatible Pairs of Actions  

In this section, the number of the compatible pairs of actions can be determined 

by using the necessary and sufficient number conditions for the two finite cyclic groups 

of the p-power order, where p is an odd prime to act compatibly with each other. 

According to the order of the actions, the number of the compatible pairs of actions has 

been computed. 

The following proposition gives the number of the compatible pairs of actions for 

such type of groups where one of the actions has an order one. 



42 

Proposition 5.4 

Let 
p

G C  and 
p

H C   be the finite cyclic groups of the p-power order where p is an 

odd prime such that , 1.     If one of the actions is  where Aut( )G   and 1  , 

then the number of the compatible pairs of actions is 
1( 1) .p p  

 

Proof:  

Let Aut( )G   where 1   and , 1.    By Corollary 3.1, if G acts trivially on H, 

then any action of H on G, the mutual actions are compatible. By Theorem 3.1, 

1Aut( ) ( 1)H p p   , which is the number of the compatible pairs of actions.                                                                                                                                                                                                                                                  

    

Next, the number of the compatible pairs of actions for the two finite cyclic groups 

of the p-power order, where p is an odd prime has been determined when one of the 

actions has an order kp where 1,2,..., 1.k    By using the necessary and sufficient 

number theoretical conditions for such type groups, the number of the compatible pairs 

of actions for the specific value of k is given in the following proposition.  

Proposition 5.5 

Let 
p

G C  and 
p

H C  be finite cyclic groups of p-power order where p is an odd 

prime. Furthermore, let Aut( )G  with 
kp  where 1,2,..., 1k   and Aut( )H  

with , 3.    Then, the number of the compatible pairs of actions is 

1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p  



    where   min ,r k    and 1,2,..., 1.k     

 

Proof:  

Let 
p

G C  and 
p

H C  be finite cyclic groups of p-power order where p is an odd 

prime. Furthermore, let Aut( )G  with 
kp  where 1,2,..., 1k   and Aut( )H

with , 3.    By Proposition 5.1, there are 1( 1) kp p   automorphisms of order kp
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where 1,2,..., 1k   and by Theorem 3.4, the actions are compatible with 1  and 

.kp
   Thus, we shall consider the two cases as follow:  

Case I: Suppose that 1,   then by Corollary 3.1, when one of the actions is trivial, 

then the actions are compatible. Thus, there are 1( 1) kp p   compatible pairs of actions 

under this case. 

Case II: Suppose that kp
   where 1,2,..., 1k     and by Theorem 3.4, the actions 

are compatible when  min , .k k     Hence, the number of the compatible pairs of 

actions for every k is the summation of the possibilities of the actions to be compatible, 

which are   

    1 1 2 1 3 1 1 1 2 1 1 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)p p p p p p p p p p p p                   
 

 

                                     
 min , 1 1

1

( 1) ( 1)
r

k i

i

p p p p
    



   
    

where  min , .r k     By  Proposition  5.1, there are 
1( 1) kp p   automorphisms of  

order .kp  Thus, there are 
1 1

1

( 1) ( 1)
r

k i

i

p p p p 



  compatible pairs of actions under this 

case. Therefore, in total there are 1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p  



     compatible pairs 

of actions with  min , .r k                                                                                                    

   

The following proposition gives the total number of the compatible pairs of 

actions for two finite cyclic groups of the p-power order when one of the actions has the   

p-power order. 

Proposition 5.6  

Let 
p

G C  and 
p

H C  be finite cyclic groups of p-power order where p is an odd 

prime such that , 3.      Then, the total number of the compatible pairs of actions is 

1 1
1 1

1 1 1

( 1) 1 ( 1) ,
r

k i

k k i

p p p p
  

 

  

 
   

 
   where  min ,r k    and 1,2,..., 1.k    
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Proof: 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order where p as an 

odd prime such that , 3.     Furthermore, let Aut( )G  and Aut( )H with
kp 

where 1,2,..., 1.k   From Proposition 5.5, there are 

1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p  



    compatible pairs of actions where 

 min ,r k    and 1,2,..., 1.k   Thus, in total if all k’s are considered, then the 

number of the compatible pairs of actions are given in the following. 

 

1 1 1 1 1 1 1 1

1 1

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
r r

k k i i

i i

p p p p p p p p p p p p     

 

 
          

 
    

                                                                2 1 2 1 1

1

( 1) ( 1) ( 1)
r

i

i

p p p p p p  



 
      

 
  

                                                                ( 1) 1 ( 1) 1 1

1

( 1) ( 1) ( 1)
r

i

i

p p p p p p     



 
    

 
  

                                                                  
1

1 1 1

1 1

( 1) ( 1) ( 1)
r

k k i

k i

p p p p p p


  

 

 
     

 
   

                                                                  
1 1 1

1 1 1

1 1 1 1

( 1) ( 1) ( 1)
r

k k i

k k k i

p p p p p p
    

  

   

        

                                                             
1 1

1 1

1 1 1

( 1) 1 ( 1) .
r

k i

k k i

p p p p
  

 

  

 
    

 
   

Therefore, there are 
1 1

1 1

1 1 1

( 1) 1 ( 1)
r

k i

k k i

p p p p
  

 

  

 
   

 
  compatible pairs of actions 

where  min ,r k    and 1,2,..., 1.k                                                                 

                                                                                                                

In general, the number of the compatible pairs of actions for two finite cyclic 

groups of the p-power order, where p is an odd prime for a given nonabelian tensor 

product 
p p

C C   can be found. The result is given in the following theorem.  
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Theorem 5.1 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order where p as an 

odd prime such that , 3.    Then, there exist 

1 1
1 1 1

1 1 1

( 1) ( 1) 1 ( 1)
r

k i

k k i

p p p p p p
 


 

  

  

 
     

 
   compatible pairs of actions that have 

order 
kp where 1,2,..., 1k    and  min , .r k    

 

Proof: 

Let 
p

G C  and 
p

H C   be the finite cyclic groups of the p-power order where p is an 

odd prime. Furthermore, let Aut( )G   where , 3.    The number of the compatible 

pairs of actions with specific order can be determined by separating them into two cases 

as follows. 

Case I: Suppose that 1.   By Proposition 5.4, when one of the actions is trivial,  

then, the number of the compatible pairs of actions is 
1( 1) .p p  

Case II: Suppose that 
kp  where 1,2,..., 1.k    By Proposition 5.6, the total 

number of the compatible pairs of actions is
1 1

1 1

1 1 1

( 1) 1 ( 1) ,
r

k i

k k i

p p p p
  

 

  

 
   

 
  where

 min ,r k    and 1,2,..., 1.k     

Hence, in total, the number of the compatible pairs of actions for the finite cyclic 

groups of the p-power order, where p is an odd prime are  

1 1
1 1 1

1 1 1

( 1) ( 1) 1 ( 1) ,
r

k i

k k i

p p p p p p
 


 

  

  

 
     

 
   

where  min ,r k    and 1,2,..., 1.k                                                                                        

By using Theorem 5.1, the number of the compatible pairs of actions for the finite 

cyclic groups of the p-power order, where p is an odd prime has been determined. 
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Next, with the help of GAP code in Figure 3.1, by input the different finite cyclic 

groups of 3-power order which are 33
C and 43

,C the following table illustrated the output 

of GAP which represented the compatible pairs of actions with their orders for the 

nonabelian tensor product of 33
C and 43

.C   
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Table 0.2.  Compatible Pairs of Actions for 3 43 3
.C C  

  k  l       k  l    

1 1 1 1  1 1 68 54 

1 1 2 54  1 1 70 27 

1 1 4 27  1 1 71 18 

1 1 5 54  1 1 73 9 

1 1 7 27  1 1 74 54 

1 1 8 18  1 1 76 27 

1 1 10 9  1 1 77 54 

1 1 11 54  1 1 79 27 

1 1 13 27  1 1 80 2 

1 1 14 54  9 4 1 1 

1 1 16 27  9 4 28 3 

1 1 17 18  9 4 55 3 

1 1 19 9  9 7 1 1 

1 1 20 54  9 7 28 3 

1 1 22 27  9 7 55 3 

1 1 23 54  3 10 1 1 

1 1 25 27  3 10 10 9 

1 1 26 6  3 10 19 9 

1 1 28 3  3 10 28 3 

1 1 29 54  3 10 37 9 

1 1 31 27  3 10 46 9 

1 1 32 54  3 10 55 3 

1 1 34 27  3 10 64 9 

1 1 35 18  3 10 73 9 

1 1 37 9  9 13 1 1 

1 1 38 54  9 13 28 3 

1 1 40 27  9 13 55 3 

1 1 41 54  9 16 1 1 

1 1 43 27  9 16 28 3 

1 1 44 18  9 16 55 3 

1 1 46 9  3 19 1 1 

1 1 47 54  3 19 10 9 

1 1 49 27  3 19 19 9 

1 1 50 54  3 19 28 3 

1 1 52 27  3 19 37 9 

1 1 53 6  3 19 46 9 

1 1 55 3  3 19 55 3 

1 1 56 54  3 19 64 9 

1 1 58 27  3 19 73 9 

1 1 59 54  9 22 1 1 

1 1 61 27  9 22 28 3 

1 1 62 18  9 22 55 3 

1 1 64 9  9 25 1 1 

1 1 65 54  9 25 28 3 

1 1 67 27  9 25 55 3 
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From Table 5.2 there are 90 compatible pairs of actions for 3 43 3
.C C  Hence, the 

result from Theorem 5.1 is equivalent with the number of the compatible pairs of actions 

given in Table 5.2. 

Next, an example is given by illustrating the number of the compatible pairs of 

actions for the given two finite cyclic groups of the p-power order. 

Example 5.2  

Let 33
G C  and 43

H C be the finite cyclic groups of 3-power order. Now, consider the 

actions of G and H act on each other such that g lh h  and h kg g for g G  and h H

with , .k l  From Theorem 5.1, the number of the compatible pairs of actions, when the 

actions that have order one and 3 ,k  where 1,2k   is given as follows: 

(i) when the action has order one, then the number of the compatible pairs of 

actions is 1 4 1( 1) (3 1)3 54.p p      

(ii) when the action has order 3 , 1,2,k k  then the number of the compatible pairs 

of actions is  

 min ,1 1 1
1 1 1

1 1 1 1

( 1) ( 1) ( 1)
k

k k i

k k k i

p p p p p p
      

  

   

        

2 2 2 3
1 1 1

1 1 1 1

(3 1)3 (3 1)3 (3 1)3
k

k k i

k k k i


  

   

        

                                   = 36 

Hence, in total there are 54 + 36 = 90 compatible  pairs of actions. 

In the next section, the number of the compatible pairs of actions when the groups 

are the same are presented. 
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5.4 The Number of Compatible Pairs of Actions When G = H 

It is well known from the definition of the nonabelian tensor product that when 

two groups are the same, the nonabelian tensor product is the nonabelian tensor square. 

Thus, from Theorem 5.1, the number of the compatible pairs of actions is given in the 

following corollary.  

Corollary 5.2  

Let 
p

G H C    be the finite cyclic groups of the p-power order where p is an odd prime 

and 3  . Then there are  

1 1
1 1 1

1 1 1

( 1) ( 1) 1 ( 1)
k

k i

k k i

p p p p p p
  


  

  

  

 
     

 
   

compatible pairs of actions. 

Proof: 

Let 
p

G H C    be the finite cyclic groups of the p-power order with p as an odd prime 

and 3  . Since ,G H  then  min , .   Therefore, from Theorem 5.1, there are 

1 1
1 1 1

1 1 1

( 1) ( 1) 1 ( 1)
k

k i

k k i

p p p p p p
  


  

  

  

 
     

 
   compatible pairs of actions.                    

In particular, the number of the compatible pairs of nontrivial actions for a given 

nonabelian tensor product 
p p

C C  and 
p p

C C  for the finite cyclic groups of the       

p-power order is equal. This result is given in the following corollary. 

Corollary 5.3  

Let 
p

G x C   and 
p

H y C   be the finite cyclic groups of the p-power order with 

p as an odd prime and , 3.    Then, the number of the compatible pairs of nontrivial 

actions that have the p-power order for the nonabelian tensor products,  
p p

C C  and 

p p
C C   are equal.  
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Proof: 

Let 
p

G x C   and 
p

H C y be the finite cyclic groups of the p-power order 

where p is an odd prime and , 3.    From proposition 5.6, there are 

1 1
1 1

1 1 1

( 1) ( 1)
r

k i

k k i

p p p p
  

 

  

   compatible pairs of nontrivial actions where 

1,2,..., 1k   and  min , .r k    Since    min , min , ,r k k        then 

for any given nonabelian tensor product 
p p

C C   and ,
p p

C C   the number of 

compatible pairs of nontrivial actions are the same.                                                                                                                                                                                                              

                                                                                                                                                           

5.5 Conclusion 

In this chapter, the number of the automorphisms of the finite cyclic groups of the 

p-power order with the respective order were determined. Furthermore, the number of 

the compatible pair of actions that have the p-power order between the two finite cyclic 

groups of the p-power order, where p is an odd prime were determined. By using the 

necessary and sufficient conditions, the number of the compatible pairs of actions has 

been computed according to the order of the action.  
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CHAPTER 6 

 

 

THE COMPATIBLE ACTION GRAPH AND ITS SUBGRAPH 

6.1   Introduction 

This chapter investigate the connection between the group theory and the graph 

theory. By extending the results on the compatible actions, a new graph and its 

subgraph specifically on the cyclic groups of p-power order with actions that have the 

p-power order is defined. Thus, some properties of the compatible action graph for such 

type of groups are given. 

 

6.2 Motivation of Compatible Action Graph 

 

The idea which makes us investigated the compatible actions for the subgroup of 

the finite cyclic groups of the p-power order is that, usually we think that the subgroup H 

from the group G should be all exists in the group G, but it is not necessary. Thus, with 

the compatible actions, there are some of the actions are existed in the automorphism of 

the subgroup H but not in the automorphism of the group G. Thus, the following example 

is given to show that there are compatible actions which are existed in subgroup 4 43 3
C C

but not in the group 5 53 3
.C C    

 

Example 6.1  

Let 53
G g C 

 
and 53

H h C   be finite cyclic groups of 3-power order. 

Furthermore, let  Aut G   and  Aut H  be two actions such that 10( )g g   and 
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10( )h h   
or equivalently 

10  gh h  and 10  h g g . Then, for the first compatibility 

condition,  

 

10

1010

91 10 5

 

          since 10 91 mod3

.

h g g

g

h h

h

h

h





 



 

Hence, the actions  and   are not compatible in 5 53 3
.C C  

 

Now, let 43
G g C 

 
and 43

H h C   be finite cyclic groups of 3-power 

order where G and H are subgroup of 53
C  . Furthermore, let  Aut G   and 

 Aut H  be two actions such that 10( )g g   and 10( )h h  , then by Proposition 

3.1, the actions are compatible if  
g h hg g and  .

h g gh h  or equivalently  
10  gh h  and 

10  h g g .  Now, consider the first compatibility conditions.  

 

10

1010

10 10 4

 

          since 10 10 mod3

.

h g g

g

h h

h

h

h





 



                                   

Same goes for the second compatibility conditions. Thus the actions  and   are 

compatible in 4 43 3
C C . 

 

More generally, the example below is given to illustrate the idea and the 

intersection between the group and the subgroup.  

 

Example 6.2  

Let 53
G C be a finite cyclic group of 3-power order, and let 43

H C be a subgroup of 

G.  For the nonabelian tensor product of the subgroup 4 43 3
C C , the pairs (10,10),

(19,19) , (37,37) , (46,46) , (64,64)  and (73,73)  are compatible in 4 43 3
C C  but not in

5 53 3
.C C  However, the pairs (10,28), (10,55), (19,28), (19,55), (28,10), (28,19), (28,28),  

(28,37), (28,46), (28,55), (28,64), (28,73),(37,28), (37,55), (46,28), (46,55), (55,10),  
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(55,19), (55,28), (55,37), (55,46), (55,55), (55,64), (55,73), (64,28), (64,28), (73,28)  and

(73,55)  are compatible and all represent the intersection between 5 53 3
C C

 
and 

4 43 3
.C C  

 

Therefore, to find the intersection between the group and the subgroup, the 

compatible action graph has been defined for this case. 

 

In the next section, the properties of the compatible action graph are presented.  

 

6.3   The Properties of the Compatible Action Graph 

In this section, the theoretical relationship and the connection between the group 

theory and the graph theory were studied. The graph   can be described as a discrete 

structure consisting of two sets, which are the set of vertices, which is denoted by ( )V   

and the set of edges connect these vertices, which is denoted by ( ).E    

This research is focusing on the compatible actions for the finite cyclic groups of 

the p-power order with the actions that have the p-power order. Thus, a new notation 

namely 
 p G H  is introduced to present the compatible action graph with actions that 

only have the p-power order. Thus, the following definition is extended from Sulaiman 

(2017) to the finite cyclic groups of the p-power order with all the actions that have the 

p-power order, where p is an odd prime and is given as follows.  

 

Definition 6.1 Compatible Action Graph of p-Power Order 

  

Let G and H be two finite cyclic groups of the p-power order with p is an odd prime. 

Furthermore, let ( , )   be a pair of the compatible actions for the nonabelian tensor 

product of G H , where Aut( )G   and Aut( ).H   Then,  
  ( ( ),p G H p G HV     

 ( ( ))p G HE   is a compatible action graph with the set of vertices  ( )p G HV  , which is 

the set of Aut( )G  and Aut( )H , and the set of edges,  ( )p G HE   which is the set of all 

compatible pairs of actions ( , ).    
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The order of the compatible actions graph for the finite cyclic groups of p-power 

order are studied. From Definition 3.6, the order of the graph G is defined as the number 

of the vertices in the graph G, which is denoted by .G  Hence, the order of the compatible 

action graph has been found and is denoted by 
 .p G H   Therefore, the order of the 

compatible action graph is considered into two cases, which are G H and .G H  

Thus, the order of the compatible action graph is given in the following proposition.  

Proposition 6.1  

Let 
p

G C  and 
p

H C  be the finite cyclic groups of p-power order with p is an odd 

prime and , 3.    Then, the order of the compatible action graph is;  

(i) 
1 1

 ( 1)( )p G H p p p  

     if .G H  

(ii) 
1

 ( 1)p G H p p

    if .G H  

 

Proof:  

Let 
p

G C  and 
p

H C  be the finite cyclic groups of p-power order with p is an odd 

prime and , 3.    From Definition 3.6, 
  ( ) .p G H p G HV     Furthermore, from 

Definition 3.11, 
 ( )p G HV   is the nonempty set of Aut( )G and Aut( ).H  Thus, there are 

two cases needed to be considered, which are G H and .G H  

 

Case I: Suppose that .G H  Then,  

1 1 1 1

 ( ) Aut( ) Aut( ) ( 1) ( 1) ( 1)( ).p G HV G H p p p p p p p      

           

 

Case II: Suppose that .G H  Without loss of generality, let  be the order where 

,   then 
1

 ( ) Aut( ) ( 1) .p G HV G p p

       

 

Therefore, 
1 1

 ( 1)( )p G H p p p  

     when G H and 
1

 ( 1)p G H p p

     when 

.G H                                                                                                                                                                                                                                        

 

Since the action of G on H is the mapping : Aut( ),G H  then the compatible 

action graph of the finite cyclic groups of the p-power order is directed multigraph.  
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Thus, there exist vertices that are connected by multiple edges. However, the loop 

is only present when .G H  The cardinality of edge of the compatible action graph for 

the finite cyclic groups of the p-power order is given in the following proposition. 

Proposition 6.2 

Let 
p

G C   and 
p

H C  be the finite cyclic groups of p-power order with p is an odd 

prime and , 3.    Then,  

1 1
1 1 1

 

1 1 1

( ) ( 1) ( 1) 1 ( 1) ,
r

k i

p G H

k k i

E p p p p p p
 


 

  



  

 
       

 
   

where  min ,r k    and 1,2,..., 1.k    

 

Proof: 

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    From Definition 6.1, 
 ( )p G HE   is the set of all compatible pairs

( , )  , where Aut( )G   and Aut( ).H   Then, by Theorem 5.1, 

1 1
1 1 1

 

1 1 1

( ) ( 1) ( 1) 1 ( 1) .
r

k i

p G H

k k i

E p p p p p p
 


 

  



  

 
       

 
   

where  min ,r k    and 1,2,..., 1.k                                                                     

 

In the terminology of the graphs with directed edges, the edges have directions in 

the directed graph. Thus, the initial vertex of the direction is called as the initial vertex 

and the ending vertex is the terminal vertex.  

Hence, the compatible pairs of actions ( , )    be defined as the directed edge of 

the compatible action graph. Therefore, from Definition 3.4, the vertex   is considered 

as an initial vertex of ( , )  and   is the terminal vertex of ( , ).     

In addition, the out-degree of the vertex v in the directed graph is denoted by 

deg ( ),v  where it needs to be found in order to investigate the number of the edges with 

v as their initial vertex. Thus, the number of the directed edges, the out-degree of the 

vertex v is presented in the following proposition. 
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Proposition 6.3 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    Furthermore, let 
 ( )p G Hv V    where Aut( )v G and .kv p  

Then deg ( )v is one of the following; 

(i) 
1( 1)p p    if  0.k   

(ii) 1 1 1

1

( 1) ( 1) ( 1) ,
r

k k i

i

p p p p p p  



     with r  min , k     

if 1,2,..., 1.k    

 

Proof: 

Let
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p is an odd 

prime and , 3.    Furthermore, let 
 ( )p G Hv V    where Aut( )v G  and .kv p

 

Then, there are two cases are considered as follows. 

Case I: Let 0,k   then by Proposition 5.4, the actions are compatible when the action of 

G on H  is trivial. Thus, 1deg ( ) ( 1) .v p p     

Case II: Let 1,2,..., 1,k    then by Proposition 5.5, there are  

1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p  



     compatible pairs of actions where 

 min ,r k    and 1,2,..., 1.k    Thus  

1 1 1

1

deg ( ) ( 1) ( 1) ( 1) .
r

k k i

i

v p p p p p p   



                                                                                               

From Definition 3.5, the in-degree of the vertex v is denoted by deg ( )v , which 

is the number of the edges with v as their terminal vertex. The following proposition 

shows the number of the directed edges, where the in-degree of the vertex v are given. 
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Proposition 6.4 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    Furthermore, let 
 ( )p G Hv V    where Aut( )v H  and  

.kv p


  Then deg ( )v is one of the following; 

(i) 1( 1)p p  if  0.k   

(ii) 1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p
   



    with  min ,r k     if  

                   1,2,..., 1k     

Proof: 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    Furthermore, let 
 ( )p G Hv V    where Aut( )v H  and 

.kv p


  Then there are two cases are considered as follows.  

Case I: From Proposition 5.4, the actions are compatible when the action of H on G is 

trivial. Thus, 1deg ( ) ( 1) .v p p     

Case II: From Proposition 5.5, there are 1 1 1

1

( 1) ( 1) ( 1)
r

k k i

i

p p p p p p
   



     

compatible pairs of actions, where 1,2,..., 1k     and  min , .r k     Thus, 

1 1 1

1

deg ( ) ( 1) ( 1) ( 1) .
r

k k i

i

v p p p p p p
    



                                                                                                                            

In the compatible action graph, when ,G H  the number of the directed edges, 

the out-degree of the vertex v, and the number of the directed edges from the in-degree 

of the vertex v are equivalent. This result is presented in the following corollary.  
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Corollary 6.1 

Let G and H be the finite cyclic groups of the p-power order with p is an odd prime and

 ( )p G Hv V    . If ,G H  then deg ( ) deg ( )v v  for 
 .p G G  

 

Proof: 

Let G and H be the finite cyclic groups of the p-power order with p as an odd prime and 

.G H  From Propositions 6.3 and 6.4, deg ( ) deg ( )v v   for any 
 ( ).p G Gv V                    

                                                                                                     

Next, the connectivity of the compatible action graph is studied. The compatible 

action graph is connected when there is a path between the pair of the vertices. Thus, the 

connectivity of the compatible action graph for the finite cyclic groups of the           p-

power order, where p is an odd prime are presented in the following proposition.   

Proposition 6.5 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Then, 
 p G H

 
is the connected graph.  

 

Proof: 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Furthermore, let 
1  ( )p G Hv V    with 

1 Aut( )v G and 
1v  is 

trivial action. By Proposition 6.3, 1

1deg ( ) ( 1) .v p p    Since 1Aut( ) ( 1) ,H p p    

then 1v  is compatible with every Aut( ).v H  Similarly, let 
2  ( )p G Hv V    with 

2 Aut( )v H  and 2v  is trivial action, then from Proposition 6.4, the 

1

2deg ( ) ( 1) ,v p p    since 1Aut( ) ( 1)G p p  , then 2v  is compatible with every 

Aut( ).v G  Thus, 
 p G H  is the connected graph.                                                                                                                                                                                                                                                           

           

Supposed that ,G H  then, the compatible action graph has the property that the 

vertex can be partitioned into two sets, namely 1V  and 2.V  Therefore, every edge in the 

compatible action graph connects a vertex in 1V  and 2 ,V then, the compatible action graph 

became a bipartite graph. Thus, this result is presented in the following proposition.  
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Proposition 6.6 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Then, 
 p G H  is the bipartite graph if and only if .G H  

 

Proof: 

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    First need to show that if the compatible action graph 
 p G H  is 

a bipartite graph then .G H  By contradiction method,  assume that G H  and, let 
1v
 

be the trivial action of Aut(G). By Proposition 6.3, 1

1deg ( ) ( 1)v p p   , which gives 

the actions compatible with any other action. Now, let 
2  ( )p G Hv V   , such that 1v  and 

2v
 
are compatible. Then, by Corollary 3.1, 

1v  and 
2v
 
are also compatible. Thus, 

1v  and 

2v
 
could not be partitioned into two disjoint sets, which contradicts on the assumption. 

Thus, .G H                         

 

Next, by contradiction method, suppose that G H  and assume that the 

compatible action graph 
 p G H  is not a bipartite graph. Since 

 p G H  is not a bipartite 

graph, then, there exists 
1 2  , ( )p G Hv v V   , such that 1v  and 2v  could not be partitioned 

into two disjoint sets with 
1v  and 

2v  are both compatible on each other. Thus, from 

Definition 6.1, this happens only when G H , which contradicts to the assumption. 

Therefore, 
 p G H  is a bipartite graph.                                                                                                                                                                                                                                                                          

The complete graph nK
 
contains exactly one edge between each pair of the 

vertices. As a result, the compatible action graph is not a complete graph. This result is 

given as follows.  
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Proposition 6.7 

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Then, 
 p G H  is not a complete graph. 

 

Proof: 

By Theorem 3.1, 1Aut( ) ( 1)
p

C p p

   and by Proposition 5.1, there are 1( 1) kp p 

automorphisms of order kp  
where 1,2,..., 1.k    That is mean                              

1( 1) kp p   1( 1)p p  which mean that there exist some nontrivial actions in 

Aut( )
p

C   are not of p-power order. Then, by Theorem 3.4, these actions are not 

compatible which mean there is no edges connect these vertices. Thus, 
 p G H  is not a 

complete graph.                                                                                                                     

 

6.4 Subgraph of Compatible Action Graph      

 

Let 
p

C   and 
p

C   be two finite cyclic groups of the p-power order where p is an 

odd prime and , 3.    Furthermore, suppose that ip
C   and ip

C    are two subgroups of 

ip
C   and  ip

C  respectively with  1,2,..., min , 2.i     This section concern on the 

intersect between the two compatible action graphs which are 
p p

C C 
 
and 

i ip p
C C    

to investigate the number of the edges and vertices. Therefore, this section presented the 

necessary and sufficient conditions for the cyclic subgroups of the p-power order acting 

on each other in a compatible way when the order of the subgroups are reduced by the 

same power order from the order of the groups. Then the order of the subgraph and the 

number of the edges of the subgraph of compatible action graph are investigated. Thus, 

the following proposition shows the necessary and sufficient conditions for ip
C   and  

ip
C    to act compatibly on each other. 
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Proposition 6.8 

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    Furthermore, let ( , )   is a compatible pair of actions for 

p p
C C   where ( ) kg g   

and ( ) lh h   with , .k l  Then, ( , )   is a compatible 

pair of actions for i ip p
C C  

 
where 

 mod ( )
ik pg g






  and 
 mod ( )

il ph h





   with 

 1,2,..., min , 2.i     

 

Proof:  

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p is an 

odd prime and , 3.    Furthermore, let ( , )   is a compatible pair of actions for 

p p
C C   where ( ) kg g   

and ( ) lh h   with , .k l  Without loss of generality, 

assume that ip p
C C    and ip p

C C   , then ip
C g   and ip

C h   for some 

g G  and .h H  Since ( , )   is a compatible pair of actions for 
p p

C C  , then there 

exist a mutual actions of G and H on each other such that h kg g  and g lh h  for 

, .k l  In order to prove that 
 mod  ( )

ik pg g





  and 
 mod ( )

il ph h





   is a compatible pair 

of actions for i ip p
C C   , by Proposition 3.3, there are three conditions need to be 

satisfied as follows. 

 

(i)    gcd , gcd , 1.i ik p l p     

Define that : G G   with ( ) kg g   is an automorphism if and only if gcd( , ) 1.k p   

Since p is an odd number because p is odd, then k must be even. Therefore, 

gcd( , ) 1.ik p   Similarly, there exist a mutual actions of G and H such that .g lh h  

Since gcd( , ) 1l p  , then gcd( , ) 1.il p    Hence, gcd( , ) gcd( , ) 1,i ik p l p     and 

the first condition is satisfied. 
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(ii) 1 
ipk



  (mod ip ) and 1 
ipl



 (mod  ).ip  

 

Let H acts on G, then there exist a mutual action of H on G such that h kg g , then 

1  .
i ip pH h kg g g g

  

    Thus 1 mod .
ip ik p

    Similarly, if G acts on H, there exist 

a mutual action of G on H such that g lh h , then 1 mod .
ip il p

    Hence, the second 

condition is satisfied. 

(iii)  1 modl ik k p   and 1 1 kl   (mod ip  ). 

 

By Proposition 3.1, G and H act compatibly on each other if and only if  
( )  

g h hg g  and 

( )  .
h g gh h  From the first condition,  

g l lh h kg g g   and .h kg g  Thus 

 modl ik k p  or equivalently  1 modl ik k p   since  gcd , 1.ik p   Similarly 

for the second condition is 1 kl  (mod ip  ) or equivalently 1 1 kl   (mod ip  ) since 

gcd( , ) 1.il p    Hence, the third condition is hold. Therefore, 
 mod  ( )

ik pg g





  and 

 mod ( )
il ph h






 
 
is a compatible pair of actions for i ip p

C C   .                                                                                                                                                                                                                                             

Next, the order of 
i ip p

C C  
 
is investigated. From Proposition 6.1, the order of 

i ip p
C C  

 
is considered into two cases which are G H  and .G H  Thus, the 

following proposition gives the order for 
i ip p

C C   . 

Proposition 6.9 

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Furthermore, let 
p p

C C 
 
and 

i ip p
C C   be two compatible 

action graphs with 1,2,..., 2.i    Then, the order of the subgraph of compatible action 

graph is 

1
.

i ip p p p
C C C Cip         
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Proof:  

Let 
p

G C  and 
p

H C  be the finite cyclic groups of p-power order with p is an odd 

prime and , 3.    From Proposition 6.1, the order of the compatible action graph 

considered into two cases which are G H  and .G H  Thus, two cases are considered 

as follows.  

 

Case I: Suppose that .G H  By Proposition 6.1(i), 1 1

 ( 1)( ).p G H p p p  

     Thus, 

1 1 1 1

  

( 1) 1
( 1)( ) ( ) .

i ip p p p

i i

p C C p C Ci i

p
p p p p p

p p   

   

 

     

 


         

 

Case II: Suppose that .G H  From Proposition 6.1(ii), 1

 ( 1) .p G H p p

    Thus,  

1 1

  

( 1) 1
( 1) .

i ip p p p

i

p C C p C Ci i

p
p p p

p p   

 

 

  

 


                                                       

 

The next proposition shows the number of the edges of the subgraph of 

compatible action graph. From Theorem 5.1, there are two cases are considered as 

follows.  

 

Proposition 6.10  

Let 
p

G C 
 
and 

p
H C 

 
be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Furthermore, let 
 

p p
p C C 

 
and 

 i ip p
p C C  

 
be two compatible 

action graphs when 1,2,..., 2i    and 
 ( )

i ip p
p C Cv V

    . Then  

(i) If 0k  , then 1

 

( 1)
( ) .

i ip p
p C C i

p
E p

p 



 






   

(ii) if 1,2,..., 1k   ,then
1 1

1 1

 

1 1 1

( ) ( 1) 1 ( 1)
i ip p

r
k i

p C C

k k i

E p p p p
 

 

 

 
 



  

 
     

 
   

                  when r   min , ,i i k      
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Proof:  

Let 
p

G C  and 
p

H C  be the finite cyclic groups of the p-power order with p as an 

odd prime and , 3.    Furthermore, let 
 

p p
p C C  and 

 i ip p
p C C   be two compatible 

action graphs where 1,2,..., 2i    and 
 ( )

i ip p
p C Cv V

    , then two cases are 

considered as follows.  

 

Case I: Let 0k  , then by Proposition 6.3(i), 1deg ( ) ( 1)v p p    and v represent the 

trivial automorphism. By Corollary 3.1, v is compatible with any vertex and by 

Proposition 5.4, there exist  1( 1)p p    compatible pairs of actions. Thus,  

1 1

 

( 1)
( ) ( 1) .

i ip p

i

p C C i

p
E p p p

p 

 

 

  




     

 

Case II: Let 1,2,..., 1k   , then by Theorem 3.4, the actions are compatible when 

min{ , }.k k     By Proposition 6.3(ii),  

1 1 1

1

deg ( ) ( 1) ( 1) ( 1) ,
r

k k i

i

v p p p p p p   



      

where r   min , .k    From the assumption we have .
i ip p

C Cv
    Thus,  

1 1
1 1

 

1 1 1

( ) ( 1) 1 ( 1)
i ip p

r
k i

p C C

k k i

E p p p p
 

 

 

 
 



  

 
     

 
  , with r   min , .i i k          

 

Next, the number of the compatible pairs of actions in the intersection between 

the compatible action graph and its subgraph has been determined. Thus, for this case 

only when i = 1  is considered as a reduce for the power of the subgroups of the finite 

cyclic groups of p-power order. Therefore, when one of the actions is trivial, then the 

number of the compatible pairs of actions in the intersection between the compatible 

action graph and its subgraph is presented in the following lemma.  
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Lemma 6.1         

Let 
 

p p
p C C 

 
and 

1 1 
p p

p C C  
 
be two compatible action graphs with p is an odd prime 

and , 3.    Furthermore, let  be the trivial action in  
1 1

.
p p p p

C C C C      
 
Then 

there are   
1( 1)p p

p

 
 compatible pairs of actions in 

1 1
.

p p p p
C C C C        

 

Proof:  

Let 
 

p p
p C C 

 
and  

1 1 
p p

p C C   be two compatible action graphs with p is an odd prime 

and , 3.    Furthermore, let  be the trivial action in 
1 1  .

p p p p
p C C p C C        By 

Corollary 3.1, the action   is compatible with any other action. Since 1p
C   and 1p

C     

are subgroups from 
p

C   and 
p

C  , then 
1 1 1 1   ( ) .

p p p p p p
p C C p C C p C C               Thus, 

the action   is compatible with any other action in 
1 1 .

p p
p C C    By Proposition 6.10(i), 

when one of the actions is trivial, there are 1( 1)
i

p
p

p

 
 compatible pairs of actions. Since 

1i  , then there are 1( 1)p
p

p

 
 compatible pairs of actions in 

1 1  .
p p p p

p C C p C C                                                                                                                             

 

 

The next lemma gives the number of the compatible pairs of actions in the 

intersection between the compatible action graph and its subgraph when one of the 

actions that has the p-power order.  

 

Lemma 6.2  

Let 
 

p p
p C C 

 
and 

1 1 
p p

p C C  
 
be two compatible action graphs with p is an odd prime 

and , 3.     Furthermore, let  be the nontrivial action in 
1 1  .

p p p p
p C C p C C      

Then, there are   
2 2

1 1

1 1 1

( 1) 1 ( 1)
r

k i

k k i

p p p p
  

 

  

 
   

 
 

 

compatible pairs of actions in

1 1  
p p p p

p C C p C C       ,  where r   min , 1k     and 1,2,..., 2.k    
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Proof:    

From Proposition 6.10(ii), the number of the compatible pairs of actions for the subgraph 

 i ip p
p C C  

 
is   

1 1
1 1

1 1 1

( 1) 1 ( 1)
r

k i

k k i

p p p p
  

 

  

 
   

 
  , where 1,2,..., 1k   and r 

 min , .i i k      Since k is hold for each values of 1,2,..., 1  , then k is also hold 

for 1,2,..., 2.   Since the order of the actions is reduced, then the bound 

represent the power of the order of the subgroups.   and   where  min , ,r k i   

Therefore, there are 
2 2

1 1

1 1 1

( 1) 1 ( 1)
r

k i

k k i

p p p p
  

 

  

 
   

 
   compatible pairs of actions in 

1 1  
p p p p

p C C p C C        where r   min , 1k     and 1,2,..., 2.k                       

 

In general, the number of the compatible pairs of actions in the intersection 

between the compatible action graph and its subgraph for the finite cyclic groups of the 

p-power order where p is an odd prime is given in the following theorem.  

 

Theorem 6.1  

Let 
 

p p
p C C 

 
and 

1 1 
p p

p C C  
 
be two compatible action graphs with p is an odd prime 

and , 3.      Then, there are   
1 2 2

1 1

1 1 1

( 1)
( 1) 1 ( 1)

r
k i

k k i

p p
p p p p

p

    
 

  

  
    

 
  where  

where r   min , 1k     and 0,1,2,..., 2.k    

 

Proof: 

Let 
 

p p
p C C 

 
and 

1 1 
p p

p C C  
 
be two compatible action graphs with p is an odd prime 

and , 3.      the number of the compatible pairs of actions in the intersection between 

the compatible action graph and its subgraph can be determined by separating into two 

cases as follows.  

 

Case I: Suppose that the action is trivial. By Lemma 6.1, when the action is trivial, there 

are 1( 1)p
p

p

 
 compatible pairs of actions in 

1 1  .
p p p p

p C C p C C        
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Case II: Suppose that the action is nontrivial of p-power order. By Lemma 6.2, when the 

action that have the p-power order, there are  
2 2

1 1

1 1 1

( 1) 1 ( 1)
r

k i

k k i

p p p p
  

 

  

 
   

 
 

compatible pairs of actions in 
1 1  

p p p p
p C C p C C       ,  where r   min , 1k     and 

1,2,..., 2.k    

Thus, in total, there are 
1 2 2

1 1

1 1 1

( 1)
( 1) 1 ( 1)

r
k i

k k i

p p
p p p p

p

    
 

  

  
    

 
 

compatible pairs of actions in 
1 1  ,

p p p p
p C C p C C       where r   min , 1k     and  

1,2,..., 2.k                                                                                                                                         

   

6.5 Conclusion   

In this chapter, the compatible action graph and it is subgraph for the finite cyclic 

groups of the p-power order, where p is an odd prime are introduced. Some properties of 

the compatible action graph are presented, such that the cardinality of the edge, the order 

of the compatible action graph, the number of the directed edges from the in-degree and 

the out-degree of the vertex v, the bipartite graph, the connectivity of the compatible 

action graph, and the compatible action graph is not complete. Furthermore, new 

necessary and sufficient conditions for the subgraph of compatible action graph to act 

compatibly on each other are provided. Then, the number of the edges and the order of 

the subgraph of compatible action graph are presented. However, the number of the 

compatible pairs of actions in the intersection between the compatible action graph and 

its subgraph are also given.  
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CHAPTER 7   

 

 

SUMMARY AND CONCLUSION 

7.1  Summary of The Research 

This thesis started with the first chapter, which is an introduction chapter. This 

chapter contains research background, problem statement, objectives of the research, 

research scope, research significance, and thesis organisation.  

Chapter 2 focuses on the literature review of this research, which focuses on the 

compatible actions and the nonabelian tensor products of the groups. Various works 

related to the compatible actions, nonabelian tensor product of groups, and graph theory 

by different researchers were discussed in this chapter.   

Some definitions and preliminary results on the automorphisms of the finite cyclic 

groups of the p-power order, compatible conditions, number theory, graph theory and 

GAP coding are given in Chapter 3. By using the GAP software, the number of the 

compatible pairs of actions for the finite cyclic groups of the p-power order has been 

computed and it is then verified with the theorem.  All results in this chapter are used in 

the next chapters in order to prove the new results. 

Meanwhile, some properties of the automorphisms for the finite cyclic groups of 

the p-power order, where p is an odd prime, are presented in Chapter 4. However, the 

necessary and sufficient conditions for a pair of actions that have the p-power order to 

act compatibly on each other have been determined. This chapter contains the 

compatibility for the actions that have order two. 
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 Chapter 5 focuses in determining the number of compatible pairs of actions for 

the finite cyclic groups of the p-power order, where p is an odd prime. The number of the 

automorphisms for the finite cyclic groups of the p-power order, where p is an odd prime 

with the specific order were given first. According to the order of the actions, there are 

two cases in determining the number of the compatible pairs of actions for such type of 

groups, which are the trivial action and the actions that have the p-power order. From the 

results, the number of the compatible pairs of nontrivial actions that have the p-power 

order for the given nonabelian tensor product for such type of groups are the same. 

Lastly, the compatible action graph and its subgraph have been introduced for the 

finite cyclic groups of the p-power order, where p is an odd prime. The compatible action 

graph was denoted by 
 p G H  and consists of two nonempty sets; the set of the vertices 

 ( )p G HV  , which is a nonempty set of Aut(G) and Aut(H), and the set of the edges 

 ( )p G HE  , which is a nonempty set of all the compatible pairs of actions ( , ).    

Consequently, some  necessary and sufficient conditions for the subgroups of such type 

of groups to act compatibly on each other are provided. Then, the number of compatible 

pairs of actions which represents the intersection between the compatible action graph 

and its subgraph has been given . 

7.2        Recommendation for Future Research  

This research focuses only on the finite cyclic groups of the p-power order, where 

p is an odd prime. The main concern of this research is to find the maximum different 

nonabelian tensor product by determining the exact number of the compatible pair of 

actions for 
p p

C C   without finding the nonabelian tensor product. Thus, some 

suggestions for further research are presented as follows: 

(i) Determine the general presentation for the automorphism group of the finite 

cyclic groups of the p-power order, where p is an odd prime. 

(ii) Determine the compatible actions for the finite cyclic groups of the p-power 

order, where p is an odd prime by representation as a matrix.  

(iii) Find the compatible actions for the finite cyclic groups of the p-power order, 

where p is an odd prime with the actions that have an even order. 
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(iv) Find the nonabelian tensor product for the finite cyclic groups of the           p-

power order, where p is an odd prime when the actions that have even order. 

(v) Find the intersection between the compatible action graph and its subgraph 

for the finite cyclic groups of the p-power order, where p is an odd prime when 

the value of i greater than one. 
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APPENDIX A 

 

THE OUTPUT OF GAP SOFTWARE 

 

The outputs for the GAP coding given in Figure 3.1 are stated as below. This 

output presents the list of the automorphisms with their specific order that satisfying the 

compatible conditions and the total of the number of the compatible actions. 

________________________________________________________________ 

gap> CompatibleAction(9,9); 

k=4 (order action=3),l=4 (order action=3) Compatible 

k=4 (order action=3),l=7 (order action=3) Compatible 

k=7 (order action=3),l=4 (order action=3) Compatible 

k=7 (order action=3),l=7 (order action=3) Compatible 

No of Compatible4 

gap> CompatibleAction(27,27); 

k=4 (order action=9),l=10 (order action=3) Compatible 

k=4 (order action=9),l=19 (order action=3) Compatible 

k=7 (order action=9),l=10 (order action=3) Compatible 

k=7 (order action=9),l=19 (order action=3) Compatible 

k=10 (order action=3),l=4 (order action=9) Compatible 

k=10 (order action=3),l=7 (order action=9) Compatible 

k=10 (order action=3),l=10 (order action=3) Compatible 

k=10 (order action=3),l=13 (order action=9) Compatible 

k=10 (order action=3),l=16 (order action=9) Compatible 

k=10 (order action=3),l=19 (order action=3) Compatible 

k=10 (order action=3),l=22 (order action=9) Compatible 

k=10 (order action=3),l=25 (order action=9) Compatible 

k=13 (order action=9),l=10 (order action=3) Compatible 

k=13 (order action=9),l=19 (order action=3) Compatible 

k=16 (order action=9),l=10 (order action=3) Compatible 

k=16 (order action=9),l=19 (order action=3) Compatible 
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k=19 (order action=3),l=4 (order action=9) Compatible 

k=19 (order action=3),l=7 (order action=9) Compatible 

k=19 (order action=3),l=10 (order action=3) Compatible 

k=19 (order action=3),l=13 (order action=9) Compatible 

k=19 (order action=3),l=16 (order action=9) Compatible 

k=19 (order action=3),l=19 (order action=3) Compatible 

k=19 (order action=3),l=22 (order action=9) Compatible 

k=19 (order action=3),l=25 (order action=9) Compatible 

k=22 (order action=9),l=10 (order action=3) Compatible 

k=22 (order action=9),l=19 (order action=3) Compatible 

k=25 (order action=9),l=10 (order action=3) Compatible 

k=25 (order action=9),l=19 (order action=3) Compatible 

No of Compatible28 

gap> CompatibleAction(25,25); 

k=6 (order action=5),l=6 (order action=5) Compatible 

k=6 (order action=5),l=11 (order action=5) Compatible 

k=6 (order action=5),l=16 (order action=5) Compatible 

k=6 (order action=5),l=21 (order action=5) Compatible 

k=11 (order action=5),l=6 (order action=5) Compatible 

k=11 (order action=5),l=11 (order action=5) Compatible 

k=11 (order action=5),l=16 (order action=5) Compatible 

k=11 (order action=5),l=21 (order action=5) Compatible 

k=16 (order action=5),l=6 (order action=5) Compatible 

k=16 (order action=5),l=11 (order action=5) Compatible 

k=16 (order action=5),l=16 (order action=5) Compatible 

k=16 (order action=5),l=21 (order action=5) Compatible 

k=21 (order action=5),l=6 (order action=5) Compatible 

k=21 (order action=5),l=11 (order action=5) Compatible 

k=21 (order action=5),l=16 (order action=5) Compatible 

k=21 (order action=5),l=21 (order action=5) Compatible 

No of Compatible16 

gap> CompatibleAction(49,49); 

k=8 (order action=7),l=8 (order action=7) Compatible 

k=8 (order action=7),l=15 (order action=7) Compatible 
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k=8 (order action=7),l=22 (order action=7) Compatible 

k=8 (order action=7),l=29 (order action=7) Compatible 

k=8 (order action=7),l=36 (order action=7) Compatible 

k=8 (order action=7),l=43 (order action=7) Compatible 

k=15 (order action=7),l=8 (order action=7) Compatible 

k=15 (order action=7),l=15 (order action=7) Compatible 

k=15 (order action=7),l=22 (order action=7) Compatible 

k=15 (order action=7),l=29 (order action=7) Compatible 

k=15 (order action=7),l=36 (order action=7) Compatible 

k=15 (order action=7),l=43 (order action=7) Compatible 

k=19 (order action=6),l=19 (order action=6) Compatible 

k=19 (order action=6),l=31 (order action=6) Compatible 

k=22 (order action=7),l=8 (order action=7) Compatible 

k=22 (order action=7),l=15 (order action=7) Compatible 

k=22 (order action=7),l=22 (order action=7) Compatible 

k=22 (order action=7),l=29 (order action=7) Compatible 

k=22 (order action=7),l=36 (order action=7) Compatible 

k=22 (order action=7),l=43 (order action=7) Compatible 

k=29 (order action=7),l=8 (order action=7) Compatible 

k=29 (order action=7),l=15 (order action=7) Compatible 

k=29 (order action=7),l=22 (order action=7) Compatible 

k=29 (order action=7),l=29 (order action=7) Compatible 

k=29 (order action=7),l=36 (order action=7) Compatible 

k=29 (order action=7),l=43 (order action=7) Compatible 

k=31 (order action=6),l=19 (order action=6) Compatible 

k=31 (order action=6),l=31 (order action=6) Compatible 

k=36 (order action=7),l=8 (order action=7) Compatible 

k=36 (order action=7),l=15 (order action=7) Compatible 

k=36 (order action=7),l=22 (order action=7) Compatible 

k=36 (order action=7),l=29 (order action=7) Compatible 

k=36 (order action=7),l=36 (order action=7) Compatible 

k=36 (order action=7),l=43 (order action=7) Compatible 

k=43 (order action=7),l=8 (order action=7) Compatible 

k=43 (order action=7),l=15 (order action=7) Compatible 
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k=43 (order action=7),l=22 (order action=7) Compatible 

k=43 (order action=7),l=29 (order action=7) Compatible 

k=43 (order action=7),l=36 (order action=7) Compatible 

k=43 (order action=7),l=43 (order action=7) Compatible 

No of Compatible40 

gap> CompatibleAction(121,121); 

k=12 (order action=11),l=12 (order action=11) Compatible 

k=12 (order action=11),l=23 (order action=11) Compatible 

k=12 (order action=11),l=34 (order action=11) Compatible 

k=12 (order action=11),l=45 (order action=11) Compatible 

k=12 (order action=11),l=56 (order action=11) Compatible 

k=12 (order action=11),l=67 (order action=11) Compatible 

k=12 (order action=11),l=78 (order action=11) Compatible 

k=12 (order action=11),l=89 (order action=11) Compatible 

k=12 (order action=11),l=100 (order action=11) Compatible 

k=12 (order action=11),l=111 (order action=11) Compatible 

k=23 (order action=11),l=12 (order action=11) Compatible 

k=23 (order action=11),l=23 (order action=11) Compatible 

k=23 (order action=11),l=34 (order action=11) Compatible 

k=23 (order action=11),l=45 (order action=11) Compatible 

k=23 (order action=11),l=56 (order action=11) Compatible 

k=23 (order action=11),l=67 (order action=11) Compatible 

k=23 (order action=11),l=78 (order action=11) Compatible 

k=23 (order action=11),l=89 (order action=11) Compatible 

k=23 (order action=11),l=100 (order action=11) Compatible 

k=23 (order action=11),l=111 (order action=11) Compatible 

k=34 (order action=11),l=12 (order action=11) Compatible 

k=34 (order action=11),l=23 (order action=11) Compatible 

k=34 (order action=11),l=34 (order action=11) Compatible 

k=34 (order action=11),l=45 (order action=11) Compatible 

k=34 (order action=11),l=56 (order action=11) Compatible 

k=34 (order action=11),l=67 (order action=11) Compatible 

k=34 (order action=11),l=78 (order action=11) Compatible 

k=34 (order action=11),l=89 (order action=11) Compatible 
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k=34 (order action=11),l=100 (order action=11) Compatible 

k=34 (order action=11),l=111 (order action=11) Compatible 

k=45 (order action=11),l=12 (order action=11) Compatible 

k=45 (order action=11),l=23 (order action=11) Compatible 

k=45 (order action=11),l=34 (order action=11) Compatible 

k=45 (order action=11),l=45 (order action=11) Compatible 

k=45 (order action=11),l=56 (order action=11) Compatible 

k=45 (order action=11),l=67 (order action=11) Compatible 

k=45 (order action=11),l=78 (order action=11) Compatible 

k=45 (order action=11),l=89 (order action=11) Compatible 

k=45 (order action=11),l=100 (order action=11) Compatible 

k=45 (order action=11),l=111 (order action=11) Compatible 

k=56 (order action=11),l=12 (order action=11) Compatible 

k=56 (order action=11),l=23 (order action=11) Compatible 

k=56 (order action=11),l=34 (order action=11) Compatible 

k=56 (order action=11),l=45 (order action=11) Compatible 

k=56 (order action=11),l=56 (order action=11) Compatible 

k=56 (order action=11),l=67 (order action=11) Compatible 

k=56 (order action=11),l=78 (order action=11) Compatible 

k=56 (order action=11),l=89 (order action=11) Compatible 

k=56 (order action=11),l=100 (order action=11) Compatible 

k=56 (order action=11),l=111 (order action=11) Compatible 

k=67 (order action=11),l=12 (order action=11) Compatible 

k=67 (order action=11),l=23 (order action=11) Compatible 

k=67 (order action=11),l=34 (order action=11) Compatible 

k=67 (order action=11),l=45 (order action=11) Compatible 

k=67 (order action=11),l=56 (order action=11) Compatible 

k=67 (order action=11),l=67 (order action=11) Compatible 

k=67 (order action=11),l=78 (order action=11) Compatible 

k=67 (order action=11),l=89 (order action=11) Compatible 

k=67 (order action=11),l=100 (order action=11) Compatible 

k=67 (order action=11),l=111 (order action=11) Compatible 

k=78 (order action=11),l=12 (order action=11) Compatible 

k=78 (order action=11),l=23 (order action=11) Compatible 
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k=78 (order action=11),l=34 (order action=11) Compatible 

k=78 (order action=11),l=45 (order action=11) Compatible 

k=78 (order action=11),l=56 (order action=11) Compatible 

k=78 (order action=11),l=67 (order action=11) Compatible 

k=78 (order action=11),l=78 (order action=11) Compatible 

k=78 (order action=11),l=89 (order action=11) Compatible 

k=78 (order action=11),l=100 (order action=11) Compatible 

k=78 (order action=11),l=111 (order action=11) Compatible 

k=81 (order action=5),l=81 (order action=5) Compatible 

k=89 (order action=11),l=12 (order action=11) Compatible 

k=89 (order action=11),l=23 (order action=11) Compatible 

k=89 (order action=11),l=34 (order action=11) Compatible 

k=89 (order action=11),l=45 (order action=11) Compatible 

k=89 (order action=11),l=56 (order action=11) Compatible 

k=89 (order action=11),l=67 (order action=11) Compatible 

k=89 (order action=11),l=78 (order action=11) Compatible 

k=89 (order action=11),l=89 (order action=11) Compatible 

k=89 (order action=11),l=100 (order action=11) Compatible 

k=89 (order action=11),l=111 (order action=11) Compatible 

k=100 (order action=11),l=12 (order action=11) Compatible 

k=100 (order action=11),l=23 (order action=11) Compatible 

k=100 (order action=11),l=34 (order action=11) Compatible 

k=100 (order action=11),l=45 (order action=11) Compatible 

k=100 (order action=11),l=56 (order action=11) Compatible 

k=100 (order action=11),l=67 (order action=11) Compatible 

k=100 (order action=11),l=78 (order action=11) Compatible 

k=100 (order action=11),l=89 (order action=11) Compatible 

k=100 (order action=11),l=100 (order action=11) Compatible 

k=100 (order action=11),l=111 (order action=11) Compatible 

k=111 (order action=11),l=12 (order action=11) Compatible 

k=111 (order action=11),l=23 (order action=11) Compatible 

k=111 (order action=11),l=34 (order action=11) Compatible 

k=111 (order action=11),l=45 (order action=11) Compatible 

k=111 (order action=11),l=56 (order action=11) Compatible 
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k=111 (order action=11),l=67 (order action=11) Compatible 

k=111 (order action=11),l=78 (order action=11) Compatible 

k=111 (order action=11),l=89 (order action=11) Compatible 

k=111 (order action=11),l=100 (order action=11) Compatible 

k=111 (order action=11),l=111 (order action=11) Compatible 

No of Compatible101 

gap> CompatibleAction(169,169); 

k=14 (order action=13),l=14 (order action=13) Compatible 

k=14 (order action=13),l=27 (order action=13) Compatible 

k=14 (order action=13),l=40 (order action=13) Compatible 

k=14 (order action=13),l=53 (order action=13) Compatible 

k=14 (order action=13),l=66 (order action=13) Compatible 

k=14 (order action=13),l=79 (order action=13) Compatible 

k=14 (order action=13),l=92 (order action=13) Compatible 

k=14 (order action=13),l=105 (order action=13) Compatible 

k=14 (order action=13),l=118 (order action=13) Compatible 

k=14 (order action=13),l=131 (order action=13) Compatible 

k=14 (order action=13),l=144 (order action=13) Compatible 

k=14 (order action=13),l=157 (order action=13) Compatible 

k=22 (order action=13),l=22 (order action=13) Compatible 

k=27 (order action=13),l=14 (order action=13) Compatible 

k=27 (order action=13),l=27 (order action=13) Compatible 

k=27 (order action=13),l=40 (order action=13) Compatible 

k=27 (order action=13),l=53 (order action=13) Compatible 

k=27 (order action=13),l=66 (order action=13) Compatible 

k=27 (order action=13),l=79 (order action=13) Compatible 

k=27 (order action=13),l=92 (order action=13) Compatible 

k=27 (order action=13),l=105 (order action=13) Compatible 

k=27 (order action=13),l=118 (order action=13) Compatible 

k=27 (order action=13),l=131 (order action=13) Compatible 

k=27 (order action=13),l=144 (order action=13) Compatible 

k=27 (order action=13),l=157 (order action=13) Compatible 

k=40 (order action=13),l=14 (order action=13) Compatible 

k=40 (order action=13),l=27 (order action=13) Compatible 
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k=40 (order action=13),l=40 (order action=13) Compatible 

k=40 (order action=13),l=53 (order action=13) Compatible 

k=40 (order action=13),l=66 (order action=13) Compatible 

k=40 (order action=13),l=79 (order action=13) Compatible 

k=40 (order action=13),l=92 (order action=13) Compatible 

k=40 (order action=13),l=105 (order action=13) Compatible 

k=40 (order action=13),l=118 (order action=13) Compatible 

k=40 (order action=13),l=131 (order action=13) Compatible 

k=40 (order action=13),l=144 (order action=13) Compatible 

k=40 (order action=13),l=157 (order action=13) Compatible 

k=53 (order action=13),l=14 (order action=13) Compatible 

k=53 (order action=13),l=27 (order action=13) Compatible 

k=53 (order action=13),l=40 (order action=13) Compatible 

k=53 (order action=13),l=53 (order action=13) Compatible 

k=53 (order action=13),l=66 (order action=13) Compatible 

k=53 (order action=13),l=79 (order action=13) Compatible 

k=53 (order action=13),l=92 (order action=13) Compatible 

k=53 (order action=13),l=105 (order action=13) Compatible 

k=53 (order action=13),l=118 (order action=13) Compatible 

k=53 (order action=13),l=131 (order action=13) Compatible 

k=53 (order action=13),l=144 (order action=13) Compatible 

k=53 (order action=13),l=157 (order action=13) Compatible 

k=66 (order action=13),l=14 (order action=13) Compatible 

k=66 (order action=13),l=27 (order action=13) Compatible 

k=66 (order action=13),l=40 (order action=13) Compatible 

k=66 (order action=13),l=53 (order action=13) Compatible 

k=66 (order action=13),l=66 (order action=13) Compatible 

k=66 (order action=13),l=79 (order action=13) Compatible 

k=66 (order action=13),l=92 (order action=13) Compatible 

k=66 (order action=13),l=105 (order action=13) Compatible 

k=66 (order action=13),l=118 (order action=13) Compatible 

k=66 (order action=13),l=131 (order action=13) Compatible 

k=66 (order action=13),l=144 (order action=13) Compatible 

k=66 (order action=13),l=157 (order action=13) Compatible 
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k=79 (order action=13),l=14 (order action=13) Compatible 

k=79 (order action=13),l=27 (order action=13) Compatible 

k=79 (order action=13),l=40 (order action=13) Compatible 

k=79 (order action=13),l=53 (order action=13) Compatible 

k=79 (order action=13),l=66 (order action=13) Compatible 

k=79 (order action=13),l=79 (order action=13) Compatible 

k=79 (order action=13),l=92 (order action=13) Compatible 

k=79 (order action=13),l=105 (order action=13) Compatible 

k=79 (order action=13),l=118 (order action=13) Compatible 

k=79 (order action=13),l=131 (order action=13) Compatible 

k=79 (order action=13),l=144 (order action=13) Compatible 

k=79 (order action=13),l=157 (order action=13) Compatible 

k=92 (order action=13),l=14 (order action=13) Compatible 

k=92 (order action=13),l=27 (order action=13) Compatible 

k=92 (order action=13),l=40 (order action=13) Compatible 

k=92 (order action=13),l=53 (order action=13) Compatible 

k=92 (order action=13),l=66 (order action=13) Compatible 

k=92 (order action=13),l=79 (order action=13) Compatible 

k=92 (order action=13),l=92 (order action=13) Compatible 

k=92 (order action=13),l=105 (order action=13) Compatible 

k=92 (order action=13),l=118 (order action=13) Compatible 

k=92 (order action=13),l=131 (order action=13) Compatible 

k=92 (order action=13),l=144 (order action=13) Compatible 

k=92 (order action=13),l=157 (order action=13) Compatible 

k=105 (order action=13),l=14 (order action=13) Compatible 

k=105 (order action=13),l=27 (order action=13) Compatible 

k=105 (order action=13),l=40 (order action=13) Compatible 

k=105 (order action=13),l=53 (order action=13) Compatible 

k=105 (order action=13),l=66 (order action=13) Compatible 

k=105 (order action=13),l=79 (order action=13) Compatible 

k=105 (order action=13),l=92 (order action=13) Compatible 

k=105 (order action=13),l=105 (order action=13) Compatible 

k=105 (order action=13),l=118 (order action=13) Compatible 

k=105 (order action=13),l=131 (order action=13) Compatible 
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k=105 (order action=13),l=144 (order action=13) Compatible 

k=105 (order action=13),l=157 (order action=13) Compatible 

k=118 (order action=13),l=14 (order action=13) Compatible 

k=118 (order action=13),l=27 (order action=13) Compatible 

k=118 (order action=13),l=40 (order action=13) Compatible 

k=118 (order action=13),l=53 (order action=13) Compatible 

k=118 (order action=13),l=66 (order action=13) Compatible 

k=118 (order action=13),l=79 (order action=13) Compatible 

k=118 (order action=13),l=92 (order action=13) Compatible 

k=118 (order action=13),l=105 (order action=13) Compatible 

k=118 (order action=13),l=118 (order action=13) Compatible 

k=118 (order action=13),l=131 (order action=13) Compatible 

k=118 (order action=13),l=144 (order action=13) Compatible 

k=118 (order action=13),l=157 (order action=13) Compatible 

k=131 (order action=13),l=14 (order action=13) Compatible 

k=131 (order action=13),l=27 (order action=13) Compatible 

k=131 (order action=13),l=40 (order action=13) Compatible 

k=131 (order action=13),l=53 (order action=13) Compatible 

k=131 (order action=13),l=66 (order action=13) Compatible 

k=131 (order action=13),l=79 (order action=13) Compatible 

k=131 (order action=13),l=92 (order action=13) Compatible 

k=131 (order action=13),l=105 (order action=13) Compatible 

k=131 (order action=13),l=118 (order action=13) Compatible 

k=131 (order action=13),l=131 (order action=13) Compatible 

k=131 (order action=13),l=144 (order action=13) Compatible 

k=131 (order action=13),l=157 (order action=13) Compatible 

k=144 (order action=13),l=14 (order action=13) Compatible 

k=144 (order action=13),l=27 (order action=13) Compatible 

k=144 (order action=13),l=40 (order action=13) Compatible 

k=144 (order action=13),l=53 (order action=13) Compatible 

k=144 (order action=13),l=66 (order action=13) Compatible 

k=144 (order action=13),l=79 (order action=13) Compatible 

k=144 (order action=13),l=92 (order action=13) Compatible 

k=144 (order action=13),l=105 (order action=13) Compatible 
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k=144 (order action=13),l=118 (order action=13) Compatible 

k=144 (order action=13),l=131 (order action=13) Compatible 

k=144 (order action=13),l=144 (order action=13) Compatible 

k=144 (order action=13),l=157 (order action=13) Compatible 

k=157 (order action=13),l=14 (order action=13) Compatible 

k=157 (order action=13),l=27 (order action=13) Compatible 

k=157 (order action=13),l=40 (order action=13) Compatible 

k=157 (order action=13),l=53 (order action=13) Compatible 

k=157 (order action=13),l=66 (order action=13) Compatible 

k=157 (order action=13),l=79 (order action=13) Compatible 

k=157 (order action=13),l=92 (order action=13) Compatible 

k=157 (order action=13),l=105 (order action=13) Compatible 

k=157 (order action=13),l=118 (order action=13) Compatible 

k=157 (order action=13),l=131 (order action=13) Compatible 

k=157 (order action=13),l=144 (order action=13) Compatible 

k=157 (order action=13),l=157 (order action=13) Compatible 

No of Compatible145 
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