

DEVELOPMENT OF 3D PRINTING MACHINE
CONTROLLER USING THE PREDEFINED

CLOSEST-DISTANCE VOLUME
INTERPOLATOR SYSTEM

RDU160387

GRANT REPORT

UNIVERSITI MALAYSIA PAHANG

STEREOLITHOGRAPHY 3D PRINTING DEVELOPMENT OF 3D PRINTING
MACHINE CONTROLLER USING THE PREDEFINED CLOSEST-DISTANCE

VOLUME INTERPOLATOR SYSTEM

RDU160387

Faculty of Mechanical & Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

APRIL 2019

ACKNOWLEDGEMENTS

This research is funded by Universiti Malaysia Pahang (UMP) by the research grant
number RDU160387. I would like to thank UMP for the fund. This fund bared in
purchasing the components needed and salary for the student working scheme for this
research.

Other than that, UMP also provided excellent equipment and facilities to assist the
research. I wish that the government will increase their research budget allocations for
UMP in the future so that many more high impact researches can be produced. Also,
special thanks to Faculty of Mechanical and Manufacturing Engineering UMP for
providing the space and equipment for this study.

ii

ABSTRAK

Kemajuan terkini dalam teknologi pencetakan 3D telah membawa kepada penghasilan
mesin pencetakan 3D berasaskan pancaran-bertopeng. Proses ini menggunakan tenaga
cahaya UV bagi membentuk objek nyata dari resin penyembuhan-foto. Pancaran kontur
dijanakan dengan mengiris model CAD STL kepada lapisan-lapisan kontur 2D yang
kemudiannya disalurkan kepada alat pemancar lapisan demi lapisan berasaskan
ketinggian binaan. Pengkomputan bagi penjanaan lapisan-lapisan kontur 2D adalah
sangat intensif. Algoritma penjanaan kontur yang sedia ada memerlukan masa
pengkomputan yang lama. Ini kerana algoritma tersebut perlu mengiris dan
mengkomput setiap satu lapisan sesebuah model STL sebelum proses pencetakan
bermula. Dalam usaha bagi mengurangkan masa pengkomputan, algoritma yang baru
dan lebih pantas diperlukan. Lantaran itu, algoritma penjanaan kontur lantas
dibentangkan di dalam kajian ini. Kaedah ini menghasilkan satu lapisan kontur secara
lantas apabila parameter ketinggian binaan disuapkan ke dalam algoritma tersebut.
Algoritma tersebut mengandungi beberapa algoritma seperti algoritma pengirisan,
algoritma pemetaan garisan pixel, dan algoritma gelungan kontur. Algoritma pengirisan
menggunakan model persilangan garisan-satah untuk menghasilkan segmen garisan
rawak apabila ia menerima satu faset STL. Segmen-segmen garisan ini kemudiannya
dipetakan berdasarkan resolusi alat pemancar dengan menggunakan algoritma pemetaan
garisan pixel. Kemudian, garisan-garisan pixel tersebut dihubungkan untuk membentuk
satu atau lebih gelungan kontur melalui algorithm gelungan kontur. Hasil dari setiap
algoritma-algoritma tersebut dikaji secara mendalam. Keputusan hasil kajian
menyatakan algoritma-algoritma tersebut menjanakan lapisan-lapisan kontur dengan
tepat. Malah dengan menggunakan model STL berpoligon tinggi, algoritma penjanaan
kontur masih dapat menjanakan lapisan kontur di bawah 100 milisaat masa
pengkomputan di mana ianya sesuai bagi aplikasi lantas.

iii

ABSTRACT

Recent advancement in 3D printing technology has led to the development of projection
mask stereolithography 3D printing process. This process harnesses the power of UV
light contour projection to cure photocurable resin. The contour projection is generated
by slicing STL CAD model into layers of 2D contours which is then fed into the UV
projection device layer-by-layer with respect to the build height. Generation of the
layers are computationally intensive. Existing contour generation algorithm requires
long computational time to generate the contour layers especially for high polygon
models. This is because the existing approach has to slice and compute every single
layer of the STL model before the printing process starts. In an effort to reduce the
computational time, a new and faster algorithm is required. Thus, a real-time contour
generation algorithm is presented in this research. The real-time contour generation
approach instantly generates single layer of contour whenever the build height
parameter is fed into the algorithm. The algorithm composes of multiple algorithms
such as slicing algorithm, pixel line mapping algorithm, and the contour loop algorithm.
The proposed slicing algorithm uses line-plane intersection model to generate arbitrary
line segment when it receives an STL facet. These line segments are mapped based on
the projection device display resolution by the pixel-line mapping algorithm. Then, the
pixelated line segments are connected to form single/multiple contour loops using
contour loop algorithm. The results of each algorithms are thoroughly evaluated. It is
later found that the algorithms able to correctly generates the contour projection layers.
Even with the high polygon STL model, the contour generation algorithm able to
perform with less than 100 milliseconds computational time which is suitable for real-
time application.

iv

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 DLP Projection Mask Stereolithography 1

1.2 Contour Generation Algorithm in Projection Mask Stereolithography 2

1.3 Problem Statement 4

1.4 Research Objectives 4

1.5 Research Scope 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Mask Projection Stereolithography 6

2.2.1 Photopolymerization 7

2.2.2 Curing Depth Model of Photopolymerization 7

v

2.3 STL Format 13

2.3.1 Types of STL 14

2.3.2 Issues of STL 16

2.4 Slicing Algorithm 18

2.4.1 Fundamental of Slicing Algorithm 19

2.4.2 Facet-Plane Intersection Case Handling 21

2.4.3 Data Structure 22

2.4.4 Type of Slicing Algorithm 24

2.5 Contour Loop Algorithm 25

2.6 Summary 27

CHAPTER 3 METHODOLOGY 30

3.1 Introduction 30

3.2 STL Data Management 30

3.3 Slicing Algorithm 30

3.3.1 Case Handler for Facet-Plane Interaction 31

3.3.2 Fundamental of Slicing 32

3.3.3 Line to Pixel Mapping 34

3.3.4 Algorithm Structure 37

3.4 Contour Construction Algorithm 38

CHAPTER 4 RESULTS AND DISCUSSION 41

4.1 Introduction 41

4.2 Sliced Model Output 41

4.3 Slicing Algorithm Performance 44

4.4 Contour Construction Performance 47

vi

4.4.1 Number of Intersecting Facet at Different Slicing Height 50

4.4.2 Contour Loop Counts 52

4.5 Total Computational Time 56

4.6 Visualization of Contour Generation Algorithm 59

4.7 Comparison of Slicing and Contour Construction algorithms 61

CHAPTER 5 CONCLUSION 65

5.1 Conclusion 65

5.2 Future Work 66

REFERENCES 68

APPENDIX A ADDITIONAL SLICING RESULT 73

APPENDIX B PSEUDOCODE (VB.NET) 76

APPENDIX C PSEUDOCODE (C++) 85

APPENDIX D PSEUDOCODE (MATLAB) 95

vii

LIST OF TABLES

Table 1.1 Classification of 3D printer 2

Table 3.1 Definition of interaction cases 31

Table 4.1 Time measurement for slicing algorithm in milliseconds at each
slicing height for different STL models 44

Table 4.2 Time measurement for contour construction algorithm in
milliseconds at each slicing height for different STL models 47

Table 4.3 Number of intersecting facet at each slicing height 50

Table 4.4 Number of loop counts at each slicing height 53

Table 4.5 Calculated normalized correlation of each STL model 56

Table 4.6 Total computational time required for each slicing height in
milliseconds 57

Table 4.7 Time measurement and comparison for slicing algorithm 62

Table 4.8 Time measurement and comparison for contour construction
algorithm 63

Table 4.9 Time measurement and comparison for total computational time 64

viii

LIST OF FIGURES

Figure 1.1 Staircase effect caused by uniform slicing thickness 3

Figure 2.1 Surface topology of the curing space 10

Figure 2.2 Curing profile of single axis laser scanning 11

Figure 2.3 Domain of single axis laser scanning model 11

Figure 2.4 Hole at a vertex (left), overlapping facets (right) 17

Figure 2.5 Facet intersecting with slicing plane 20

Figure 2.6 Possible intersection cases 21

Figure 2.7 Circular approximation to determine layer error and thickness 25

Figure 3.1 Possible facet-plane interaction 31

Figure 3.2 Facet-Plane intersection model 32

Figure 4.1 Sliced model (Sphere) with colour mapped total computational time 42

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time 42

Figure 4.3 Sliced model (Tower) with colour mapped total computational time 43

Figure 4.4 Stacked contours Alien model (side slicing) 60

Figure 4.5 Stacked contours Dragon model (bottom-up slicing) 60

Figure 4.6 Stacked contours Liver model (bottom-up slicing) 61

Figure 4.7 Stacked contours Walnut model (bottom-up slicing) 61

ix

LIST OF SYMBOLS

Cd Cure Depth
Dp Depth of Penetration
Emax Maximum Energy of Laser
Ec Critical Energy Dosage
α Photochemical Parameter
β Photonics Parameter
c Speed of Light
h Planck’s Constant
Nav Avogadro Constant
PL Laser Power
Wo Beam Width
kt Termination Constant
kp Propagation Constant
pc Extent of Polymerization
ϵ Molar Extinction Coefficient
λ Wavelength
ϕ Quantum Yield
PI Photoinitiator Concentration
zc Cure Depth
x X component
y Y component
z Z component
Po Starting point of the line segment
Pf Ending point of the line segment
s Interpolation parameter
AR Aspect Ratio
AR′ Modified Aspect Ratio
R, V, W Piecewise Variable
NC Normalized Correlation
O Big-O Notation

x

LIST OF ABBREVIATIONS

2D Two-Dimensional
2PP Two-Photon Polymerization
3D Three-Dimensional
3DP Binder Jetting
AM Additive Manufacturing
ASCII American Standard Code for Information Interchange
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CLIP Continuous Liquid Interface Printing
CMM Coordinate Measurement Machine
CNC Computer Numerical Control
CPU Central Processing Unit
CT Contour Time
DIW Robocasting
DLP Digital Light Processing
DMD Digital Micro-mirror Device
EBM Electron Beam Melting
ECC Efficient Contour Construction
FDM Fused Deposition Modeling
GB Giga-Byte
IF Intersecting Facet
LC Loop Count
LM Layered Manufacturing
LOM Laminated Object Manufacturing
PC Personal Computer
RAM Random Access Memory
RP Rapid Prototyping
SD Standard Deviation
SLA Stereolithography 3D Printing
SLM Selective Laser Melting
SLS Selective Laser Sintering
STL STereoLithography CAD format
UV Ultraviolet

xi

CHAPTER 1

INTRODUCTION

1.1 DLP Projection Mask Stereolithography

Three-dimensional (3D) printing is an additive manufacturing (AM) process and

also known as rapid prototyping (RP). Unlike conventional subtractive manufacturing

method such as milling that cuts and removes material to manufacture the product, an

additive manufacturing process performs the opposite of the milling method. Instead of

removing material which cause material waste and tool weariness, the process stacks

the material on top of one layer and another. This is also called as layered

manufacturing (LM). Most of the material waste in 3D printing comes from its

scaffold/support during the printing process which is minimal compared to subtractive

manufacturing.

In 1981, 3D printing was firstly introduced by Hideo Kodama (Kodama, 1981).

The study proposed a new method of fabrication using photopolymer which solidifies

upon exposure to UV light source (Xenon lamp and Mercury lamp) controlled by XY

interpolation mechanism for contour routing and elevated build plate for Z-axis. Ever

since then, researches have revolutionized the methods of 3D printing. Table 1.1 shows

the classification of 3D printing according to current technology of 3D printing.

Recent advancement in 3D printing leads to the development of DLP projection

mask stereolithography which utilizes UV light to cure photocurable resin into solid

model. Like conventional 3D printing, it is a layer-by-layer process. Instead of

traversing along XY axis to construct the layer, the process uses contour projection

based curing technique to uniformly cure each layer. Thus, this improves the printing

speed and maintain uniformity of the cured part. The printed part generated by this

technique becomes monolithic due to continuous curing process. Thus, improving its

1

mechanical properties and its quality. The DLP projection mask stereolithography is

known to have the best printing quality compared to other 3D printing technique.

Table 1.1 Classification of 3D printer
Process Technique Materials

Ex
tru

si
on

Fused deposition modeling (FDM) Thermoplastics filament (ABS, PLA, etc.),
glass, metal, etc.

Robocasting (DIW)
Plastics, ceramic, food, organic cell,
composites

Po
w

de
r

ba
se

d

Selective laser sintering (SLS) Thermoplastics, metals
Selective laser melting (SLM) Metals
Electron beam melting (EBM) Metals
Binder jetting (3DP) Any material in particulate form

La
m

in
at

io
n

Laminated object manufacturing
(LOM)

Sheets (paper, metal, plastic, etc.)

Ph
ot

op
ol

ym
er

iz
at

io
n

Stereolithography (SLA) Photopolymers

Material jetting Photopolymers
Continuous liquid interface printing
(CLIP)

UV-curable resins

Two-photon polymerization (2PP) UV-curable resins

Source: (Hemant et al., 2015; Wong et al., 2012)

All methods stated in the above Table 1.1 share similarities in its process thread.

Before any of the printing process can takes place, a CAD file containing the

information of the desired geometry will undergo a tessellation process that converts it

into STL formatted file. Contour generation algorithm is then implemented to slice the

3D model of STL file into layers of contours which can be used for toolpath

computation (for multi-axis 3D printer) or layer projection (projection-based 3D

printer). The STL file and contour generation algorithm are considered as standard

process flow for any 3D printing process.

1.2 Contour Generation Algorithm in Projection Mask Stereolithography

Contour generation process involves multiple algorithms to be implemented.

First, the process starts with slicing algorithm which slices each facet of an STL file

2

into multiple line segments with respect to the slicing height. Next, the process uses the

generated line segments to connect each line segment into one or more closed contour

loops using contour construction algorithm. Finally, a contour filling algorithm shades

the closed loop contours to form a mask which cures the photopolymer or UV curable

resin. In the past, researchers implemented the contour generation algorithm at the

process planning stage. Each level of contours is generated before the printing process

took place. However, in order for the printed model to appear seamless, the slicing

thickness must be very small. This consumed a lot of memory utilized by the thousand

layers of contours for the model to appear seamless. Another flaw for this approach is

that the possibility of backlash of the elevation mechanism of Z-axis. For an open loop

system, stepper motor is often used as the main actuators. A stepper motor usually has

the tendency to misstep at a point when the rotor lag. This causes error in layer

projection due to error in elevation height hence affects the printed model.

There are two types of slicing algorithm which are: uniform slicing and adaptive

slicing. Adaptive slicing is an advanced slicing method which varies the slicing height

depending on the features of the geometry. The algorithm works differently than

uniform slicing. It performs comparison between layers and varies the slicing thickness

depending on the geometry features to generate close approximation of the 3D model.

In both slicing algorithms, issue of cusp height also commonly known as staircase

effect often affecting the surface roughness of the printed model.

Figure 1.1 Staircase effect caused by uniform slicing thickness

The Figure 1.1 shows rough edges that appear visible to naked eye if the layer

resolution is low. This happens due to the DLP 3D printer works in single Z-axis. The

layer cures vertically as the build platform elevates upward and the projected contour

remains unchanged until it reaches the height for next contour. Instead of smooth slope

transition between layers, the layer cures into stack of layers. Past study shows that

3

layer stacking weakens the mechanical strength of the printed model especially when

the layer resolution is low (Dizon et al., 2018; Lederle et al., 2016). Seamless layer

formation is achievable by continuously generates new contour with respect to the

smallest change of elevation height. The resolution of the printing output is subjected to

the printer mechanism itself such as the pitch of the lead/ball screw, its diameter, and

the resolution of the motor rotation.

1.3 Problem Statement

Mask projection stereolithography process is a layer stacking process. Each

layer is cured one by one until the printing process completed. In mask projection

stereolithography printing process, these layers become monolithic due to continuous

curing process. Past research has proven that mechanical strength decreases as the layer

thickness increases. The contour layers are generated by intensive computational

process. However, existing contour generation algorithm requires long computational

time due to every layer had to be computed before the printing process. Higher

resolution printing will require more computational time. More computational time is

also required for high polygon STL model. Thus, a real-time contour generation

algorithm is presented in an effort to reduce the computational time to generate the

contour layer for mask projection stereolithography 3D printing process.

1.4 Research Objectives

The following objectives is developed to achieve the aim of the study.

Objectives are classified into three stages which are:

i. To develop the real-time contour generation algorithm for projection mask

stereolithography 3D printing process based on STL CAD model

ii. To evaluate the performances of the proposed algorithm based on

computational time measurement

iii. To compare the result of computational time based on journal

4

1.5 Research Scope

The scope of this research covers the projection aspect of the DLP 3D printing

process. The algorithm for developing the contour projection is thoroughly studied and

measured based on its computation time. Generated contour is directly generated from a

raw STL model without any support generation algorithm. Each model tested are sliced

with respect to only Z-component of the printer. This research does not cover the

slicing process with different slicing orientation. The main objective is the development

of real-time contour generation algorithm which will give results of the generated

contour layers based on specific STL model. This will be thoroughly studied and

discussed. Next, in order to evaluate the performance of the algorithm, execution time

measurements of the algorithms are recorded. Finally, to results of computational time

measurements are compared with the result obtained from the journal using similar STL

model and same specifications for the workstation.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter describes critical review on process of photopolymerization in

order to get better understanding on photopolymerization process before the

implementation of the contour generation algorithm. The understanding of the

photopolymerization chemistry will contributes on how the algorithm should be

constructed. Other than that, this chapter also discusses on previous works done by

other researchers in slicing and contour construction algorithms to develop the best

approach in constructing the algorithm. The methodology and analysis which were

developed by other researchers can be useful to support this work. Literature review on

algorithms also give fundamental knowledge on how the slicing and contour generation

algorithm work.

2.2 Mask Projection Stereolithography

The mask projection stereolithography is an additive manufacturing technique

which harness UV-light projection to solidify photocurable resin into solid model. This

method does not require any tooling or fixture as in milling process (Mu et al., 2017).

The difference between the mask projection and traditional stereolithography process is

that the use of digital micromirror device (DMD) by Texas Instrument to generate the

projection (Pan et al., 2012). Traditional Stereolithography (SLA) process requires

CNC routing for traversing the UV laser beam onto the resin to build each layer. This is

time consuming due to traversing laser beam. Instead of traversing the laser, mask

6

projection projects the whole contour onto the resin and uniformly cures the layer. The

process of photopolymer curing is known as photopolymerization process.

2.2.1 Photopolymerization

The process of polymerization using photopolymer is called

photopolymerization process. Photopolymer usually consists of oligomer/binder,

photoinitiator, and monomer. Typical photopolymer mixture contains at about 50-80%

of oligomer, 10-40% monomer, and the rest of the portion is photoinitiator. In

photopolymer, the oligomer usually used as ink, adhesives, and coating purpose. There

are several families of oligomer which are: Methacrylate, Styrene, Vinylalcohol,

Olefine, Polypropylene, and Glycerol family (Pandey, 2014). The oligomer also defines

the basic property of the photopolymer such as glass transition, stress-strain, and

adhesion. Meanwhile, the monomer defines the wetting property, crosslink, elasticity,

and the viscosity. The photoinitiator formulation usually around 0.1-5% of the whole

composition of photopolymer (Kitano, 2012).

Photoinitiator is highly reactive substance to light exposure usually UV light.

There are also studies have been conducted for visible light photopolymerization (Gao

et al., 1999). There are two types of photoinitiator: radical and cationic. Upon exposure

to UV light, the photoinitiator generates free radicals that react with the monomers to

form reactive species. Reactive species forms chain with another monomer causes chain

reaction which forms the polymer. This chain reaction terminates when a reactive

species reacts with each other forming dead radicals. Oxygen inhibition also causes this

chain reactive to stop. When the oxygen reacts with the reactive radical, it forms an

unreactive peroxide that terminates the chain reaction (Boddapati, 2010; Dendukuri et

al., 2008).

2.2.2 Curing Depth Model of Photopolymerization

The photopolymerization curing depth model defines the fundamental equation

governing the relationship between irradiance and the chemical reaction of the

photopolymerization process. Back in 1992, Jacobs presented the standard design

7

equation of stereolithography using Beer-Lambert law. The standard design equation

presented is as follows:

 Cd = Dp ln (Emax Ec)⁄ 2.1

where Cd is the curing depth of the resin. Dp is the depth of penetration which governs

by Beer-Lambert law that suggests the irradiance at the resin surface is reduced by 1/𝑒

with respect to depth of the resin due to light absorption by the resin. Emax is the

maximum energy of the laser, and Ec is the critical dosage of the resin (Jacobs, 1992).

The study on photocuring model of stereolithography also has been done by Lee

et al. (2001). The study focuses on derivation of the photocuring mathematical model

and incorporates both photochemical properties and the light intensity as the curing

parameter. Multifunctional monomer that has been used in the study was 2,2-bis{4-[2-

hydroxy-3-(methacryloxy)propoxy]phenyl}-propane (Bis-GMA). Photoinitiator that has

been used was 2-benzyl-2-N,N-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone

(DBMP). In the experiment, the photopolymer mixtures were exposed to scanning He-

Cd 325nm UV laser. The photopolymer contains the mixtures of DBMP which was

varied from 0.34 until 99.70 mmol/l that corresponded to 0.01 to 3.00 wt% of the

solution. The conducted experiments also varied the laser dosage ranging from 0.931,

1.702, and 22.255 J/cm2. It was found that the concentration of photoinitiator in the

photopolymer enhances the cure depth but only up to its critical point before the

reaction rate starts to plateau. It was due to high concentration of photoinitiator that

limits the UV laser penetration depths. High photoinitiator concentration gives greater

photon absorption but localizes the free radical concentration near the surface of the

resin thus limiting the laser penetration. The authors distinguished the photochemical

parameters and the photonics parameters as α and β which were derived as:

 α2 =
kt[ln(1 − pc)]2

kp
2ϕϵ

 2.2

 β2 =
chNavPL

λWo
2(2π)1/2 2.3

8

where in Equation 2.2, the kt represents the termination constant and kp is the

propagation constant of the photopolymerization process. The pc is the extent of

polymerization. Molar extinction coefficient, ϵ of the DBMP which has been used is

23000 M−1cm−1. Whereas, the ϕ represents the quantum yield of the photoinitiator.

Together, these parameters describe the photochemical terms of the photopolymer in a

single non-dimensional variable, α. Equation 2.3 describes the photonics term of the

UV laser exposure with λ as the wavelength of the laser emission, Wo as the beam

width, the c is the speed of light, h as the Planck’s constant, Nav is the Avogadro

constant, and PL as the laser power. Using both parameters, the authors have derived the

equation that defines the cure depth as the function of both photochemical and

photonics parameters as state in the equation below:

 zc =
2

2.303ϵ[PI]
ln�

Emax[PI]1 2�

αβ
� 2.4

Equation 2.4 is the derivation of the cure depth based on the photochemical and

photonics parameters. In the equation, [PI] stands for the photoinitiator concentration

and Emax represents maximum energy per unit area of the laser exposure. The presented

cure depth model in Equation 2.4 is equivalent to the model presented by Jacobs (1992)

in Equation 2.1. The authors also presented a 3D map of the curing relationship

between the photoinitiator concentration and the energy dosage with respect to the

curing depth.

9

Figure 2.1 Surface topology of the curing space

(Lee et al., 2001)

Figure 2.1 shows that the increase in energy dosage will increase the cure depth.

The same goes for photoinitiator concentration. At the beginning, increasing the

photoinitiator concentration, rapid increase of the cure depth can be seen. However, up

to some point, the cure depth starts to plateau with respect to increasing photoinitiator

concentration (Lee et al., 2001). The surface topology that has been presented helps

researchers to develop an optimal photopolymer formulation and algorithms for

stereolithography 3D printing process.

In 2005, a study was conducted on stereolithography cure process modelling

(Tang, 2005). In his work, the author claims that previous curing model presented by

Jacobs is an oversimplification of the whole process. The model presented by Jacobs

only considers the exposure threshold terms whilst disregarding the effect of

photochemical process as presented by Lee. The author also stated that the process of

photopolymerization is an exothermic. It means that the process generates heat during

the reaction. Plus, the photopolymer resins often have low thermal conductivities. This

causes thermally initiated polymerization to occur which reduces the resolution of the

printed model and causing thermal stresses on the printed model. Hence, the

mathematical model which incorporates the photopolymerization, mass diffusion, and

10

heat transfer were developed starting with consideration of single axis laser scanning

along X-axis on X-Z plane. The curing profile of a single axis laser scanning is shown

in Figure 2.2 and Figure 2.3 below.

Figure 2.2 Curing profile of single axis laser scanning

(Tang, 2005)

Figure 2.3 Domain of single axis laser scanning model

(Tang, 2005)

Since the curing profile is assumed to be symmetrical, only half of the laser

beam is taken as the domain. Derivation of the curing model is based on the energy

balance, mass balance for the monomer, and the mass balance of radicals as shown in

equations below:

11

 ρCP
∂T
∂t

= k �
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

� + ∆HPRP 2.5

∂[M]
∂t

= DM �
∂2[M]
∂x2

+
∂2[M]
∂y2

+
∂2[M]
∂z2

� + (−RP) 2.6

∂[P •]
∂t

= DP• �
∂2[P •]
∂x2

+
∂2[P •]
∂y2

+
∂2[P •]
∂z2

� + (−Ri) 2.7

Free radical photopolymerization kinetic models are presented with the derivation based

on photochemical reaction during initiation phase, propagation phase, and termination

phase. The reaction is described as:

PI
 hv
�⎯⎯� R •

M + R •
 ki �⎯� P1

Initiation

2.8
Pn • +M

 kp
�⎯� Pn+1 • Propagation

Pn • +Pm •
 ktc
�⎯⎯� Mn+m Termination by Combination

Pn • +Pm •
 ktd �⎯⎯�Mn + Mm

Termination by
Disproportionation

 𝑅 • +𝐼𝑛
 𝑘𝑖𝑛
�⎯⎯�𝑄 Inhibition

where in the Equation 2.8 above, the PI is the photoinitiator that decays upon exposure

to light energy into the initial radicals [R •]. The radical reacts with a monomer [M] to

start a polymer chain Pn • in the initiation phase. The polymer chain propagates to react

with another monomer forming longer polymer chain. There are 3 cases of termination

of the propagation phase. Either it is caused by reaction with another polymer chain by

combination or disproportionation, or radicals inhibition commonly caused by oxygen

inhibition that forms a non-reactive peroxy (Tang, 2005; Tang et al., 2004). Similar

work has been done by Boddapati (2010). The author used the same principle but also

incorporates oxygen inhibition model in the curing depth model.

Kang et al. (2012) presented pixel-based curing model for projection-based

stereolithography printing process. The model is developed by applying Beer-Lambert

law to model the depth of light penetration through liquid curable resin. Gaussian

12

distribution is also used to model the light distribution profile. The light distribution is

constrained to the square pixel shape of the projection device. The mathematical model

of pixel-based curing includes time, critical energy dosage, light intensity, penetration

depth, and other photochemical parameters. These are the important parameters that

needs to be taken into account when developing the contour generation algorithm

because the curing model will define the final shape of the printed model.

Tumbleston et al. (2015) presented slightly different curing model but with

oxygen inhibition taken into consideration. The model is also based on Beer-Lambert

law which model the depth of penetration of the light. The curing technique in the

authors work on continuous liquid interface production takes advantages of the oxygen

inhibition to accurately control the curing and provides continuous layer separation.

Thus, this allows the printer to continuously cure every contour layer and allows faster

printing time. The oxygen inhibition is modelled as dead zone which is a controlled

uncured region for each layer.

2.3 STL Format

STereoLithography (STL) is a CAD file format that was developed by Albert

Consulting Group for 3D Systems. The format was introduced as a means to transfer

CAD data into rapid prototyping machine when Chuck Hall invented the first

stereolithography (SLA) 3D printing machine back in 1987. Since then, STL has

become a de facto in rapid prototyping industry and still widely supported by modern

CAD software such as Autodesk, SolidWorks, Blender, CATIA, Rhinoceros 3D, and

several other CAD software (Cătălin IANCU et al., 2010; Jacob et al., 1999;

Królikowski & Grzesiak, 2014; Wu & Cheung, 2006). The popularity gained was due

to its non-encrypted data, open-source, and simplicity (Hayasi & Asiabanpour, 2009).

Most of other CAD formats are encrypted and licenses are required for the software

developer to incorporate the CAD format compatibility in their applications.

STL is also known as the abbreviation for “Standard Tessellation Language” by

some scholars. It is because the STL file is constructed using a tessellation process.

Tessellation is a process that converts the surface geometry of a CAD model into

meshes of small triangle. This triangle is called Facet. It has three vertices in 3D

13

Cartesian Coordinate System that form the triangle. Together all the Facets made up a

shell representation of the original CAD model. Tessellation process can also be applied

to point clouds data usually obtained from Coordinate Measuring Machine (CMM) to

construct an STL model. This is done by connecting all the point clouds into triangular

mesh to construct the meshed surface geometry of the model (Cătălin IANCU et al.,

2010; Koc et al., 2000; Tyvaert et al., 1999; Wu & Cheung, 2006). Thus, this make the

STL formatted CAD models more robust and simpler.

2.3.1 Types of STL

The STL has two different types of data format which are ASCII and Binary.

The ASCII STL format are human readable text format. ASCII STL format begins with

solid name syntax. Usually, a model name is optional and often omitted with white

spaces. Next, the syntax followed by facet syntax along with its normal vector

coordinates. Vertices are enclosed with outer loop and endloop syntaxes. The vertex

indicates a beginning for each vertex which are used as P1(x, y, z) , P2(x, y, z) , and

P3(x, y, z) respectively in the proposed algorithms. The 𝑛 and 𝑣 is a formatted floating

number of sign-mantissa-“e”-sign-exponent, e.g. “2.999381e-002” separated with

white spaces. Each facet data will end with an endfacet syntax. Depending on the

complexity of the geometry, an STL file may consists of more than one facet; usually

thousands. When a new facet syntax is located after the previous endfacet syntax, this

indicates the start of a new facet. Finally, an STL file normally ends with endsolid name

syntax (Cătălin IANCU et al., 2010; Wu & Cheung, 2006). An example of ASCII STL

format is shown below.

solid name
facet normal ni nj nk

 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z
 endloop
endfacet
endsolid name

Due to ASCII STL using ASCII text as its data, it often has larger file size compared to

its Binary counterpart.

14

On the other hand, Binary STL file uses structured data format using binary

representation of the data. The data can be read in Bytes with the first 80 Bytes of the

Binary STL file is the header of the file. Most of the time, the first 80 Bytes are skipped

to improve the reading time. In some cases, the header section contains the metadata of

the STL file which is not as important as the facets data. After that, Binary STL

contains another 4 Bytes of data that represents the facets count of the STL file. The

facets count is read as Unsigned Integer data type in programming code. Then, the

facets data starts with 12 Bytes of Normal vector data in which each 4 Bytes are the

vector components for X, Y, and Z respectively. Each vector components are read and

casted as Float data type. Next, the following 12 Bytes of data contains the first vertex

of the facet with each 4 Bytes as its vector components similar to the Normal vector.

The second and third vertex follow similar structure to the Normal and first vertex data

structure. Then, the Binary STL allocated another 2 Bytes for attribute data for the

facet. Overall, each facet data has the size of exactly 50 Bytes. Each 50 Bytes until the

end of Binary STL file contains only the facet data of the STL model (Cătălin IANCU

et al., 2010). The structure of Binary STL file is shown below.

Byte[80] - Header
Byte[4] - Facets Count

For each facet

Byte[12] - Normal vector(x, y, z)
 Byte[12] - First Vertex (x, y, z)
 Byte[12] - Second Vertex(x, y, z)
 Byte[12] - Third Vertex (x, y, z)
 Byte[2] - Attribute
Loop

The Binary STL has several advantages over ASCII STL data format because the data

is more compact and reading time is faster than the ASCII STL data format. The 4

Bytes facets count gives useful information regarding the STL model. The Binary STL

file sizes are smaller than ASCII STL file.

Recent advancement in rapid prototyping technology demands more information

from an STL model such as colour. Thus, in the work of DX Wang, they proposed a

Colour STL format derived from Binary STL format. Using the 2 Bytes in the

attributes, an RGB565 colour code was inserted to represent the colour of the specified

facet as shown below.

15

Byte[80] - Header
Byte[4] - Facets Count

For each facet

Byte[12] - Normal vector(x, y, z)
 Byte[12] - First Vertex (x, y, z)
 Byte[12] - Second Vertex(x, y, z)
 Byte[12] - Third Vertex (x, y, z)
 Byte[2] - RGB565 Colour
Loop

These bytes have the range of 65536 different colour levels that can be coded (Wang et

al., 2006). However, the Colour STL format is rarely found because of its limited colour

palette and inaccurate representation of the model colouring caused by arbitrary

triangular meshes.

2.3.2 Issues of STL

Problems that occur in STL format are still being discussed up until now by

numerous researchers ever since it was introduced back in 1987. STL format is known

to have issues with incorrect and inconsistency in its normal vector. This occurs when

the CAD software generated facet normal vector differs from the calculated normal

based on the facet vertices (Huang et al., 2002; Kumar & Dutta, 1997; Wu & Cheung,

2006). Most of the time, programmer would prefer calculated normal based on the facet

vertices coordinates rather than the generated facet normal due to this inconsistency

problem. Thus, the generated facet normal is often ignored or skipped.

Another known error that occurs in STL format is when there is a gap or crack

between the facets as shown in Figure below. This error is caused by truncation error in

the CAD software generated vertices. Each facet usually shares at least one of its

vertices with another facet within close proximity. According to STL rule, for two

adjacent facets, there will be two shared vertices (Barequet & Sharir, 1995;

Bloomenthal, 1988; Huang et al., 2002; Leong et al., 1996; Piegl & Richard, 1995). The

mismatch of these vertices due to truncation error forms a crack or hole in the

tessellated model (Kumar & Dutta, 1997; Wu & Cheung, 2006). Although this error can

be fixed using algorithms such as K-Nearest Neighbors (k-NN) algorithm, it is still less

efficient compared to other CAD formats. The truncation error of the vertices also

16

causes the facets to overlap due to incorrect vertex generated in either facet as shown in

Figure below.

Figure 2.4 Hole at a vertex (left), overlapping facets (right)

Source: (Szilvśi-Nagy & Mátyási, 2003)

Aside from the gap error and inconsistent normal, the major flaw in STL format

is that every facet is generated in random order or arbitrarily. There are no pointers that

show the relationship and proximity between each element (Szilvśi-Nagy & Mátyási,

2003). This leads to difficulty in processing the STL model since it will require

complex algorithm to piece the facet together as if piecing a puzzle which is time

consuming. This, in fact, lower the performances of the operation involving STL model.

Some researchers suggested to use Octree data structure to correctly assign and store

each facet for optimized slicing and other processes (Wong et al., 2017).

STL files are also known to consume large memory allocation to be stored. This

make it less portable compared to other CAD formats (Wu & Cheung, 2006). Typical

high polygon STL model consists of 1,175,288 facets has the file size of 56 MB in

Binary STL and 273 MB in ASCII STL. In ASCII STL format, each chunk of data is

stored as char or character which consume 1 Byte or 8 Bits for every chunk of data.

This is wasteful for the case of numerical data. For example, each digit in the number

“0.12345e+3” is individually regarded as char based on ASCII code. Thus, this number

will consume 10 Bytes of memory. Although it is human readable, it is still inefficient

in terms of resource. Thus, the Binary STL is developed in order to reduce this wasteful

memory consumption by storing the numerical data in float data type which are 4 Bytes

or 32 Bits. However, the Binary STL file size is still larger compared to other CAD

formats. Redundancy of the STL vertices also contributes to the large STL file size.

Recent advancement in 3D application demands more information out of a CAD

model. The information that often required by most modern CAD software nowadays

17

demand information on the multiple material type, multiple colour information, surface

texture, and etc. (Cătălin IANCU et al., 2010). This information which are lacking in

STL model leads to its major downfall compared to other CAD formats which are more

robust and practical. An attempt has been done to improve the STL format. One of it is

the usage of 2 Bytes of attributes data to indicate the colour of the facet. However, the

colour is only limited to 16-Bits colour RGB565 palette. The triangular shaped facet

also causes inaccuracy in color representation of the STL model (Wang et al., 2006).

Up until now, STL format is still unable to fulfill these new demands from the modern

CAD software.

Based on the literature done on issues involving STL format, we can classify

that there are two distinct cause of errors mentioned above. One, where the errors are

caused by the CAD software generation process of STL format. The errors involving

cracks and overlapping facets are caused by bad tessellation algorithm by the CAD

software itself. Hence, it is unfair to regard it as a downfall of the STL model. These

errors can be prevented if the CAD software performs a verification or linkage check

algorithm on the generated STL model to detect the error. The other type of error that

can be classified, is the limitations by the STL format itself such as the file sizes,

arbitrary facets, and lack of required information. This is in fact, the major downfall of

the STL format which has not been changed for the last 30 years since it was

introduced.

2.4 Slicing Algorithm

Projection stereolithography 3D printing machine requires the 3D model to

undergo process planning stage before the printing process. This process planning stage

has a series of tasks which include: model orienting and positioning, slicing the model

into 2D contours based on Z-axis of the printer workspace, and if necessary, add

support structures (Kulkarni et al., 2000; Minetto et al., 2017). Slicing thickness is the

crucial parameter that needs to be properly set as it defines the quality of the printed

model. Large slicing thickness leads to “stair-case” effect. Small slicing thickness or

higher slicing resolution provides accuracy and better printing quality but consumes

18

larger memory and higher computational time. To overcome this issue, the slicing

process must be computationally fast and efficient.

The process of converting triangular facet into line segment is called slicing

process. The slicing process use an algorithm that relies on computation of the

intersecting points between the slicing plane and the STL facet. Each facet is made of

three vertices. When paired, the vertices become lines which form the triangle facet.

When these lines intersect with the slicing plane, it will intersect at single intersection

point. If two of the lines intersect with the slicing plane at the same time, connecting

both intersection points form a line segment that exist on the slicing plane. An STL file

contains multiple facets. Multiple interactions between the facet and the slicing plane

form the 2D contour on the slicing plane that can be process into contour projection for

DLP 3D printing process. In other application, these 2D contour can also be used for G-

Code generation for CAD/CAM process in a CNC machine (Pandey et al., 2003).

2.4.1 Fundamental of Slicing Algorithm

The slicing algorithm relies on mathematical computation to compute the

intersection points that form the line segments. It is derived based on line-plane

intersection model in calculus math as represented by the Figure 2.5 below.

19

Figure 2.5 Facet intersecting with slicing plane

Source: (Manmadhachary et al., 2016)

The Figure 2.5 shows an STL facet intersecting with the slicing plane located at certain

slicing height. The pair between the vertices Pa, Pb, and Pc are the lines intersecting with

the plane. The two points that exist on the plane are the projected contour line of a

single facet. This contour line is called as line segment. As can be seen, the line from Pa

to Pb does not intersects with the plane, thus, no intersection point can be computed. To

check whether the line intersects or vice versa, the height of the slicing plane must be in

between the z coordinates of the two vertices. The closed loop contours at this

particular slicing height are generated by multiple intersection between the STL facets

at that slicing height (Manmadhachary et al., 2016). However, the set of these line

segments are not programmatically connected. A contour loop algorithm is required to

connect each of the generated line segment to form single/multiple closed loop

contours.

In many literatures, the most commonly used mathematical equation is the linear

extrapolation method where the equation is defined as:

x − x1

x2 − x1
=

y − y1
y2 − y1

=
z − z1
z2 − z1

 2.9

In the above equation, the subscript 1 denotes the beginning of the line segment and

subscript 2 denotes the end point of the line segment. By setting the slicing height, z,

the unknown x and y can be solved. Thus, the intersection point is P(x, y) as long the x

20

and y exist in between P1 and P2 (Huang et al., 2012; Xu et al., 2017). This method is

often used due to simple and fast computation. However, there are a few drawbacks of

using this method. For example, the STL formatted CAD model uses fixed position

vectors of its facets. Thus, to change the slicing orientation of the model will requires

each position vectors to be modified. This process can be time consuming especially for

high polygon model.

2.4.2 Facet-Plane Intersection Case Handling

The slicing algorithm involves intersection between the slicing plane and the

STL facet. Studies have shown that certain type of intersection between these two

causes geometrical errors and redundancies during the contour generation process (Jing

Hu, 2017; Topçu et al., 2011). Thus, these facet-plane intersections are classified into 5

cases as shown in Figure 2.6 below. Each of the cases are treated with each respective

case handling.

Figure 2.6 Possible intersection cases

Source: (Topçu et al., 2011)

Case I describes the case where the facet is in parallel with the slicing plane.

Thus, all sides intersect with the slicing plane. Usually facet with this case usually

omitted because there will be another facet that shares the same side with the one in

parallel. This normally occurs at the flat surface of the STL model. Commonly, at top

and bottom side. Case I can also be used by directly storing all vertices as the contour

points. But, to avoid redundancy of contour points, the facet is often omitted.

Case II describes the scenario where one side of the facet is in parallel with the

slicing plane and two vertices intersect with the slicing plane. This case is usually

handled by removing or ignoring the side in parallel with the slicing plane. The other

two non-parallel sides are then sliced to generate the required line segment. Case II

21

sometime shares its parallel side with the facet in Case I. Most of the time Case II is

given priority over Case I.

Case III shows the facet intersects with the slicing plane at one side and one of

its vertices. In this case, all sides are considered intersecting with the slicing plane. This

issue will cause errors to the line segment generation because the line segment only

requires two distinct points to form a line. Since the intersection happens at the vertex,

two similar points will be generated. Removing one of the points can solve the issue.

Case IV shows an ideal case where only two sides intersect with the slicing

plane. Slicing the two sides will produce only two distinct points that form the right line

segment. The side that does not intersects is ignored.

Case V represents the occurrence where only one vertex of the facet touches the

slicing plane. The algorithm might assume this condition as two sides intersecting with

the slicing plane. Slicing this facet will produces two similar points. Thus, the line

segment will end up becoming a single point in the 2D space. This leads to

redundancies of contour points for contour generation process.

2.4.3 Data Structure

The STL files usually contain large quantity of facets information. These facets

need to be properly managed so that the algorithm will performs better. Choosing the

right data structure to store the facet information allows the algorithm to quickly access

the necessary data needed without having to look into each element in the list. Aside

from that, different STL models have different numbers of facet. Thus, the data

structure should be able to scale itself to match the size of data. An array data structure

requires fixed size allocation before the data can be stored. If the allocation size is too

big, it will consume a lot of computer memory. On the other hand, if the size is too

small, to program might crash due to array overflow when handling large STL file.

Huang et al. (2012) implemented hash table data structure in their work on

slicing algorithm for G-Code generation for CNC Milling using STL file. The hash

table stores the results of the slicing algorithm according to the incremental of the

22

slicing height. The code is executed on a low-end PC operating on Intel Core 2 1.6 GHz

RAM 2GB running on Windows XP SP3. The result shows that the execution time

increases with respect to slicing thickness. Based on comparison, the result shows slight

improvement than the original method. Considering that the program runs on low-end

PC, the results are relatively fast with the implementation of hash table data structure.

However, the test is implemented only on a single STL model. The cylinder-like shaped

STL model always has single contour loop at each slicing height. STL model with

multiple contour loops are not tested and reported in the journal.

Wong et al. (2017) utilized Octree data structure in their work on real-time

slicing for light painting rendering application using STL formatted CAD model. The

use of Octree data structure is mainly to reduce computational time for STL slicing. The

algorithm first determines the axis-aligned bounding box of the STL model. The

bounding box is set to be the root of the Octree structure. Then, the model is recursively

subdivided into eight octants as the nodes of the tree. Each of these nodes contains a

collection of facets of the STL model bounded by each respective node boundary. The

algorithm is implemented using 4 different STL models having different number of

facets. The number of tree levels are varied and the computation time of each cases are

recorded. It is later found that, model with a greater number of facets requires more

computation time to be sliced. Varying the tree level can reduce the computation time

but only up to a certain limit. It is observed that after 3 tree level, the computation time

started to rise due to more time is spent on the divide-and-conquer approach.

Pan et al. (2014) used linked list data structure in the development of rapid

prototyping STL model slicing software. The linked list is used to store the facet and

also contains a pointer that points to the next pairing facet. This kind of implementation

can be advantageous since the algorithm does not need contour loop algorithm to

connect each line segment because the facets are already arranged in such manner. But,

since the slicing height varies, the pairing might also change. Thus, the list needs to be

reconstructed which is also time consuming (Ye et al., 2017).

23

2.4.4 Type of Slicing Algorithm

Many methods have been developed on slicing algorithm to improve its

computation time, accuracy, and memory efficiency. Among popular methods proposed

by the researchers are uniform slicing, adaptive slicing, and direct slicing algorithm.

These methods have its own advantages and limitations.

Uniform slicing has been popularized since the early years the slicing algorithm

has been presented. It utilizes constant slicing thickness for all of the layers (Choi &

Kwok, 1999). It is the simplest method for slicing approach. However, stair-case effect

is known to occur when using this method. The stair-case effect is the case where there

are losses of geometric data in between the slicing thickness interval since the fixed

slicing thickness skipped these intervals. Some important features of the geometric

model might be skipped which resulted in lower accuracy of the printed model.

Reducing the slicing thickness can mitigate this effect (Zheng et al., 2018; Zhou et al.,

2004) but the slicing output will consume more memory to store the slicing results.

In an effort to reduce the stair-case effect whilst reducing the memory

consumption, adaptive slicing method is introduced. Adaptive slicing method uses

variable slicing thickness that depends on the value of allowable cusp height. Pandey et.

al. explained the concept of cusp height in their work on adaptive slicing algorithm. The

cusp height is based on theoretical calculation of surface roughness and the build

orientation. By limiting the allowable surface roughness parameter, variable slicing

thickness can be obtained (Pandey et al., 2003). Zhou et. al. presented their work on

non-uniform cusp height which is different than the work of Pandey et. al. The non-

uniform cusp height is based on circular approximation and user specified allowable

cusp height as shown in Figure 2.7. The layer thickness model presented are able to

solve the containment issues that occur during the printing process (Zhou et al., 2004).

24

Figure 2.7 Circular approximation to determine layer error and thickness

Source: (Zhou et al., 2004)

The adaptive slicing technique reduces memory consumption by also eliminating the

repetitive features of the geometric model. For example, a cube STL model will always

has the same contour from bottom to top when the slicing orientation is perpendicular to

the cube. Thus, adaptive slicing eliminates the needs to reconstruct the same contour

that can cause memory inefficiency.

Direct slicing algorithm is more recent approach in CAD slicing. This approach

does not require tessellated CAD model such as STL format. Instead, the algorithm is

implemented on the original CAD format without involving any tessellation process.

This is because the tessellation process is a surface approximation process of the

original CAD model. This approximation often leads to reduction in geometric accuracy

(Jing Hu, 2017). Other reason the direct slicing algorithm is proposed due to the size of

the STL file. Complex STL file often requires a lot of memory space to be stored

compares to other CAD formats (Choi & Kwok, 1999). The direct slicing algorithm can

be implemented using either uniform or adaptive slicing technique. The only difference

is the CAD format.

2.5 Contour Loop Algorithm

In order to complete the contour generation for the projection mask

stereolithography process, each line segments generated by the slicing algorithm must

be connected to form closed-loop contours (Tian et al., 2018). These line segments are

25

in arbitrary order due to STL facets are sorted in similar fashion (Zhang & Joshi, 2015).

It is also possible to have multiple closed-loop contours at the same slicing height.

Thus, it is crucial to differentiate to which group does a contour loop belongs to because

the contours will define the geometrical features of the printed model.

One of the most common and naïve methods applied by the previous researchers

are the head-to-tail search algorithm. The algorithm works by joining neighboring line

segments until closed-loop contour is formed. Each line segments contain two distinct

points Po to Pf. The Po of the first line segments from the list is assigned as the head of

the contour group. Then, the algorithm searches for the similar point that matches the Pf

of the first line. The algorithm stops when the found Pf matches the assigned head. This

indicates a closed-loop contour. Then, the remaining line segments are considered as

new contour group and the algorithm assigns new head for the next contour group. The

process will repeat until every line segment from the list is checked. The head-to-tail

contour loop algorithm is known to have the worst case of O(nk). This happen when

the algorithm has to loop through each line segment from the list if the neighboring line

is located at the end of the list. Since the k element decreases as n element increases, on

average, this algorithm will run as O(n). However, a study was done back in 2002 by

Huang et. al proves that STL formatted CAD model are susceptible to flaws such as

cracks which may appear in between two side-by-side facets (Huang et al., 2002). Thus,

the resulting line segments give incorrect pairs hence breaking the closed-contour loop

formation. Even the smallest truncation errors between the pairs can be catastrophic to

the head-to-tail contour loop algorithm.

An algorithm that uses shortest distance calculation is introduced to prevent the

mispairing issue. This method is applied in the work of Manmadhachary et. al. in an

attempt to improve surface smoothness of rapid prototyping printed medical product

(Manmadhachary et al., 2016). The shortest distance approach eliminates truncation

error that can cause contour dysconnectivity. The equation used for the shortest distance

is defined as:

 D = �(x − xt)2 + (y − yt)2 2.10

26

The equation above is used in comparison to compare the points of current line segment

with the next line segment. If the point coincides, the value of D should be near or equal

to zero (Vatani et al., 2009). However, the computation uses square root function which

is more computationally intensive than normal mathematical operation. Thus, the

shortest distance requires more computational time compared to the naïve head-to-tail

search algorithm. It is a tradeoff between error-tolerance and the performance of the

algorithm.

Zhang & Joshi introduced Efficient Contour Construction (ECC) algorithm in

their work. The authors used linked list data structure for the ECC algorithm. The

algorithm checks for the insertion position to construct the contour. The insertion

process is decided by checking the first and last elements from the intersection linked

list (Zhang & Joshi, 2015). The contour grouping process which differs between which

group does the contour loop belongs is not clearly stated in the ECC algorithm. There

could be more than one closed loop contour at different slicing height depending on the

geometry features.

2.6 Summary

Mask projection stereolithography 3D printing process uses UV-light projection

to cure photocurable resin. The curing process is called photopolymerization.

Photopolymer resin used in this process contains 50-80% oligomer, 10-40% monomer,

and the rest is photoinitiator. Each of the components in the photopolymer defines the

properties of the printed model. Photoinitiator is the photo-reactive substance that

initiates the polymerization process upon exposure to light with specific wavelength.

The concentration of the photoinitiator in the photopolymer mixture highly affects the

curing depth of the photopolymer as shown in Figure 2.1. Other parameters which

affect the curing process include the light intensity, the critical energy dosage, time, and

other photochemical parameters. This shows that the photopolymerization is a time

dependent process. Thus, the proposed algorithm must be fast enough to keep up with

the photopolymerization process. The elevation speed of the printer must also correlate

to the curing speed in order to generate accurate printed model.

27

STL file is a de facto CAD format in 3D printing industry. There are two types

of conventional STL format which are Binary STL and ASCII STL. Each STL model

consists of multiple facets which are made of a normal vector and three vertices that

form the facet. Ever since it was first developed back in 1987, STL format remains

unchanged. There are a lot of known issues with the STL format. Among the flaws

associated with the STL format is the possibility of crack due to mismatch of the facet

coordinates. The proposed algorithm must be able to correct this error since it can cause

failures during the contour formation.

Slicing algorithm is an algorithm that slices the 3D CAD model into layers of

contour. In mask projection stereolithography, the 3D model is sliced into multiple 2D

contour layers. These layers are used in the mask projection to cure each layer of the 3D

model with respect to the build height. The fundamental equation used in slicing

process uses linear extrapolation method. This method is simple and straightforward.

However, this method is susceptible to division by zero which may cause the program

to crash. As discussed earlier in Section 2.4.2, there are several cases of interaction

between the slicing plane and the facet. Each of these cases must be handled properly in

order to generate the correct 2D contour representation of the 3D model. Most

commonly studied slicing algorithm are the uniform slicing and adaptive slicing.

However, these methods cause stair-case effect and requires long computational time.

The proposed algorithm requires low computational time and can be implemented real-

time. Since the curing process is continuous, the printer must also continuously track

the changes of the curing depth hence modifies the contour layer according to the cure

depth.

The process of STL slicing only generates multiple arbitrary line segments.

Thus, a contour loop algorithm is needed to reconnect the line segments into one or

multiple closed loop contours. Based on literature, many researchers proposed the head-

to-search search algorithm which is simple and naïve. Considering that there are cases

of cracks occurring in the STL format, the naïve approach will not be sufficient. Other

literature proposed shortest distance approach to find and connect the line segments.

But the shortest distance is more computational intensives. In this research, the

proposed contour loop algorithm uses pixel line mapping algorithm to map the line

28

segment based on pixel coordinate of the projection device and uses head-to-tail search

algorithm to efficiently connect every line segment.

29

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the slicing, contour construction, and line to pixel map

algorithms are thoroughly discussed and elaborated based on the fundamentals of the

algorithm and the structure of the algorithm. This chapter also discusses the structure of

STL formatted CAD models and how the data from this CAD models are read and

stored in the concept of programming.

3.2 STL Data Management

Managing a huge number of facets require proper encapsulation of the data.

Hence, the proposed algorithm introduces a list of facet class to store the facet data.

These data will be read by the slicing algorithm. Each facet class stores the vertices

(P1, P2, P3) and maximum/minimum Z coordinates between the three vertices. The use of

maximum/minimum Z value is to filter out other facets except the ones intersecting

with the slicing plane by comparison of zmin ≤ zslice ≤ zmax for each facet in the STL

file. This is to reduce the number of facets from the list by taking only a portion of it

and improves the performance of the slicing algorithm.

3.3 Slicing Algorithm

A slicer is an algorithm that slices each triangular facet in STL model which

intersects with the slicing plane. The slicing process of each intersecting facet generates

line segments which lie on the slicing plane. These line segments are arbitrary because

30

all facets in STL model are also randomly ordered. Hence, the line segment requires a

contour construction algorithm to connect each line segment into single or multiple

closed loop contours which will be discussed in the next section. By adjusting the

slicing plane height, different contour can be generated. This allows layer-by-layer

contour generation for layered manufacturing process.

3.3.1 Case Handler for Facet-Plane Interaction

The most common issue regarding slicing algorithm is the vertices error which

occurs due to bad interaction between the facet and the slicing plane. A line segment

requires only two distinct points. However, bad facet interaction with the plane causes

the slicing algorithm to generate more/less than two distinct points. Known cases of

facet-plane interactions are defined in Figure 3.1 and Table 3.1.

Figure 3.1 Possible facet-plane interaction

Table 3.1 Definition of interaction cases

Case Interaction of facet and plane Possible Point

I Line through one side of the facet 4
II Line bisecting the facet through one vertex 3
III Line bisecting the facet through two sides 2
IV No intersection 0
V Vertex intersection 2
VI Parallel intersection 6

Table 3.1 defines the number of points that is generated considering all six possibilities.

As stated in Table 3.1, both Case I and VI have a side/sides which in parallel with the

31

plane. This parallel intersection must be eliminated to avoid redundant points. Case VI

is ignored because all the sides are in parallel. Case VI occurs at flat surfaces and

usually found during slicing the base of the model. It can also be detected when

zmin = zmax. For Case I, the parallel side is eliminated and the other two sides are

sliced. The method of eliminating parallel side is using a dot product criterion which

will be discussed later. Next, Case II happens when the slicing plane intersects at one

vertex of the facet and one side passing through the plane. Case II generates three

intersection points which are redundancy for line generation. During the slicing routine,

the vertex intersection generates two similar points and one distinct point. In the

proposed slicing algorithm, the algorithm compares the cross combination between the

three generated points to see which of the combinations give the longest line and later

stores the combination as a line segment. Intersection at vertex can also be seen in Case

V. A two similar point cannot forms a line segment. Hence, Case V is ignored. The

same goes for Case IV which is already been filtered out using Z-comparison in the

previous section.

3.3.2 Fundamental of Slicing

Figure 3.2 Facet-Plane intersection model

The fundamental of the proposed slicing algorithm is based on line-plane

intersection mathematical equation. Consider one side of the facet as a line connecting

two vertices from P1 to P2. In 3D environment, a line can be either parallel to a plane or

32

intersects at one point on the plane (see Figure 3.2). Parametric equation of a line with

Po as the initial point and Pf as the final point is given as:

 P(s) = Po + s(Pf − Po) 3.1

Assume that point Q in Figure 3.2 lies on the same slicing plane where its x and y

coordinate can be randomly set (usually set at the origin), and zslice is the slicing plane

height. By adjusting the zslice value, slicing algorithm can be implemented at any height

of the STL model. Slicing plane normal is given by unit vector n� = 〈0, 0, 1〉 which is

for the case of slicing with respect to Z-axis. Unit vector n� can be change to alter the

slicing plane direction. In Figure 3.2, the line 𝐮 , 𝐯 , and 𝐰 are direction vectors

connecting the three vertices (P1 , P2 , and P3) in clockwise order (P1, P2, P3, P1)

respectively to represent the sides of the facet. The algorithm initially checks for any

intersection which exists between the facet sides and the slicing plane by computing the

dot product criterion, n� ∙ 𝐮 = 0 , n� ∙ 𝐯 = 0 , n� ∙ 𝐰 = 0 respectively. These criterions

eliminate the facet parallel sides for both Case I and Case VI as mentioned earlier. The

output of the criterion becomes zero when there is no intersection between the direction

vector and the slicing plane. Should the line intersect with the plane as seen in Figure

3.2, the criterion output is not equal to zero. As seen in Figure 3.2, the direction vector

𝐮 from point P1 to P2 intersects with the plane at point P(su). Substituting P1 as the

initial point Po , P2 as the final point Pf and su as the parameter s, Equation 3.1 now

becomes:

 P(su) = P1 + su(P2 − P1) 3.2

Equation 3.2 above is a parametric equation of the intersection point P(su). By using a

direction vector 𝐠 that lies on the same plane, it is known that n� ∙ 𝐠 = 0 because the

vector is in parallel to the plane. The vector can also be represented as 𝐠 = 𝐡 + su𝐮.

Hence, n� ∙ 𝐠 = n� ∙ (𝐡+ su𝐮) = 0. Rearranging this equation, the parameter su can be

written as:

 su =
−n� ∙ 𝐡
n� ∙ 𝐮

 3.3

33

Vector 𝐡 is given by 𝐡 = P1 − Q and vector 𝐮 is given by 𝐮 = P2 − P1 . Substituting

both vector 𝐡 and 𝐮 into Equation 3.3 yield:

 su =
n� ∙ (Q − P1)
n� ∙ (P2 − P1)

 3.4

Now, the intersection point P(su) can be computed. Based on the previous derivation, it

is known that vector 𝐠 is a direction vector from point Q to the intersection point. This

means that 𝐠 = P(s) − Q. Vector 𝐡 is a direction vector from point Q to the initial point

of the vector 𝐮 which is 𝐡 = Po − Q. Hence, 𝐠 = 𝐡 + s𝐮 where 𝐮 = Pf − Po . Finally,

the general form of the Equation 3.4 above can be derived as:

 s =
n� ∙ (Q − Po)
n� ∙ (Pf − Po)

 3.5

Hence, applying Equation 3.1 and 3.5 to another intersecting side of the facet yield

another intersection point P(sv) forming a line segment 𝐿 on the slicing plane.

However, the value su and sv must be within the range 0 ≤ s ≤ 1 to ensure that the

intersection points exists only within the line between Po and Pf.

3.3.3 Line to Pixel Mapping

The generated line segments are floating numbers, which is computationally

expensive, and tends to cause truncation errors that disrupt the performance of the

contour generation algorithm. In this context, the floating numbers are irrelevant

because the resolutions of the geometry are eventually subjected to the projection

device resolution. The algorithm proposed novel method of reducing computation time

by converting the line segments floating number coordinates to pixel coordinates.

The Pixel Mapping method starts by computing both aspect ratio of the

projection device ARdevice and the aspect ratio of the object ARobject. This allows the

algorithm to detect whether to geometry can be fit to neither height nor width of the

projection device while preserving the aspect ratio of the geometry. The aspect ratios

are given by:

34

ARdevice =

width
height

 3.6

 ARobject =
xmax − xmin
ymax − ymin

 3.7

In Equation 3.6 and 3.7, these values are used as comparison to determine whether the

object should be fit to width or height. If the ARobject has higher proportion than

ARdevice, it means that the object has longer width and must be fit to width and vice

versa when the ARobject is less than ARdevice. Using this condition, a new variable R is

introduced to represent the conditions as:

 R = �
width − 1; ARobject ≥ ARdevice
height − 1; ARobject < ARdevice 3.8

The R value is minus by one because the pixel coordinates are zero based integer and its

value is conditional depending on the comparison of ARobject with ARdevice. Consider a

case of fit-to-width ARobject ≥ ARdevice ; the following equation can be used to map

the floating number of x-coordinate into a horizontal pixel position (the width) of the

projection device:

 xpixel =
Px − xmin

xmax − xmin
∙ R 3.9

However, y-coordinate must be scaled with modified value of height′ to retain the

original aspect ratio of the object. This means, the ARdevice must equal to ARobject.

Hence, the new ARdevice value is defined as:

 AR′device = ARobject =
width′
height′

 3.10

For this case, the width’ = R where R = width − 1 because it is a fit-to-width

condition. Hence, using Equation 3.10 the modified height is written as:

 height′ =
width′

ARobject
=

R
ARobject

 3.11

35

The equation of y-coordinate now can be derived as:

 ypixel =
Py − ymin

ymax − ymin
∙

R
ARobject

 3.12

Based on Equation 3.12, the ypixel is now scaled to modified value of height for

perseverance of its original aspect ratio and it represents the vertical pixel position of

the projection device.

Next, for the case of fit-to-height where ARobject < ARdevice and the variable

R = height − 1, the algorithm must use full scale of projection device height for y-axis

and a modification of the width for the x-axis. The equation for ypixel can be written as:

 ypixel =
Py − ymin

ymax − ymin
∙ R 3.13

But the xpixel must be scaled with modified value by using Equation 3.10 which now

becomes:

 width′ = height′ ∙ ARobject = R ∙ ARobject 3.14

The equation of xpixel is now derived as:

 xpixel =
Px − xmin

xmax − xmin
∙ R ∙ ARobject 3.15

Comparing the Equation 3.9 and 3.15, and Equation 3.12 and 3.13, two new conditional

variables are introduced to generalize both equations for xpixel and ypixel which are:

V = �

 1 ; ARobject ≥ ARdevice
ARobject; ARobject < ARdevice

 3.16

W = �

ARobject
−1 ; ARobject ≥ ARdevice

 1 ; ARobject < ARdevice
 3.17

Finally, the equations for xpixel and ypixel are rewritten as:

36

 xpixel =
Px − xmin

xmax − xmin
∙ R ∙ V 3.18

ypixel =

Py − ymin
ymax − ymin

∙ R ∙ W 3.19

In the algorithm, Equation 3.18 and 3.19 map the floating number coordinates of

the line segment 𝐿 for both Po and Pf to a new pixel line segment coordinates. These

pixel coordinates are store as an unsigned integer value to eliminate the decimal point

of its original value so that it can be used for the pixel mapping of the projection device.

3.3.4 Algorithm Structure

This section discusses complete implementation of the slicing algorithm. All the

fundamentals of the slicing algorithm have been previously explained starting from

issues regarding STL models, the fundamentals of slicing, and the line to pixel mapping

fundamental. Figure below shows the structure of the algorithm which will be

thoroughly discussed in this section.

In Step 1, the algorithm first starts by obtaining a list of intersecting facets 𝐿

from a list of STL Facet Class (as in Section 3.2) where 𝑛 is the last index in the

intersecting facets list 𝐿 and 𝑗 is the last index of the STL facets. This procedure filters

37

out other non-intersecting facets to optimize the operation time based on the current

slicing height, zslice. As mentioned in Section 3.3.2, the process works by comparing

each facet by zmin ≤ zslice ≤ zmax . If the condition is true, then the list stores the

intersecting facet in list 𝐿 and vice versa. Starting from Step 2 until 14, the algorithm

loops for each intersecting facet in the list 𝐿. Step 3 initializes working buffers to be

used for the next operations. At Step 4, the algorithm performs another loop for each

side of a facet since a facet contains 3 sides (𝑢, 𝑣,𝑤). Next, the algorithm determines

whether the sides intersect with the slicing plane by performing dot product criterion

mentioned in Section 3.3.2. If any side intersects, Step 6 is executed. In Step 6, the

function 𝑠𝑙𝑖𝑐𝑒(𝑠𝑖𝑑𝑒, zslice) slices the intersecting side of the facet and stores the result

in buffer Pslice[𝑘]. The size of the point buffer Pslice is 3 to represent each sliced point

for each side. Result of the slicing operation mainly consists of a line segment made of

two points with double-precision floating number coordinates of Po and Pf . The

algorithm executes Step 8 if the side does not intersect and stores null in Pslice[𝑘]. Then,

Step 10 increments the index 𝑘 means that the index 0, 1, and 2, represent 𝑢, 𝑣, and 𝑤

respectively. Step 4 until Step 11 loops until each side of the facet are checked. The

algorithm continues the process by executing Step 12 which handles the errors defined

in Table 3.1 and stores the corrected line segment in 𝑙𝑖𝑛𝑒 variable. Step 13 converts the

double-precision coordinates (Po and Pf) into pixel (unsigned integer) coordinates and

stores it into a list of pixel line segments 𝑆 that will be used in the contour construction

algorithm.

3.4 Contour Construction Algorithm

The contour construction algorithm basically is a head-to-tail search algorithm

which connects a set of line segments that belongs to the same contour loop. By

assigning the first line segment Po as the initial tail (Pinit) and Pf as the head (Pfind), the

head will begin to search for next tail which has the same coordinate but in another line

segment. When found, the search algorithm assigns the found line segment as the new

head of the search algorithm. This process repeats until the head meets with the first

initial tail Pinit that indicates a closed loop is formed. The contour construction

algorithm is shown in the algorithm table below.

38

The arbitrary pixel line segments obtained by the slicing algorithm are put into a

list which is first sorted by Po. Y value then Po. X value. The algorithm then, initializes

an unsigned integer variable to identify and isolate each contour loops. Next, the

algorithm assigned Po of the first line segment in the list as initial point Pinit of the first

closed contour loop and its Pf as the search point to locate next neighbouring line

segment from the list. In Step 5, the algorithm checks whether a closed loop is found

else the algorithm proceeds to find next neighbouring line and hold its position in the

list into an unsigned integer variable 𝑓𝑜𝑢𝑛𝑑 . The function 𝐹𝑖𝑛𝑑 searches for

neighbouring line from the list with an offset index starting from next line segment

(𝑖 + 1) of the iteration until the end of the list. It uses Pfind as the searching point which

can be equal to next line Po or Pf. This is because all the lines sliced during the slicing

algorithm are arbitrary and it is difficult to know whether the point Po to Pf is in the

same direction with the contour loop. When next line is found, the function returns an

unsigned integer index of the found line as shown in Step 9. If the line is not found,

then the function returns -1. Step 11 checks the inversion of the found line. Should the

line inverts, then Pfind must be equal to the Pf of the found line. Vice versa, the line is in

the right orientation. Next in Step 12, the function 𝑆𝑤𝑎𝑝 is to swap the element in the

list between the found line segment and the next line of the iteration (𝑖 + 1). If the line

is inverted as previously checked in Step 11, the function 𝑆𝑤𝑎𝑝 will also flip the found

point such as Pf = Po and Po = Pf before swapping the two lines. Step 15 is mainly to

assign the contour identity to the next line segment in the list since by this point; the

39

next line segment has become a neighbouring line which was previously found in Step

9. During next iteration, new Pfind will be assigned as the search parameter and the

whole process will be repeated unless the comparison between Pfind and Pinit is equal to

one another. This indicates a closed loop is found and it is necessary to increment the

loop identity variable and assign new Pinit.

40

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the performance of both slicing and contour construction

algorithm are evaluated. The evaluation of the performance is based on the

computational time required to complete each layer respective to their slicing height.

Evaluation of the results are based on several STL model with different complexity

which were used in the experiment. Each of these geometries/models are thoroughly

analyzed based on the time performances of each algorithms including slicing algorithm

and contour construction algorithm. The algorithms are implemented on Intel i3-2350M

CPU 2.30 GHz with 6 GB RAM workstation in VB.NET programming language. For

the comparison with the algorithm implementation based on journal, the algorithms are

re-written in C++11 and tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM

similar to the referenced journal.

4.2 Sliced Model Output

In this section, the 3D sliced models are presented with colour-map indicating

the total computational time at each respective layer slicing height. A sphere model is

used to prove that the XZ and YZ planes are in correct ratio with respect to XY plane.

Figure 4.1 below shows the results of Sphere slicing.

41

Figure 4.1 Sliced model (Sphere) with colour mapped total computational time

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time

As seen in the Figure 4.1 above, the sphere appears perfectly round. This proves

that the slicing height is in correct ratio with respect to XY plane. The Dragon model is

properly form according to its original STL file.

42

Figure 4.3 Sliced model (Tower) with colour mapped total computational time

Two figures (Figure 4.2 and Figure 4.3) above show result of the algorithm

implementation. Other case studies are included in the Appendix section. As seen

above, the colour indicates the total computational time in milliseconds required to

generate each contour to show the feasibility of implementing this algorithm to an

actual DLP 3D printer. The lines that appear on the surface of the model are sliced

contour lines generated by the algorithms. Colour differences at certain slicing height

are due to the complexity of the geometry that differed at each height. This often

demands more computational loads to generate the contours. Hence, longer

computational time. The computational time at each respective height will be further

discussed in the next section.

In previous discussion in Chapter 3, the algorithms are designed to work by

referring to the current build plate height of the DLP 3D printer. In other words, the

algorithms generate the contour instantly upon receiving the slicing height input value.

This method is called instant slicing. The contour generation algorithm consists of two

different algorithms: slicing and contour construction, the performance of each

algorithms is evaluated in the next sections.

43

4.3 Slicing Algorithm Performance

In Chapter 3, the slicing algorithm is presented and discussed in detail. In brief,

the slicing algorithm works by filtering out other facets which do not intersect with the

slicing plane and then slice each of the intersecting facets to form each respective line

segments. By algorithms complexity analysis, the worst case for the instant slicing

algorithm can be represented as O(n). Thus, it is expected that increasing number of

elements will linearly increase the execution time. The performance graph below shows

the result of slicing algorithm at each respective slice height. Total facet number of the

STL model, the mean average, and the standard deviation (SD) are presented at the top

of the graph. Table 4.1 shows the result of execution time measurement for the slicing

algorithm at each slicing height.

Table 4.1 Time measurement for slicing algorithm in milliseconds at each slicing
height for different STL models

Model Performance Graph

Sp
he

re

D
ra

go
n

44

Ei
ff

el
 T

ow
er

G
un

da
m

Sp
ee

ds
te

r

H
ea

rt

45

D
re

ad
na

ug
ht

W
or

m

Sp
ira

l T
ow

er

By analyzing the pattern of each graph, all the graph above shows constant

slicing time regardless the slicing height. There are some spikes caused by the operating

system background processes which occupied the processor at the time. Each model

above is sorted in ascending order of their total facet number (low polygon model to

high polygon model). It is noticeable that increasing total facet number also increases

the mean slicing time average.

46

4.4 Contour Construction Performance

The contour construction algorithm works by connecting all the arbitrary line

segments generated by the slicing algorithm into one or more contour loops. Time

measurement for the execution time is taken in milliseconds to measure how fast the

algorithm is executed. The result obtained is shown in the Table 4.2 below which

represents contour construction computational time at each slicing height for each STL

model.

Table 4.2 Time measurement for contour construction algorithm in milliseconds at
each slicing height for different STL models

Model Performance Graph

Sp
he

re

D
ra

go
n

47

Ei
ff

el
 T

ow
er

G
un

da
m

Sp
ee

ds
te

r

H
ea

rt

48

D
re

ad
na

ug
ht

W
or

m

Sp
ira

l T
ow

er

As seen in the Table 4.2 above, the contour time results show unique pattern for

each model. The Sphere model has consistent contour construction execution time.

There are inconsistencies in the contour construction time at certain slicing height. This

is due to complex features of the models at certain height. The complexity of the model

can be represented as the number of intersecting facets at each slicing height. More

complex layer will have more facets number. Thus, it requires more computational time

due to high intersecting facet counts.

49

4.4.1 Number of Intersecting Facet at Different Slicing Height

Table 4.3 below show the number of intersecting facets which intersect with the

slicing plane at different heights. Unique feature of the Sphere model can be seen in the

results below. It is found that the Sphere model has the same number of intersecting

facets regardless the slicing height. This relates to the consistencies in its contour

construction algorithm results in previous section. The number of intersecting facet

pattern shows by the Dragon model also closely resembles the pattern in its contour

construction time. These similarities can also be observed in other STL models.

Table 4.3 Number of intersecting facet at each slicing height

Model Performance Graph

Sp
he

re

D
ra

go
n

50

Ei
ff

el
 T

ow
er

G
un

da
m

Sp
ee

ds
te

r

H
ea

rt

51

D
re

ad
na

ug
ht

W
or

m

Sp
ira

l T
ow

er

4.4.2 Contour Loop Counts

After running the test, it is found that at each slicing height, there are different

numbers of contour loops can be observed. Based on the proposed contour construction

algorithm in Chapter 3, the contour loop counts are programmed to re-iterate to connect

another closed loop contour. These re-iterations depend on the contour loop counts. As

a result, this process requires more computational time compares to a single closed loop

52

contour. The measurement of the contour loop counts at each respective slicing height

are tabulated in Table 4.4 below.

Table 4.4 Number of loop counts at each slicing height

Model Performance Graph

Sp
he

re

D
ra

go
n

Ei
ff

el
 T

ow
er

53

G
un

da
m

Sp
ee

ds
te

r

H
ea

rt

D
re

ad
na

ug
ht

54

W
or

m

Sp
ira

l T
ow

er

In earlier section, we could hypothesize that the computational time for contour

construction algorithm has a similarity with the number of intersecting facets. Thus, to

further support this statement, a normalized correlation method is used to measure the

similarities between these two results. The Equation 4.1 is the equation of normalized

correlation which is written as:

 NC =
∑ xnyn

�∑ xn2 ∑ yn2
 4.1

where the x is the data of contour construction time, y is the intersecting facet number,

n is the number of elements, and NC is the normalized correlation. The normalized

correlation is also tested for the relations between contour construction time and

contour loop counts by using the contour construction time as variable x and contour

loop counts as y according to the previous Equation. Using the Equation 4.1 for each

model, the results of normalized correlation are tabulated in Table 4.5 where CT is the

55

contour construction time, LC is the contour loop counts and IF is the number of

intersecting facet.

Table 4.5 Calculated normalized correlation of each STL model

STL Model
Normalized Correlation

CT vs LC CT vs IF

Sphere 0.93 0.93

Dragon 0.77 0.93

Eiffel Tower 0.92 0.96

Gundam 0.89 0.96

Speedster 0.87 0.96

Heart 0.64 0.97

Dreadnaught 0.86 0.94

Worm 0.72 0.91

Spiral Tower 0.49 0.89

The results of normalized correlation for contour construction time against

contour loop counts show that the strong correlation only implied to certain model such

as Sphere, Eiffel Tower, Gundam, and Speedster. But the rest of the models show weak

correlations. Thus, it can be concluded that the number of contour loop counts do not

significantly affect the contour construction time. On the other hand, the number of

intersecting facets for every model has strong correlations with the contour construction

execution time. Hence, earlier hypothesis that states increasing number of intersecting

facets also increase the contour construction algorithm computational time.

4.5 Total Computational Time

Overall, total computational time is measured by adding both slicing time and

contour construction time to give the total time required to generate the contour at each

slicing height for DLP 3D printing contour projection. The result is tabulated in the

Table 4.6 shown below.

56

Table 4.6 Total computational time required for each slicing height in milliseconds

Model Performance Graph
Sp

he
re

D
ra

go
n

Ei
ff

el
 T

ow
er

57

G
un

da
m

Sp
ee

ds
te

r

H
ea

rt

D
re

ad
na

ug
ht

58

W
or

m

Sp
ira

l T
ow

er

Table 4.6 shows the total computational time required with respect to each

slicing height. It can be observed that, increasing facet number also increases its mean

computation time. It natural since more complex model will have more facet counts and

requires more computational time. At certain slicing height, several peaks can be seen.

This indicates that around that particular slicing height has a greater number of

intersecting facets compared to the other slicing heights.

4.6 Visualization of Contour Generation Algorithm

In this section, the top view of stacked generated contour for some STL models

are shown to visualize the 3D model the DLP 3D printing process.

59

Figure 4.4 Stacked contours Alien model (side slicing)

Figure 4.5 Stacked contours Dragon model (bottom-up slicing)

60

Figure 4.6 Stacked contours Liver model (bottom-up slicing)

Figure 4.7 Stacked contours Walnut model (bottom-up slicing)

4.7 Comparison of Slicing and Contour Construction algorithms

Both of the slicing and contour algorithms are re-written in C++11 and tested on

Intel i7-6700 3.40 GHz CPU with 4 GB RAM workstation for benchmarking with the

results obtained by other researchers. The reason is to evaluate the performances of both

algorithms compared to the algorithms proposed by other researchers in their work. All

61

the parameters such as the STL model, its facet count, and the number of slicing planes

is exactly the same as the one used in their research paper. The proposed algorithms are

measured using built-in <chrono> library provided by the C++11 compiler to obtain the

execution time in milliseconds.

Minetto in his paper compared his results by implementing other researcher

algorithm using C++ and Intel i7 3.4GHz workstation and measured the minimum

execution time of each algorithm in seconds. Minetto also compared his result to the

commercial 3D printing software Slic3r (Gregori et al., 2014; Minetto et al., 2017; Park,

2003). The comparisons of his work and the proposed algorithm in this research are

shown in the Table 4.7 below.

Table 4.7 Time measurement and comparison for slicing algorithm

Model Facet Count Layer Count
Slicing Algorithms (s)

Park Slic3r Proposed
Liver 38142 6242 1.28 0.32 1.48
Femur 42150 3155 0.53 0.16 2.53
Bunny 270021 1547 2.70 0.29 2.87
Demon 935236 3126 20.12 1.28 20.15
Rider 1281950 849 6.37 0.54 7.49

The bolded value in the Table 4.7 above shows the best runtime among the test

results. The proposed slicing algorithm is the slowest among all three algorithms. This

is because the proposed algorithm utilized vectors and 3D points computation instead of

the commonly used extrapolation method which used more simplified mathematical

equation to compute. However, since the proposed slicing algorithm uses vector

coordinate computation, manipulating the slicing direction will be much easier

compared to extrapolation. The extrapolation method works best for one direction

slicing, but in order to modify the slicing angle, the algorithm has to change every

single point that exist in the STL model. This heavy task will demand more

computational time to be performed for each time the user wanted to change the slicing

angle. Another reason is that the proposed slicing algorithm is the slowest because it

includes point conversion (Line to Pixel Mapping Algorithm) that changes the data type

from Float to Unsigned Short that gives advantages in the proposed Contour

Construction algorithm.

62

Table 4.8 Time measurement and comparison for contour construction algorithm

Model Facet Count Layer Count
Contour Construction Algorithms (seconds)

Park Slic3r Proposed
Liver 38142 6242 35.97 3.57 0.003
Femur 42150 3155 16.59 2.00 0.002
Bunny 270021 1547 22.00 8.51 0.004
Demon 935236 3126 140.77 69.49 0.022
Rider 1281950 849 27.82 25.02 0.001

As shown in the Table 4.8 above, the proposed contour construction algorithm is

the fastest compared to the rest of the algorithm. The proposed algorithm uses simple

head-to-tail contour algorithm. The key to the fast execution time of the proposed

algorithm lies within the data type of the Line Segment. Normally, in the field of

computational geometry programming, Float data type is often used by the

programmers to reduce truncation errors and improve execution time. The Float data

type has data size of 32-bit (4 bytes) which capable of storing number ranging between

-3.40282e+38 until +3.40282e+38. This large data type demands more processing time

of the CPU compared to smaller size data type. Line-to-Pixel map algorithm which was

discussed in Chapter 3 converted the floating-point data type into Unsigned Short data

type. The Unsigned Short is a 16-bit (2 Bytes) data type which is smaller than Float

data type and it does not has decimal points. This data type able to store numbers

ranging from 0 until 65535. The Line-to-Pixel map algorithm scales the floating points

data to be within the range of Unsigned Short data. The main idea of the proposed

contour construction algorithm is rejection of the use of Float data type. It is because in

DLP 3D printing technology, the end device is always a projection device which are

constrained by the number of pixels in each row. Current display/projection technology

still has not exceeded 65535 pixels in each row. Hence, it is still within the range of

Unsigned Short data type. Furthermore, the operation using Unsigned Short are much

faster and more accurate compared to Float data type. Using this ideology, the proposed

contour construction scales the contours depending on the display resolutions of the

DLP 3D printer projection device. The algorithm is proven to be more than 100 times

faster as shown in Table 4.8 above.

63

Table 4.9 Time measurement and comparison for total computational time

Model Facet Count Layer Count
Total Time for both algorithms (seconds)

Park Slic3r Proposed
Liver 38142 6242 37.24 3.89 1.483
Femur 42150 3155 17.12 2.16 2.532
Bunny 270021 1547 24.70 8.80 2.874
Demon 935236 3126 160.89 70.77 20.174
Rider 1281950 849 34.19 25.56 7.489

Table 4.9 above shows the total execution time for both slicing and contour

construction algorithm. The results are obtained by summing both results from slicing

and contour construction algorithm. As seen in the Table 4.9, the proposed algorithms

are the fastest algorithm by comparison. Most of the computational time is consumed

by the proposed slicing algorithm. However, the proposed slicing algorithm has its own

merits as discussed earlier.

64

CHAPTER 5

CONCLUSION

5.1 Conclusion

Mask projection stereolithography is a recent discovery in 3D printing industry.

It harnesses the power of UV light to cure the photocurable resin to form the solid 3D

model. Each layer is projected through transparent glass into the resin vat and built

layer-by-layer until the process completes. STL CAD format is considered as de facto

in 3D printing. This format is generated from multiple triangular meshes which are

generated by tessellation process. The STL model undergoes contour generation

algorithm to generate the necessary contour to be projected to the photocurable resin. In

this study, a real-time contour generation algorithm is presented which involves series

of algorithms. The algorithm consists of slicing algorithm, pixel-mapping algorithm,

and contour loop algorithm. Each of these algorithms have been thoroughly studied,

developed, and evaluated.

The developed slicing algorithm is based on line-plane intersection model which

is computationally efficient and simple. The slicing algorithm generates multiple

arbitrary line segments that act as the bones of the contour. But the line segments are

not digitally connected to each other. Thus, a contour loop algorithm is required to

connect each of these line segments into one or multiple closed-loop contour.

The line segments generated from the slicing algorithm are mapped referring the

resolution of the projection device using the proposed pixel-mapping algorithm. The

pixel-mapping algorithm remapped the line segments which use floating point

coordinates into unsigned int pixel coordinate of the projection device. Then, these

mapped line segments are connected using contour loop algorithm.

65

The contour construction algorithm is based on head-to-tail search algorithm.

By assigning the first point from the list of line segments, the algorithm recursively

searches and compares the remaining line segments and eventually form one or more

closed-loop contour. The results of contour construction algorithm show that the

algorithm is very fast and efficient regardless the facet number of the STL model. But

the algorithm performs a bit slower when the layer has multiple closed-loop contours.

The algorithms are executed on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM

workstation and written in VB.NET programming language. For peer result comparison

with the algorithm obtained from the journal, the algorithms are re-written in C++11

and tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM similar to the

referenced literature. The result finds that the proposed slicing algorithm is slower

compares to the result from literature. For contour construction algorithm, the results

are much faster than the one from the literature.

Overall, the contour generation algorithm proposed in this study shows

promising results. According to the measured computation time, the algorithm can

operate in real-time due to fast computational time required to generate 2D contour at

any slicing height. This allows the algorithm to solve the memory storage issue whilst

achieving the highest printing resolution and mechanical properties.

5.2 Future Work

The proposed algorithm only covers the contour generation process of the mask

projection stereolithography 3D printing process. It does not cover the support

generation process which is crucial for stereolithography printing process. In order to

fulfill the pre-processing stage of the stereolithography, a support generation algorithm

is required.

Another improvement that can be made to the algorithm is the parallel

computation. Current multi-core technology in modern CPU allows multi-tasking

operation. Thus, distributing the processes among cores can rapidly improve the

computational time for the algorithm.

66

One of most important features in 3D printing process is the dimensional

accuracy of the printed product. It is important for the printer to deliver exact dimension

as given by the STL model so that the printed product does not need to be reworked.

The implementation of the proposed algorithm on real hardware has not yet been

studied. Hence, its dimensional accuracy is also important topic for further

improvement of the algorithm.

Projection mask 3D printing process is a very delicate process. Slight vibration

can ruin the layer formation process. This effect is further amplified for micro-scaled

printing. The vibration effect on projection mask stereolithography has not widely being

studied. Eliminating the vibration during the printing process can give highest printing

quality at micro-scale or even Nano-scale.

67

REFERENCES

Barequet, G., & Sharir, M. (1995). Filling gaps in the boundary of a polyhedron. Computer
Aided Geometric Design, 12(2), 207–229. https://doi.org/10.1016/0167-8396(94)00011-G

Bloomenthal, J. (1988). Polygonization of implicit surfaces. Computer Aided Geometric
Design, 5(4), 341–355. https://doi.org/10.1016/0167-8396(88)90013-1

Boddapati, A. (2010). Modeling Cure Depth During Photopolymerization of Multifunctional
Acrylates. Georgia Institute of Technology.

Cătălin IANCU, P., Daniela IANCU, E., & Alin STĂNCIOIU, D. (2010). From Cad Model to
3D Print Via STL Format. Academica BrâNcuşi TâRgu Jiu, 1(1), 1844–640.

Choi, S. H., & Kwok, K. T. (1999). A Memory Efficient Slicing Algorithm for Large STL
Files. In Proceedings of the 31st International Conference on Computers and Industrial
Engineering (pp. 155–162).

Dendukuri, D., Panda, P., Haghgooie, R., Kim, J. M., Hatton, T. A., & Doyle, P. S. (2008).
Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic
device. Macromolecules, 41(22), 8547–8556. https://doi.org/10.1021/ma801219w

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical
characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67.
https://doi.org/10.1016/j.addma.2017.12.002

Gao, F., Yang, Y., & Li, L. (1999). Visible light photopolymerization of Methylmethacrylate
coninitiated with titanocene and ketocoumarin dye. Chinese Journal of Polymer Science,
17(5), 465–470.

Gregori, R. M. M. H., Volpato, N., Minetto, R., & Silva, M. V. G. Da. (2014). Slicing Triangle
Meshes: An Asymptotically Optimal Algorithm. 2014 14th International Conference on
Computational Science and Its Applications, 252–255.
https://doi.org/10.1109/ICCSA.2014.58

Hayasi, M. T., & Asiabanpour, B. (2009). Machine path generation using direct slicing from
design-by-feature solid model for rapid prototyping. International Journal of Advanced
Manufacturing Technology, 45(1–2), 170–180. https://doi.org/10.1007/s00170-009-1944-
8

Hemant, P., Kulkarni, P., & Thokale, M. (2015). 3D Printing Technology. International
Journal of Multidisciplinary Research and Development, 2(3), 351–358. Retrieved from
http://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/technology/

68

Huang, S. H., Zhang, L. C., & Han, M. (2002). An effective error-tolerance slicing algorithm
for STL files. International Journal of Advanced Manufacturing Technology, 20(5), 363–
367. https://doi.org/10.1007/s001700200164

Huang, X., Yao, Y., & Hu, Q. (2012). Research on the rapid slicing algorithm for NC milling
based on STL model. Communications in Computer and Information Science, 325
CCIS(PART 3), 263–271. https://doi.org/10.1007/978-3-642-34387-2_30

Jacob, G. G. K., Kai, C. C., & Mei, T. (1999). Development of a new rapid prototyping
interface. Computers in Industry, 39(1), 61–70. https://doi.org/10.1016/S0166-
3615(98)00124-9

Jacobs, P. F. (1992). Fundamentals of Stereolithography. Society of Manufacturing Engineers,
(July), 196–211. https://doi.org/10.1017/CBO9781107415324.004

Jing Hu. (2017). Study On STL-Based Slicing Process For 3D Printing. Solid Freeform
Fabrication, 885–895.

Kang, H. W., Park, J. H., & Cho, D. W. (2012). A pixel based solidification model for
projection based stereolithography technology. Sensors and Actuators, A: Physical, 178,
223–229. https://doi.org/10.1016/j.sna.2012.01.016

Kitano, H. (2012). Advances In light-induced polymerizations : I . Shadow cure in free radical
photopolymerizations , II . Experimental and modeling studies of photoinitiator systems
for effective polymerizations with LEDs. PhD Dissertation, 195.

Koc, B., Ma, Y., & Lee, Y. S. (2000). Smoothing STL files by Max-Fit biarc curves for rapid
prototyping. Rapid Prototyping Journal, 6(3), 186–203.
https://doi.org/10.1108/13552540010337065

Kodama, H. (1981). Automatic method for fabricating a three-dimensional plastic model with
photo-hardening polymer. Review of Scientific Instruments, 52(11), 1770–1773.
https://doi.org/10.1063/1.1136492

Królikowski, M., & Grzesiak, D. (2014). Technological Restrictions of Lightweight Lattice
Structures Manufactured by Selective Laser Melting of Metals. Advances in
Manufacturing Science and Technology, 38(2). https://doi.org/10.2478/amst-2014-0012

Kulkarni, P., Marsan, A., & Dutta, D. (2000). Review of process planning techniques in layered
manufacturing. Rapid Prototyping Journal. https://doi.org/10.1108/13552540010309859

Kumar, V., & Dutta, D. (1997). An assessment of data formats for layered manufacturing.
Advances in Engineering Software, 28(3), 151–164. https://doi.org/10.1016/S0965-
9978(96)00050-6

69

Lederle, F., Meyer, F., Brunotte, G.-P., Kaldun, C., & Hübner, E. G. (2016). Improved
mechanical properties of 3D-printed parts by fused deposition modeling processed under
the exclusion of oxygen. Progress in Additive Manufacturing, 1(1–2), 3–7.
https://doi.org/10.1007/s40964-016-0010-y

Lee, J. H., Prud’homme, R. K., & Aksay, I. a. (2001). Cure depth in photopolymerization:
Experiments and theory. Journal of Materials Research, 16(12), 3536–3544.
https://doi.org/10.1557/JMR.2001.0485

Leong, K. F., Chua, C. K., & Ng, Y. M. (1996). A study of stereolithography file errors and
repair. Part 1. Generic solution. International Journal of Advanced Manufacturing
Technology, 12(6), 407–414. https://doi.org/10.1007/BF01186929

Manmadhachary, A., Ravi Kumar, Y., & Krishnanand, L. (2016). Improve the accuracy, surface
smoothing and material adaption in STL file for RP medical models. Journal of
Manufacturing Processes, 21, 46–55. https://doi.org/10.1016/j.jmapro.2015.11.006

Minetto, R., Volpato, N., Stolfi, J., Gregori, R. M. M. H., & da Silva, M. V. G. (2017). An
optimal algorithm for 3D triangle mesh slicing. CAD Computer Aided Design, 92, 1–10.
https://doi.org/10.1016/j.cad.2017.07.001

Mu, Q., Wang, L., Dunn, C. K., Kuang, X., Duan, F., Zhang, Z., … Wang, T. (2017). Digital
light processing 3D printing of conductive complex structures. Additive Manufacturing,
18, 74–83. https://doi.org/10.1016/j.addma.2017.08.011

Pan, X., Chen, K., & Chen, D. (2014). Development of rapid prototyping slicing software based
on STL model. Proceedings of the 2014 IEEE 18th International Conference on Computer
Supported Cooperative Work in Design, CSCWD 2014, (51175395), 191–195.
https://doi.org/10.1109/CSCWD.2014.6846840

Pan, Y., Zhou, C., & Chen, Y. (2012). A Fast Mask Projection Stereolithography Process for
Fabricating Digital Models in Minutes. Journal of Manufacturing Science and
Engineering, 134(5), 051011. https://doi.org/10.1115/1.4007465

Pandey, P. M., Reddy, N. V., & Dhande, S. G. (2003). Real time adaptive slicing for fused
deposition modelling. International Journal of Machine Tools and Manufacture, 43(1),
61–71. https://doi.org/10.1016/S0890-6955(02)00164-5

Pandey, R. (2014). Photopolymers in 3D printing applications.

Park, S. C. (2003). Tool-path generation for Z-constant contour machining. CAD Computer
Aided Design, 35(1), 27–36. https://doi.org/10.1016/S0010-4485(01)00173-7

Piegl, L. A., & Richard, A. M. (1995). Tessellating trimmed nurbs surfaces. Computer-Aided
Design, 27(1), 16–26. https://doi.org/10.1016/0010-4485(95)90749-6

70

Ranellucci, A., & Lenox, J. (2011). Slic3r - G-code generator for 3D printers. Retrieved from
http://www.slic3r.org/

Szilvśi-Nagy, M., & Mátyási, G. (2003). Analysis of STL files. Mathematical and Computer
Modelling, 38(7–9), 945–960. https://doi.org/10.1016/S0895-7177(03)90079-3

Tang, Y. (2005). Stereolithography Cure Process Modeling. Georgia Institute of Technology.

Tang, Y., Henderson, C. L., Muzzy, J., & Rosen, D. W. (2004). Stereolithography Cure Process
Modeling Using Acrylate Resin. Fifteenth Solid Freeform Fabrication (SFF) Symposium,
612–623. https://doi.org/10.1017/CBO9781107415324.004

Tian, R., Liu, S., & Zhang, Y. (2018). Research on fast grouping slice algorithm for STL model
in rapid prototyping. Journal of Physics: Conference Series, 1074, 012165.
https://doi.org/10.1088/1742-6596/1074/1/012165

Topçu, O., Taşcıoğlu, Y., & Ünver, H. Ö. (2011). A Method for Slicing CAD Models in Binary
STL Format. 6th International Advanced Technologies Symposium (IATS’11), (May),
141–148. Retrieved from http://web.firat.edu.tr/iats/cd/subjects/Manufacturing/MTE-
31.pdf

Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly,
D., … Desimone, J. M. (2015). Continuous liquid interface production of 3D objects.
Science, 347(6228), 1349–1352.

Tyvaert, I., Fadel, G., & Rouhaud, E. (1999). A methodology to create STL files from data
point clouds generated with a coordinate measuring machine. Annual Interantional Solid
Freeform Fabrication Symposium, 47–58.

Vatani, M., Rahimi, A. R., Brazandeh, F., & Sanati Nezhad, A. (2009). An enhanced slicing
algorithm using nearest distance analysis for layer manufacturing. Proceedings of World
Academy of Science, Engineering and Technology, 37(1), 721–726. Retrieved from
http://www.waset.ac.nz/journals/waset/v49/v49-130.pdf

Wang, D. X., Guo, D. M., Jia, Z. Y., & Leng, H. W. (2006). Slicing of CAD models in color
STL format. Computers in Industry, 57(1), 3–10.
https://doi.org/10.1016/j.compind.2005.03.007

Wong, H.-T. T., Huang, Y., Tsang, S.-C., & Lam, M.-L. (2017). Real-time model slicing in
arbitrary direction using octree. ACM SIGGRAPH 2017 Posters on - SIGGRAPH ’17, 1–
2. https://doi.org/10.1145/3102163.3102185

Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical
Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760

71

Wu, T., & Cheung, E. H. M. (2006). Enhanced STL. International Journal of Advanced
Manufacturing Technology, 29(11–12), 1143–1150. https://doi.org/10.1007/s00170-005-
0001-5

Xu, H., Weihua, J., Li, M., & Li, W. (2017). A slicing model algorithm based on STL model for
additive manufacturing processes. Proceedings of 2016 IEEE Advanced Information
Management, Communicates, Electronic and Automation Control Conference, IMCEC
2016, 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489

Ye, H., Zhou, C., & Xu, W. (2017). Image-Based Slicing and Tool Path Planning for Hybrid
Stereolithography Additive Manufacturing. Journal of Manufacturing Science and
Engineering, 139(7), 071006. https://doi.org/10.1115/1.4035795

Zhang, Z., & Joshi, S. (2015). An improved slicing algorithm with efficient contour
construction using STL files. International Journal of Advanced Manufacturing
Technology, 80(5–8), 1347–1362. https://doi.org/10.1007/s00170-015-7071-9

Zheng, X., Cheng, K., Zhou, X., Lin, J., & Jing, X. (2018). An adaptive direct slicing method
based on tilted voxel of two-photon polymerization. International Journal of Advanced
Manufacturing Technology, 96(1–4), 521–530. https://doi.org/10.1007/s00170-017-1507-
3

Zhou, M. Y., Xi, J. T., & Yan, J. Q. (2004). Adaptive direct slicing with non-uniform cusp
heights for rapid prototyping. International Journal of Advanced Manufacturing
Technology, 23(1–2), 20–27. https://doi.org/10.1007/s00170-002-1523-8

72

APPENDIX A
ADDITIONAL SLICING RESULT

Eiffel Tower (Facet: 149014)

Gundam (Facet: 163724)

73

Speedster (Facet: 179352)

Heart (Facet: 217600)

74

Dreadnaught (Facet: 293146)

Worm (Facet: 567334)

75

APPENDIX B
PSEUDOCODE (VB.NET)

Facet Class

Public Class Facet
 Structure Point3D
 Dim X As Double
 Dim Y As Double
 Dim Z As Double

 'Constructor Point3D
 Public Sub New(ByVal x As Double, ByVal y As Double, ByVal z As Double)
 Me.X = x
 Me.Y = y
 Me.Z = z
 End Sub

 Public Shared Function Dot(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return (p1.X * p2.X) + (p1.Y * p2.Y) + (p1.Z * p2.Z)
 End Function

 Public Shared Function Cross(ByRef p1 As Point3D, ByRef p2 As Point3D) As Point3D
 Return New Point3D(p1.Y * p2.Z - p1.Z * p2.Y, p1.X * p2.Z - p1.Z * p2.X, p1.X * p2.Y - p1.Y * p2.X)
 End Function

 Public Shared Function LengthBetween(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return Math.Sqrt(Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z -
p2.Z), 2))
 End Function

 Public Shared Function LengthSq(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z), 2)
 End Function

 Public Shared Operator +(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D
 Return New Point3D(p1.X + p2.X, p1.Y + p2.Y, p1.Z + p2.Z)
 End Operator

 Public Shared Operator -(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D
 Return New Point3D(p1.X - p2.X, p1.Y - p2.Y, p1.Z - p2.Z)
 End Operator

 Public Shared Operator *(ByVal multiplier As Double, ByVal p1 As Point3D) As Point3D
 Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier)
 End Operator

 Public Shared Operator *(ByVal p1 As Point3D, ByVal multiplier As Double) As Point3D
 Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier)
 End Operator

 Public Overrides Function ToString() As String
 Return String.Format("{0},{1},{2}", X, Y, Z)
 End Function
 End Structure

76

 Public ZMax As Double
 Public ZMin As Double
 Public Normal As Point3D
 Public P1, P2, P3 As Point3D

 Public Sub New(ByRef norm As Point3D, ByRef Point1 As Point3D, ByRef Point2 As Point3D, ByRef
Point3 As Point3D)
 Me.Normal = norm
 Me.P1 = Point1
 Me.P2 = Point2
 Me.P3 = Point3
 Me.ZMax = Math.Max(Point1.Z, Point2.Z)
 Me.ZMax = Math.Max(Me.ZMax, Point3.Z)
 Me.ZMin = Math.Min(Point1.Z, Point2.Z)
 Me.ZMin = Math.Min(Me.ZMin, Point3.Z)
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("[{0}] [{1}] [{2}]", P1, P2, P3)
 End Function

End Class

77

Pixel Line Class

Public Class PixelClass
 Structure VectorPixel
 Dim X, Y As UInteger

 Public Sub New(ByRef x As UInteger, ByRef y As UInteger)
 Me.X = x
 Me.Y = y
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("[{0}, {1}]", X, Y)
 End Function
 End Structure

 Public Po, Pf As VectorPixel
 Public Group As UInteger

 Public Sub New(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel, ByRef id As UInteger)
 Me.Po = P1
 Me.Pf = P2
 Me.Group = id
 End Sub

 Public Shared Function Compare(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel) As Boolean
 If P1.X = P2.X Then
 If P1.Y = P2.Y Then
 Return True
 Else
 Return False
 End If
 Else
 Return False
 End If
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("[{0}, {1}] [{2}, {3}] [{4}]", Po.X, Po.Y, Pf.X, Pf.Y, Group)
 End Function

End Class

78

Main Code

Imports System
Imports System.IO
Imports System.ComponentModel
Imports System.Text
Imports DLP_3D_Printer.PixelClass
Imports DLP_3D_Printer.Facet

Public Class mainForm
 'STL Facet Read variables
 Dim FacetCount As UInteger = 0
 Dim groupID As UInteger = 0
 Dim exCount As UInteger = 0
 Dim zSlice As Double = 0
 Dim xMax, xMin, yMax, yMin, zMax, zMin As Double
 Dim STL_list As New List(Of Facet)
 Dim STL_intersect As New List(Of Facet)
 Dim facetBuffer(4) As Byte
 Dim header(80) As Byte
 Dim nx(4), ny(4), nz(4) As Byte
 Dim p1x(4), p1y(4), p1z(4) As Byte
 Dim p2x(4), p2y(4), p2z(4) As Byte
 Dim p3x(4), p3y(4), p3z(4) As Byte
 Dim atb(2) As Byte

 'Pixel Mapping variables
 Dim resW As UInteger = 1920 'Temp Screen Width X
 Dim resH As UInteger = 1080 'Temp Screen Height Y
 Dim ARxy, ARwh, ARz As Double
 Dim pixelList As List(Of PixelClass)
 Dim zOut As UInteger = 0

 Private Sub readBinary(ByVal fileSTL As String)
 Dim result As UInteger = 0
 Dim normal As New Point3D
 Dim p1 As New Point3D
 Dim p2 As New Point3D
 Dim p3 As New Point3D
 STL_list = New List(Of Facet)
 FacetCount = 0
 xMax = Double.MinValue
 yMax = Double.MinValue
 zMax = Double.MinValue
 xMin = Double.MaxValue
 yMin = Double.MaxValue
 zMin = Double.MaxValue

 Using myReader As New FileStream(fileSTL, FileMode.Open)
 myReader.Seek(0, SeekOrigin.Begin)
 Dim remains As Integer = CType(myReader.Length, Integer)
 Dim i As UInteger = 0

 If remains > 0 Then
 myReader.Read(header, 0, 80)
 myReader.Read(facetBuffer, 0, 4)
 exCount = BitConverter.ToInt32(facetBuffer, 0)

79

 FacetCount = exCount

 For k As UInteger = 0 To exCount - 1
 myReader.Read(nx, 0, 4)
 myReader.Read(ny, 0, 4)
 myReader.Read(nz, 0, 4)
 myReader.Read(p1x, 0, 4)
 myReader.Read(p1y, 0, 4)
 myReader.Read(p1z, 0, 4)
 myReader.Read(p2x, 0, 4)
 myReader.Read(p2y, 0, 4)
 myReader.Read(p2z, 0, 4)
 myReader.Read(p3x, 0, 4)
 myReader.Read(p3y, 0, 4)
 myReader.Read(p3z, 0, 4)
 myReader.Read(atb, 0, 2)

 normal.X = BitConverter.ToSingle(nx, 0)
 normal.Y = BitConverter.ToSingle(ny, 0)
 normal.Z = BitConverter.ToSingle(nz, 0)
 p1.X = BitConverter.ToSingle(p1x, 0)
 p1.Y = BitConverter.ToSingle(p1y, 0)
 p1.Z = BitConverter.ToSingle(p1z, 0)
 p2.X = BitConverter.ToSingle(p2x, 0)
 p2.Y = BitConverter.ToSingle(p2y, 0)
 p2.Z = BitConverter.ToSingle(p2z, 0)
 p3.X = BitConverter.ToSingle(p3x, 0)
 p3.Y = BitConverter.ToSingle(p3y, 0)
 p3.Z = BitConverter.ToSingle(p3z, 0)

 'Object X max/min
 xMax = Math.Max(xMax, p1.X)
 xMax = Math.Max(xMax, p2.X)
 xMax = Math.Max(xMax, p3.X)
 xMin = Math.Min(xMin, p1.X)
 xMin = Math.Min(xMin, p2.X)
 xMin = Math.Min(xMin, p3.X)

 'Object Y max/min
 yMax = Math.Max(yMax, p1.Y)
 yMax = Math.Max(yMax, p2.Y)
 yMax = Math.Max(yMax, p3.Y)
 yMin = Math.Min(yMin, p1.Y)
 yMin = Math.Min(yMin, p2.Y)
 yMin = Math.Min(yMin, p3.Y)

 'Object Z max/min
 zMax = Math.Max(zMax, p1.Z)
 zMax = Math.Max(zMax, p2.Z)
 zMax = Math.Max(zMax, p3.Z)
 zMin = Math.Min(zMin, p1.Z)
 zMin = Math.Min(zMin, p2.Z)
 zMin = Math.Min(zMin, p3.Z)

 STL_list.Add(New Facet(normal, p1, p2, p3))

 Next

80

 End If
 End Using

 STL_list = STL_list.OrderBy(Function(x) x.ZMin).ToList()

 End Sub

 Private Sub Slice(ByVal sliceZ As Double)
 Dim si As Double
 Dim n, u, Po, Pf, Vo As Point3D

 initializeMatrix()
 STL_intersect = New List(Of Facet)
 STL_intersect = STL_list.FindAll(Function(x) x.ZMin < sliceZ And x.ZMax > sliceZ)

 n = New Point3D(0, 0, 1)
 Vo = New Point3D(0, 0, sliceZ)

 For Each facet_tri In STL_intersect
 Dim pFlag As Boolean() = {False, False, False}
 Dim pBuffer(3) As Point3D
 Dim vLength(3) As Double
 Dim pointCount As Byte = 0

 For k As Byte = 0 To 2
 Select Case k
 Case 0
 Po = facet_tri.P1
 Pf = facet_tri.P2
 Case 1
 Po = facet_tri.P2
 Pf = facet_tri.P3
 Case 2
 Po = facet_tri.P3
 Pf = facet_tri.P1
 End Select

 u = Pf - Po
 If Point3D.Dot(n, u) <> 0 Then 'If there is intersection
 si = Point3D.Dot(n, Vo - Po) / Point3D.Dot(n, u)
 If si >= 0 And si <= 1 Then
 pBuffer(k) = Po + si * u
 pFlag(k) = True
 pointCount += 1
 End If
 End If
 Next

 'Case Handler
 Select Case pointCount
 Case 2
 If pFlag(0) And pFlag(1) Then
 HashConvert(pBuffer(0), pBuffer(1))
 End If
 If pFlag(1) And pFlag(2) Then
 HashConvert(pBuffer(1), pBuffer(2))
 End If

81

 If pFlag(2) And pFlag(0) Then
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 Continue For
 Case 3
 'Find which pairs will produce longest vector
 vLength(0) = Point3D.LengthSq(pBuffer(0), pBuffer(1))
 vLength(1) = Point3D.LengthSq(pBuffer(1), pBuffer(2))
 vLength(2) = Point3D.LengthSq(pBuffer(2), pBuffer(0))

 If vLength(0) > vLength(1) Then
 If vLength(0) >= vLength(2) Then
 HashConvert(pBuffer(0), pBuffer(1))
 Else
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 Else
 If vLength(1) >= vLength(2) Then
 HashConvert(pBuffer(1), pBuffer(2))
 Else
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 End If
 Continue For
 Case Else
 Continue For
 End Select
 Next

 If pixelList.Count > 0 Then
 generateContour(pixelList)
 End If
 End Sub

 Private Sub initializeMatrix()
 ARwh = resW / resH
 ARxy = (xMax - xMin) / (yMax - yMin)

 If ARxy >= ARwh Then
 ARz = (zMax - zMin) / (xMax - xMin)
 zOut = (zSlice - zMin) / (zMax - zMin) * (resW - 1) * ARz
 Else
 ARz = (zMax - zMin) / (yMax - yMin)
 zOut = (zSlice - zMin) / (zMax - zMin) * (resH - 1) * ARz
 End If
 pixelList = New List(Of PixelClass)
 End Sub

 Private Sub HashConvert(ByRef Point1 As Point3D, ByRef Point2 As Point3D)
 Dim po, pf As VectorPixel

 If ARxy >= ARwh Then
 'Fit to Width (X)
 po.X = (Point1.X - xMin) / (xMax - xMin) * (resW - 1)
 po.Y = (Point1.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy)
 pf.X = (Point2.X - xMin) / (xMax - xMin) * (resW - 1)
 pf.Y = (Point2.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy)

82

 Else
 'Fit to Height (Y)
 po.X = (Point1.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy)
 po.Y = (Point1.Y - yMin) / (yMax - yMin) * (resH - 1)
 pf.X = (Point2.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy)
 pf.Y = (Point2.Y - yMin) / (yMax - yMin) * (resH - 1)
 End If

 If Not Compare(po, pf) Then
 pixelList.Add(New PixelClass(po, pf, 0))
 End If
 End Sub

 Private Sub generateContour(ByRef list As List(Of PixelClass))
 Dim isInverse As Boolean = False
 Dim findInt As Integer = 0
 Dim initPoint As VectorPixel
 Dim searchPoint As VectorPixel

 groupID = 0
 list = list.OrderBy(Function(X) X.Po.Y).ToList
 list = list.OrderBy(Function(X) X.Po.X).ToList
 initPoint = list.Item(0).Po
 For i As Integer = 0 To list.Count - 2
 'Assign search point
 searchPoint = list.Item(i).Pf

 'Closed Loop check
 If Compare(searchPoint, initPoint) Then
 groupID += 1
 initPoint = list.Item(i + 1).Po
 Else
 'Find next pair
 findInt = FindPair(i, searchPoint, list)
 If findInt <> -1 Then
 'Check if the point is inverted
 isInverse = Compare(searchPoint, list.Item(findInt).Pf)
 SwapPoint(findInt, i + 1, isInverse, list)
 End If
 End If
 list.Item(i + 1).Group = groupID
 Next

 End Sub

 Private Function FindPair(ByRef offset As UInteger, ByRef point As VectorPixel, ByRef list As List(Of
PixelClass)) As Integer
 For i As Integer = offset + 1 To list.Count - 1
 If Compare(point, list.Item(i).Po) Or Compare(point, list.Item(i).Pf) Then
 Return i
 End If
 Next
 Return -1
 End Function

83

 Private Sub SwapPoint(ByRef foundPoint As UInteger, ByVal nextPoint As UInteger, ByRef Inverse As
Boolean, ByRef list As List(Of PixelClass))
 Dim buffer As PixelClass = list.Item(foundPoint)
 list.Item(foundPoint) = list.Item(nextPoint)

 If Inverse Then
 list.Item(nextPoint) = New PixelClass(buffer.Pf, buffer.Po, 0)
 Else
 list.Item(nextPoint) = New PixelClass(buffer.Po, buffer.Pf, 0)
 End If
 End Sub

End Class

84

APPENDIX C
PSEUDOCODE (C++)

Point3D Class

#include "point3d.h"
#include <string>

using namespace std;

point3d::point3d(){}

point3d::point3d(float x, float y, float z):X(x),Y(y),Z(z){}

point3d::point3d(char* input){
 char x[4] = {input[0],input[1],input[2],input[3]};
 char y[4] = {input[4],input[5],input[6],input[7]};
 char z[4] = {input[8],input[9],input[10],input[11]};

 this->X = *((float*)x);
 this->Y = *((float*)y);
 this->Z = *((float*)z);
}

float point3d::dot(point3d Pa){
 return ((this->X * Pa.X) + (this->Y * Pa.Y) + (this->Z * Pa.Z));
}

point3d point3d::operator +(const point3d &Pa){
 return point3d(this->X+Pa.X, this->Y+Pa.Y, this->Z+Pa.Z);
}

point3d point3d::operator -(const point3d &Pa){
 return point3d(this->X-Pa.X, this->Y-Pa.Y, this->Z-Pa.Z);
}

point3d point3d::operator *(const float &mult){
 return point3d((this->X * mult), (this->Y * mult), (this->Z * mult));
}

string point3d::toString(){
 string buffer = "";
 buffer+=to_string(this->X); buffer += " ";
 buffer+=to_string(this->Y); buffer += " ";
 buffer+=to_string(this->Z); buffer += " ";
 return buffer;
}

point3d::~point3d(){}

85

Facet Class

#include "facet.h"
#include <math.h>

using namespace std;

facet::facet(){}

facet::facet(point3d p1, point3d p2, point3d p3, point3d norm):P1(p1),P2(p2), P3(p3), Norm(norm)
{
 this->Xmax = max(p1.X, p2.X); this->Xmax = max(this->Xmax, p3.X);
 this->Xmin = min(p1.X, p2.X); this->Xmin = min(this->Xmin, p3.X);
 this->Ymax = max(p1.Y, p2.Y); this->Ymax = max(this->Ymax, p3.Y);
 this->Ymin = min(p1.Y, p2.Y); this->Ymin = min(this->Ymin, p3.Y);
 this->Zmax = max(p1.Z, p2.Z); this->Zmax = max(this->Zmax, p3.Z);
 this->Zmin = min(p1.Z, p2.Z); this->Zmin = min(this->Zmin, p3.Z);
}

facet::facet(char *input){
 point3d gNorm(input);
 point3d gP1(input+12);
 point3d gP2(input+24);
 point3d gP3(input+36);

 this->Norm = gNorm;
 this->P1 = gP1;
 this->P2 = gP2;
 this->P3 = gP3;

 this->Xmax = max(gP1.X, gP2.X); this->Xmax = max(this->Xmax, gP3.X);
 this->Xmin = min(gP1.X, gP2.X); this->Xmin = min(this->Xmin, gP3.X);
 this->Ymax = max(gP1.Y, gP2.Y); this->Ymax = max(this->Ymax, gP3.Y);
 this->Ymin = min(gP1.Y, gP2.Y); this->Ymin = min(this->Ymin, gP3.Y);
 this->Zmax = max(gP1.Z, gP2.Z); this->Zmax = max(this->Zmax, gP3.Z);
 this->Zmin = min(gP1.Z, gP2.Z); this->Zmin = min(this->Zmin, gP3.Z);
}

string facet::toString(){
 string buffer="Facet\n";
 buffer+= this->P1.toString() + "\n";
 buffer+= this->P2.toString() + "\n";
 buffer+= this->P3.toString() + "\n";
 //buffer+= this->Norm.toString() + " ";
 buffer+= to_string(this->Zmax) + " ";
 buffer+= to_string(this->Zmin) + "\n";
 return buffer;
}

bool facet::operator<(const facet &other){
 return this->Zmin < other.Zmin;
}

bool facet::isIntersect(float &height){
 if((height < this->Zmax) && (height > this->Zmin)){
 return true;
 } else{

86

 return false;
 }
}

facet::~facet(){}

87

Point2D Class

#include "point2d.h"
#include "math.h"

point2d::point2d(){}

point2d::~point2d(){}

point2d::point2d(unsigned short &xx, unsigned short &yy):X(xx), Y(yy){}

string point2d::toString(){
 return "(" + to_string(this->X) + "," + to_string(this->Y) + ")";
}

float point2d::length(point2d &other){
 return (powf(this->X - other.X, 2) + powf(this->Y - other.Y, 2));
}

88

Pixel Line Class

#include "pixelline.h"

pixelLine::pixelLine(){}

pixelLine::pixelLine(const point2d a, const point2d b, const unsigned int id){
 this->Po = a;
 this->Pf = b;
 this->Id = id;
}

string pixelLine::toString(){
 string buffer="";
 buffer += this->Po.toString() + " ";
 buffer += this->Pf.toString() + " ";
 buffer += "[" + to_string(this->Id) + "]";
 return buffer;
}

pixelLine::~pixelLine(){}

89

Slicer Class

#include "slicer.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <limits>

using namespace std;

Slicer::Slicer(){}

void Slicer::Initialize(){
 this->facetList.clear();
 this->facetCount = 0;
}

void Slicer::ReadSTL(string filename){
 ifstream stlFile;
 char fCount[4];
 char inputFacet[50];

 Initialize();

 stlFile.open(filename, ios::binary);

 if(stlFile.is_open()){
 stlFile.seekg(0);
 stlFile.ignore(80);
 stlFile.read(fCount, 4);
 this->facetCount = *((unsigned long*)fCount);

 for(unsigned long i = 0; i < this->facetCount; i++){
 stlFile.read(inputFacet, 50);
 facet ex(inputFacet);
 this->facetList.push_back(ex);
 };
 }

 stlFile.close();
 this->facetList.shrink_to_fit();
 sort(facetList.begin(),facetList.end());
 DefineBoundary();

}

void Slicer::Slice(float &height){
 this->LineList.clear();
 vector<facet*> intersectList;
 point2d *aPo, *aPf, pConvert[3];
 point3d n(0,0,1), u, *Po, *Pf, Vo(0,0,height);
 float si = 0;
 GenerateList(height, intersectList);

 for(unsigned int i = 0; i < intersectList.size(); i++){
 bool pFlag[3] = {false,false,false};
 point3d pBuffer[3];

90

 float vLength[3];
 unsigned short pointCount = 0;

 for(unsigned short k = 0; k < 3; k++){
 switch(k){
 case 0:
 Po = &intersectList[i]->P1;
 Pf = &intersectList[i]->P2;
 break;
 case 1:
 Po = &intersectList[i]->P2;
 Pf = &intersectList[i]->P3;
 break;
 case 2:
 Po = &intersectList[i]->P3;
 Pf = &intersectList[i]->P1;
 break;
 };

 u = (*Pf) - (*Po);
 if(n.dot(u) != 0){
 si = n.dot(Vo - (*Po)) / n.dot(u);
 if((si >= 0) && (si <= 1)){
 pBuffer[k] = (*Po) + (u * si);
 pConvert[k] = Convert(pBuffer[k]);
 pFlag[k] = true;
 pointCount++;
 }
 };
 };

 switch(pointCount){
 case 0:
 case 1:
 break;
 case 2:
 if(pFlag[0] && pFlag[1]){
 aPo = &pConvert[0]; aPf = &pConvert[1];
 }
 if(pFlag[1] && pFlag[2]){
 aPo = &pConvert[1]; aPf = &pConvert[2];
 }
 if(pFlag[2] && pFlag[0]){
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }

 if(!Compare(*aPo, *aPf)){
 this->LineList.push_back(pixelLine(*aPo, *aPf, 0));
 }
 break;
 case 3:
 vLength[0] = pConvert[0].length(pConvert[1]);
 vLength[1] = pConvert[1].length(pConvert[2]);
 vLength[2] = pConvert[2].length(pConvert[0]);

 if(vLength[0] > vLength[1]){
 if(vLength[0] >= vLength[2]){

91

 aPo = &pConvert[0]; aPf = &pConvert[1];
 }else {
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }
 } else {
 if(vLength[1] >= vLength[2]){
 aPo = &pConvert[1]; aPf = &pConvert[2];
 } else {
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }
 }

 if(!Compare(*aPo, *aPf)){
 this->LineList.push_back(pixelLine(*aPo, *aPf, 0));
 }
 break;
 };
 };

 if(LineList.size() != 0){
 Contour();
 }
}

void Slicer::GenerateList(float &height, vector<facet*> &objectList){
 objectList.clear();
 for(unsigned int i = 0; i < this->facetList.size(); i++){
 if(this->facetList[i].isIntersect(height)){
 objectList.push_back(&facetList[i]);
 }
 }
}

void Slicer::DefineBoundary(){
 upperX = upperY = upperZ = numeric_limits<float>::lowest();
 lowerX = lowerY = lowerZ = numeric_limits<float>::max();

 for(unsigned int i = 0; i < this->facetList.size(); i++){
 upperX = max(upperX, this->facetList[i].Xmax);
 lowerX = min(lowerX, this->facetList[i].Xmin);
 upperY = max(upperY, this->facetList[i].Ymax);
 lowerY = min(lowerY, this->facetList[i].Ymin);
 upperZ = max(upperZ, this->facetList[i].Zmax);
 lowerZ = min(lowerZ, this->facetList[i].Zmin);
 }

 this->ARxy = (upperX - lowerX) / (upperY - lowerY);
}

void Slicer::SetResolution(const unsigned short width, const unsigned short height){
 this->resW = width;
 this->resH = height;
 this->ARwh = (float)width / (float)height;
}

point2d Slicer::Convert(point3d &Pa){
 unsigned short px, py;

92

 if(ARxy >= ARwh){
 px = (Pa.X - lowerX) / (upperX - lowerX) * (resW - 1);
 py = (Pa.Y - lowerY) / (upperY - lowerY) * ((resW - 1) / ARxy);
 } else {
 px = (Pa.X - lowerX) / (upperX - lowerX) * ((resH - 1) * ARxy);
 py = (Pa.Y - lowerY) / (upperY - lowerY) * (resH - 1);
 }

 return point2d(px,py);
}

bool Slicer::Compare(point2d &a, point2d &b){
 if(a.X == b.X){
 if(a.Y == b.Y){
 return true;
 }
 }
 return false;
}

void Slicer::Contour(){
 unsigned short id = 0;
 point2d *searchPoint, *initPoint;

 initPoint = &this->LineList[0].Po;
 for(unsigned int i = 0; i < this->LineList.size() - 1; i++){
 searchPoint = &this->LineList[i].Pf;

 if(Compare(*searchPoint, *initPoint)){
 id++;
 initPoint = &this->LineList[i + 1].Po;
 } else {
 int findInt = FindPair(i, *searchPoint);
 if(findInt != -1){
 bool isInverse = Compare(*searchPoint, this->LineList[findInt].Pf);
 SwapPoint(findInt, i+1, isInverse, this->LineList);
 } else {
 cout << "Point Not Found at: " << i << endl;
 }
 }
 this->LineList[i+1].Id = id;
 }
}

int Slicer::FindPair(unsigned int &startIndex, point2d &searchPoint){
 for(unsigned int i = startIndex + 1; i < this->LineList.size(); i++){
 if((Compare(searchPoint, this->LineList[i].Po)) || (Compare(searchPoint, this->LineList[i].Pf))){
 return i;
 }
 }
 return -1;
}

void Slicer::SwapPoint(const unsigned int foundPoint, const unsigned int nextPoint, bool inverse,
vector<pixelLine> &list){
 swap(list[foundPoint], list[nextPoint]);

93

 if(inverse){
 swap(list[nextPoint].Po, list[nextPoint].Pf);
 }
}

Slicer::~Slicer(){}

94

APPENDIX D
PSEUDOCODE (MATLAB)

MATLAB Script

%% CONTOUR PLOT
clear;
cd 'C:\Users\DELL\Documents\DLP Folder\Vector';
filename = 'Dragon';
myvars = dir(sprintf('%s*.csv', filename)); %Get list of CSV file
disp(filename);
figure(1);
set(1, 'Name', sprintf('%s', filename),... %Create new figure
 'Color', [1 1 1],'pos', [350 200 600 400]);

% Initialize Slice Height, Slice Time, and Contour Time variables
STime = zeros(length(myvars), 1);
CTime = zeros(length(myvars), 1);
HSlice = zeros(length(myvars), 1);
IFacet = zeros(length(myvars), 1);
GNumber = zeros(length(myvars), 1);
TTime = zeros(length(myvars), 1);

for i = 1 : length(myvars) %Iterate for each file
 CurrentFile = csvread(myvars(i,1).name); %Load working file
 Gmax = max(CurrentFile(:, 4)); %Get Max Group number
 G = 0; %Initialize G

 % Acquire Slice Height, Slice Time, and Contour Time
 HSlice(i) = CurrentFile(1, 3);
 NFacet = CurrentFile(1, 5);
 IFacet(i) = CurrentFile(1, 6);
 STime(i) = CurrentFile(1, 7);
 CTime(i) = CurrentFile(1, 8);
 GNumber(i) = Gmax + 1;
 TTime(i) = STime(i) + CTime(i);

 while G <= Gmax
 % Filter Array based on Group Number at Column 4
 t = find(CurrentFile(:, 4) == G);

 % Get XYZ (Column 1 2 3)
 X = CurrentFile(t, 1);
 Y = CurrentFile(t, 2);
 Z = CurrentFile(t, 3);

 % Plot Contour for each layer with color mapping
 Ubound = 100;
 Lbound = Ubound / 2;
 if (TTime(i) > Ubound)
 yr = 255;
 yg = 0;
 end
 if (TTime(i) >= Lbound) && (TTime(i) <= Ubound)
 m = -255 / (Ubound - Lbound);

95

 c = 255 - Lbound * m;
 yr = 255;
 yg = round(m * TTime(i) + c);
 end
 if (TTime(i) < Lbound)
 yg = 255;
 yr = round(255 / Lbound * TTime(i));
 end
 colors_p = [yr, yg, 0] / 255;
 fill3(X, Y, Z, colors_p);
 G = G + 1;
 hold on; %Stack plotting
 end
end
a = [linspace(0, 1, 32); ones(1, 32); zeros(1, 32)]';
b = [ones(1, 32); linspace(1, 0, 32); zeros(1, 32)]';
c = [a; b];
colormap(c);
val = linspace(0, Ubound, 11);
colorbar('YTickLabel', val);
axis equal;
set(gca, 'Color', [0.9 0.9 0.9]); %Set grid BG color
set(gca, 'View', [45 30]); %Set rotation axis
grid on; %Enable grid
hold off; %Disable stack plot
saveas(gcf,sprintf('%s_1-Fig.png',filename)); %Save figure

%% RESULT GRAPH PLOTS
% Plot Slice Time
figure(2);
set(2,'Name','Slice Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, STime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Slice Time (ms)');
xlim([min(HSlice) max(HSlice)]);
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(STime), std(STime))); %edited for
single plot
grid on;
saveas(gcf,sprintf('%s_2-ST.png',filename)); %Save figure

% Plot Contour Time
figure(3);
set(3,'Name','Contour Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, CTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Contour Time (ms)');
xlim([min(HSlice) max(HSlice)]);
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(CTime), std(CTime)))
grid on;
saveas(gcf,sprintf('%s_3-CT.png',filename)); %Save figure

% Plot Total Time
figure(4);
set(4,'Name','Total Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, TTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Total Time (ms)');

96

xlim([min(HSlice) max(HSlice)]);
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(TTime), std(TTime)))
grid on;
saveas(gcf,sprintf('%s_4-TT.png',filename)); %Save figure

% Plot Intersecting Facet
figure(5);
set(5,'Name','Intersecting Facet vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, IFacet, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Intersecting Facet');
xlim([min(HSlice) max(HSlice)]);
grid on;
saveas(gcf,sprintf('%s_5-IF.png',filename)); %Save figure

% Plot Loop Count
figure(6);
set(6,'Name','Loop Number vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, GNumber, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Loop Count');
xlim([min(HSlice) max(HSlice)]);
grid on;
saveas(gcf,sprintf('%s_6-LC.png',filename)); %Save figure

%% CALL FUNCTION
[it, rw] = max(CTime);
zs = HSlice(rw, 1);
funcContour(zs, filename);

disp('Slice Time VS Loop Count');
disp(NCorr(STime,GNumber));
disp('Slice Time VS Intersecting Facet');
disp(NCorr(STime,IFacet));
disp('Contour Time VS Loop Count');
disp(NCorr(CTime,GNumber));
disp('Contour Time VS Intersecting Facet');
disp(NCorr(CTime,IFacet));

97

function funcContour(zSlice, filename)
 myvars = dir(sprintf('%s*.csv', filename)); %Get list of CSV file
 figure(8);
 set(8, 'Name', sprintf('Contour Time (%s)',... %Create new figure
 filename), 'Color', [1 1 1],'pos', [350 200 600 400]);

 for i = 1 : length(myvars) %Iterate for each file
 CurrentFile = csvread(myvars(i,1).name); %Load working file
 Gmax = max(CurrentFile(:, 4)); %Get Max Group number
 G = 0; %Initialize G

 if zSlice == CurrentFile(1, 3)
 CTprev = CurrentFile(1, 8);
 CTheight = CurrentFile(1, 3);
 CIfacet = CurrentFile(1, 6);
 GHigh = Gmax + 1;
 hold off;
 while G <= Gmax
 % Filter Array based on Group Number at Column 4
 t = find(CurrentFile(:, 4) == G);

 % Get XYZ (Column 1 2 3)
 X = CurrentFile(t, 1);
 Y = CurrentFile(t, 2);

 % Plot Contour
 plot(X, Y, 'k', 'LineWidth', 1);
 hold on;
 G = G + 1;
 end
 break;
 end
 end
 title(sprintf('C.Time = %0.2fms, Z = %d, Loop = %d, Facet = %d', CTprev, CTheight,...
 GHigh, CIfacet));
 axis equal;
 grid on;
 xlabel('X-axis');
 ylabel('Y-axis');
 saveas(gcf,sprintf('%s_8-HCT.png',filename)); %Save figure
end

98

	ACKNOWLEDGEMENTS
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 DLP Projection Mask Stereolithography
	1.2 Contour Generation Algorithm in Projection Mask Stereolithography
	1.3 Problem Statement
	1.4 Research Objectives
	1.5 Research Scope

	CHAPTER 2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Mask Projection Stereolithography
	2.2.1 Photopolymerization
	2.2.2 Curing Depth Model of Photopolymerization

	2.3 STL Format
	2.3.1 Types of STL
	2.3.2 Issues of STL

	2.4 Slicing Algorithm
	2.4.1 Fundamental of Slicing Algorithm
	2.4.2 Facet-Plane Intersection Case Handling
	2.4.3 Data Structure
	2.4.4 Type of Slicing Algorithm

	2.5 Contour Loop Algorithm
	2.6 Summary

	CHAPTER 3 METHODOLOGY
	3.1 Introduction
	3.2 STL Data Management
	3.3 Slicing Algorithm
	3.3.1 Case Handler for Facet-Plane Interaction
	3.3.2 Fundamental of Slicing
	3.3.3 Line to Pixel Mapping
	3.3.4 Algorithm Structure

	3.4 Contour Construction Algorithm

	CHAPTER 4 RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Sliced Model Output
	4.3 Slicing Algorithm Performance
	4.4 Contour Construction Performance
	4.4.1 Number of Intersecting Facet at Different Slicing Height
	4.4.2 Contour Loop Counts

	4.5 Total Computational Time
	4.6 Visualization of Contour Generation Algorithm
	4.7 Comparison of Slicing and Contour Construction algorithms

	CHAPTER 5 CONCLUSION
	5.1 Conclusion
	5.2 Future Work
	REFERENCES
	APPENDIX A ADDITIONAL SLICING RESULT
	APPENDIX B PSEUDOCODE (VB.NET)
	APPENDIX C PSEUDOCODE (C++)
	APPENDIX D PSEUDOCODE (MATLAB)

