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ABSTRAK 

Kemajuan terkini dalam teknologi pencetakan 3D telah membawa kepada penghasilan 
mesin pencetakan 3D berasaskan pancaran-bertopeng. Proses ini menggunakan tenaga 
cahaya UV bagi membentuk objek nyata dari resin penyembuhan-foto. Pancaran kontur 
dijanakan dengan mengiris model CAD STL kepada lapisan-lapisan kontur 2D yang 
kemudiannya disalurkan kepada alat pemancar lapisan demi lapisan berasaskan 
ketinggian binaan. Pengkomputan bagi penjanaan lapisan-lapisan kontur 2D adalah 
sangat intensif. Algoritma penjanaan kontur yang sedia ada memerlukan masa 
pengkomputan yang lama. Ini kerana algoritma tersebut perlu mengiris dan 
mengkomput setiap satu lapisan sesebuah model STL sebelum proses pencetakan 
bermula. Dalam usaha bagi mengurangkan masa pengkomputan, algoritma yang baru 
dan lebih pantas diperlukan. Lantaran itu, algoritma penjanaan kontur lantas 
dibentangkan di dalam kajian ini. Kaedah ini menghasilkan satu lapisan kontur secara 
lantas apabila parameter ketinggian binaan disuapkan ke dalam algoritma tersebut. 
Algoritma tersebut mengandungi beberapa algoritma seperti algoritma pengirisan, 
algoritma pemetaan garisan pixel, dan algoritma gelungan kontur. Algoritma pengirisan 
menggunakan model persilangan garisan-satah untuk menghasilkan segmen garisan 
rawak apabila ia menerima satu faset STL. Segmen-segmen garisan ini kemudiannya 
dipetakan berdasarkan resolusi alat pemancar dengan menggunakan algoritma pemetaan 
garisan pixel. Kemudian, garisan-garisan pixel tersebut dihubungkan untuk membentuk 
satu atau lebih gelungan kontur melalui algorithm gelungan kontur. Hasil dari setiap 
algoritma-algoritma tersebut dikaji secara mendalam. Keputusan hasil kajian 
menyatakan algoritma-algoritma tersebut menjanakan lapisan-lapisan kontur dengan 
tepat. Malah dengan menggunakan model STL berpoligon tinggi, algoritma penjanaan 
kontur masih dapat menjanakan lapisan kontur di bawah 100 milisaat masa 
pengkomputan di mana ianya sesuai bagi aplikasi lantas. 
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ABSTRACT 

Recent advancement in 3D printing technology has led to the development of projection 
mask stereolithography 3D printing process. This process harnesses the power of UV 
light contour projection to cure photocurable resin. The contour projection is generated 
by slicing STL CAD model into layers of 2D contours which is then fed into the UV 
projection device layer-by-layer with respect to the build height. Generation of the 
layers are computationally intensive. Existing contour generation algorithm requires 
long computational time to generate the contour layers especially for high polygon 
models. This is because the existing approach has to slice and compute every single 
layer of the STL model before the printing process starts. In an effort to reduce the 
computational time, a new and faster algorithm is required. Thus, a real-time contour 
generation algorithm is presented in this research. The real-time contour generation 
approach instantly generates single layer of contour whenever the build height 
parameter is fed into the algorithm. The algorithm composes of multiple algorithms 
such as slicing algorithm, pixel line mapping algorithm, and the contour loop algorithm. 
The proposed slicing algorithm uses line-plane intersection model to generate arbitrary 
line segment when it receives an STL facet. These line segments are mapped based on 
the projection device display resolution by the pixel-line mapping algorithm. Then, the 
pixelated line segments are connected to form single/multiple contour loops using 
contour loop algorithm. The results of each algorithms are thoroughly evaluated. It is 
later found that the algorithms able to correctly generates the contour projection layers. 
Even with the high polygon STL model, the contour generation algorithm able to 
perform with less than 100 milliseconds computational time which is suitable for real-
time application. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 DLP Projection Mask Stereolithography 

Three-dimensional (3D) printing is an additive manufacturing (AM) process and 

also known as rapid prototyping (RP). Unlike conventional subtractive manufacturing 

method such as milling that cuts and removes material to manufacture the product, an 

additive manufacturing process performs the opposite of the milling method. Instead of 

removing material which cause material waste and tool weariness, the process stacks 

the material on top of one layer and another. This is also called as layered 

manufacturing (LM). Most of the material waste in 3D printing comes from its 

scaffold/support during the printing process which is minimal compared to subtractive 

manufacturing. 

In 1981, 3D printing was firstly introduced by Hideo Kodama (Kodama, 1981). 

The study proposed a new method of fabrication using photopolymer which solidifies 

upon exposure to UV light source (Xenon lamp and Mercury lamp) controlled by XY 

interpolation mechanism for contour routing and elevated build plate for Z-axis. Ever 

since then, researches have revolutionized the methods of 3D printing. Table 1.1 shows 

the classification of 3D printing according to current technology of 3D printing. 

Recent advancement in 3D printing leads to the development of DLP projection 

mask stereolithography which utilizes UV light to cure photocurable resin into solid 

model. Like conventional 3D printing, it is a layer-by-layer process. Instead of 

traversing along XY axis to construct the layer, the process uses contour projection 

based curing technique to uniformly cure each layer. Thus, this improves the printing 

speed and maintain uniformity of the cured part. The printed part generated by this 

technique becomes monolithic due to continuous curing process. Thus, improving its 
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mechanical properties and its quality. The DLP projection mask stereolithography is 

known to have the best printing quality compared to other 3D printing technique. 

Table 1.1 Classification of 3D printer 
Process Technique Materials 

Ex
tru

si
on

 

Fused deposition modeling (FDM) Thermoplastics filament (ABS, PLA, etc.), 
glass, metal, etc. 

Robocasting (DIW) 
Plastics, ceramic, food, organic cell, 
composites 

Po
w

de
r 

ba
se

d 

Selective laser sintering (SLS) Thermoplastics, metals 
Selective laser melting (SLM) Metals 
Electron beam melting (EBM) Metals 
Binder jetting (3DP) Any material in particulate form 

La
m

in
at

io
n 

Laminated object manufacturing 
(LOM) 

Sheets (paper, metal, plastic, etc.) 

Ph
ot

op
ol

ym
er

iz
at

io
n 

Stereolithography (SLA) Photopolymers 

Material jetting Photopolymers 
Continuous liquid interface printing 
(CLIP) 

UV-curable resins 

Two-photon polymerization (2PP) UV-curable resins 

Source: (Hemant et al., 2015; Wong et al., 2012) 

All methods stated in the above Table 1.1 share similarities in its process thread. 

Before any of the printing process can takes place, a CAD file containing the 

information of the desired geometry will undergo a tessellation process that converts it 

into STL formatted file. Contour generation algorithm is then implemented to slice the 

3D model of STL file into layers of contours which can be used for toolpath 

computation (for multi-axis 3D printer) or layer projection (projection-based 3D 

printer). The STL file and contour generation algorithm are considered as standard 

process flow for any 3D printing process. 

 

1.2 Contour Generation Algorithm in Projection Mask Stereolithography 

Contour generation process involves multiple algorithms to be implemented. 

First, the process starts with slicing algorithm which slices each facet of an STL file 

2 



into multiple line segments with respect to the slicing height. Next, the process uses the 

generated line segments to connect each line segment into one or more closed contour 

loops using contour construction algorithm. Finally, a contour filling algorithm shades 

the closed loop contours to form a mask which cures the photopolymer or UV curable 

resin. In the past, researchers implemented the contour generation algorithm at the 

process planning stage. Each level of contours is generated before the printing process 

took place. However, in order for the printed model to appear seamless, the slicing 

thickness must be very small. This consumed a lot of memory utilized by the thousand 

layers of contours for the model to appear seamless. Another flaw for this approach is 

that the possibility of backlash of the elevation mechanism of Z-axis. For an open loop 

system, stepper motor is often used as the main actuators. A stepper motor usually has 

the tendency to misstep at a point when the rotor lag. This causes error in layer 

projection due to error in elevation height hence affects the printed model. 

There are two types of slicing algorithm which are: uniform slicing and adaptive 

slicing. Adaptive slicing is an advanced slicing method which varies the slicing height 

depending on the features of the geometry. The algorithm works differently than 

uniform slicing. It performs comparison between layers and varies the slicing thickness 

depending on the geometry features to generate close approximation of the 3D model. 

In both slicing algorithms, issue of cusp height also commonly known as staircase 

effect often affecting the surface roughness of the printed model. 

 
Figure 1.1 Staircase effect caused by uniform slicing thickness 

The Figure 1.1 shows rough edges that appear visible to naked eye if the layer 

resolution is low. This happens due to the DLP 3D printer works in single Z-axis. The 

layer cures vertically as the build platform elevates upward and the projected contour 

remains unchanged until it reaches the height for next contour. Instead of smooth slope 

transition between layers, the layer cures into stack of layers. Past study shows that 
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layer stacking weakens the mechanical strength of the printed model especially when 

the layer resolution is low (Dizon et al., 2018; Lederle et al., 2016). Seamless layer 

formation is achievable by continuously generates new contour with respect to the 

smallest change of elevation height. The resolution of the printing output is subjected to 

the printer mechanism itself such as the pitch of the lead/ball screw, its diameter, and 

the resolution of the motor rotation. 

 

1.3 Problem Statement 

Mask projection stereolithography process is a layer stacking process. Each 

layer is cured one by one until the printing process completed. In mask projection 

stereolithography printing process, these layers become monolithic due to continuous 

curing process. Past research has proven that mechanical strength decreases as the layer 

thickness increases. The contour layers are generated by intensive computational 

process. However, existing contour generation algorithm requires long computational 

time due to every layer had to be computed before the printing process. Higher 

resolution printing will require more computational time. More computational time is 

also required for high polygon STL model. Thus, a real-time contour generation 

algorithm is presented in an effort to reduce the computational time to generate the 

contour layer for mask projection stereolithography 3D printing process.  

 

1.4 Research Objectives 

The following objectives is developed to achieve the aim of the study. 

Objectives are classified into three stages which are: 

i. To develop the real-time contour generation algorithm for projection mask 

stereolithography 3D printing process based on STL CAD model 

ii. To evaluate the performances of the proposed algorithm based on 

computational time measurement 

iii. To compare the result of computational time based on journal 
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1.5 Research Scope 

The scope of this research covers the projection aspect of the DLP 3D printing 

process. The algorithm for developing the contour projection is thoroughly studied and 

measured based on its computation time. Generated contour is directly generated from a 

raw STL model without any support generation algorithm. Each model tested are sliced 

with respect to only Z-component of the printer. This research does not cover the 

slicing process with different slicing orientation. The main objective is the development 

of real-time contour generation algorithm which will give results of the generated 

contour layers based on specific STL model. This will be thoroughly studied and 

discussed. Next, in order to evaluate the performance of the algorithm, execution time 

measurements of the algorithms are recorded. Finally, to results of computational time 

measurements are compared with the result obtained from the journal using similar STL 

model and same specifications for the workstation.
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter describes critical review on process of photopolymerization in 

order to get better understanding on photopolymerization process before the 

implementation of the contour generation algorithm. The understanding of the 

photopolymerization chemistry will contributes on how the algorithm should be 

constructed. Other than that, this chapter also discusses on previous works done by 

other researchers in slicing and contour construction algorithms to develop the best 

approach in constructing the algorithm. The methodology and analysis which were 

developed by other researchers can be useful to support this work. Literature review on 

algorithms also give fundamental knowledge on how the slicing and contour generation 

algorithm work.  

 

2.2 Mask Projection Stereolithography 

The mask projection stereolithography is an additive manufacturing technique 

which harness UV-light projection to solidify photocurable resin into solid model. This 

method does not require any tooling or fixture as in milling process (Mu et al., 2017). 

The difference between the mask projection and traditional stereolithography process is 

that the use of digital micromirror device (DMD) by Texas Instrument to generate the 

projection (Pan et al., 2012). Traditional Stereolithography (SLA) process requires 

CNC routing for traversing the UV laser beam onto the resin to build each layer. This is 

time consuming due to traversing laser beam. Instead of traversing the laser, mask 
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projection projects the whole contour onto the resin and uniformly cures the layer. The 

process of photopolymer curing is known as photopolymerization process.  

2.2.1 Photopolymerization 

The process of polymerization using photopolymer is called 

photopolymerization process. Photopolymer usually consists of oligomer/binder, 

photoinitiator, and monomer. Typical photopolymer mixture contains at about 50-80% 

of oligomer, 10-40% monomer, and the rest of the portion is photoinitiator. In 

photopolymer, the oligomer usually used as ink, adhesives, and coating purpose. There 

are several families of oligomer which are: Methacrylate, Styrene, Vinylalcohol, 

Olefine, Polypropylene, and Glycerol family (Pandey, 2014). The oligomer also defines 

the basic property of the photopolymer such as glass transition, stress-strain, and 

adhesion. Meanwhile, the monomer defines the wetting property, crosslink, elasticity, 

and the viscosity. The photoinitiator formulation usually around 0.1-5% of the whole 

composition of photopolymer (Kitano, 2012).  

Photoinitiator is highly reactive substance to light exposure usually UV light. 

There are also studies have been conducted for visible light photopolymerization (Gao 

et al., 1999). There are two types of photoinitiator: radical and cationic. Upon exposure 

to UV light, the photoinitiator generates free radicals that react with the monomers to 

form reactive species. Reactive species forms chain with another monomer causes chain 

reaction which forms the polymer. This chain reaction terminates when a reactive 

species reacts with each other forming dead radicals. Oxygen inhibition also causes this 

chain reactive to stop. When the oxygen reacts with the reactive radical, it  forms an 

unreactive peroxide that terminates the chain reaction (Boddapati, 2010; Dendukuri et 

al., 2008).  

 

2.2.2 Curing Depth Model of Photopolymerization 

The photopolymerization curing depth model defines the fundamental equation 

governing the relationship between irradiance and the chemical reaction of the 

photopolymerization process. Back in 1992, Jacobs presented the standard design 
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equation of stereolithography using Beer-Lambert law. The standard design equation 

presented is as follows: 

 Cd = Dp ln (Emax Ec)⁄  2.1 

where Cd is the curing depth of the resin. Dp is the depth of penetration which governs 

by Beer-Lambert law that suggests the irradiance at the resin surface is reduced by 1/𝑒 

with respect to depth of the resin due to light absorption by the resin. Emax  is the 

maximum energy of the laser, and Ec is the critical dosage of the resin (Jacobs, 1992). 

The study on photocuring model of stereolithography also has been done by Lee 

et al. (2001). The study focuses on derivation of the photocuring mathematical model 

and incorporates both photochemical properties and the light intensity as the curing 

parameter. Multifunctional monomer that has been used in the study was 2,2-bis{4-[2-

hydroxy-3-(methacryloxy)propoxy]phenyl}-propane (Bis-GMA). Photoinitiator that has 

been used was 2-benzyl-2-N,N-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone 

(DBMP). In the experiment, the photopolymer mixtures were exposed to scanning He-

Cd 325nm UV laser. The photopolymer contains the mixtures of DBMP which was 

varied from 0.34 until 99.70 mmol/l that corresponded to 0.01 to 3.00 wt% of the 

solution. The conducted experiments also varied the laser dosage ranging from 0.931, 

1.702, and 22.255 J/cm2. It was found that the concentration of photoinitiator in the 

photopolymer enhances the cure depth but only up to its critical point before the 

reaction rate starts to plateau. It was due to high concentration of photoinitiator that 

limits the UV laser penetration depths. High photoinitiator concentration gives greater 

photon absorption but localizes the free radical concentration near the surface of the 

resin thus limiting the laser penetration. The authors distinguished the photochemical 

parameters and the photonics parameters as α and β which were derived as: 

 α2 =
kt[ln(1 − pc)]2

kp
2ϕϵ 

 2.2 

 β2 =
chNavPL

λWo
2(2π)1/2 2.3 

8 



where in Equation 2.2, the kt  represents the termination constant and kp  is the 

propagation constant of the photopolymerization process. The pc  is the extent of 

polymerization. Molar extinction coefficient, ϵ of the DBMP which has been used is 

23000 M−1cm−1. Whereas, the ϕ represents the quantum yield of the photoinitiator. 

Together, these parameters describe the photochemical terms of the photopolymer in a 

single non-dimensional variable, α. Equation 2.3 describes the photonics term of the 

UV laser exposure with λ as the wavelength of the laser emission, Wo  as the beam 

width, the c  is the speed of light, h  as the Planck’s constant, Nav  is the Avogadro 

constant, and PL as the laser power. Using both parameters, the authors have derived the 

equation that defines the cure depth as the function of both photochemical and 

photonics parameters as state in the equation below: 

 zc =
2

2.303ϵ[PI]
ln�

Emax[PI]1 2�

αβ
� 2.4 

Equation 2.4 is the derivation of the cure depth based on the photochemical and 

photonics parameters. In the equation, [PI] stands for the photoinitiator concentration 

and Emax represents maximum energy per unit area of the laser exposure. The presented 

cure depth model in Equation 2.4 is equivalent to the model presented by Jacobs (1992) 

in Equation 2.1. The authors also presented a 3D map of the curing relationship 

between the photoinitiator concentration and the energy dosage with respect to the 

curing depth. 
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Figure 2.1 Surface topology of the curing space 

(Lee et al., 2001) 

Figure 2.1 shows that the increase in energy dosage will increase the cure depth. 

The same goes for photoinitiator concentration. At the beginning, increasing the 

photoinitiator concentration, rapid increase of the cure depth can be seen. However, up 

to some point, the cure depth starts to plateau with respect to increasing photoinitiator 

concentration (Lee et al., 2001). The surface topology that has been presented helps 

researchers to develop an optimal photopolymer formulation and algorithms for 

stereolithography 3D printing process.  

In 2005, a study was conducted on stereolithography cure process modelling 

(Tang, 2005). In his work, the author claims that previous curing model presented by 

Jacobs is an oversimplification of the whole process. The model presented by Jacobs 

only considers the exposure threshold terms whilst disregarding the effect of 

photochemical process as presented by Lee. The author also stated that the process of 

photopolymerization is an exothermic. It means that the process generates heat during 

the reaction. Plus, the photopolymer resins often have low thermal conductivities. This 

causes thermally initiated polymerization to occur which reduces the resolution of the 

printed model and causing thermal stresses on the printed model. Hence, the 

mathematical model which incorporates the photopolymerization, mass diffusion, and 
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heat transfer were developed starting with consideration of single axis laser scanning 

along X-axis on X-Z plane. The curing profile of a single axis laser scanning is shown 

in Figure 2.2 and Figure 2.3 below. 

 
Figure 2.2 Curing profile of single axis laser scanning 

(Tang, 2005) 

 

 
Figure 2.3 Domain of single axis laser scanning model 

(Tang, 2005) 

Since the curing profile is assumed to be symmetrical, only half of the laser 

beam is taken as the domain. Derivation of the curing model is based on the energy 

balance, mass balance for the monomer, and the mass balance of radicals as shown in 

equations below: 
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 ρCP
∂T
∂t

= k �
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

� + ∆HPRP 2.5 

 
∂[M]
∂t

= DM �
∂2[M]
∂x2

+
∂2[M]
∂y2

+
∂2[M]
∂z2

� + (−RP) 2.6 

 
∂[P •]
∂t

= DP• �
∂2[P •]
∂x2

+
∂2[P •]
∂y2

+
∂2[P •]
∂z2

� + (−Ri) 2.7 

Free radical photopolymerization kinetic models are presented with the derivation based 

on photochemical reaction during initiation phase, propagation phase, and termination 

phase. The reaction is described as: 

 

PI
   hv   
�⎯⎯� R • 

M + R •
   ki   �⎯� P1 

Initiation 

2.8 
Pn • +M

   kp   
�⎯� Pn+1 • Propagation 

Pn • +Pm •
   ktc   
�⎯⎯� Mn+m Termination by Combination 

Pn • +Pm •
   ktd   �⎯⎯�Mn + Mm 

Termination by 
Disproportionation 

 𝑅 • +𝐼𝑛
   𝑘𝑖𝑛   
�⎯⎯�𝑄 Inhibition 

where in the Equation 2.8 above, the PI is the photoinitiator that decays upon exposure 

to light energy into the initial radicals [R •]. The radical reacts with a monomer [M] to 

start a polymer chain Pn • in the initiation phase. The polymer chain propagates to react 

with another monomer forming longer polymer chain. There are 3 cases of termination 

of the propagation phase. Either it is caused by reaction with another polymer chain by 

combination or disproportionation, or radicals inhibition commonly caused by oxygen 

inhibition that forms a non-reactive peroxy (Tang, 2005; Tang et al., 2004). Similar 

work has been done by Boddapati (2010). The author used the same principle but also 

incorporates oxygen inhibition model in the curing depth model. 

Kang et al. (2012) presented pixel-based curing model for projection-based 

stereolithography printing process. The model is developed by applying Beer-Lambert 

law to model the depth of light penetration through liquid curable resin. Gaussian 
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distribution is also used to model the light distribution profile. The light distribution is 

constrained to the square pixel shape of the projection device. The mathematical model 

of pixel-based curing includes time, critical energy dosage, light intensity, penetration 

depth, and other photochemical parameters. These are the important parameters that 

needs to be taken into account when developing the contour generation algorithm 

because the curing model will define the final shape of the printed model. 

Tumbleston et al. (2015) presented slightly different curing model but with 

oxygen inhibition taken into consideration. The model is also based on Beer-Lambert 

law which model the depth of penetration of the light. The curing technique in the 

authors work on continuous liquid interface production takes advantages of the oxygen 

inhibition to accurately control the curing and provides continuous layer separation. 

Thus, this allows the printer to continuously cure every contour layer and allows faster 

printing time. The oxygen inhibition is modelled as dead zone which is a controlled 

uncured region for each layer.  

  

2.3 STL Format 

STereoLithography (STL) is a CAD file format that was developed by Albert 

Consulting Group for 3D Systems. The format was introduced as a means to transfer 

CAD data into rapid prototyping machine when Chuck Hall invented the first 

stereolithography (SLA) 3D printing machine back in 1987. Since then, STL has 

become a de facto in rapid prototyping industry and still widely supported by modern 

CAD software such as Autodesk, SolidWorks, Blender, CATIA, Rhinoceros 3D, and 

several other CAD software (Cătălin IANCU et al., 2010; Jacob et al., 1999; 

Królikowski & Grzesiak, 2014; Wu & Cheung, 2006). The popularity gained was due 

to its non-encrypted data, open-source, and simplicity (Hayasi & Asiabanpour, 2009). 

Most of other CAD formats are encrypted and licenses are required for the software 

developer to incorporate the CAD format compatibility in their applications. 

STL is also known as the abbreviation for “Standard Tessellation Language” by 

some scholars. It is because the STL file is constructed using a tessellation process. 

Tessellation is a process that converts the surface geometry of a CAD model into 

meshes of small triangle. This triangle is called Facet. It has three vertices in 3D 
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Cartesian Coordinate System that form the triangle. Together all the Facets made up a 

shell representation of the original CAD model. Tessellation process can also be applied 

to point clouds data usually obtained from Coordinate Measuring Machine (CMM) to 

construct an STL model. This is done by connecting all the point clouds into triangular 

mesh to construct the meshed surface geometry of the model (Cătălin IANCU et al., 

2010; Koc et al., 2000; Tyvaert et al., 1999; Wu & Cheung, 2006). Thus, this make the 

STL formatted CAD models more robust and simpler. 

 

2.3.1 Types of STL 

The STL has two different types of data format which are ASCII and Binary. 

The ASCII STL format are human readable text format. ASCII STL format begins with 

solid name syntax. Usually, a model name is optional and often omitted with white 

spaces. Next, the syntax followed by facet syntax along with its normal vector 

coordinates. Vertices are enclosed with outer loop and endloop syntaxes. The vertex 

indicates a beginning for each vertex which are used as P1(x, y, z) , P2(x, y, z) , and 

P3(x, y, z) respectively in the proposed algorithms. The 𝑛 and 𝑣 is a formatted floating 

number of sign-mantissa-“e”-sign-exponent, e.g. “2.999381e-002” separated with 

white spaces. Each facet data will end with an endfacet syntax. Depending on the 

complexity of the geometry, an STL file may consists of more than one facet; usually 

thousands. When a new facet syntax is located after the previous endfacet syntax, this 

indicates the start of a new facet. Finally, an STL file normally ends with endsolid name 

syntax (Cătălin IANCU et al., 2010; Wu & Cheung, 2006). An example of ASCII STL 

format is shown below. 

solid name 
facet normal ni nj nk 

 outer loop 
  vertex v1x v1y v1z 
  vertex v2x v2y v2z 
  vertex v3x v3y v3z 
 endloop 
endfacet 
endsolid name 

Due to ASCII STL using ASCII text as its data, it often has larger file size compared to 

its Binary counterpart. 
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On the other hand, Binary STL file uses structured data format using binary 

representation of the data. The data can be read in Bytes with the first 80 Bytes of the 

Binary STL file is the header of the file. Most of the time, the first 80 Bytes are skipped 

to improve the reading time. In some cases, the header section contains the metadata of 

the STL file which is not as important as the facets data. After that, Binary STL 

contains another 4 Bytes of data that represents the facets count of the STL file. The 

facets count is read as Unsigned Integer data type in programming code. Then, the 

facets data starts with 12 Bytes of Normal vector data in which each 4 Bytes are the 

vector components for X, Y, and Z respectively. Each vector components are read and 

casted as Float data type. Next, the following 12 Bytes of data contains the first vertex 

of the facet with each 4 Bytes as its vector components similar to the Normal vector. 

The second and third vertex follow similar structure to the Normal and first vertex data 

structure. Then, the Binary STL allocated another 2 Bytes for attribute data for the 

facet. Overall, each facet data has the size of exactly 50 Bytes. Each 50 Bytes until the 

end of Binary STL file contains only the facet data of the STL model (Cătălin IANCU 

et al., 2010). The structure of Binary STL file is shown below. 

Byte[80]  - Header 
Byte[4]  - Facets Count 
 
For each facet 

Byte[12] - Normal vector(x, y, z) 
 Byte[12] - First Vertex (x, y, z) 
 Byte[12] - Second Vertex(x, y, z) 
 Byte[12] - Third Vertex (x, y, z) 
 Byte[2] - Attribute 
Loop 

The Binary STL has several advantages over ASCII STL data format because the data 

is more compact and reading time is faster than the ASCII STL data format. The 4 

Bytes facets count gives useful information regarding the STL model. The Binary STL 

file sizes are smaller than ASCII STL file. 

Recent advancement in rapid prototyping technology demands more information 

from an STL model such as colour. Thus, in the work of DX Wang, they proposed a 

Colour STL format derived from Binary STL format. Using the 2 Bytes in the 

attributes, an RGB565 colour code was inserted to represent the colour of the specified 

facet as shown below. 
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Byte[80]  - Header 
Byte[4]  - Facets Count 
 
For each facet 

Byte[12] - Normal vector(x, y, z) 
 Byte[12] - First Vertex (x, y, z) 
 Byte[12] - Second Vertex(x, y, z) 
 Byte[12] - Third Vertex (x, y, z) 
 Byte[2] - RGB565 Colour 
Loop 

These bytes have the range of 65536 different colour levels that can be coded (Wang et 

al., 2006). However, the Colour STL format is rarely found because of its limited colour 

palette and inaccurate representation of the model colouring caused by arbitrary 

triangular meshes. 

 

2.3.2 Issues of STL 

Problems that occur in STL format are still being discussed up until now by 

numerous researchers ever since it was introduced back in 1987. STL format is known 

to have issues with incorrect and inconsistency in its normal vector. This occurs when 

the CAD software generated facet normal vector differs from the calculated normal 

based on the facet vertices (Huang et al., 2002; Kumar & Dutta, 1997; Wu & Cheung, 

2006). Most of the time, programmer would prefer calculated normal based on the facet 

vertices coordinates rather than the generated facet normal due to this inconsistency 

problem. Thus, the generated facet normal is often ignored or skipped. 

Another known error that occurs in STL format is when there is a gap or crack 

between the facets as shown in Figure below. This error is caused by truncation error in 

the CAD software generated vertices. Each facet usually shares at least one of its 

vertices with another facet within close proximity. According to STL rule, for two 

adjacent facets, there will be two shared vertices (Barequet & Sharir, 1995; 

Bloomenthal, 1988; Huang et al., 2002; Leong et al., 1996; Piegl & Richard, 1995). The 

mismatch of these vertices due to truncation error forms a crack or hole in the 

tessellated model (Kumar & Dutta, 1997; Wu & Cheung, 2006). Although this error can 

be fixed using algorithms such as K-Nearest Neighbors (k-NN) algorithm, it is still less 

efficient compared to other CAD formats. The truncation error of the vertices also 
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causes the facets to overlap due to incorrect vertex generated in either facet as shown in 

Figure below. 

 
Figure 2.4 Hole at a vertex (left), overlapping facets (right) 

Source: (Szilvśi-Nagy & Mátyási, 2003) 

Aside from the gap error and inconsistent normal, the major flaw in STL format 

is that every facet is generated in random order or arbitrarily. There are no pointers that 

show the relationship and proximity between each element (Szilvśi-Nagy & Mátyási, 

2003). This leads to difficulty in processing the STL model since it will require 

complex algorithm to piece the facet together as if piecing a puzzle which is time 

consuming. This, in fact, lower the performances of the operation involving STL model. 

Some researchers suggested to use Octree data structure to correctly assign and store 

each facet for optimized slicing and other processes (Wong et al., 2017). 

STL files are also known to consume large memory allocation to be stored. This 

make it less portable compared to other CAD formats (Wu & Cheung, 2006). Typical 

high polygon STL model consists of 1,175,288 facets has the file size of 56 MB in 

Binary STL and 273 MB in ASCII STL. In ASCII STL format, each chunk of data is 

stored as char or character which consume 1 Byte or 8 Bits for every chunk of data. 

This is wasteful for the case of numerical data. For example, each digit in the number 

“0.12345e+3” is individually regarded as char based on ASCII code. Thus, this number 

will consume 10 Bytes of memory. Although it is human readable, it is still inefficient 

in terms of resource. Thus, the Binary STL is developed in order to reduce this wasteful 

memory consumption by storing the numerical data in float data type which are 4 Bytes 

or 32 Bits. However, the Binary STL file size is still larger compared to other CAD 

formats. Redundancy of the STL vertices also contributes to the large STL file size. 

Recent advancement in 3D application demands more information out of a CAD 

model. The information that often required by most modern CAD software nowadays 
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demand information on the multiple material type, multiple colour information, surface 

texture, and etc. (Cătălin IANCU et al., 2010). This information which are lacking in 

STL model leads to its major downfall compared to other CAD formats which are more 

robust and practical. An attempt has been done to improve the STL format. One of it is 

the usage of 2 Bytes of attributes data to indicate the colour of the facet. However, the 

colour is only limited to 16-Bits colour RGB565 palette. The triangular shaped facet 

also causes inaccuracy in color representation of the STL model (Wang et al., 2006). 

Up until now, STL format is still unable to fulfill these new demands from the modern 

CAD software. 

Based on the literature done on issues involving STL format, we can classify 

that there are two distinct cause of errors mentioned above. One, where the errors are 

caused by the CAD software generation process of STL format. The errors involving 

cracks and overlapping facets are caused by bad tessellation algorithm by the CAD 

software itself. Hence, it is unfair to regard it as a downfall of the STL model. These 

errors can be prevented if the CAD software performs a verification or linkage check 

algorithm on the generated STL model to detect the error. The other type of error that 

can be classified, is the limitations by the STL format itself such as the file sizes, 

arbitrary facets, and lack of required information. This is in fact, the major downfall of 

the STL format which has not been changed for the last 30 years since it was 

introduced.  

 

2.4 Slicing Algorithm 

Projection stereolithography 3D printing machine requires the 3D model to 

undergo process planning stage before the printing process. This process planning stage 

has a series of tasks which include: model orienting and positioning, slicing the model 

into 2D contours based on Z-axis of the printer workspace, and if necessary, add 

support structures (Kulkarni et al., 2000; Minetto et al., 2017). Slicing thickness is the 

crucial parameter that needs to be properly set as it defines the quality of the printed 

model. Large slicing thickness leads to “stair-case” effect. Small slicing thickness or 

higher slicing resolution provides accuracy and better printing quality but consumes 
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larger memory and higher computational time. To overcome this issue, the slicing 

process must be computationally fast and efficient. 

The process of converting triangular facet into line segment is called slicing 

process. The slicing process use an algorithm that relies on computation of the 

intersecting points between the slicing plane and the STL facet. Each facet is made of 

three vertices. When paired, the vertices become lines which form the triangle facet. 

When these lines intersect with the slicing plane, it will intersect at single intersection 

point. If two of the lines intersect with the slicing plane at the same time, connecting 

both intersection points form a line segment that exist on the slicing plane. An STL file 

contains multiple facets. Multiple interactions between the facet and the slicing plane 

form the 2D contour on the slicing plane that can be process into contour projection for 

DLP 3D printing process. In other application, these 2D contour can also be used for G-

Code generation for CAD/CAM process in a CNC machine (Pandey et al., 2003). 

 

2.4.1 Fundamental of Slicing Algorithm 

The slicing algorithm relies on mathematical computation to compute the 

intersection points that form the line segments. It is derived based on line-plane 

intersection model in calculus math as represented by the Figure 2.5 below. 
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Figure 2.5 Facet intersecting with slicing plane 

Source: (Manmadhachary et al., 2016) 

The Figure 2.5 shows an STL facet intersecting with the slicing plane located at certain 

slicing height. The pair between the vertices Pa, Pb, and Pc are the lines intersecting with 

the plane. The two points that exist on the plane are the projected contour line of a 

single facet. This contour line is called as line segment. As can be seen, the line from Pa 

to Pb does not intersects with the plane, thus, no intersection point can be computed. To 

check whether the line intersects or vice versa, the height of the slicing plane must be in 

between the z  coordinates of the two vertices. The closed loop contours at this 

particular slicing height are generated by multiple intersection between the STL facets 

at that slicing height (Manmadhachary et al., 2016). However, the set of these line 

segments are not programmatically connected. A contour loop algorithm is required to 

connect each of the generated line segment to form single/multiple closed loop 

contours. 

In many literatures, the most commonly used mathematical equation is the linear 

extrapolation method where the equation is defined as: 

 
x − x1

x2 − x1
=

y − y1
y2 − y1

=
z − z1
z2 − z1

 2.9 

In the above equation, the subscript 1 denotes the beginning of the line segment and 

subscript 2 denotes the end point of the line segment. By setting the slicing height, z, 

the unknown x and y can be solved. Thus, the intersection point is P(x, y) as long the x 
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and y exist in between P1 and P2 (Huang et al., 2012; Xu et al., 2017). This method is 

often used due to simple and fast computation. However, there are a few drawbacks of 

using this method. For example, the STL formatted CAD model uses fixed position 

vectors of its facets. Thus, to change the slicing orientation of the model will requires 

each position vectors to be modified. This process can be time consuming especially for 

high polygon model.  

 

2.4.2 Facet-Plane Intersection Case Handling 

The slicing algorithm involves intersection between the slicing plane and the 

STL facet. Studies have shown that certain type of intersection between these two 

causes geometrical errors and redundancies during the contour generation process (Jing 

Hu, 2017; Topçu et al., 2011). Thus, these facet-plane intersections are classified into 5 

cases as shown in Figure 2.6 below. Each of the cases are treated with each respective 

case handling. 

 
Figure 2.6 Possible intersection cases 

Source: (Topçu et al., 2011) 

Case I describes the case where the facet is in parallel with the slicing plane. 

Thus, all sides intersect with the slicing plane. Usually facet with this case usually 

omitted because there will be another facet that shares the same side with the one in 

parallel. This normally occurs at the flat surface of the STL model. Commonly, at top 

and bottom side. Case I can also be used by directly storing all vertices as the contour 

points. But, to avoid redundancy of contour points, the facet is often omitted. 

Case II describes the scenario where one side of the facet is in parallel with the 

slicing plane and two vertices intersect with the slicing plane. This case is usually 

handled by removing or ignoring the side in parallel with the slicing plane. The other 

two non-parallel sides are then sliced to generate the required line segment. Case II 
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sometime shares its parallel side with the facet in Case I. Most of the time Case II is 

given priority over Case I. 

Case III shows the facet intersects with the slicing plane at one side and one of 

its vertices. In this case, all sides are considered intersecting with the slicing plane. This 

issue will cause errors to the line segment generation because the line segment only 

requires two distinct points to form a line. Since the intersection happens at the vertex, 

two similar points will be generated. Removing one of the points can solve the issue. 

Case IV shows an ideal case where only two sides intersect with the slicing 

plane. Slicing the two sides will produce only two distinct points that form the right line 

segment. The side that does not intersects is ignored. 

Case V represents the occurrence where only one vertex of the facet touches the 

slicing plane. The algorithm might assume this condition as two sides intersecting with 

the slicing plane. Slicing this facet will produces two similar points. Thus, the line 

segment will end up becoming a single point in the 2D space. This leads to 

redundancies of contour points for contour generation process. 

 

2.4.3 Data Structure 

The STL files usually contain large quantity of facets information. These facets 

need to be properly managed so that the algorithm will performs better. Choosing the 

right data structure to store the facet information allows the algorithm to quickly access 

the necessary data needed without having to look into each element in the list. Aside 

from that, different STL models have different numbers of facet. Thus, the data 

structure should be able to scale itself to match the size of data. An array data structure 

requires fixed size allocation before the data can be stored. If the allocation size is too 

big, it will consume a lot of computer memory. On the other hand, if the size is too 

small, to program might crash due to array overflow when handling large STL file.  

Huang et al. (2012) implemented hash table data structure in their work on 

slicing algorithm for G-Code generation for CNC Milling using STL file. The hash 

table stores the results of the slicing algorithm according to the incremental of the 
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slicing height. The code is executed on a low-end PC operating on Intel Core 2 1.6 GHz 

RAM 2GB running on Windows XP SP3. The result shows that the execution time 

increases with respect to slicing thickness. Based on comparison, the result shows slight 

improvement than the original method. Considering that the program runs on low-end 

PC, the results are relatively fast with the implementation of hash table data structure. 

However, the test is implemented only on a single STL model. The cylinder-like shaped 

STL model always has single contour loop at each slicing height. STL model with 

multiple contour loops are not tested and reported in the journal. 

Wong et al. (2017) utilized Octree data structure in their work on real-time 

slicing for light painting rendering application using STL formatted CAD model. The 

use of Octree data structure is mainly to reduce computational time for STL slicing. The 

algorithm first determines the axis-aligned bounding box of the STL model. The 

bounding box is set to be the root of the Octree structure. Then, the model is recursively 

subdivided into eight octants as the nodes of the tree. Each of these nodes contains a 

collection of facets of the STL model bounded by each respective node boundary. The 

algorithm is implemented using 4 different STL models having different number of 

facets. The number of tree levels are varied and the computation time of each cases are 

recorded. It is later found that, model with a greater number of facets requires more 

computation time to be sliced. Varying the tree level can reduce the computation time 

but only up to a certain limit. It is observed that after 3 tree level, the computation time 

started to rise due to more time is spent on the divide-and-conquer approach. 

Pan et al. (2014) used linked list data structure in the development of rapid 

prototyping STL model slicing software. The linked list is used to store the facet and 

also contains a pointer that points to the next pairing facet. This kind of implementation 

can be advantageous since the algorithm does not need contour loop algorithm to 

connect each line segment because the facets are already arranged in such manner. But, 

since the slicing height varies, the pairing might also change. Thus, the list needs to be 

reconstructed which is also time consuming (Ye et al., 2017). 
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2.4.4 Type of Slicing Algorithm 

Many methods have been developed on slicing algorithm to improve its 

computation time, accuracy, and memory efficiency. Among popular methods proposed 

by the researchers are uniform slicing, adaptive slicing, and direct slicing algorithm. 

These methods have its own advantages and limitations.  

Uniform slicing has been popularized since the early years the slicing algorithm 

has been presented. It utilizes constant slicing thickness for all of the layers (Choi & 

Kwok, 1999). It is the simplest method for slicing approach. However, stair-case effect 

is known to occur when using this method. The stair-case effect is the case where there 

are losses of geometric data in between the slicing thickness interval since the fixed 

slicing thickness skipped these intervals. Some important features of the geometric 

model might be skipped which resulted in lower accuracy of the printed model. 

Reducing the slicing thickness can mitigate this effect (Zheng et al., 2018; Zhou et al., 

2004) but the slicing output will consume more memory to store the slicing results.  

In an effort to reduce the stair-case effect whilst reducing the memory 

consumption, adaptive slicing method is introduced. Adaptive slicing method uses 

variable slicing thickness that depends on the value of allowable cusp height. Pandey et. 

al. explained the concept of cusp height in their work on adaptive slicing algorithm. The 

cusp height is based on theoretical calculation of surface roughness and the build 

orientation. By limiting the allowable surface roughness parameter, variable slicing 

thickness can be obtained (Pandey et al., 2003). Zhou et. al. presented their work on 

non-uniform cusp height which is different than the work of Pandey et. al. The non-

uniform cusp height is based on circular approximation and user specified allowable 

cusp height as shown in Figure 2.7. The layer thickness model presented are able to 

solve the containment issues that occur during the printing process (Zhou et al., 2004).  
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Figure 2.7 Circular approximation to determine layer error and thickness 

Source: (Zhou et al., 2004) 

The adaptive slicing technique reduces memory consumption by also eliminating the 

repetitive features of the geometric model. For example, a cube STL model will always 

has the same contour from bottom to top when the slicing orientation is perpendicular to 

the cube. Thus, adaptive slicing eliminates the needs to reconstruct the same contour 

that can cause memory inefficiency. 

Direct slicing algorithm is more recent approach in CAD slicing. This approach 

does not require tessellated CAD model such as STL format. Instead, the algorithm is 

implemented on the original CAD format without involving any tessellation process. 

This is because the tessellation process is a surface approximation process of the 

original CAD model. This approximation often leads to reduction in geometric accuracy 

(Jing Hu, 2017). Other reason the direct slicing algorithm is proposed due to the size of 

the STL file. Complex STL file often requires a lot of memory space to be stored 

compares to other CAD formats (Choi & Kwok, 1999). The direct slicing algorithm can 

be implemented using either uniform or adaptive slicing technique. The only difference 

is the CAD format. 

 

2.5 Contour Loop Algorithm 

In order to complete the contour generation for the projection mask 

stereolithography process, each line segments generated by the slicing algorithm must 

be connected to form closed-loop contours (Tian et al., 2018). These line segments are 
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in arbitrary order due to STL facets are sorted in similar fashion (Zhang & Joshi, 2015). 

It is also possible to have multiple closed-loop contours at the same slicing height. 

Thus, it is crucial to differentiate to which group does a contour loop belongs to because 

the contours will define the geometrical features of the printed model. 

One of the most common and naïve methods applied by the previous researchers 

are the head-to-tail search algorithm. The algorithm works by joining neighboring line 

segments until closed-loop contour is formed. Each line segments contain two distinct 

points Po to Pf. The Po of the first line segments from the list is assigned as the head of 

the contour group. Then, the algorithm searches for the similar point that matches the Pf 

of the first line. The algorithm stops when the found Pf matches the assigned head. This 

indicates a closed-loop contour. Then, the remaining line segments are considered as 

new contour group and the algorithm assigns new head for the next contour group. The 

process will repeat until every line segment from the list is checked. The head-to-tail 

contour loop algorithm is known to have the worst case of O(nk). This happen when 

the algorithm has to loop through each line segment from the list if the neighboring line 

is located at the end of the list. Since the k element decreases as n element increases, on 

average, this algorithm will run as O(n). However, a study was done back in 2002 by 

Huang et. al proves that STL formatted CAD model are susceptible to flaws such as 

cracks which may appear in between two side-by-side facets (Huang et al., 2002). Thus, 

the resulting line segments give incorrect pairs hence breaking the closed-contour loop 

formation. Even the smallest truncation errors between the pairs can be catastrophic to 

the head-to-tail contour loop algorithm.  

An algorithm that uses shortest distance calculation is introduced to prevent the 

mispairing issue. This method is applied in the work of Manmadhachary et. al. in an 

attempt to improve surface smoothness of rapid prototyping printed medical product 

(Manmadhachary et al., 2016). The shortest distance approach eliminates truncation 

error that can cause contour dysconnectivity. The equation used for the shortest distance 

is defined as: 

 D = �(x − xt)2 + (y − yt)2 2.10 
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The equation above is used in comparison to compare the points of current line segment 

with the next line segment. If the point coincides, the value of D should be near or equal 

to zero (Vatani et al., 2009). However, the computation uses square root function which 

is more computationally intensive than normal mathematical operation. Thus, the 

shortest distance requires more computational time compared to the naïve head-to-tail 

search algorithm. It is a tradeoff between error-tolerance and the performance of the 

algorithm.  

Zhang & Joshi introduced Efficient Contour Construction (ECC) algorithm in 

their work. The authors used linked list data structure for the ECC algorithm. The 

algorithm checks for the insertion position to construct the contour. The insertion 

process is decided by checking the first and last elements from the intersection linked 

list (Zhang & Joshi, 2015). The contour grouping process which differs between which 

group does the contour loop belongs is not clearly stated in the ECC algorithm. There 

could be more than one closed loop contour at different slicing height depending on the 

geometry features. 

 

2.6 Summary 

Mask projection stereolithography 3D printing process uses UV-light projection 

to cure photocurable resin. The curing process is called photopolymerization. 

Photopolymer resin used in this process contains 50-80% oligomer, 10-40% monomer, 

and the rest is photoinitiator. Each of the components in the photopolymer defines the 

properties of the printed model. Photoinitiator is the photo-reactive substance that 

initiates the polymerization process upon exposure to light with specific wavelength. 

The concentration of the photoinitiator in the photopolymer mixture highly affects the 

curing depth of the photopolymer as shown in Figure 2.1. Other parameters which 

affect the curing process include the light intensity, the critical energy dosage, time, and 

other photochemical parameters. This shows that the photopolymerization is a time 

dependent process. Thus, the proposed algorithm must be fast enough to keep up with 

the photopolymerization process. The elevation speed of the printer must also correlate 

to the curing speed in order to generate accurate printed model.  
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STL file is a de facto CAD format in 3D printing industry. There are two types 

of conventional STL format which are Binary STL and ASCII STL. Each STL model 

consists of multiple facets which are made of a normal vector and three vertices that 

form the facet. Ever since it was first developed back in 1987, STL format remains 

unchanged. There are a lot of known issues with the STL format. Among the flaws 

associated with the STL format is the possibility of crack due to mismatch of the facet 

coordinates. The proposed algorithm must be able to correct this error since it can cause 

failures during the contour formation. 

Slicing algorithm is an algorithm that slices the 3D CAD model into layers of 

contour. In mask projection stereolithography, the 3D model is sliced into multiple 2D 

contour layers. These layers are used in the mask projection to cure each layer of the 3D 

model with respect to the build height. The fundamental equation used in slicing 

process uses linear extrapolation method. This method is simple and straightforward. 

However, this method is susceptible to division by zero which may cause the program 

to crash. As discussed earlier in Section 2.4.2, there are several cases of interaction 

between the slicing plane and the facet. Each of these cases must be handled properly in 

order to generate the correct 2D contour representation of the 3D model. Most 

commonly studied slicing algorithm are the uniform slicing and adaptive slicing. 

However, these methods cause stair-case effect and requires long computational time. 

The proposed algorithm requires low computational time and can be implemented real-

time. Since the curing process is continuous, the printer must also continuously track 

the changes of the curing depth hence modifies the contour layer according to the cure 

depth. 

The process of STL slicing only generates multiple arbitrary line segments. 

Thus, a contour loop algorithm is needed to reconnect the line segments into one or 

multiple closed loop contours. Based on literature, many researchers proposed the head-

to-search search algorithm which is simple and naïve. Considering that there are cases 

of cracks occurring in the STL format, the naïve approach will not be sufficient. Other 

literature proposed shortest distance approach to find and connect the line segments. 

But the shortest distance is more computational intensives. In this research, the 

proposed contour loop algorithm uses pixel line mapping algorithm to map the line 
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segment based on pixel coordinate of the projection device and uses head-to-tail search 

algorithm to efficiently connect every line segment.
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter, the slicing, contour construction, and line to pixel map 

algorithms are thoroughly discussed and elaborated based on the fundamentals of the 

algorithm and the structure of the algorithm. This chapter also discusses the structure of 

STL formatted CAD models and how the data from this CAD models are read and 

stored in the concept of programming. 

 

3.2 STL Data Management 

Managing a huge number of facets require proper encapsulation of the data. 

Hence, the proposed algorithm introduces a list of facet class to store the facet data. 

These data will be read by the slicing algorithm. Each facet class stores the vertices 

(P1, P2, P3) and maximum/minimum Z coordinates between the three vertices. The use of 

maximum/minimum Z value is to filter out other facets except the ones intersecting 

with the slicing plane by comparison of zmin ≤ zslice ≤ zmax for each facet in the STL 

file. This is to reduce the number of facets from the list by taking only a portion of it 

and improves the performance of the slicing algorithm. 

 

3.3 Slicing Algorithm 

A slicer is an algorithm that slices each triangular facet in STL model which 

intersects with the slicing plane. The slicing process of each intersecting facet generates 

line segments which lie on the slicing plane. These line segments are arbitrary because 
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all facets in STL model are also randomly ordered. Hence, the line segment requires a 

contour construction algorithm to connect each line segment into single or multiple 

closed loop contours which will be discussed in the next section. By adjusting the 

slicing plane height, different contour can be generated. This allows layer-by-layer 

contour generation for layered manufacturing process. 

 

3.3.1 Case Handler for Facet-Plane Interaction 

The most common issue regarding slicing algorithm is the vertices error which 

occurs due to bad interaction between the facet and the slicing plane. A line segment 

requires only two distinct points. However, bad facet interaction with the plane causes 

the slicing algorithm to generate more/less than two distinct points. Known cases of 

facet-plane interactions are defined in Figure 3.1 and Table 3.1. 

 
Figure 3.1 Possible facet-plane interaction 

 

Table 3.1 Definition of interaction cases 

Case Interaction of facet and plane Possible Point 

I Line through one side of the facet 4 
II Line bisecting the facet through one vertex 3 
III Line bisecting the facet through two sides 2 
IV No intersection 0 
V Vertex intersection 2 
VI Parallel intersection 6 

Table 3.1 defines the number of points that is generated considering all six possibilities. 

As stated in Table 3.1, both Case I and VI have a side/sides which in parallel with the 
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plane. This parallel intersection must be eliminated to avoid redundant points. Case VI 

is ignored because all the sides are in parallel. Case VI occurs at flat surfaces and 

usually found during slicing the base of the model. It can also be detected when 

zmin = zmax. For Case I, the parallel side is eliminated and the other two sides are 

sliced. The method of eliminating parallel side is using a dot product criterion which 

will be discussed later. Next, Case II happens when the slicing plane intersects at one 

vertex of the facet and one side passing through the plane. Case II generates three 

intersection points which are redundancy for line generation. During the slicing routine, 

the vertex intersection generates two similar points and one distinct point. In the 

proposed slicing algorithm, the algorithm compares the cross combination between the 

three generated points to see which of the combinations give the longest line and later 

stores the combination as a line segment. Intersection at vertex can also be seen in Case 

V. A two similar point cannot forms a line segment. Hence, Case V is ignored. The 

same goes for Case IV which is already been filtered out using Z-comparison in the 

previous section. 

 

3.3.2 Fundamental of Slicing 

 
Figure 3.2 Facet-Plane intersection model 

The fundamental of the proposed slicing algorithm is based on line-plane 

intersection mathematical equation. Consider one side of the facet as a line connecting 

two vertices from P1 to P2. In 3D environment, a line can be either parallel to a plane or 
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intersects at one point on the plane (see Figure 3.2). Parametric equation of a line with 

Po as the initial point and Pf as the final point is given as: 

 P(s) = Po + s(Pf − Po) 3.1 

Assume that point Q in Figure 3.2 lies on the same slicing plane where its x and y 

coordinate can be randomly set (usually set at the origin), and zslice is the slicing plane 

height. By adjusting the zslice value, slicing algorithm can be implemented at any height 

of the STL model. Slicing plane normal is given by unit vector n� = 〈0, 0, 1〉 which is 

for the case of slicing with respect to Z-axis. Unit vector n� can be change to alter the 

slicing plane direction. In Figure 3.2, the line 𝐮 , 𝐯 , and 𝐰  are direction vectors 

connecting the three vertices ( P1 ,  P2 , and P3 ) in clockwise order (P1,  P2, P3, P1) 

respectively to represent the sides of the facet. The algorithm initially checks for any 

intersection which exists between the facet sides and the slicing plane by computing the 

dot product criterion, n� ∙ 𝐮 = 0 , n� ∙ 𝐯 = 0 , n� ∙ 𝐰 = 0  respectively. These criterions 

eliminate the facet parallel sides for both Case I and Case VI as mentioned earlier. The 

output of the criterion becomes zero when there is no intersection between the direction 

vector and the slicing plane. Should the line intersect with the plane as seen in Figure 

3.2, the criterion output is not equal to zero. As seen in Figure 3.2, the direction vector 

𝐮 from point P1  to P2  intersects with the plane at point P(su). Substituting P1  as the 

initial point Po , P2  as the final point Pf  and su  as the parameter s, Equation 3.1 now 

becomes: 

 P(su) = P1 + su(P2 − P1) 3.2 

Equation 3.2 above is a parametric equation of the intersection point P(su). By using a 

direction vector 𝐠 that lies on the same plane, it is known that n� ∙ 𝐠 = 0 because the 

vector is in parallel to the plane. The vector can also be represented as 𝐠 = 𝐡 + su𝐮. 

Hence, n� ∙ 𝐠 = n� ∙ (𝐡+ su𝐮) = 0. Rearranging this equation, the parameter su can be 

written as: 

 su =
−n� ∙ 𝐡
n� ∙ 𝐮

 3.3 
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Vector 𝐡 is given by 𝐡 = P1 − Q and vector 𝐮 is given by 𝐮 = P2 − P1 . Substituting 

both vector 𝐡 and 𝐮 into Equation 3.3 yield: 

 su =
n� ∙ (Q − P1)
n� ∙ (P2 − P1)

 3.4 

Now, the intersection point P(su) can be computed. Based on the previous derivation, it 

is known that vector 𝐠 is a direction vector from point Q to the intersection point. This 

means that 𝐠 = P(s) − Q. Vector 𝐡 is a direction vector from point Q to the initial point 

of the vector 𝐮 which is 𝐡 = Po − Q. Hence, 𝐠 = 𝐡 + s𝐮 where 𝐮 = Pf − Po . Finally, 

the general form of the Equation 3.4 above can be derived as: 

 s =
n� ∙ (Q − Po)
n� ∙ (Pf − Po)

 3.5 

Hence, applying Equation 3.1 and 3.5 to another intersecting side of the facet yield 

another intersection point P(sv)  forming a line segment 𝐿  on the slicing plane. 

However, the value su and sv  must be within the range 0 ≤ s ≤ 1 to ensure that the 

intersection points exists only within the line between Po and Pf. 

 

3.3.3 Line to Pixel Mapping 

The generated line segments are floating numbers, which is computationally 

expensive, and tends to cause truncation errors that disrupt the performance of the 

contour generation algorithm. In this context, the floating numbers are irrelevant 

because the resolutions of the geometry are eventually subjected to the projection 

device resolution. The algorithm proposed novel method of reducing computation time 

by converting the line segments floating number coordinates to pixel coordinates. 

The Pixel Mapping method starts by computing both aspect ratio of the 

projection device ARdevice and the aspect ratio of the object ARobject. This allows the 

algorithm to detect whether to geometry can be fit to neither height nor width of the 

projection device while preserving the aspect ratio of the geometry. The aspect ratios 

are given by: 
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ARdevice =

width
height

 3.6 

 ARobject =
xmax − xmin
ymax − ymin

 3.7 

In Equation 3.6 and 3.7, these values are used as comparison to determine whether the 

object should be fit to width or height. If the ARobject  has higher proportion than 

ARdevice, it means that the object has longer width and must be fit to width and vice 

versa when the ARobject is less than ARdevice. Using this condition, a new variable R is 

introduced to represent the conditions as: 

 R = �
width − 1; ARobject ≥ ARdevice
height − 1; ARobject < ARdevice  3.8 

The R value is minus by one because the pixel coordinates are zero based integer and its 

value is conditional depending on the comparison of ARobject with ARdevice. Consider a 

case of fit-to-width ARobject ≥ ARdevice ; the following equation can be used to map 

the floating number of x-coordinate into a horizontal pixel position (the width) of the 

projection device: 

 xpixel =
Px − xmin 

xmax − xmin
∙ R 3.9 

However, y-coordinate must be scaled with modified value of height′ to retain the 

original aspect ratio of the object. This means, the ARdevice must equal to ARobject. 

Hence, the new ARdevice value is defined as: 

 AR′device = ARobject =
width′
height′

 3.10 

For this case, the width’ = R  where R = width − 1  because it is a fit-to-width 

condition. Hence, using Equation 3.10 the modified height is written as: 

 height′ =
width′

ARobject
=

R
ARobject

 3.11 
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The equation of y-coordinate now can be derived as: 

 ypixel =
Py − ymin

ymax − ymin
∙

R
ARobject

 3.12 

Based on Equation 3.12, the ypixel  is now scaled to modified value of height for 

perseverance of its original aspect ratio and it represents the vertical pixel position of 

the projection device.  

Next, for the case of fit-to-height where ARobject < ARdevice and the variable  

R = height − 1, the algorithm must use full scale of projection device height for y-axis 

and a modification of the width for the x-axis. The equation for ypixel can be written as: 

 ypixel =
Py − ymin

ymax − ymin
∙ R 3.13 

But the xpixel must be scaled with modified value by using Equation 3.10 which now 

becomes: 

 width′ = height′ ∙ ARobject = R ∙ ARobject 3.14 

The equation of xpixel is now derived as: 

 xpixel =
Px − xmin

xmax − xmin
∙ R ∙ ARobject 3.15 

Comparing the Equation 3.9 and 3.15, and Equation 3.12 and 3.13, two new conditional 

variables are introduced to generalize both equations for xpixel and ypixel which are: 

 
V = �

       1      ;  ARobject ≥ ARdevice
ARobject;  ARobject < ARdevice

 3.16 

 
W = �

ARobject
−1 ;  ARobject ≥ ARdevice

      1       ;  ARobject < ARdevice
 3.17 

Finally, the equations for xpixel and ypixel are rewritten as: 
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 xpixel =
Px − xmin

xmax − xmin
∙ R ∙ V 3.18 

 
ypixel =

Py − ymin
ymax − ymin

∙ R ∙ W 3.19 

In the algorithm, Equation 3.18 and 3.19 map the floating number coordinates of 

the line segment 𝐿 for both Po and Pf to a new pixel line segment coordinates. These 

pixel coordinates are store as an unsigned integer value to eliminate the decimal point 

of its original value so that it can be used for the pixel mapping of the projection device. 

 

3.3.4 Algorithm Structure 

This section discusses complete implementation of the slicing algorithm. All the 

fundamentals of the slicing algorithm have been previously explained starting from 

issues regarding STL models, the fundamentals of slicing, and the line to pixel mapping 

fundamental. Figure below shows the structure of the algorithm which will be 

thoroughly discussed in this section.  

 

In Step 1, the algorithm first starts by obtaining a list of intersecting facets 𝐿 

from a list of STL Facet Class (as in Section 3.2) where 𝑛 is the last index in the 

intersecting facets list 𝐿 and 𝑗 is the last index of the STL facets. This procedure filters 
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out other non-intersecting facets to optimize the operation time based on the current 

slicing height, zslice. As mentioned in Section 3.3.2, the process works by comparing 

each facet by zmin ≤ zslice ≤ zmax . If the condition is true, then the list stores the 

intersecting facet in list 𝐿 and vice versa. Starting from Step 2 until 14, the algorithm 

loops for each intersecting facet in the list 𝐿. Step 3 initializes working buffers to be 

used for the next operations. At Step 4, the algorithm performs another loop for each 

side of a facet since a facet contains 3 sides (𝑢, 𝑣,𝑤). Next, the algorithm determines 

whether the sides intersect with the slicing plane by performing dot product criterion 

mentioned in Section 3.3.2. If any side intersects, Step 6 is executed. In Step 6, the 

function 𝑠𝑙𝑖𝑐𝑒(𝑠𝑖𝑑𝑒, zslice) slices the intersecting side of the facet and stores the result 

in buffer Pslice[𝑘]. The size of the point buffer Pslice is 3 to represent each sliced point 

for each side. Result of the slicing operation mainly consists of a line segment made of 

two points with double-precision floating number coordinates of Po  and Pf . The 

algorithm executes Step 8 if the side does not intersect and stores null in Pslice[𝑘]. Then, 

Step 10 increments the index 𝑘 means that the index 0, 1, and 2, represent 𝑢, 𝑣, and 𝑤 

respectively. Step 4 until Step 11 loops until each side of the facet are checked. The 

algorithm continues the process by executing Step 12 which handles the errors defined 

in Table 3.1 and stores the corrected line segment in 𝑙𝑖𝑛𝑒 variable. Step 13 converts the 

double-precision coordinates (Po and Pf) into pixel (unsigned integer) coordinates and 

stores it into a list of pixel line segments 𝑆 that will be used in the contour construction 

algorithm. 

 

3.4 Contour Construction Algorithm 

The contour construction algorithm basically is a head-to-tail search algorithm 

which connects a set of line segments that belongs to the same contour loop. By 

assigning the first line segment Po as the initial tail (Pinit) and Pf as the head (Pfind), the 

head will begin to search for next tail which has the same coordinate but in another line 

segment. When found, the search algorithm assigns the found line segment as the new 

head of the search algorithm. This process repeats until the head meets with the first 

initial tail Pinit  that indicates a closed loop is formed. The contour construction 

algorithm is shown in the algorithm table below. 
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The arbitrary pixel line segments obtained by the slicing algorithm are put into a 

list which is first sorted by Po. Y value then Po. X value. The algorithm then, initializes 

an unsigned integer variable to identify and isolate each contour loops. Next, the 

algorithm assigned Po of the first line segment in the list as initial point Pinit of the first 

closed contour loop and its Pf  as the search point to locate next neighbouring line 

segment from the list. In Step 5, the algorithm checks whether a closed loop is found 

else the algorithm proceeds to find next neighbouring line and hold its position in the 

list into an unsigned integer variable 𝑓𝑜𝑢𝑛𝑑 . The function 𝐹𝑖𝑛𝑑  searches for 

neighbouring line from the list with an offset index starting from next line segment 

(𝑖 + 1) of the iteration until the end of the list. It uses Pfind as the searching point which 

can be equal to next line Po or Pf. This is because all the lines sliced during the slicing 

algorithm are arbitrary and it is difficult to know whether the point Po to Pf is in the 

same direction with the contour loop. When next line is found, the function returns an 

unsigned integer index of the found line as shown in Step 9. If the line is not found, 

then the function returns -1. Step 11 checks the inversion of the found line. Should the 

line inverts, then Pfind must be equal to the Pf of the found line. Vice versa, the line is in 

the right orientation. Next in Step 12, the function 𝑆𝑤𝑎𝑝 is to swap the element in the 

list between the found line segment and the next line of the iteration (𝑖 + 1). If the line 

is inverted as previously checked in Step 11, the function 𝑆𝑤𝑎𝑝 will also flip the found 

point such as Pf = Po and Po = Pf before swapping the two lines. Step 15 is mainly to 

assign the contour identity to the next line segment in the list since by this point; the 

39 



next line segment has become a neighbouring line which was previously found in Step 

9. During next iteration, new Pfind will be assigned as the search parameter and the 

whole process will be repeated unless the comparison between Pfind and Pinit is equal to 

one another. This indicates a closed loop is found and it is necessary to increment the 

loop identity variable and assign new Pinit. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

In this chapter, the performance of both slicing and contour construction 

algorithm are evaluated. The evaluation of the performance is based on the 

computational time required to complete each layer respective to their slicing height. 

Evaluation of the results are based on several STL model with different complexity 

which were used in the experiment. Each of these geometries/models are thoroughly 

analyzed based on the time performances of each algorithms including slicing algorithm 

and contour construction algorithm. The algorithms are implemented on Intel i3-2350M 

CPU 2.30 GHz with 6 GB RAM workstation in VB.NET programming language. For 

the comparison with the algorithm implementation based on journal, the algorithms are 

re-written in C++11 and tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM 

similar to the referenced journal. 

 

4.2 Sliced Model Output 

In this section, the 3D sliced models are presented with colour-map indicating 

the total computational time at each respective layer slicing height. A sphere model is 

used to prove that the XZ and YZ planes are in correct ratio with respect to XY plane. 

Figure 4.1 below shows the results of Sphere slicing. 
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Figure 4.1 Sliced model (Sphere) with colour mapped total computational time 

 

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time 

As seen in the Figure 4.1 above, the sphere appears perfectly round. This proves 

that the slicing height is in correct ratio with respect to XY plane. The Dragon model is 

properly form according to its original STL file. 
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Figure 4.3 Sliced model (Tower) with colour mapped total computational time 

Two figures (Figure 4.2 and Figure 4.3) above show result of the algorithm 

implementation. Other case studies are included in the Appendix section. As seen 

above, the colour indicates the total computational time in milliseconds required to 

generate each contour to show the feasibility of implementing this algorithm to an 

actual DLP 3D printer. The lines that appear on the surface of the model are sliced 

contour lines generated by the algorithms. Colour differences at certain slicing height 

are due to the complexity of the geometry that differed at each height. This often 

demands more computational loads to generate the contours. Hence, longer 

computational time. The computational time at each respective height will be further 

discussed in the next section. 

In previous discussion in Chapter 3, the algorithms are designed to work by 

referring to the current build plate height of the DLP 3D printer. In other words, the 

algorithms generate the contour instantly upon receiving the slicing height input value. 

This method is called instant slicing. The contour generation algorithm consists of two 

different algorithms: slicing and contour construction, the performance of each 

algorithms is evaluated in the next sections. 
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4.3 Slicing Algorithm Performance 

In Chapter 3, the slicing algorithm is presented and discussed in detail. In brief, 

the slicing algorithm works by filtering out other facets which do not intersect with the 

slicing plane and then slice each of the intersecting facets to form each respective line 

segments. By algorithms complexity analysis, the worst case for the instant slicing 

algorithm can be represented as O(n). Thus, it is expected that increasing number of 

elements will linearly increase the execution time. The performance graph below shows 

the result of slicing algorithm at each respective slice height. Total facet number of the 

STL model, the mean average, and the standard deviation (SD) are presented at the top 

of the graph. Table 4.1 shows the result of execution time measurement for the slicing 

algorithm at each slicing height. 

Table 4.1 Time measurement for slicing algorithm in milliseconds at each slicing 
height for different STL models 
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By analyzing the pattern of each graph, all the graph above shows constant 

slicing time regardless the slicing height. There are some spikes caused by the operating 

system background processes which occupied the processor at the time. Each model 

above is sorted in ascending order of their total facet number (low polygon model to 

high polygon model). It is noticeable that increasing total facet number also increases 

the mean slicing time average. 
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4.4 Contour Construction Performance 

The contour construction algorithm works by connecting all the arbitrary line 

segments generated by the slicing algorithm into one or more contour loops. Time 

measurement for the execution time is taken in milliseconds to measure how fast the 

algorithm is executed. The result obtained is shown in the Table 4.2 below which 

represents contour construction computational time at each slicing height for each STL 

model. 

Table 4.2 Time measurement for contour construction algorithm in milliseconds at 
each slicing height for different STL models  
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As seen in the Table 4.2 above, the contour time results show unique pattern for 

each model. The Sphere model has consistent contour construction execution time. 

There are inconsistencies in the contour construction time at certain slicing height. This 

is due to complex features of the models at certain height. The complexity of the model 

can be represented as the number of intersecting facets at each slicing height. More 

complex layer will have more facets number. Thus, it requires more computational time 

due to high intersecting facet counts. 
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4.4.1 Number of Intersecting Facet at Different Slicing Height 

Table 4.3 below show the number of intersecting facets which intersect with the 

slicing plane at different heights. Unique feature of the Sphere model can be seen in the 

results below. It is found that the Sphere model has the same number of intersecting 

facets regardless the slicing height. This relates to the consistencies in its contour 

construction algorithm results in previous section. The number of intersecting facet 

pattern shows by the Dragon model also closely resembles the pattern in its contour 

construction time. These similarities can also be observed in other STL models. 

Table 4.3 Number of intersecting facet at each slicing height 
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4.4.2 Contour Loop Counts 

After running the test, it is found that at each slicing height, there are different 

numbers of contour loops can be observed. Based on the proposed contour construction 

algorithm in Chapter 3, the contour loop counts are programmed to re-iterate to connect 

another closed loop contour. These re-iterations depend on the contour loop counts. As 

a result, this process requires more computational time compares to a single closed loop 
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contour. The measurement of the contour loop counts at each respective slicing height 

are tabulated in Table 4.4 below. 

Table 4.4 Number of loop counts at each slicing height 
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In earlier section, we could hypothesize that the computational time for contour 

construction algorithm has a similarity with the number of intersecting facets. Thus, to 

further support this statement, a normalized correlation method is used to measure the 

similarities between these two results. The Equation 4.1 is the equation of normalized 

correlation which is written as: 

 NC =
∑ xnyn

�∑ xn2 ∑ yn2
 4.1 

where the x is the data of contour construction time, y is the intersecting facet number, 

n is the number of elements, and NC is the normalized correlation. The normalized 

correlation is also tested for the relations between contour construction time and 

contour loop counts by using the contour construction time as variable x and contour 

loop counts as y according to the previous Equation. Using the Equation 4.1 for each 

model, the results of normalized correlation are tabulated in Table 4.5 where CT is the 
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contour construction time, LC is the contour loop counts and IF is the number of 

intersecting facet. 

Table 4.5 Calculated normalized correlation of each STL model 

STL Model 
Normalized Correlation 

CT vs LC CT vs IF 

Sphere 0.93 0.93 

Dragon 0.77 0.93 

Eiffel Tower 0.92 0.96 

Gundam 0.89 0.96 

Speedster 0.87 0.96 

Heart 0.64 0.97 

Dreadnaught 0.86 0.94 

Worm 0.72 0.91 

Spiral Tower 0.49 0.89 

The results of normalized correlation for contour construction time against 

contour loop counts show that the strong correlation only implied to certain model such 

as Sphere, Eiffel Tower, Gundam, and Speedster. But the rest of the models show weak 

correlations. Thus, it can be concluded that the number of contour loop counts do not 

significantly affect the contour construction time. On the other hand, the number of 

intersecting facets for every model has strong correlations with the contour construction 

execution time. Hence, earlier hypothesis that states increasing number of intersecting 

facets also increase the contour construction algorithm computational time. 

 

4.5 Total Computational Time 

Overall, total computational time is measured by adding both slicing time and 

contour construction time to give the total time required to generate the contour at each 

slicing height for DLP 3D printing contour projection. The result is tabulated in the 

Table 4.6 shown below. 
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Table 4.6 Total computational time required for each slicing height in milliseconds 
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Table 4.6 shows the total computational time required with respect to each 

slicing height. It can be observed that, increasing facet number also increases its mean 

computation time. It natural since more complex model will have more facet counts and 

requires more computational time. At certain slicing height, several peaks can be seen. 

This indicates that around that particular slicing height has a greater number of 

intersecting facets compared to the other slicing heights. 

 

4.6 Visualization of Contour Generation Algorithm 

In this section, the top view of stacked generated contour for some STL models 

are shown to visualize the 3D model the DLP 3D printing process. 
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Figure 4.4 Stacked contours Alien model (side slicing) 

 
Figure 4.5 Stacked contours Dragon model (bottom-up slicing) 
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Figure 4.6 Stacked contours Liver model (bottom-up slicing) 

 
Figure 4.7 Stacked contours Walnut model (bottom-up slicing) 

 

4.7 Comparison of Slicing and Contour Construction algorithms 

Both of the slicing and contour algorithms are re-written in C++11 and tested on 

Intel i7-6700 3.40 GHz CPU with 4 GB RAM workstation for benchmarking with the 

results obtained by other researchers. The reason is to evaluate the performances of both 

algorithms compared to the algorithms proposed by other researchers in their work. All 
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the parameters such as the STL model, its facet count, and the number of slicing planes 

is exactly the same as the one used in their research paper. The proposed algorithms are 

measured using built-in <chrono> library provided by the C++11 compiler to obtain the 

execution time in milliseconds. 

Minetto in his paper compared his results by implementing other researcher 

algorithm using C++ and Intel i7 3.4GHz workstation and measured the minimum 

execution time of each algorithm in seconds. Minetto also compared his result to the 

commercial 3D printing software Slic3r (Gregori et al., 2014; Minetto et al., 2017; Park, 

2003). The comparisons of his work and the proposed algorithm in this research are 

shown in the Table 4.7 below. 

Table 4.7 Time measurement and comparison for slicing algorithm 

Model Facet Count Layer Count 
Slicing Algorithms (s) 

Park Slic3r Proposed 
Liver 38142 6242 1.28 0.32 1.48 
Femur 42150 3155 0.53 0.16 2.53 
Bunny 270021 1547 2.70 0.29 2.87 
Demon 935236 3126 20.12 1.28 20.15 
Rider 1281950 849 6.37 0.54 7.49 

The bolded value in the Table 4.7 above shows the best runtime among the test 

results. The proposed slicing algorithm is the slowest among all three algorithms. This 

is because the proposed algorithm utilized vectors and 3D points computation instead of 

the commonly used extrapolation method which used more simplified mathematical 

equation to compute. However, since the proposed slicing algorithm uses vector 

coordinate computation, manipulating the slicing direction will be much easier 

compared to extrapolation. The extrapolation method works best for one direction 

slicing, but in order to modify the slicing angle, the algorithm has to change every 

single point that exist in the STL model. This heavy task will demand more 

computational time to be performed for each time the user wanted to change the slicing 

angle. Another reason is that the proposed slicing algorithm is the slowest because it 

includes point conversion (Line to Pixel Mapping Algorithm) that changes the data type 

from Float to Unsigned Short that gives advantages in the proposed Contour 

Construction algorithm. 
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Table 4.8 Time measurement and comparison for contour construction algorithm 

Model Facet Count Layer Count 
Contour Construction Algorithms (seconds) 

Park Slic3r Proposed 
Liver 38142 6242 35.97 3.57 0.003 
Femur 42150 3155 16.59 2.00 0.002 
Bunny 270021 1547 22.00 8.51 0.004 
Demon 935236 3126 140.77 69.49 0.022 
Rider 1281950 849 27.82 25.02 0.001 

As shown in the Table 4.8 above, the proposed contour construction algorithm is 

the fastest compared to the rest of the algorithm. The proposed algorithm uses simple 

head-to-tail contour algorithm. The key to the fast execution time of the proposed 

algorithm lies within the data type of the Line Segment. Normally, in the field of 

computational geometry programming, Float data type is often used by the 

programmers to reduce truncation errors and improve execution time. The Float data 

type has data size of 32-bit (4 bytes) which capable of storing number ranging between 

-3.40282e+38 until +3.40282e+38. This large data type demands more processing time 

of the CPU compared to smaller size data type. Line-to-Pixel map algorithm which was 

discussed in Chapter 3 converted the floating-point data type into Unsigned Short data 

type. The Unsigned Short is a 16-bit (2 Bytes) data type which is smaller than Float 

data type and it does not has decimal points. This data type able to store numbers 

ranging from 0 until 65535. The Line-to-Pixel map algorithm scales the floating points 

data to be within the range of Unsigned Short data. The main idea of the proposed 

contour construction algorithm is rejection of the use of Float data type. It is because in 

DLP 3D printing technology, the end device is always a projection device which are 

constrained by the number of pixels in each row. Current display/projection technology 

still has not exceeded 65535 pixels in each row. Hence, it is still within the range of 

Unsigned Short data type. Furthermore, the operation using Unsigned Short are much 

faster and more accurate compared to Float data type. Using this ideology, the proposed 

contour construction scales the contours depending on the display resolutions of the 

DLP 3D printer projection device. The algorithm is proven to be more than 100 times 

faster as shown in Table 4.8 above. 
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Table 4.9 Time measurement and comparison for total computational time 

Model Facet Count Layer Count 
Total Time for both algorithms (seconds) 

Park Slic3r Proposed 
Liver 38142 6242 37.24 3.89 1.483 
Femur 42150 3155 17.12 2.16 2.532 
Bunny 270021 1547 24.70 8.80 2.874 
Demon 935236 3126 160.89 70.77 20.174 
Rider 1281950 849 34.19 25.56 7.489 

Table 4.9 above shows the total execution time for both slicing and contour 

construction algorithm. The results are obtained by summing both results from slicing 

and contour construction algorithm. As seen in the Table 4.9, the proposed algorithms 

are the fastest algorithm by comparison. Most of the computational time is consumed 

by the proposed slicing algorithm. However, the proposed slicing algorithm has its own 

merits as discussed earlier. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Conclusion 

Mask projection stereolithography is a recent discovery in 3D printing industry. 

It harnesses the power of UV light to cure the photocurable resin to form the solid 3D 

model. Each layer is projected through transparent glass into the resin vat and built 

layer-by-layer until the process completes. STL CAD format is considered as de facto 

in 3D printing. This format is generated from multiple triangular meshes which are 

generated by tessellation process. The STL model undergoes contour generation 

algorithm to generate the necessary contour to be projected to the photocurable resin. In 

this study, a real-time contour generation algorithm is presented which involves series 

of algorithms. The algorithm consists of slicing algorithm, pixel-mapping algorithm, 

and contour loop algorithm. Each of these algorithms have been thoroughly studied, 

developed, and evaluated.  

The developed slicing algorithm is based on line-plane intersection model which 

is computationally efficient and simple. The slicing algorithm generates multiple 

arbitrary line segments that act as the bones of the contour. But the line segments are 

not digitally connected to each other. Thus, a contour loop algorithm is required to 

connect each of these line segments into one or multiple closed-loop contour.  

The line segments generated from the slicing algorithm are mapped referring the 

resolution of the projection device using the proposed pixel-mapping algorithm. The 

pixel-mapping algorithm remapped the line segments which use floating point 

coordinates into unsigned int pixel coordinate of the projection device. Then, these 

mapped line segments are connected using contour loop algorithm. 

65 



The contour construction algorithm is based on head-to-tail search algorithm. 

By assigning the first point from the list of line segments, the algorithm recursively 

searches and compares the remaining line segments and eventually form one or more 

closed-loop contour. The results of contour construction algorithm show that the 

algorithm is very fast and efficient regardless the facet number of the STL model. But 

the algorithm performs a bit slower when the layer has multiple closed-loop contours. 

The algorithms are executed on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM 

workstation and written in VB.NET programming language. For peer result comparison 

with the algorithm obtained from the journal, the algorithms are re-written in C++11 

and tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM similar to the 

referenced literature. The result finds that the proposed slicing algorithm is slower 

compares to the result from literature. For contour construction algorithm, the results 

are much faster than the one from the literature.  

Overall, the contour generation algorithm proposed in this study shows 

promising results. According to the measured computation time, the algorithm can 

operate in real-time due to fast computational time required to generate 2D contour at 

any slicing height. This allows the algorithm to solve the memory storage issue whilst 

achieving the highest printing resolution and mechanical properties. 

 

5.2 Future Work 

The proposed algorithm only covers the contour generation process of the mask 

projection stereolithography 3D printing process. It does not cover the support 

generation process which is crucial for stereolithography printing process. In order to 

fulfill the pre-processing stage of the stereolithography, a support generation algorithm 

is required. 

Another improvement that can be made to the algorithm is the parallel 

computation. Current multi-core technology in modern CPU allows multi-tasking 

operation. Thus, distributing the processes among cores can rapidly improve the 

computational time for the algorithm.  
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One of most important features in 3D printing process is the dimensional 

accuracy of the printed product. It is important for the printer to deliver exact dimension 

as given by the STL model so that the printed product does not need to be reworked. 

The implementation of the proposed algorithm on real hardware has not yet been 

studied. Hence, its dimensional accuracy is also important topic for further 

improvement of the algorithm.  

Projection mask 3D printing process is a very delicate process. Slight vibration 

can ruin the layer formation process. This effect is further amplified for micro-scaled 

printing. The vibration effect on projection mask stereolithography has not widely being 

studied. Eliminating the vibration during the printing process can give highest printing 

quality at micro-scale or even Nano-scale.  
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APPENDIX A 
ADDITIONAL SLICING RESULT 

 

Eiffel Tower (Facet: 149014) 

 

Gundam (Facet: 163724) 
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Speedster (Facet: 179352) 

 

Heart (Facet: 217600) 
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Dreadnaught (Facet: 293146) 

 

Worm (Facet: 567334) 
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APPENDIX B 
PSEUDOCODE (VB.NET) 

Facet Class 
 
Public Class Facet 
    Structure Point3D 
        Dim X As Double 
        Dim Y As Double 
        Dim Z As Double 
 
        'Constructor Point3D 
        Public Sub New(ByVal x As Double, ByVal y As Double, ByVal z As Double) 
            Me.X = x 
            Me.Y = y 
            Me.Z = z 
        End Sub 
 
        Public Shared Function Dot(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return (p1.X * p2.X) + (p1.Y * p2.Y) + (p1.Z * p2.Z) 
        End Function 
 
        Public Shared Function Cross(ByRef p1 As Point3D, ByRef p2 As Point3D) As Point3D 
            Return New Point3D(p1.Y * p2.Z - p1.Z * p2.Y, p1.X * p2.Z - p1.Z * p2.X, p1.X * p2.Y - p1.Y * p2.X) 
        End Function 
 
        Public Shared Function LengthBetween(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return Math.Sqrt(Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - 
p2.Z), 2)) 
        End Function 
 
        Public Shared Function LengthSq(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z), 2) 
        End Function 
 
        Public Shared Operator +(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D 
            Return New Point3D(p1.X + p2.X, p1.Y + p2.Y, p1.Z + p2.Z) 
        End Operator 
 
        Public Shared Operator -(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D 
            Return New Point3D(p1.X - p2.X, p1.Y - p2.Y, p1.Z - p2.Z) 
        End Operator 
 
        Public Shared Operator *(ByVal multiplier As Double, ByVal p1 As Point3D) As Point3D 
            Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier) 
        End Operator 
 
        Public Shared Operator *(ByVal p1 As Point3D, ByVal multiplier As Double) As Point3D 
            Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier) 
        End Operator 
 
        Public Overrides Function ToString() As String 
            Return String.Format("{0},{1},{2}", X, Y, Z) 
        End Function 
    End Structure 
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    Public ZMax As Double 
    Public ZMin As Double 
    Public Normal As Point3D 
    Public P1, P2, P3 As Point3D 
 
    Public Sub New(ByRef norm As Point3D, ByRef Point1 As Point3D, ByRef Point2 As Point3D, ByRef 
Point3 As Point3D) 
        Me.Normal = norm 
        Me.P1 = Point1 
        Me.P2 = Point2 
        Me.P3 = Point3 
        Me.ZMax = Math.Max(Point1.Z, Point2.Z) 
        Me.ZMax = Math.Max(Me.ZMax, Point3.Z) 
        Me.ZMin = Math.Min(Point1.Z, Point2.Z) 
        Me.ZMin = Math.Min(Me.ZMin, Point3.Z) 
    End Sub 
 
    Public Overrides Function ToString() As String 
        Return String.Format("[{0}] [{1}] [{2}]", P1, P2, P3) 
    End Function 
 
End Class 
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Pixel Line Class 
 
Public Class PixelClass 
    Structure VectorPixel 
        Dim X, Y As UInteger 
 
        Public Sub New(ByRef x As UInteger, ByRef y As UInteger) 
            Me.X = x 
            Me.Y = y 
        End Sub 
 
        Public Overrides Function ToString() As String 
            Return String.Format("[{0}, {1}]", X, Y) 
        End Function 
    End Structure 
 
    Public Po, Pf As VectorPixel 
    Public Group As UInteger 
 
    Public Sub New(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel, ByRef id As UInteger) 
        Me.Po = P1 
        Me.Pf = P2 
        Me.Group = id 
    End Sub 
 
    Public Shared Function Compare(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel) As Boolean 
        If P1.X = P2.X Then 
            If P1.Y = P2.Y Then 
                Return True 
            Else 
                Return False 
            End If 
        Else 
            Return False 
        End If 
    End Function 
 
    Public Overrides Function ToString() As String 
        Return String.Format("[{0}, {1}] [{2}, {3}] [{4}]", Po.X, Po.Y, Pf.X, Pf.Y, Group) 
    End Function 
 
End Class 
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Main Code 
 
Imports System 
Imports System.IO 
Imports System.ComponentModel 
Imports System.Text 
Imports DLP_3D_Printer.PixelClass 
Imports DLP_3D_Printer.Facet 
 
Public Class mainForm 
    'STL Facet Read variables 
    Dim FacetCount As UInteger = 0 
    Dim groupID As UInteger = 0 
    Dim exCount As UInteger = 0 
    Dim zSlice As Double = 0 
    Dim xMax, xMin, yMax, yMin, zMax, zMin As Double 
    Dim STL_list As New List(Of Facet) 
    Dim STL_intersect As New List(Of Facet) 
    Dim facetBuffer(4) As Byte 
    Dim header(80) As Byte 
    Dim nx(4), ny(4), nz(4) As Byte 
    Dim p1x(4), p1y(4), p1z(4) As Byte 
    Dim p2x(4), p2y(4), p2z(4) As Byte 
    Dim p3x(4), p3y(4), p3z(4) As Byte 
    Dim atb(2) As Byte 
 
    'Pixel Mapping variables 
    Dim resW As UInteger = 1920     'Temp Screen Width X 
    Dim resH As UInteger = 1080     'Temp Screen Height Y 
    Dim ARxy, ARwh, ARz As Double 
    Dim pixelList As List(Of PixelClass) 
    Dim zOut As UInteger = 0 
 
    Private Sub readBinary(ByVal fileSTL As String) 
        Dim result As UInteger = 0 
        Dim normal As New Point3D 
        Dim p1 As New Point3D 
        Dim p2 As New Point3D 
        Dim p3 As New Point3D 
        STL_list = New List(Of Facet) 
        FacetCount = 0 
        xMax = Double.MinValue 
        yMax = Double.MinValue 
        zMax = Double.MinValue 
        xMin = Double.MaxValue 
        yMin = Double.MaxValue 
        zMin = Double.MaxValue 
 
        Using myReader As New FileStream(fileSTL, FileMode.Open) 
            myReader.Seek(0, SeekOrigin.Begin) 
            Dim remains As Integer = CType(myReader.Length, Integer) 
            Dim i As UInteger = 0 
 
            If remains > 0 Then 
                myReader.Read(header, 0, 80) 
                myReader.Read(facetBuffer, 0, 4) 
                exCount = BitConverter.ToInt32(facetBuffer, 0) 
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                FacetCount = exCount 
 
                For k As UInteger = 0 To exCount - 1 
                    myReader.Read(nx, 0, 4) 
                    myReader.Read(ny, 0, 4) 
                    myReader.Read(nz, 0, 4) 
                    myReader.Read(p1x, 0, 4) 
                    myReader.Read(p1y, 0, 4) 
                    myReader.Read(p1z, 0, 4) 
                    myReader.Read(p2x, 0, 4) 
                    myReader.Read(p2y, 0, 4) 
                    myReader.Read(p2z, 0, 4) 
                    myReader.Read(p3x, 0, 4) 
                    myReader.Read(p3y, 0, 4) 
                    myReader.Read(p3z, 0, 4) 
                    myReader.Read(atb, 0, 2) 
 
                    normal.X = BitConverter.ToSingle(nx, 0) 
                    normal.Y = BitConverter.ToSingle(ny, 0) 
                    normal.Z = BitConverter.ToSingle(nz, 0) 
                    p1.X = BitConverter.ToSingle(p1x, 0) 
                    p1.Y = BitConverter.ToSingle(p1y, 0) 
                    p1.Z = BitConverter.ToSingle(p1z, 0) 
                    p2.X = BitConverter.ToSingle(p2x, 0) 
                    p2.Y = BitConverter.ToSingle(p2y, 0) 
                    p2.Z = BitConverter.ToSingle(p2z, 0) 
                    p3.X = BitConverter.ToSingle(p3x, 0) 
                    p3.Y = BitConverter.ToSingle(p3y, 0) 
                    p3.Z = BitConverter.ToSingle(p3z, 0) 
 
                    'Object X max/min 
                    xMax = Math.Max(xMax, p1.X) 
                    xMax = Math.Max(xMax, p2.X) 
                    xMax = Math.Max(xMax, p3.X) 
                    xMin = Math.Min(xMin, p1.X) 
                    xMin = Math.Min(xMin, p2.X) 
                    xMin = Math.Min(xMin, p3.X) 
 
                    'Object Y max/min 
                    yMax = Math.Max(yMax, p1.Y) 
                    yMax = Math.Max(yMax, p2.Y) 
                    yMax = Math.Max(yMax, p3.Y) 
                    yMin = Math.Min(yMin, p1.Y) 
                    yMin = Math.Min(yMin, p2.Y) 
                    yMin = Math.Min(yMin, p3.Y) 
 
                    'Object Z max/min 
                    zMax = Math.Max(zMax, p1.Z) 
                    zMax = Math.Max(zMax, p2.Z) 
                    zMax = Math.Max(zMax, p3.Z) 
                    zMin = Math.Min(zMin, p1.Z) 
                    zMin = Math.Min(zMin, p2.Z) 
                    zMin = Math.Min(zMin, p3.Z) 
 
                    STL_list.Add(New Facet(normal, p1, p2, p3)) 
 
                Next 
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            End If 
        End Using 
 
        STL_list = STL_list.OrderBy(Function(x) x.ZMin).ToList() 
 
    End Sub 
 
    Private Sub Slice(ByVal sliceZ As Double) 
        Dim si As Double 
        Dim n, u, Po, Pf, Vo As Point3D 
 
        initializeMatrix() 
        STL_intersect = New List(Of Facet) 
        STL_intersect = STL_list.FindAll(Function(x) x.ZMin < sliceZ And x.ZMax > sliceZ) 
 
        n = New Point3D(0, 0, 1) 
        Vo = New Point3D(0, 0, sliceZ) 
 
        For Each facet_tri In STL_intersect 
            Dim pFlag As Boolean() = {False, False, False} 
            Dim pBuffer(3) As Point3D 
            Dim vLength(3) As Double 
            Dim pointCount As Byte = 0 
 
            For k As Byte = 0 To 2 
                Select Case k 
                    Case 0 
                        Po = facet_tri.P1 
                        Pf = facet_tri.P2 
                    Case 1 
                        Po = facet_tri.P2 
                        Pf = facet_tri.P3 
                    Case 2 
                        Po = facet_tri.P3 
                        Pf = facet_tri.P1 
                End Select 
 
                u = Pf - Po 
                If Point3D.Dot(n, u) <> 0 Then  'If there is intersection 
                    si = Point3D.Dot(n, Vo - Po) / Point3D.Dot(n, u) 
                    If si >= 0 And si <= 1 Then 
                        pBuffer(k) = Po + si * u 
                        pFlag(k) = True 
                        pointCount += 1 
                    End If 
                End If 
            Next 
 
            'Case Handler 
            Select Case pointCount 
                Case 2 
                    If pFlag(0) And pFlag(1) Then 
                        HashConvert(pBuffer(0), pBuffer(1)) 
                    End If 
                    If pFlag(1) And pFlag(2) Then 
                        HashConvert(pBuffer(1), pBuffer(2)) 
                    End If 
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                    If pFlag(2) And pFlag(0) Then 
                        HashConvert(pBuffer(2), pBuffer(0)) 
                    End If 
                    Continue For 
                Case 3 
                    'Find which pairs will produce longest vector 
                    vLength(0) = Point3D.LengthSq(pBuffer(0), pBuffer(1)) 
                    vLength(1) = Point3D.LengthSq(pBuffer(1), pBuffer(2)) 
                    vLength(2) = Point3D.LengthSq(pBuffer(2), pBuffer(0)) 
 
                    If vLength(0) > vLength(1) Then 
                        If vLength(0) >= vLength(2) Then 
                            HashConvert(pBuffer(0), pBuffer(1)) 
                        Else 
                            HashConvert(pBuffer(2), pBuffer(0)) 
                        End If 
                    Else 
                        If vLength(1) >= vLength(2) Then 
                            HashConvert(pBuffer(1), pBuffer(2)) 
                        Else 
                            HashConvert(pBuffer(2), pBuffer(0)) 
                        End If 
                    End If 
                    Continue For 
                Case Else 
                    Continue For 
            End Select 
        Next 
 
        If pixelList.Count > 0 Then 
            generateContour(pixelList) 
        End If 
    End Sub 
 
    Private Sub initializeMatrix() 
        ARwh = resW / resH 
        ARxy = (xMax - xMin) / (yMax - yMin) 
 
        If ARxy >= ARwh Then 
            ARz = (zMax - zMin) / (xMax - xMin) 
            zOut = (zSlice - zMin) / (zMax - zMin) * (resW - 1) * ARz 
        Else 
            ARz = (zMax - zMin) / (yMax - yMin) 
            zOut = (zSlice - zMin) / (zMax - zMin) * (resH - 1) * ARz 
        End If 
        pixelList = New List(Of PixelClass) 
    End Sub 
 
    Private Sub HashConvert(ByRef Point1 As Point3D, ByRef Point2 As Point3D) 
        Dim po, pf As VectorPixel 
 
        If ARxy >= ARwh Then 
            'Fit to Width (X) 
            po.X = (Point1.X - xMin) / (xMax - xMin) * (resW - 1) 
            po.Y = (Point1.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy) 
            pf.X = (Point2.X - xMin) / (xMax - xMin) * (resW - 1) 
            pf.Y = (Point2.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy) 
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        Else 
            'Fit to Height (Y) 
            po.X = (Point1.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy) 
            po.Y = (Point1.Y - yMin) / (yMax - yMin) * (resH - 1) 
            pf.X = (Point2.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy) 
            pf.Y = (Point2.Y - yMin) / (yMax - yMin) * (resH - 1) 
        End If 
 
        If Not Compare(po, pf) Then 
            pixelList.Add(New PixelClass(po, pf, 0)) 
        End If 
    End Sub 
 
 
    Private Sub generateContour(ByRef list As List(Of PixelClass)) 
        Dim isInverse As Boolean = False 
        Dim findInt As Integer = 0 
        Dim initPoint As VectorPixel 
        Dim searchPoint As VectorPixel 
 
        groupID = 0 
        list = list.OrderBy(Function(X) X.Po.Y).ToList 
        list = list.OrderBy(Function(X) X.Po.X).ToList 
        initPoint = list.Item(0).Po 
        For i As Integer = 0 To list.Count - 2 
            'Assign search point 
            searchPoint = list.Item(i).Pf 
 
            'Closed Loop check 
            If Compare(searchPoint, initPoint) Then 
                groupID += 1 
                initPoint = list.Item(i + 1).Po 
            Else 
                'Find next pair 
                findInt = FindPair(i, searchPoint, list) 
                If findInt <> -1 Then 
                    'Check if the point is inverted 
                    isInverse = Compare(searchPoint, list.Item(findInt).Pf) 
                    SwapPoint(findInt, i + 1, isInverse, list) 
                End If 
            End If 
            list.Item(i + 1).Group = groupID 
        Next 
 
    End Sub 
 
    Private Function FindPair(ByRef offset As UInteger, ByRef point As VectorPixel, ByRef list As List(Of 
PixelClass)) As Integer 
        For i As Integer = offset + 1 To list.Count - 1 
            If Compare(point, list.Item(i).Po) Or Compare(point, list.Item(i).Pf) Then 
                Return i 
            End If 
        Next 
        Return -1 
    End Function 
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    Private Sub SwapPoint(ByRef foundPoint As UInteger, ByVal nextPoint As UInteger, ByRef Inverse As 
Boolean, ByRef list As List(Of PixelClass)) 
        Dim buffer As PixelClass = list.Item(foundPoint) 
        list.Item(foundPoint) = list.Item(nextPoint) 
 
        If Inverse Then 
            list.Item(nextPoint) = New PixelClass(buffer.Pf, buffer.Po, 0) 
        Else 
            list.Item(nextPoint) = New PixelClass(buffer.Po, buffer.Pf, 0) 
        End If 
    End Sub 
 
End Class  
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APPENDIX C 
PSEUDOCODE (C++) 

Point3D Class 
 
#include "point3d.h" 
#include <string> 
 
using namespace std; 
 
point3d::point3d(){} 
 
point3d::point3d(float x, float y, float z):X(x),Y(y),Z(z){} 
 
point3d::point3d(char* input){ 
    char x[4] = {input[0],input[1],input[2],input[3]}; 
    char y[4] = {input[4],input[5],input[6],input[7]}; 
    char z[4] = {input[8],input[9],input[10],input[11]}; 
 
    this->X = *((float*)x); 
    this->Y = *((float*)y); 
    this->Z = *((float*)z); 
} 
 
float point3d::dot(point3d Pa){ 
    return ((this->X * Pa.X) + (this->Y * Pa.Y) + (this->Z * Pa.Z)); 
} 
 
point3d point3d::operator +(const point3d &Pa){ 
    return point3d(this->X+Pa.X, this->Y+Pa.Y, this->Z+Pa.Z); 
} 
 
point3d point3d::operator -(const point3d &Pa){ 
    return point3d(this->X-Pa.X, this->Y-Pa.Y, this->Z-Pa.Z); 
} 
 
point3d point3d::operator *(const float &mult){ 
    return point3d((this->X * mult), (this->Y * mult), (this->Z * mult)); 
} 
 
string point3d::toString(){ 
    string buffer = ""; 
    buffer+=to_string(this->X); buffer += " "; 
    buffer+=to_string(this->Y); buffer += " "; 
    buffer+=to_string(this->Z); buffer += " "; 
    return buffer; 
} 
 
point3d::~point3d(){} 
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Facet Class 
 
#include "facet.h" 
#include <math.h> 
 
using namespace std; 
 
facet::facet(){} 
 
facet::facet(point3d p1, point3d p2, point3d p3, point3d norm):P1(p1),P2(p2), P3(p3), Norm(norm) 
{ 
    this->Xmax = max(p1.X, p2.X); this->Xmax = max(this->Xmax, p3.X); 
    this->Xmin = min(p1.X, p2.X); this->Xmin = min(this->Xmin, p3.X); 
    this->Ymax = max(p1.Y, p2.Y); this->Ymax = max(this->Ymax, p3.Y); 
    this->Ymin = min(p1.Y, p2.Y); this->Ymin = min(this->Ymin, p3.Y); 
    this->Zmax = max(p1.Z, p2.Z); this->Zmax = max(this->Zmax, p3.Z); 
    this->Zmin = min(p1.Z, p2.Z); this->Zmin = min(this->Zmin, p3.Z); 
} 
 
facet::facet(char *input){ 
    point3d gNorm(input); 
    point3d gP1(input+12); 
    point3d gP2(input+24); 
    point3d gP3(input+36); 
 
    this->Norm = gNorm; 
    this->P1 = gP1; 
    this->P2 = gP2; 
    this->P3 = gP3; 
 
    this->Xmax = max(gP1.X, gP2.X); this->Xmax = max(this->Xmax, gP3.X); 
    this->Xmin = min(gP1.X, gP2.X); this->Xmin = min(this->Xmin, gP3.X); 
    this->Ymax = max(gP1.Y, gP2.Y); this->Ymax = max(this->Ymax, gP3.Y); 
    this->Ymin = min(gP1.Y, gP2.Y); this->Ymin = min(this->Ymin, gP3.Y); 
    this->Zmax = max(gP1.Z, gP2.Z); this->Zmax = max(this->Zmax, gP3.Z); 
    this->Zmin = min(gP1.Z, gP2.Z); this->Zmin = min(this->Zmin, gP3.Z); 
} 
 
string facet::toString(){ 
    string buffer="Facet\n"; 
    buffer+= this->P1.toString() + "\n"; 
    buffer+= this->P2.toString() + "\n"; 
    buffer+= this->P3.toString() + "\n"; 
    //buffer+= this->Norm.toString() + " "; 
    buffer+= to_string(this->Zmax) + " "; 
    buffer+= to_string(this->Zmin) + "\n"; 
    return buffer; 
} 
 
bool facet::operator<(const facet &other){ 
    return this->Zmin < other.Zmin; 
} 
 
bool facet::isIntersect(float &height){ 
    if((height < this->Zmax) && (height > this->Zmin)){ 
        return true; 
    } else{ 
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        return false; 
    } 
} 
 
facet::~facet(){} 
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Point2D Class 
 
#include "point2d.h" 
#include "math.h" 
 
point2d::point2d(){} 
 
point2d::~point2d(){} 
 
point2d::point2d(unsigned short &xx, unsigned short &yy):X(xx), Y(yy){} 
 
string point2d::toString(){ 
    return "(" + to_string(this->X) + "," + to_string(this->Y) + ")"; 
} 
 
float point2d::length(point2d &other){ 
    return (powf(this->X - other.X, 2) + powf(this->Y - other.Y, 2)); 
} 
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Pixel Line Class 
 
#include "pixelline.h" 
 
pixelLine::pixelLine(){} 
 
pixelLine::pixelLine(const point2d a, const point2d b, const unsigned int id){ 
    this->Po = a; 
    this->Pf = b; 
    this->Id = id; 
} 
 
string pixelLine::toString(){ 
    string buffer=""; 
    buffer += this->Po.toString() + " "; 
    buffer += this->Pf.toString() + " "; 
    buffer += "[" + to_string(this->Id) + "]"; 
    return buffer; 
} 
 
pixelLine::~pixelLine(){} 
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Slicer Class 
 
#include "slicer.h" 
#include <iostream> 
#include <fstream> 
#include <algorithm> 
#include <limits> 
 
using namespace std; 
 
Slicer::Slicer(){} 
 
void Slicer::Initialize(){ 
    this->facetList.clear(); 
    this->facetCount = 0; 
} 
 
void Slicer::ReadSTL(string filename){ 
    ifstream stlFile; 
    char fCount[4]; 
    char inputFacet[50]; 
 
    Initialize(); 
 
    stlFile.open(filename, ios::binary); 
 
    if(stlFile.is_open()){ 
        stlFile.seekg(0); 
        stlFile.ignore(80); 
        stlFile.read(fCount, 4); 
        this->facetCount = *((unsigned long*)fCount); 
 
        for(unsigned long i = 0; i < this->facetCount; i++){ 
            stlFile.read(inputFacet, 50); 
            facet ex(inputFacet); 
            this->facetList.push_back(ex); 
        }; 
    } 
 
    stlFile.close(); 
    this->facetList.shrink_to_fit(); 
    sort(facetList.begin(),facetList.end()); 
    DefineBoundary(); 
 
} 
 
void Slicer::Slice(float &height){ 
    this->LineList.clear(); 
    vector<facet*> intersectList; 
    point2d *aPo, *aPf, pConvert[3]; 
    point3d n(0,0,1), u, *Po, *Pf, Vo(0,0,height); 
    float si = 0; 
    GenerateList(height, intersectList); 
 
    for(unsigned int i = 0; i < intersectList.size(); i++){ 
        bool pFlag[3] = {false,false,false}; 
        point3d pBuffer[3]; 
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        float vLength[3]; 
        unsigned short pointCount = 0; 
 
        for(unsigned short k = 0; k < 3; k++){ 
            switch(k){ 
            case 0: 
                Po = &intersectList[i]->P1; 
                Pf = &intersectList[i]->P2; 
                break; 
            case 1: 
                Po = &intersectList[i]->P2; 
                Pf = &intersectList[i]->P3; 
                break; 
            case 2: 
                Po = &intersectList[i]->P3; 
                Pf = &intersectList[i]->P1; 
                break; 
            }; 
 
            u = (*Pf) - (*Po); 
            if(n.dot(u) != 0){ 
                si = n.dot(Vo - (*Po)) / n.dot(u); 
                if((si >= 0) && (si <= 1)){ 
                    pBuffer[k] = (*Po) + (u * si); 
                    pConvert[k] = Convert(pBuffer[k]); 
                    pFlag[k] = true; 
                    pointCount++; 
                } 
            }; 
        }; 
 
        switch(pointCount){ 
        case 0: 
        case 1: 
            break; 
        case 2: 
            if(pFlag[0] && pFlag[1]){ 
                aPo = &pConvert[0]; aPf = &pConvert[1]; 
            } 
            if(pFlag[1] && pFlag[2]){ 
                aPo = &pConvert[1]; aPf = &pConvert[2]; 
            } 
            if(pFlag[2] && pFlag[0]){ 
                aPo = &pConvert[2]; aPf = &pConvert[0]; 
            } 
 
            if(!Compare(*aPo, *aPf)){ 
                this->LineList.push_back(pixelLine(*aPo, *aPf, 0)); 
            } 
            break; 
        case 3: 
            vLength[0] = pConvert[0].length(pConvert[1]); 
            vLength[1] = pConvert[1].length(pConvert[2]); 
            vLength[2] = pConvert[2].length(pConvert[0]); 
 
            if(vLength[0] > vLength[1]){ 
                if(vLength[0] >= vLength[2]){ 
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                    aPo = &pConvert[0]; aPf = &pConvert[1]; 
                }else { 
                    aPo = &pConvert[2]; aPf = &pConvert[0]; 
                } 
            } else { 
                if(vLength[1] >= vLength[2]){ 
                    aPo = &pConvert[1]; aPf = &pConvert[2]; 
                } else { 
                    aPo = &pConvert[2]; aPf = &pConvert[0]; 
                } 
            } 
 
            if(!Compare(*aPo, *aPf)){ 
                this->LineList.push_back(pixelLine(*aPo, *aPf, 0)); 
            } 
            break; 
        }; 
    }; 
 
    if(LineList.size() != 0){ 
        Contour(); 
    } 
} 
 
void Slicer::GenerateList(float &height, vector<facet*> &objectList){ 
    objectList.clear(); 
    for(unsigned int i = 0; i < this->facetList.size(); i++){ 
        if(this->facetList[i].isIntersect(height)){ 
            objectList.push_back(&facetList[i]); 
        } 
    } 
} 
 
void Slicer::DefineBoundary(){ 
    upperX = upperY = upperZ = numeric_limits<float>::lowest(); 
    lowerX = lowerY = lowerZ = numeric_limits<float>::max(); 
 
    for(unsigned int i = 0; i < this->facetList.size(); i++){ 
        upperX = max(upperX, this->facetList[i].Xmax); 
        lowerX = min(lowerX, this->facetList[i].Xmin); 
        upperY = max(upperY, this->facetList[i].Ymax); 
        lowerY = min(lowerY, this->facetList[i].Ymin); 
        upperZ = max(upperZ, this->facetList[i].Zmax); 
        lowerZ = min(lowerZ, this->facetList[i].Zmin); 
    } 
 
    this->ARxy = (upperX - lowerX) / (upperY - lowerY); 
} 
 
void Slicer::SetResolution(const unsigned short width, const unsigned short height){ 
    this->resW = width; 
    this->resH = height; 
    this->ARwh = (float)width / (float)height; 
} 
 
point2d Slicer::Convert(point3d &Pa){ 
    unsigned short px, py; 
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    if(ARxy >= ARwh){ 
        px = (Pa.X - lowerX) / (upperX - lowerX) * (resW - 1); 
        py = (Pa.Y - lowerY) / (upperY - lowerY) * ((resW - 1) / ARxy); 
    } else { 
        px = (Pa.X - lowerX) / (upperX - lowerX) * ((resH - 1) * ARxy); 
        py = (Pa.Y - lowerY) / (upperY - lowerY) * (resH - 1); 
    } 
 
    return point2d(px,py); 
} 
 
bool Slicer::Compare(point2d &a, point2d &b){ 
    if(a.X == b.X){ 
        if(a.Y == b.Y){ 
            return true; 
        } 
    } 
    return false; 
} 
 
void Slicer::Contour(){ 
    unsigned short id = 0; 
    point2d *searchPoint, *initPoint; 
 
    initPoint = &this->LineList[0].Po; 
    for(unsigned int i = 0; i < this->LineList.size() - 1; i++){ 
        searchPoint = &this->LineList[i].Pf; 
 
        if(Compare(*searchPoint, *initPoint)){ 
            id++; 
            initPoint = &this->LineList[i + 1].Po; 
        } else { 
            int findInt = FindPair(i, *searchPoint); 
            if(findInt != -1){ 
                bool isInverse = Compare(*searchPoint, this->LineList[findInt].Pf); 
                SwapPoint(findInt, i+1, isInverse, this->LineList); 
            } else { 
                cout << "Point Not Found at: " << i << endl; 
            } 
        } 
        this->LineList[i+1].Id = id; 
    } 
} 
 
int Slicer::FindPair(unsigned int &startIndex, point2d &searchPoint){ 
    for(unsigned int i = startIndex + 1; i < this->LineList.size(); i++){ 
        if((Compare(searchPoint, this->LineList[i].Po)) || (Compare(searchPoint, this->LineList[i].Pf))){ 
            return i; 
        } 
    } 
    return -1; 
} 
 
void Slicer::SwapPoint(const unsigned int foundPoint, const unsigned int nextPoint, bool inverse, 
vector<pixelLine> &list){ 
    swap(list[foundPoint], list[nextPoint]); 

93 



 
    if(inverse){ 
        swap(list[nextPoint].Po, list[nextPoint].Pf); 
    } 
} 
 
Slicer::~Slicer(){} 
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APPENDIX D 
PSEUDOCODE (MATLAB) 

MATLAB Script 
 
%% CONTOUR PLOT 
clear; 
cd 'C:\Users\DELL\Documents\DLP Folder\Vector'; 
filename = 'Dragon'; 
myvars   = dir(sprintf('%s*.csv', filename));       %Get list of CSV file 
disp(filename); 
figure(1); 
set(1, 'Name', sprintf('%s', filename),...          %Create new figure 
    'Color', [1 1 1],'pos', [350 200 600 400]); 
 
% Initialize Slice Height, Slice Time, and Contour Time variables 
STime   = zeros(length(myvars), 1); 
CTime   = zeros(length(myvars), 1); 
HSlice  = zeros(length(myvars), 1); 
IFacet  = zeros(length(myvars), 1); 
GNumber = zeros(length(myvars), 1); 
TTime   = zeros(length(myvars), 1); 
 
for i = 1 : length(myvars)                          %Iterate for each file                 
    CurrentFile = csvread(myvars(i,1).name);        %Load working file 
    Gmax = max(CurrentFile(:, 4));                  %Get Max Group number 
    G = 0;                                          %Initialize G 
     
    % Acquire Slice Height, Slice Time, and Contour Time 
    HSlice(i)  = CurrentFile(1, 3); 
    NFacet     = CurrentFile(1, 5); 
    IFacet(i)  = CurrentFile(1, 6); 
    STime(i)   = CurrentFile(1, 7); 
    CTime(i)   = CurrentFile(1, 8); 
    GNumber(i) = Gmax + 1; 
    TTime(i) = STime(i) + CTime(i); 
     
    while G <= Gmax 
        % Filter Array based on Group Number at Column 4 
        t = find(CurrentFile(:, 4) == G); 
     
        % Get XYZ (Column 1 2 3) 
        X = CurrentFile(t, 1); 
        Y = CurrentFile(t, 2); 
        Z = CurrentFile(t, 3); 
     
        % Plot Contour for each layer with color mapping 
        Ubound = 100; 
        Lbound = Ubound / 2; 
        if (TTime(i) > Ubound) 
            yr = 255; 
            yg = 0; 
        end 
        if (TTime(i) >= Lbound) && (TTime(i) <= Ubound) 
            m = -255 / (Ubound - Lbound); 
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            c = 255 - Lbound * m; 
            yr = 255; 
            yg = round(m * TTime(i) + c); 
        end 
        if (TTime(i) < Lbound) 
            yg = 255; 
            yr = round(255 / Lbound * TTime(i)); 
        end 
        colors_p = [yr, yg, 0] / 255; 
        fill3(X, Y, Z, colors_p); 
        G = G + 1; 
        hold on;                                    %Stack plotting 
    end 
end 
a = [linspace(0, 1, 32); ones(1, 32); zeros(1, 32)]'; 
b = [ones(1, 32); linspace(1, 0, 32); zeros(1, 32)]'; 
c = [a; b]; 
colormap(c); 
val = linspace(0, Ubound, 11); 
colorbar('YTickLabel', val); 
axis equal; 
set(gca, 'Color', [0.9 0.9 0.9]);                   %Set grid BG color 
set(gca, 'View', [45 30]);                          %Set rotation axis 
grid on;                                            %Enable grid 
hold off;                                           %Disable stack plot 
saveas(gcf,sprintf('%s_1-Fig.png',filename));       %Save figure 
 
%% RESULT GRAPH PLOTS 
% Plot Slice Time 
figure(2); 
set(2,'Name','Slice Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, STime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');   
xlabel('Slice Height'); 
ylabel('Slice Time (ms)'); 
xlim([min(HSlice) max(HSlice)]); 
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(STime), std(STime))); %edited for 
single plot 
grid on; 
saveas(gcf,sprintf('%s_2-ST.png',filename));      %Save figure 
 
% Plot Contour Time 
figure(3); 
set(3,'Name','Contour Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, CTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');  
xlabel('Slice Height'); 
ylabel('Contour Time (ms)'); 
xlim([min(HSlice) max(HSlice)]); 
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(CTime), std(CTime))) 
grid on;                                               
saveas(gcf,sprintf('%s_3-CT.png',filename));      %Save figure 
 
% Plot Total Time 
figure(4); 
set(4,'Name','Total Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, TTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');  
xlabel('Slice Height'); 
ylabel('Total Time (ms)'); 
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xlim([min(HSlice) max(HSlice)]); 
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(TTime), std(TTime))) 
grid on;  
saveas(gcf,sprintf('%s_4-TT.png',filename));      %Save figure 
 
% Plot Intersecting Facet           
figure(5); 
set(5,'Name','Intersecting Facet vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, IFacet, 1, 'FaceColor', barColor, 'EdgeColor', 'k'); 
xlabel('Slice Height'); 
ylabel('Intersecting Facet'); 
xlim([min(HSlice) max(HSlice)]); 
grid on;                                                
saveas(gcf,sprintf('%s_5-IF.png',filename));      %Save figure 
 
% Plot Loop Count 
figure(6); 
set(6,'Name','Loop Number vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, GNumber, 1, 'FaceColor', barColor, 'EdgeColor', 'k'); 
xlabel('Slice Height'); 
ylabel('Loop Count'); 
xlim([min(HSlice) max(HSlice)]); 
grid on;  
saveas(gcf,sprintf('%s_6-LC.png',filename));      %Save figure 
 
%% CALL FUNCTION 
[it, rw] = max(CTime); 
zs = HSlice(rw, 1); 
funcContour(zs, filename); 
 
disp('Slice Time VS Loop Count'); 
disp(NCorr(STime,GNumber)); 
disp('Slice Time VS Intersecting Facet'); 
disp(NCorr(STime,IFacet)); 
disp('Contour Time VS Loop Count'); 
disp(NCorr(CTime,GNumber)); 
disp('Contour Time VS Intersecting Facet'); 
disp(NCorr(CTime,IFacet)); 
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function funcContour(zSlice, filename) 
    myvars = dir(sprintf('%s*.csv', filename));         %Get list of CSV file 
    figure(8); 
    set(8, 'Name', sprintf('Contour Time (%s)',...      %Create new figure 
        filename), 'Color', [1 1 1],'pos', [350 200 600 400]);                               
 
    for i = 1 : length(myvars)                          %Iterate for each file                 
        CurrentFile = csvread(myvars(i,1).name);        %Load working file 
        Gmax = max(CurrentFile(:, 4));                  %Get Max Group number 
        G = 0;                                          %Initialize G 
         
        if zSlice == CurrentFile(1, 3) 
            CTprev   = CurrentFile(1, 8); 
            CTheight = CurrentFile(1, 3); 
            CIfacet  = CurrentFile(1, 6); 
            GHigh    = Gmax + 1; 
            hold off; 
            while G <= Gmax 
                % Filter Array based on Group Number at Column 4 
                t = find(CurrentFile(:, 4) == G); 
     
                % Get XYZ (Column 1 2 3) 
                X = CurrentFile(t, 1); 
                Y = CurrentFile(t, 2); 
     
                % Plot Contour 
                plot(X, Y, 'k', 'LineWidth', 1); 
                hold on; 
                G = G + 1; 
            end 
            break; 
        end 
    end 
    title(sprintf('C.Time = %0.2fms,  Z = %d,  Loop = %d,  Facet = %d', CTprev, CTheight,... 
        GHigh, CIfacet)); 
    axis equal; 
    grid on; 
    xlabel('X-axis'); 
    ylabel('Y-axis'); 
    saveas(gcf,sprintf('%s_8-HCT.png',filename));      %Save figure 
end 
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