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Abstract 

Ischaemic stroke is one of the causes of death worldwide. Treatments such as 

thrombolysis and catheterisation must be given within 3 hours after stroke onset, in which 

treatments beyond this time may pose risk of brain tissue swelling. Thus, a prediction 

system must be made to determine the suitability of a stroke treatment to avoid the risk 

of failure. In this report, a mathematical model based on poroelastic theory and asymptotic 

expansion homogenization has been developed to study the formation of brain tissue 

swelling after ischaemia-reperfusion treatment. 

 Firstly, the mathematical model of brain tissue swelling after ischaemia-

reperfusion treatment is investigated using an ideal 2D brain geometry. The objective 

here is to observe the effect of infarct size and location towards the formation and severity 

of brain herniation, which will form due to brain tissue swelling. However, this model 

assumed that the blood pressure is constant and homogeneous throughout the brain, while 

in fact, the blood capillaries vary in sizes and shapes. Therefore, asymptotic expansion 

homogenization technique is applied to allow for the inclusion of capillaries sizes into the 

initial model. This method transforms the initial model into two types of equations: (1) 

macroscale governing equations; and (2) microscale cell problems. In order to solve for 

the macroscale governing equations, the microscale cell problems must first be solved on 

a brain tissue geometry to calculate the effective parametric tensors, which later be used 

in the macroscale governing equations. Lastly, the mathematical model is solved in a 

realistic brain geometry to evcaluate the effect of different mechanical properties of the 

brain towards brain tissue swelling formation. 
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Abstrak 

Strok iskemia ialah salah satu penyebab kematian di dunia. Rawatan-rawatan seperti 

trombolisis dan pengkateterisasi mesti diberikan dalam masa 3 jam selepas berlakunya 

strok, di mana rawatan selepas tempoh masa ini mungkin berisiko untuk menyebabkan 

pembengkakan tisu otak. Oleh itu, satu sistem peramalan mesti dibina untuk menentukan 

kesesuaian suatu rawatan strok bagi mengelakkan risiko kegagalan rawatan itu. Di dalam 

laporan ini, satu model matematik berdasarkan teori poroelastik and penghomogenisasi 

pengembangan asimptotik telah dibina untuk mengkaji pembentukan pembengkakan tisu 

otak selepas rawatan reperfusi-iskemia. 

 Pertama, model matematik untuk pembengkakan tisu otak selepas rawatan 

reperfusi-iskemia dikaji menggunakan geometri ideal otak 2D. Objektif kajian ini ialah 

untuk melihat kesan saiz dan lokasi infark terhadap pembentukan dan keterukan herniasi 

otak, dimana ia akan terbentuk disebabkan oleh pembengkakan tisu otak. 

Walaubagaimanapun, model ini mengandaikan bahawa tekanan darah ialah malar dan 

homogeneous di keseluruhan otak, di mana secara faktanya, kapilari darah mempunyai 

pelbagai saiz dan bentuk. Oleh itu, teknik penghomogenisasi pengembangan asimptotik 

telah digunakan bagi mengambilkira kepelbagaian saiz kapilari dalam model awal ini. 

Metod ini mengubah model awal ini kepada dua jenis persamaan: (1) persamaan 

makroskala; dan (2) masalah sel mikroskala. Bagi menyelesaikan persamaan makroskala, 

persamaan sel mikroskala mestilah diselesaikan terlebih dahulu menggunakan geometri 

tisu otak untuk mengira tensor-tensor parameter efektif, di mana akan digunakan di dalam 

persamaan makroskala. Akhir sekali, model matematik ini diselesaikan menggunakan 

geometri otak yang realistik untuk menaksir kesan perbezaan sifat mekanikal otak 

terhadap pembentukan pembengkakan tisue otak.  
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Chapter 1: Introduction 

1.1. Problem Statement 

Brain tissue swelling is the most common risk of reperfusion treatment on ischaemic 

stroke [1] with about 80% mortality rate [2]. Brain tissue swelling causes the shift of the 

structure in the midline of the brain such as the brain ventricles. This is known as brain 

herniation [3], which usually occurs in about 78% of stroke patients [2]. The herniation 

may cause the compression of cerebral microvessels, which has been hypothesised to 

cause secondary stroke. Therefore, the efficacy of reperfusion treatment after stroke 

remains questionable because of the risk of brain tissue swelling occurrence. 

A mathematical model has been developed to study the formation of brain tissue 

swelling after reperfusion treatment [4]. This model has been used to predict the 

formation of brain tissue swelling several days after the stroke patients have been 

discharged from the hospital. The predictions made allow the patients to avoid 

undergoing recurrence medical imaging procedures such as MRI and CT scanning, which 

are expensive and can affect the health conditions of the patients. In addition, predicting 

brain tissue swelling also allows the clinicians to decide on the suitable treatments such 

as decompression surgery [5] and osmotherapy [6]. These treatments pose several 

complications such as swelling through the surgical site [7] and the effectiveness have 

yet been clinically proven [8]. Thus, to avoid these complications, a thorough evaluation 

of the potentiality of the brain tissue swelling effect must be done. 

The development of predictive tools for brain tissue swelling must meet these 

criteria: (1) the model must be simple yet informative; and (2) the model must be validated 

with clinical data. A simplify model can be developed using mathematical techniques 

such as multiscale modelling, which simplifies a model that requires information from 
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various scales exist in the physics. After the mathematical model has been developed, it 

must be validated using medical imaging data. The data will be collected from University 

Malaya Medical Centre (UMMC). The predictive tools are intended to be used by 

neurosurgeon in improving their decision-making in providing treatments to ischaemic 

stroke patients. 

1.2. Research Objective 

The objective of this project is divided into three:  

1. To modify the existing mathematical model for brain tissue swelling using 

multiscale modelling technique;  

2. To simulate the existing and modified mathematical model in 2D and 3D 

environment using finite element analysis; and  

3. To validate the mathematical model using patient-specific geometry developed 

from medical imaging data. 

1.3. Research Scope 

The scope of research is narrowed down as follows: 

1. The simulations will be performed on an ideal geometry to test and optimize the 

mathematical model developed; and 

2. The patient-specific geometry will be developed using medical imaging data 

obtained from UMMC. 
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1.4. Thesis Organization 

The subsequent chapters in this thesis will be adapted directly from published technical 

papers as part of the requirements for this research grant. The thesis will be further divided 

into 4 chapters as follows: 

1. Chapter 2: Brain tissue swelling during ischaemia-reperfusion: 2d finite element 

analysis using poroelasticity 

2. Chapter 3: Application of asymptotic expansion homogenization for vascularized 

poroelastic brain tissue 

3. Chapter 4: Effects of brain tissue mechanical and fluid transport properties during 

ischaemic brain oedema a poroelastic finite element analysis 

4. Chapter 5: Conclusion and future work 
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Chapter 2: Brain tissue swelling during ischaemia-reperfusion: 2D 

finite element analysis using poroelasticity  

2.1. Introduction 

Brain oedema formation due to cerebral ischaemia-reperfusion can be observed using 

medical imaging modalities such as CT and MRI scans by the movement of brain midline 

structures (also known as brain herniation) or by brain tissue swelling. Herniation usually 

results in the compression of brain ventricle and cerebral microvessels, which further 

results in the occurrence of secondary ischaemia [9]. The presence of herniation may 

indicate the rise in the intracranial pressure (ICP) and it may cause permanent 

neurological problems and even fatality [10]. Several treatments are available for brain 

oedema such as decompressive surgery and osmotherapy. However, the effectiveness of 

these treatments remains questionable due to the complicated nature of brain oedema 

formation.  

A mathematical model has been developed to further understand the formation of 

brain tissue swelling due to BBB breakdown using poroelastic theory. Poroelasticity was 

initially used to study soil mechanics [11] and has been extensively used to study the 

mechanics of the pathological brain [12-14]. In this theory, the brain tissue is assumed to 

be homogeneous, has linear elastic property, and contain both water and blood, permeable 

in a solid porous matrix structure. A comprehensive mathematical framework of this 

theory can be found in [4]. 

In this chapter, a mathematical model of brain tissue swelling after a cerebral 

ischaemia-reperfusion treatment is investigated using an ideal 2D brain geometry and 

solved using finite element scheme of poroelastic model. The objective here is to observe 

the effect of infarct size and location towards the formation and severity of brain 
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herniation. This will be a preliminary study before a more complete validation using MRI 

data of ischaemic stroke patient can be done. 

2.2. Methodology 

2.2.1. Theoretical Background 

During ischaemic stroke, the lack of oxygen and nutrient to the affected region creates a 

series of biochemical reactions that destroys the endothelial cells surrounding the cerebral 

microvessels leading to the blood-brain barrier (BBB) breakdown, which increases the 

BBB permeability [15]. When blood flow is restored after reperfusion treatment, ions and 

some protein plasma can filtrate through the damaged BBB creating osmotic pressure 

difference between the capillary and interstitial space. This can cause the flux of water 

from the capillary and accumulate in the tissue space and causes the formation of 

vasogenic oedema, eventually leading to the formation of cerebral tissue swelling. Figure 

2.1 illustrates the process of water accumulation into the interstitial space after BBB 

breakdown. 

 

Figure 2.1: Flux of water after BBB breakdown.  �̇�𝑏→𝑤 represents the water movement from the cerebral 

blood flow into the tissues via capillary filtration. 
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2.2.2. Poroelasticity Model: Mathematical Formulation 

The formation of cerebral tissue swelling due to capillary filtration has been 

modelled by [4] using capillary filtration model and poroelastic theory. The governing 

equations are given as: 

𝜎𝑖𝑗 − 𝛼𝑤𝛻𝑃𝑤 = 0           (2.1) 

1

𝑄𝑤

𝜕𝑃𝑤

𝜕𝑡
− 𝑘𝑤𝛻

2𝑃𝑤 − �̇�𝑏→𝑤 = 0          (2.2) 

where 𝜎𝑖𝑗 is the total stress of the tissue, 𝑃𝑤 is the interstitial water pressure, 𝛼𝑤 is the 

Biot parameter for water, 𝑄𝑤 is the relative compressibility of water, 𝑘𝑤 is the 

permeability of water, 𝑡 is time. 

The term �̇�𝑏→𝑤 represents the water transfer from the capillary space into the 

cerebral interstitial space via capillary filtration, which occurs when BBB broke down. 

This term can be described by [4]:  

�̇�𝑏→𝑤 = 2�̅�𝑏
𝐿𝑝

𝑅𝑐
𝑓[(𝑃𝑏 − 𝑃𝑤) − 𝜎𝛱𝑏]         (2.3) 

where �̅�𝑏 is the baseline volume fraction of the blood, 𝐿𝑝 is the hydraulic permeability of 

the capillary, 𝑅𝑐 is the baseline value of capillary radius, 𝜎 is the reflection coefficient, 

Π𝑏 is the osmotic pressure in the capillary and 𝑃𝑏 is the blood pressure, which has been 

assumed constant. Lastly, the term 𝑓 represents the fraction of vessels that remain open 

after the reperfusion and swelling process at each point in space and time, and this can be 

modelled using a Heaviside function. 

The total stress, 𝜎𝑖𝑗, is linearly related to the strain, 𝜀𝑖𝑗, using typical linear 

elasticity relation: 

𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 +
2𝐺𝑣

1−2𝑣
𝜀𝑖𝑖            (2.4) 

where 𝐺, and 𝑣 are the shear modulus and Poisson’s ratio of the brain tissue, respectively. 
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2.2.3. Numerical Procedure 

2.2.3.1. Brain geometry and meshing 

The brain geometry was drawn according to the realistic brain geometry as 

proposed by [16]. The brain is modelled as a circle that consists of a circular core in the 

middle that represents the brain ventricle. The brain radius is about 65 to 67 mm [17], 

hence the outer radius is taken here to be approximately as 80 mm. The circular core that 

represent the ventricle has the radius of 24 mm, taken to be about 30% of the brain radius 

[18]. The brain tissue is assumed to be homogeneous, thus there is no difference between 

the white and grey matter. The inner and outer boundaries of the brain geometry are 

named as the ventricular layer and the subarachnoid layer, respectively. 

 

Figure 2.2: Idealized 2D brain geometry with an infarct of radius 7 mm located at 𝝋 = 135º. 

To model the effects of ischaemia, a small infarcted region is drawn within the 

geometry. The infarct size is varied in the range 7 mm to 28 mm radius to study the effect 

of size on cerebral swelling. The infarct is drawn as a circle which is located along the 

line that makes an angle 𝝋 = 135º, where 𝝋 is the angle measured counterclockwise from 

the x-axis, as shown in Figure 2.2. 
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The infarcted region and region near it are discretised using a finer mesh than the 

rest of the part of the geometry. The number of elements varies depending on the sizes of 

the infarct of about 2000 to 5000 10-nodes tetradhedral elements. The meshing is done 

using Gmsh. 

2.2.3.2. Boundary conditions 

The boundary condition at the skull, 𝑅𝑠 is set as stationary and pressure at baseline 

ICP, �̅�. The tissue is assumed to initially static and the fluid pressure is at the baseline 

ICP. Meanwhile, we consider two types of boundary conditions at the ventricle, 𝑅𝑉, 

which are: (1) the ventricle is assumed fix and the pressure is at the baseline ICP; and (2) 

the ventricle is free to move during tissue swelling: 

𝜎𝑖𝑗(𝑅𝑉 , 𝑡) ⋅ 𝒏 = −�̅�𝒏           (2.5) 

The simulations are solved using open-source finite element analysis software ELMER 

and are analysed using ParaView. 

2.2.3.3. Model parameters 

Table 2.1 below shows the parameters involved in this model and their respective 

value. Details regarding the parameters can be found in [4].  

2.3. Results and Discussion 

2.3.1. Fix Ventricle Boundary Condition 

The brain tissue swelling during capillary filtration was simulated for simulation time 

until 1 hour. Figure 2.3 shows the cerebral interstitial pressure 𝑃𝑤 and tissue displacement 

𝑢 for various infarct sizes for the case of fix ventricle boundary condition. The tissue 

displacement starts to develop at the outermost radius of the infarct before slowly 

spreading to the inside and outside of the infarct. Meanwhile, the pressure starts to rise 

within the centre of the core and then spreads in the direction of the infarct radius. 
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Table 2.1: List of parameters and their baseline value for the proposed model. 

Parameter Value Parameter Value 

𝑣 0.35 𝑃𝑏 4389 Pa 

𝐺 216.3 Pa �̅�𝑏 0.03 

𝛼𝑤 1 𝐿𝑝 3.0 × 10−11 m/s.Pa 

𝑄𝑤 3244 Pa 𝑅𝑐 5 × 10−6m 

Π𝑏 2445 Pa �̅� 1330 Pa 

𝜎 0.93   

 

 

Figure 2.3: 2D simulation results for various infarct sizes. (Top) Interstitial pressure. (Bottom) Tissue 

displacement. 

However, due to the boundary conditions imposed at the subarachnoid and 

ventricular layers, the displacement and pressure gradually decrease near these layers. 

The tissue displacement pushes the other side of the cerebral tissue as indicated by the 

deformation of the middle line to the right side. The deformation of this line increases as 

the size of the infarct becomes larger. 

The changes in maximum displacement and maximum pressure when the infarct 

distance from the ventricle is varied are shown in Figure 2.4. The maximum displacement 

increases when the distance from the ventricle increases except for the case of the infarct 

radius at 7 mm. For this infarct size, there is a slight drop in the maximum displacement 

for the infarct distance from 7 mm to 21 mm and the infarct distance from 42 mm to 49 

mm. Meanwhile, for the maximum pressure, there is no substantial difference when the 
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distance is varied with the exception of the case for a 7 mm infarct radius, although the 

difference for this case is only about 25 Pa from the other case. 

 

Figure 2.4: Variation of the maximum brain tissue displacement and interstitial pressure with the infarct 

size and distance from the ventricle. 

This difference is due to the ‘edge effect’, in which the infarct is located near the 

subarachnoid and ventricle layer that have been fixed in terms of displacement and 

pressure values. In reality, the ventricle does not have a fixed shape and position but it 

may move and be compressed during brain tissue swelling. The compression of the 

ventricle is also a good indicator of cerebral swelling in CT images [19]. It is known that 

the existence of AQP4 at the interface of the ventricle and the cerebral space can help in 

the clearance of oedematous fluid [20]. Thus, a further improvement to the model could 

be made by incorporating a pressure gradient [21] and stress-free boundary conditions 

[22] at the ventricle to see how the presence of this fluid cavity affects the progression of 

cerebral swelling and fluid pressure development. However, for the sake of model 

simplification, this assumption is applied here. 

2.3.2. Moving Ventricle Boundary Condition 

For moving ventricle cases, we only consider two different sizes of stroke infarct 

– 7 mm and 14 mm radii. Then, we measure the displacement of two points on the 

ventricle, namely point x1 and x2 as illustrated in Figure 2.5. 
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Figure 2.5: Location of x1 and x2 for ventricle displacement measurement. 

Figure 2.6 shows the displacement of point x1 for stroke infarct of radius 7 mm 

and 14 mm at 7 and 5 different locations, respectively. The 0 mm and 42 mm lines referred 

to the stroke located nearest and farthest from the ventricle, respectively.  

 

Figure 2.6: Displacement of point x1 for infarct radius of 7 mm and 14 mm. 

It can be seen in Figure 2.6 that the displacement of point x1 increases as the 

simulation time increases for all locations of the stroke. Stroke that is located nearer to 

the ventricle results in larger displacement of point x1, whereas stroke located further 

shows smaller displacement. The changes in displacement for both 7 mm and 14 mm 

stroke shows similar characteristic, where the displacement increase rapidly from time 0 

to 2000 s. After time 2000 s, the displacement becomes almost constant. However, the 

displacement of point x1 is bigger for 14 mm compared to 7 mm. 

Meanwhile, Fig. 7 shows the displacement of point x2 for infarct radius of 7 mm 

and 14 mm. It can be seen here that the displacement of point x2 increases with time for 

all infarct locations, with exception for the case of infarct located 0 mm and 26 mm from 

the ventricle, for infarct radius of 7 mm and 14 mm, respectively. It should be noted that 
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the displacements of point x2 are much smaller compared to point x1 because point x2 is 

relatively farther from the stroke location than point x1. 

 

Figure 2.7: Displacement of point x2 for infarct radius of 7 mm and 14 mm. 

Meanwhile, Figure 2.7 shows the displacement of point x2 for infarct radius of 7 

mm and 14 mm. It can be seen here that the displacement of point x2 increases with time 

for all infarct locations, with exception for the case of infarct located 0 mm and 26 mm 

from the ventricle, for infarct radius of 7 mm and 14 mm, respectively. It should be noted 

that the displacements of point x2 are much smaller compared to point x1 because point 

x2 is relatively farther from the stroke location than point x1. 

It is important to measure the displacement of the ventricle because brain swelling 

after stroke can be observed by looking at the movement of ventricle in MRI images. For 

example, ventricle enlargement has been used as an objective measure of mild cognitive 

impairment in Alzheimer’s disease [23]. To further accurately measure ventricle 

movement will require the integration of the finite element model with brain images 

through image-model registration procedure, as has been done, for example, by [24]. 

2.4. Future Works 

It has been assumed in this study that the cerebral tissue property is homogeneous 

throughout the geometry. In reality, the cerebral tissue material properties are different 

for those located in the white and grey matter of the cerebral space. Oedema is less likely 

to develop in the grey matter area due to its twisted structure and it has a low tissue 
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compliance as compared to white matter [25]. The study done by Smillie, et al. [18] also 

assumed that the mechanical properties of white and grey matter are the same due to the 

lack of data available. However, they use different fluid permeability values within these 

two cerebral structures. Meanwhile, the model developed by Nagashima, et al. [26] used 

two different cerebral tissue hydraulic conductivity values to account for their different 

properties. Therefore, incorporating the different mechanical properties of the brain 

tissues in the model could improve the brain tissue swelling prediction. 

Another aspect worth studying is the vasogenic oedema resolution. The 

oedematous fluid will move out into the ventricles and subarachnoid spaces via glia 

limitans, into the capillary endothelium via the astrocytic foot or by metabolic 

degradation [27, 28]. The presence of aquaporin-4 (AQP4) channels in the glia limitans 

and astrocytic foot [28] facilitate the removal of the oedematous fluid. However, AQP4 

also plays a role in the formation of cytotoxic oedema that causes intracellular swelling, 

which does not result in an increase in ICP and brain tissue swelling [29]. The function 

of AQP4 has been demonstrated by using a mathematical model [30]. Modification of the 

current model through the inclusion of the role of AQP4 might provide new insight 

towards the occurrence of reperfusion injury. 

2.5. Conclusion 

From this study, it was found that the size and location of cerebral ischaemic infarct can 

affect the degree of brain herniation. This is shown by the deflection of the midline that 

divides the two cerebrals. In addition, the maximum brain tissue displacement and 

interstitial pressure are increase as the infarct sizes increase. These findings indicate that 

ischaemic infarct size plays an important role in determining the severity of brain tissue 

swelling.  
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The results obtained here provide further useful information such as: (1) the 

importance of making the ventricle structure movable for better quantification of the brain 

tissue swelling; and (2) confirms the occurrence of herniation during brain tissue 

swelling. This information is useful before the models can be applied to the actual patient 

data for validation purposes.  
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Chapter 3: Application of asymptotic expansion homogenization for 

vascularized poroelastic brain tissue 

3.1. Introduction 

Poroelastic theory has been used to derive a mathematical model to describe brain tissue 

swelling due to oedema after an ischaemia-reperfusion injury [4]. This model has also 

been used to investigate the function of aquaporin-4 (AQP4) in the formation and 

elimination of brain oedema [30]. This model has been shown to provide potential to be 

used as a tool to predict suitable reperfusion treatment conditions to prevent brain oedema 

formation. In this model, however, the blood pressure is assumed homogeneous 

throughout the brain as well as the blood capillaries are assumed to have similar sizes, 

which considerably simplify the model. However, in the brain, it has been proven 

experimentally that the blood capillaries diameters are normally distributed with a mean 

of 6.23±1.3 µm [31]. 

Asymptotic expansion homogenization (AEH) has been used in the Darcy’s and 

Navier-Stokes models to derive a new set of homogenized governing equations and 

associated microscale cell problems [32]. This method is then applied by [33] on a 

cerebral capillary network generated by fitting the experimental data of [31] using 

Modified Spanning Tree Method (MSTM) [34]. They obtained the interstitial fluid 

permeability tensor, which is isotropic. The same method also has been used by [35] on 

an ideal capillary network to investigate the importance of capillary tortuosity in tumor. 

However, these applications did not take tissue displacement into account, which will 

make the model to be able to predict tissue movement and is important for the application 

of brain tissue swelling prediction.  
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Darcy’s law is strongly related with the poroelastic theory by the inclusion of 

Biot’s coefficient [11]. Hence, applying the AEH technique on poroelastic theory could 

enable the determination of tissue displacement as an effect of fluid transport in between 

the capillary and the interstitial. Application of AEH technique on vascularized 

poroelastic material has been done by [36] but more towards theoretical derivations. In 

this paper, water transport between the capillary and the interstitial fluid of brain tissue 

will be modelled using poroelastic theory and Navier-Stokes equation, and AEH 

technique will be applied to obtain a new set of homogenized macroscale governing 

equations and their associated microscale cell problems. The microscale cell problems 

are required to be solved first before the macroscale governing equations can be solved 

on a larger brain geometry. An example of solving the microscale cell problems on an 

ideal brain tissue with embedded capillary geometry will be shown in this paper. 

3.2. Methodology 

3.2.1. Governing equations 

Consider a vascularized brain tissue Ω = Ω𝑡 ∪ Ω𝑐 where Ω𝑡 and Ω𝑐 are the poroelastic 

brain tissue (which consists of interstitial fluid and solid matrix) and capillary network 

compartments, respectively. We assumed that the intercapillary distance 𝑑 is much 

smaller than the average brain size 𝐿 such that: 

𝜖 =
𝑑

𝐿
≪ 1            (3.1) 

in which we can then define two independent spatial variables 𝑥 and 𝑦 representing the 

macro- and micro-scale, respectively, such that: 

𝜖 =
𝑥

𝑦
             (3.2) 

and 
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𝛻 → 𝛻𝑥 +
1

𝜖
𝛻𝑦             (3.3) 

In addition, we define Γ = 𝜕Ω𝑡 ∩ 𝜕Ω𝑐 as the interface between the two compartments. 

In the poroelastic compartment, the stress equilibrium is given as: 

𝛻 ⋅ 𝜎𝑡 = 0 𝑖𝑛 𝛺𝑡             (3.4) 

neglecting external body forces. Here, the stress tensor 𝜎𝑡 is related with the solid matrix 

displacement 𝑢 and the interstitial pressure 𝑃𝑡 such that: 

𝜎𝑡 = ℂ:𝛻𝑢 − 𝛼𝑃𝑡𝐼           (3.5) 

where 𝛼 is the Biot coefficient and ℂ is the stiffness tensor of the solid matrix, which is 

is defined as: 

ℂ = ℂ(𝐸, 𝑣)            (3.6) 

Here, E and v are the Young’s modulus and Poisson’s ratio of the solid matrix. 

The interstitial pressure 𝑃𝑡 can then be related to the interstitial fluid velocity 𝑣𝑡 

by Darcy’s law: 

𝑤𝑡 =
𝑘

𝜇
𝛻𝑃𝑡  𝑖𝑛 𝛺𝑡            (3.7) 

where 𝑘 and 𝜇 are the permeability of the poroelastic medium and fluid viscosity, 

respectively, and 𝑤𝑡 is the relative interstitial velocity such that: 

𝑤𝑡 = 𝜙(𝑣𝑡 − �̇�)           (3.8) 

Here, 𝜙 is the porosity of the medium. Using mass conservation for the poroelastic 

compartments to get: 

�̇�𝑡 = −𝛼𝑀𝛻 ⋅ �̇� −𝑀𝛻 ⋅ 𝑤𝑡  𝑖𝑛 𝛺𝑡          (3.9) 

where 𝑀 is the relative compressibility of the interstitial fluid.  

Meanwhile, in the capillary network, the blood is assumed as an incompressible 

Newtonian fluid and the Navier-Stokes’ law holds: 



RDU1703310 

18 

 

𝛻 ⋅ 𝜎𝑐 = 0 𝑖𝑛 𝛺𝑐                                  (3.10) 

𝛻 ⋅ 𝑣𝑐 = 0 𝑖𝑛 𝛺𝑐                                (3.11) 

where 𝜎𝑐 is the blood network stress tensor: 

𝜎𝑐 = −𝑃𝑐𝐼 + 𝜇𝑐(𝛻𝑣𝑐 + (𝛻𝑣𝑐)
𝑇)                             (3.12) 

Assuming continuity of stresses on Γ between the two compartments, we get: 

𝜎𝑐𝒏 = 𝜎𝑡𝒏 𝑜𝑛 𝛤                               (3.13) 

where n is the unit vector normal to the Γ surface. The normal component of the velocities 

at Γ follow the relationship below: 

(𝑣𝑐 − �̇�) ⋅ 𝒏 = ((𝛼 − 1)�̇� + 𝑤𝑡) ⋅ 𝒏 𝑜𝑛 𝛤                   (3.14) 

The fluid transport across Γ between the capillary network and poroelastic 

compartments is required, to model, for example, water transport across blood-brain 

barrier (BBB) into brain tissue interstitial during ischaemia-reperfusion [4]. This can be 

described as: 

(𝑣𝑐 − �̇�) ⋅ 𝒏 = −𝜖𝐿𝑝(𝒏(𝜎𝑐 ⋅ 𝒏) + 𝑃𝑡) 𝑜𝑛 𝛤                   (3.15) 

where 𝜖𝐿𝑝 measures the amount of fluid leaks from the capillary into the interstitial space. 

In addition, we also consider the fluid slip over the porous surface, which can be 

modelled using the Beavers-JosephSaffman conditions as: 

𝒕 ⋅ (𝜎𝑐𝒏) = −
𝛽𝜇𝑐

√𝑘
(𝑣𝑐 − �̇�) ⋅ 𝒕 𝑜𝑛 𝛤                    (3.16) 

where 𝒕 is the tangential direction to Γ and 𝛽 is the Beavers-Joseph parameter. 

3.2.2. Asymptotic Expansion Homogenization Technique 

Equations (4) to (16) will first be non-dimensionalized before the asymptotic 

expansion homogenization (AEH) technique is applied. AEH is used to derive a new set 

of homogenized marcroscale governing equations for the PDE systems (3.3) to (3.15). 

The PDE variables 𝑃𝑡, 𝑃𝑐, 𝑤𝑡, 𝑣𝑐, 𝑢, 𝜎𝑡, and 𝜎𝑐 are assumed to be functions in terms of 𝑥 
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and 𝑦. Employing power series expansion for every variables (collectively denoted as 𝐹) 

to get: 

𝐹(𝑥, 𝑦, 𝑡) = ∑ 𝐹(𝑙)(𝑥, 𝑦, 𝑡)𝜖𝑙∞
𝑙=0                                    (3.17) 

It is assumed that all of the PDE variables is periodic with respect to 𝑦.  

We also define the cell average operator such that: 

〈(. )〉 =
1

|𝛺|
∫ (. )
 

𝛺𝑎
𝑑𝑦                      (3.18) 

where |Ω| is the total volume of the microscale periodic cell and 𝑎 = 𝑡, 𝑐. It should be 

noted that the volume fraction of 𝑎-portion of the cell is given by: 

𝜙𝑎 =
|𝛺𝑎|

|𝛺|
, 𝑎 = 𝑡, 𝑐                      (3.19) 

Using (17) and (3) on each variable in (4) to (16), the power series expansions for 

each of the variables 𝑃𝑡, 𝑃𝑐, 𝑤𝑡, 𝑣𝑐, 𝑢, 𝜎𝑡, and 𝜎𝑐 are obtained and the power for 𝜖(𝑙) =

0,1,… are compared. Through these processes, it is found that the variables 𝑃𝑡
(0)

, 𝑃𝑐
(0)

 and 

𝑢(0) are 𝑦-constant, that is: 

𝑃𝑡
(0)
= 𝑃𝑡

(0)(𝑥, 𝑡)                      (3.20) 

𝑃𝑐
(0)
= 𝑃𝑐

(0)(𝑥, 𝑡)                      (3.21) 

𝑢(0) = 𝑢(0)(𝑥, 𝑡)                      (3.22) 

 

3.2.3. Microscale Cell Problems and Homogenized Macroscale Governing Equations 

Through the AEH technique, the macroscale homogenized governing equations 

in the homgenized domain are obtained as below: 

𝛻𝑥 ⋅ 𝜎𝐻 = 0                       (3.23) 

𝜎𝐻 = (ℂ𝐿ℂ + ℂ):𝛻𝑥𝑢
(0) + (ℂ:𝑄 − 𝜙𝑐𝐼)𝑃𝑐

(0)
− 𝛼(ℂ: 𝑄 + 𝜙𝑡𝐼)𝑃𝑡

(0)                (3.24) 

�̇�𝑐
(0)

𝑀𝐻
= −𝛻𝑥 ⋅ 〈𝑤𝑐

(0)〉𝑐 − (𝜙𝑐𝐼 − ℂ:𝑄): 𝛻𝑥�̇�
(0) +

𝛼

𝑀𝐻
�̇�𝑡
(0) −

|𝛤|𝐿𝑝

|𝛺|
(𝑃𝑐

(0) − 𝑃𝑡
(0))                       (3.25) 
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�̇�𝑡
(0) (

𝜙𝑐

𝑀
+

𝛼

𝑀𝐻
) = −𝛻𝑥 ⋅ 〈𝑤𝑡

(0)〉𝑡 − (𝛼𝜙𝑐𝐼 − ℂ:𝑄): 𝛻𝑥�̇�
(0) +

�̇�𝑐
(0)

𝑀𝐻
−
|𝛤|𝐿𝑝

|𝛺|
(𝑃𝑐

(0)
− 𝑃𝑡

(0))        (3.26) 

〈𝑤𝑐
(0)〉𝑐 = −𝐾𝛻𝑥𝑃𝑐

(0)                      (3.27) 

〈𝑤𝑡
(0)〉𝑡 = −𝑘𝐺𝛻𝑥𝑃𝑡

(0) − (𝛼 − 1)(𝛻𝑦𝑃𝑡)�̇�
(0)                   (3.28) 

where the 𝑤𝑡
(0)

 and 𝑤𝑐
(0)

are the leading order interstitial fluid and blood velocities, and 

𝑀𝐻 is given by: 

𝑀𝐻 = −
1

𝑡𝑟(𝑄)
                       (3.29) 

The tensors 𝐿, 𝑄, 𝐾, and 𝐺 can be obtained by solving the following four cell problems 

on a cell geometry independently: 

Laplace cell problem: 

𝛻𝑦
2𝑃𝑡 = 0 𝑖𝑛 𝛺𝑡                        (3.30) 

𝛻𝑦𝑃𝑡 ⋅ 𝒏 = 𝒏 𝑜𝑛 𝛤                      (3.31) 

〈𝑃𝑡〉𝑡 = 0                       (3.32) 

𝐺 = 𝜙𝑡𝐼 − 〈𝛻𝑦𝑃𝑡〉𝑡                      (3.33) 

Stokes’ cell problem: 

𝛻𝑦𝑃𝑐 = 𝛻𝑦
2𝑊𝑇 + 𝐼 𝑖𝑛 𝛺𝑐                       (3.34) 

𝛻𝑦 ⋅ 𝑊
𝑇 = 0 𝑖𝑛 𝛺𝑐                       (3.35) 

𝑊𝑇 = 0 𝑜𝑛 𝛤                       (3.36) 

〈𝑃𝑐〉𝑐 = 0                       (3.37) 

𝐾 = 〈𝑊〉𝑐                       (3.38) 

One-elastic cell problem: 

𝛻𝑦 ⋅ (ℂ: 𝛻𝑦𝑎) = 0 𝑖𝑛 𝛺𝑡                       (3.39) 

(ℂ:𝛻𝑦𝑎)𝒏 = −𝒏 𝑜𝑛 𝛤                      (3.40) 

〈𝑎〉𝑡 = 0                       (3.41) 

𝑄 = 〈𝛻𝑦𝑎〉𝑡                       (3.42) 
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6-elastic cell problem: 

𝛻𝑦 ⋅ (ℂ: 𝛻𝑦𝐴) = 0 𝑖𝑛 𝛺𝑡                       (3.43) 

(ℂ:𝛻𝑦𝐴)𝒏 = −𝒏 𝑜𝑛 𝛤                      (3.44) 

〈𝐴〉𝑡 = 0                       (3.45) 

𝐿 = 〈𝛻𝑦𝐴〉𝑡                       (3.46) 

Here, 𝑃𝑡, 𝑃𝑐, and 𝑎 are auxiliary vectors, 𝑊 is auxiliary second order tensor, and 𝐴 is 

auxiliary third order tensor. It should be noted here that 𝐺, 𝐾, and 𝑄 are second order 

tensors, while 𝐿 is a fourth order tensor. 

These cell problems must be solved first on a cell geometry before the 

homogenized macroscale governing equations can be solved on a bigger brain geometry. 

In the next subsection, an example of solving these cell problems on a simple cubic cell 

geometry is shown. 

3.2.4. Solving Microscale Cell Problems 

A cubic cell geometry representing brain tissue is as shown in the Figure 3.1. To 

model the capillary embedded in the tissue, a simple 6-branch cylinders are drawn 

representing the capillary. In addition, the brain tissue mechanical properties are assumed 

to be linear elastic and have stiffness tensor ℂ = ℂ(584 𝑃𝑎, 0.35). Table 3.1 shows the 

brain tissue geometrical and mechanical properties. 

 

Figure 3.1: Brain tissue represented by a cubic cell geometry. 
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Table 3.1: Brain tissue geometrical and mechanical properties. 

Parameter Description Value 

𝑙 Brain tissue length 1.84 

𝑙𝑐 Capillary branch length 0.84 

ℎ Capillary cylindrical link 0.24 

Ω Brain tissue volume 6.23 

𝑑 Microscale length 40 µm 

𝐿 Macroscale length 1 cm 

 

Each of the cell problem will be solved one by one using COMSOL multiphysics 

standard PDE solvers. Standard P2-P1 discretization is used for the Stokes’ cell problem, 

whereas for the other cell problems, a standard quadratic-Lagrange discretization is used. 

3.3. Results 

3.3.1. Laplace Cell Problem 

Solving Laplace cell problem (3.30) to (3.33) to obtain the tensor 𝐺, which in 

componentwise form is: 

𝐺𝑖𝑗 = 𝜙𝑡𝛿𝑖𝑗 − 〈
𝜕𝑃𝑡𝑖
𝜕𝑦𝑗

〉𝑡 

Solving for 𝑥-, 𝑦-, and 𝑧-components to obtain 𝐺1𝑗, 𝐺2𝑗, and 𝐺3𝑗, respectively. Figure 3.2 

shows the distribution of 𝑃𝑡1 solved on the poroelastic compartment. 

 

Figure 3.2: Distribution of 𝑃𝑡1. 
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𝐺 is calculated as: 

𝐺𝑖𝑗 = (
0.9781 0 0
0 0.9781 0
0 0 0.9781

) ≈ 0.98𝐼 

taking the non-diagonal elements as zero because it is much smaller than the diagonal 

elements. 

3.3.2. Stokes’ Cell Problem 

Stokes’ cell problem is solved to obtain the tensor 𝐾, which can be obtained by 

solving (3.38) componentwise such that: 

𝐾𝑖𝑗 = 〈𝑊𝑖𝑗〉𝑐 

Solving (3.34) to (3.37) in 𝑥-, 𝑦-, and 𝑧-components to obtain 𝑊1𝑗 , 𝑊2𝑗, and 𝑊3𝑗 , 

respectively. Figure 3.3 below shows the distribution of 𝑊1𝑗  obtained in the capillary 

compartment when solving the Stokes’ cell problem (3.34) to (3.37) in 𝑥-component. 

 

Figure 3.3: Distribution of 𝑊1𝑗. 

𝐾 is calculated as: 

𝐾𝑖𝑗 = (
2.6296 × 10−6 0 0

0 2.6292 × 10−6 0
0 0 2.6292 × 10−6

) ≈ 2.63 × 10−6𝐼 

where the non-diagonal values of 𝐾 are much smaller than its diagonal values. 
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3.3.3. One-Elastic Cell Problem 

Equations (3.39) to (3.41) are solved to obtain the tensor 𝑄, which can be 

described in componentwise form as: 

𝐺𝑖𝑗 = 〈
𝜕𝑎𝑖

𝜕𝑦𝑗
〉𝑡. 

Solving the cell problem in 𝑥-, 𝑦-, and 𝑧-components to obtain 𝑎1, 𝑎2, and 𝑎3, 

respectively. Figure 3.4 shows the distribution of 𝑎1. 

 

Figure 3.4: Distribution of 𝑎1. 

𝑄 is calculated as: 

𝑄𝑖𝑗 = (
1.8199 × 10−5 0 0

0 1.8195 × 10−5 0
0 0 1.8199 × 10−5

) ≈ 1.82 × 10−5𝐼 

with the non-diagonal values are approximately zero. 𝑄 can then be used to calculate 𝑀𝐻: 

𝑀𝐻 = −18315  

and also to calculate ℂ: 𝑄: 

ℂ: 𝑄 = 17.07 × 10−3. 

3.3.4. 6-Elastic Cell Problem 

Solving the 6-elastic cell problem (3.43) to (3.46) to get the fourth order tensor 𝐿, 

which has the following componentwise form: 
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𝐿𝑖𝑗𝑘𝑙 = 〈
𝜕𝐴𝑖𝑘𝑙

𝜕𝑦𝑗
〉𝑡. 

The tensor 𝐿 can be obtained by solving for 𝑘 > 𝑙; 𝑘, 𝑙 = 1,2,3 for 𝑥-, 𝑦-, and 𝑧-

components. Figure 3.5 shows the solutions for the cell problem for different 𝑖, 𝑗, 𝑘, 𝑙 

combinations. The tensor 𝐿 can be rewritten in second order form using Voigt notation. 

Then, the following tensor can be calculated: 

(ℂ𝐿ℂ + ℂ) =

(

  
 

964.9 527.4 527.4
527.4 964.9 527.4
527.4 527.4 964.9

   
 0  
   

   
 0  
   

219.7 0 0
0 219.7 0
0 0 219.7)

  
 

  

which is isotropy because ℂ elements being very large compared to 𝐿. 

 

 

Figure 3.5: From left to right. Top: Distribution of 𝐴11, 𝐴21, and 𝐴22. Bottom: Distribution of 𝐴31, 𝐴32, 

and 𝐴33. 

3.4. Discussion 

Solving the microscale cell problems (3.30) to (3.46) are essential to obtain the tensors 𝐿, 

𝑄, 𝐾, and 𝐺 before they can be used to solve the homogenized macroscale governing 

equations (3.23) to (3.28). The microscale cell problems must be solved in a brain tissue 
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geometry. In this paper, an ideal cubic brain tissue embedded with 6-branch cylindrical 

capillaries is used as the geometry where the microscale cell problems are solved. In the 

future, the capillary can be made twisted and kinked to simulate the effect of capillary 

tortuosity as has been done by [35]. Further, the brain capillary distribution can also be 

considered by using the statistically accurate brain capillary network created in [34] to 

allow for a more accurate modelling of the brain oedema formation problem. 

The tensors 𝐿, 𝑄, 𝐾, and 𝐺 if compared with the poroelastic model used by [4] 

have their own physical meanings. For examples, 𝐾 and 𝐺 are analogous to the interstitial 

fluid and blood permeability in the porous tissue, respectively. Meanwhile, the tensors 𝐿 

and 𝑄 are important in determining the analogous effective stiffness tensor and Biot 

coefficient, respectively. These four tensors depend greatly on the brain tissue 

compositions at microscale level. In this paper, the tensors 𝑄, 𝐾, and 𝐺 are isotropy, while 

𝐿 is not, however, its effect on the effective stiffness tensor is not significant 

enough to make it not isotropic. Further investigation using a more complex capillary 

configuration is needed to see the properties of these tensors and their effects on the 

macroscale governing equations.  

3.5. Conclusion 

The AEH technique has been applied on the vascularized poroelastic model for the 

application of brain oedema formation in the brain tissue. Microscale cell problems are 

obtained and have been solved on an ideal brain tissue geometry with blood capillary 

embedded inside. The tensors 𝐿, 𝑄, 𝐾, and 𝐺 are calculated as an example and their values 

are greatly affected by the capillary distribution in the brain tissue geometry, which will 

be the subject of a future work. 
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Chapter 4: Effects of brain tissue mechanical and fluid transport 

properties during ischaemic brain oedema a poroelastic finite element 

analysis 

4.1. Introduction 

Brain herniation occurs when a part of the brain within the skull is being pushed as a 

result of an increase in the intracranial pressure (ICP). This phenomenon can be observed 

under the MRI and CT scans by the movement of the midline structures, particularly the 

brain ventricles. Brain herniation is usually used as an indicator of the occurrence of brain 

oedema or brain tissue swelling. Brain oedema formation has been observed in ischaemic 

stroke patients that received reperfusion treatments such as using mechanical 

catheterisation or by recombinant tissue plasminogen activator (rtpa) administration. 

Herniation is undesirable because it may lead to the compression of brain microvessels, 

resulting in secondary ischaemic stroke [9]. 

Current ischaemic stroke treatments must be given within a short time windows 

of up to 4.5 hours (if using rtpa), whereby treatments given after this time may increase 

the risk of ischaemia-reperfusion injury such as brain oedema [37]. However, most 

patients usually arrived late to the hospital due to many circumstances such as heavy 

traffic and late detection of stroke occurrence. Therefore, predicting the progression of 

brain oedema will greatly help neurosurgeon in determining the suitability of an 

ischaemic stroke treatment to prevent the occurrence of brain herniation, especially for 

patients that arrived late for the treatments. 

A mathematical model describing the formation of brain tissue swelling after 

ischaemia-reperfusion treatment has been previously developed [4, 38, 39] using 
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poroelastic theory. This theory is initially developed to investigate soil consolidation 

phenomena [11], but has been extensively used to model fluid transport in biological 

tissue. The brain tissue is assumed to contain water and blood permeable in a porous solid 

matrix structure. The solid matrix is further assumed as linear elastic, homogeneous, and 

isotropic. In addition, the water and blood permeability and viscosity are also assumed to 

be isotropic and homogeneous. These assumptions were made for the sake of 

simplification of the model, while in fact the mechanical and fluid transport properties in 

the brain may be different from one patient to another. 

In this chapter, the mathematical model developed will be solved in a realistic 

brain geometry using finite element scheme of poroelastic model. Then, the effect of 

varying the brain tissue Young’s modulus, Poisson’s ratio, water permeability, and 

viscosity will be investigated. This results will be used as a preliminary study to determine 

the importance of these parameters towards predicting brain oedema formation and also 

for estimating suitable parameters value. Currently, the value of these parameters were 

taken from related literature. However, each patient should have different parameters 

value which require estimation and optimization. 

4.2. Methodology 

4.2.1. Brain Oedema Formation by Capillary Filtration Model 

Brain tissue region affected by ischaemia will experience lack of oxygen and nutrient due 

to blood flow reduction. This will initiate a series of biochemical reactions that destroys 

the endothelial cells lining the cerebral microvessels, resulting to the blood-brain barrier 

(BBB) breakdown. Upon reperfusion and blood flow has been restored, ions and some 

protein plasma can filtrate through the damaged BBB consequently creating osmotic 

pressure difference between the capillary and the interstitial space. The osmotic pressure 
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difference can cause water flux from the microvessels into the tissue space and the 

accumulation of water is known as brain oedema, eventually causing brain tissue 

swelling.  

The formation of brain oedema can be modelled using capillary filtration model 

given by (4.1): 

�̇�𝑏→𝑤 = 2�̅�𝑏
𝐿𝑝

𝑅𝑐
𝑓[(𝑃𝑏 − 𝑃𝑤) − 𝜎𝛱𝑏]         (4.1) 

Here, the term 
bn  is the baseline volume fraction of the blood, Lp is the hydraulic 

permeability of the capillary, Rc is the baseline value of capillary radius, σ is the reflection 

coefficient, Πb is the osmotic pressure in the capillary and Pb is the blood pressure, which 

has been assumed constant. Lastly, the term f represents the fraction of vessels that remain 

open after the reperfusion and swelling process at each point in space and time, and this 

can be modelled using a Heaviside function. 

4.2.2. Poroelastic Model Formulation 

The brain oedema will result in brain tissue movement or swelling. Poroelastic 

model is used to model brain tissue swelling during brain oedema. The governing 

equations for the poroelastic model are made up of stress equation as in (4.2) and pressure 

equation as in (4.3): 

𝜎𝑖𝑗 − 𝛼𝑤𝛻𝑃𝑤 = 0           (4.2) 

1

𝑄𝑤

𝜕𝑃𝑤

𝜕𝑡
− 𝑘𝑤𝛻

2𝑃𝑤 − �̇�𝑏→𝑤 = 0          (4.3) 

where 𝜎𝑖𝑗 is the total stress of the tissue, 𝑃𝑤 is the interstitial water pressure, 𝛼𝑤 is the 

Biot parameter for water, 𝑄𝑤 is the relative compressibility of water, 𝑘𝑤 is the 

permeability of water, and 𝑡 is time. The term 𝑘𝑤 can be related to the water specific 

permeability 𝜅𝑤 and viscosity 𝜇𝑤 by (4.4): 



RDU1703310 

30 

 

𝑘𝑤 =
𝜅𝑤

𝜇𝑤
            (4.4) 

The total stress, 𝜎𝑖𝑗, is linearly related to the strain, 𝜀𝑖𝑗, using typical linear 

elasticity relationship (4.5): 

𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 +
2𝐺𝑣

1−2𝑣
𝜀𝑖𝑖            (4.5) 

where 𝐺 and 𝑣 are the shear modulus and Poisson’s ratio of the brain tissue, respectively. 

The strain 𝜀𝑖𝑗 is related to the brain tissue displacement, 𝑢 by (4.6): 

𝜀𝑖𝑗 =
1

2
(𝛻𝑢𝑖 + 𝛻𝑢𝑗)           (4.6) 

Lastly, the term 𝑄𝑤 is related to 𝐺 and 𝑣 by (4.7): 

1

𝑄𝑤
=
𝛼𝑤−𝑛𝑤

𝐾𝑆
+
𝑛𝑤

𝐾𝑤
           (4.7) 

where 𝐾𝑆 and 𝐾𝑤 are the bulk moduli for the solid and fluid phases, respectively. Table 

4.1 shows the model parameters and their respective reference value [4].  

Table 4.1: Model Parameters. 

Parameter Value Parameter Value 

𝑣 0.35 𝜇𝑤 1.0×10-3 Pa.s 

𝐺 216.3 Pa 𝜎 0.93 

𝛼𝑤 1 𝑃𝑏 4389 Pa 

𝐾𝑤 2.2×109 Pa 𝐿𝑝 3.0×10-11 m/s.Pa 

𝑛𝑤 0.8 𝑅𝑐 5×10-6 m 

Π𝑏 2445 Pa �̅� 1330 Pa 

𝜅𝑤 3.6×10-15 m2   

 

4.2.3. Brain Geometry and Meshing 

The brain geometry is as shown in Figure 4.1. The brain and ventricle geometry 

are developed from a typical structural T2 MRI of normal human. Meanwhile, the infarct 

geometry is created artificially by assuming the infarct to have a radius between 7 to 14 

mm. 



RDU1703310 

31 

 

 

Figure 4.1: The model is solved in this brain geometry. 

The ventricle surface and the infarct are finely meshed, while the brain is coarsely 

meshed, using tetrahedral elements. The total number of mesh is approximately 900,000. 

The geometry is meshed using open-source meshing software, Gmsh. 

4.2.4. Finite Element Procedure 

The outer boundary of the brain is set such that it is fixed to the rigid skull. 

Therefore, the boundary condition at the skull, 𝑅𝑆 is set such that: 

𝑢(𝑅𝑆 , 𝑡) = 0            (4.8) 

𝑃𝑤(𝑅𝑆, 𝑡) = 1330 𝑃𝑎           (4.9) 

To allow for brain ventricle movement as a result of brain tissue swelling for the 

purpose of mimicking brain herniation, the boundary condition on the surface of the 

ventricle, 𝑅𝑉 is set such that: 

𝜎𝑖𝑗(𝑅𝑉 , 𝑡) ⋅ 𝒏 = −�̅�𝒏                      (4.10) 

The simulations are solved using open-source finite element analysis software 

ELMER by coupling both diffusion equation and linear elastic solvers to solve for 

pressure equation and stress equation, respectively. Then, the results are analysed using 

ParaView. 
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4.3. Results 

The simulation is performed to observe the swelling effect after 5 hours. Figure 4.2 shows 

the cerebral interstitial pressure and tissue displacement for a slice located approximately 

15 mm from the top of the brain. From the figures, the tissue displacement starts to 

develop from the outermost radius of the infarct before it slowly spreads towards the 

inside and outside of the infarct. Meanwhile, the pressure starts to rise within the center 

of the infarct and then spreads in the direction of the infarct radius. 

 

 

Figure 4.2: Brain tissue displacement (top) and interstitial pressure (bottom) distributions for a brain slice 

15 mm from the top. 

4.3.1. Effect of Varying Brain Tissue Young’s Modulus and Poisson’s Ratio 

The reference value for the brain tissue Young’s modulus and Poisson’s ratio are 

584 Pa and 0.35, respectively. These parameters are then varied within the range of 1000 

to 4000 Pa and 0.2 to 0.4, respectively. These values are within the acceptable range of 

human brain tissue mechanical properties [4].  

Figure 4.3 shows the maximum displacements taken at time 5 hours for different 

Young’s modulus values. The change of displacement with time is initially similar for all 

Young’s modulus, but reaching maximum at different displacement values. Largest 
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Young’s modulus value (4000 Pa) results in the smallest brain tissue displacement of 

about 0.0015 mm, which roughly 87% smaller than the brain tissue displacement at 

reference Young’s modulus value (584 Pa). 

 

Figure 4.3: Brain tissue displacement for different brain tissue Young’s modulus 𝐸. 

The change of interstitial pressure when varying the brain tissue Young’s modulus 

is as shown in Figure 4.4. All Young’s modulus reaches similar maximum pressure at 

2100 Pa although the time taken to reach the maximum are different. Smaller Young’s 

modulus requires longer time to reach maximum pressure. 

 

Figure 4.4: Brain tissue interstitial pressure for different brain tissue Young’s modulus 𝐸. 

Figure 4.5 shows the variation of maximum displacements for different brain 

tissue Poisson’s ratio. The displacement varies linearly with time up until about 25 
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minutes but reaching different maximum displacement values. Smallest Poisson’s ratio 

(𝑣 = 0.2) results in the highest displacement.  

 

Figure 4.5: Brain tissue displacement for different brain tissue Poisson’s ratio 𝑣. 

Meanwhile, the variation of brain interstitial pressure for different Poisson’s ratio 

values is as shown in Figure 4.6. The pressure reaches similar maximum value of 2100 

Pa. for all values of v, but smaller v requires longer time for the pressure to reach the 

maximum. 

 

Figure 4.6: Brain tissue interstitial pressure for different brain tissue Poisson’s ratio 𝑣. 

4.3.2. Effects of Varying Brain Water Permeability and Viscosity 

The water permeability and viscosity are varied within the range of 1.0×10-15 to 

5.0×10-15 m2 and 0.72×10-3 to 1.0×10-3 Pa.s, respectively. It should be noted that water 

viscosity depends on the value of body temperature, thus, the range in consideration is 
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for the body temperature between 27 to 37°C. Meanwhile, the human brain water 

permeability is in the order of 10-15, thus, the range chosen is for the sake of parameter 

evaluation. Further investigation of a suitable value will be the subject of future work. 

Figure 4.7 and 4.9 show the variation of brain tissue displacement with time for 

different water permeability and viscosity. Meanwhile, Figure 4.8 and 4.10 show the 

variation of brain tissue interstitial pressure for different water permeability and viscosity. 

From these figures, there are no significant changes in both brain tissue displacement and 

interstitial pressure when varying the water transport parameters. This finding shows that 

these parameters may not significantly affect brain oedema formation, unless these values 

are changed drastically. However, the range of values considered are within acceptable 

range for human.   

 

Figure 4.7: Brain tissue displacement for different water permeability 𝑘𝑤. 

 

Figure 4.8: Brain tissue interstitial pressure for different water permeability 𝑘𝑤. 
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Figure 4.9: Brain tissue displacement for different water viscosity 𝜇𝑤. 

 

Figure 4.10: Brain tissue interstitial pressure for different water viscosity 𝜇𝑤. 

4.4. Discussion 

In this study, it is found that the brain tissue mechanical properties greatly affect the 

formation of brain oedema. These properties are the brain tissue Young’s modulus and 

Poisson’s ratio. Study done by [40] on the stiffness of brain tissue during transient 

ischaemic injury using ultrasound elastography found that brain oedema may be 

determined by the changes in the brain stiffness. Another study by [41] suggested that 

brain tissue elasticity decreases as a result of the brain structural loss after ischaemia. 

These findings suggested that brain tissue mechanical properties are important in 

determining the development of brain oedema. 

In this model, brain tissue mechanical properties have been assumed to be linearly 

elastic. Linear elastic assumption has been used because the brain tissue displacement 



RDU1703310 

37 

 

during brain tissue swelling is assumed to be very small as compared to other 

pathophysiological cases, for example, traumatic brain injury [42].  

On the other hand, when varying the brain tissue water permeability and viscosity, 

there are no significant changes on the brain tissue displacement and interstitial pressure. 

Even though these parameters seem to not affect brain oedema formation directly, 

interstitial water diffusion in the porous brain structure does play an important role in 

determining the region of brain tissue affected by ischaemia. Water diffusion in the tissue 

has been extensively used in the assessment of the cell membrane integrity in pathological 

brain. To effectively assess the water transport properties in the brain, the model requires 

a modification to include water diffusion equation, as has been done, for example, in [43]. 

However, it should be noted that water diffusion in the brain tissue depends on the 

porosity and interstitial space volume, which all depends on the brain tissue mechanical 

properties [44]. Modification of the model are necessary to include the effect of water 

diffusion, which will be dealt in the future. 

4.5. Conclusion 

The model presented here is used to understand brain oedema formation after ischaemia-

reperfusion, which has four important parameters related to the brain mechanical and 

fluid transport properties. However, only the brain mechanical properties, namely the 

Young’s modulus and Poisson’s ratio, have significant effects on the progression of brain 

oedema and interstitial pressure, while the fluid transport properties, which are the water 

permeability and viscosity do not significantly affect brain oedema formation. 
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Chapter 5: Conclusion and future work 

5.1. Conclusion 

This research project studies the formation of brain oedema after ischaemia-reperfusion 

by developing a mathematical model based on poroelasticity. Three important findings 

can be concluded, namely: (1) the brain oedema depends on the brain tissue mechanical 

properties such as Young’s modulus and Poisson’s ratio, but not on the fluid properties 

such as interstitial fluid permeability and relative compressibility; (2) the brain oedema 

severity depends on the size and location of the stroke infarct; and (3) a new mathematical 

model developed using asymptotic expansion homogenization (AEH) allows the 

incorporation of the brain capillary distribution on the evaluation of brain oedema. 

5.2. Future Works 

Based on this research, three future works are suggested, as follows: (1) the new model 

using asymptotic expansion homogenization can be validated using brain capillary 

distribution data, which can be obtained from our collaborator from Oxford University; 

(2) the brain tissue swelling model can be further validated using patient-specific 

geometry developed from medical imaging data from UMMC; and (3) hierarchical 

poroelastic model is in development to completely model the brain porous structure 

assuming extracellular fluid and blood filling the pores (double porosity). 
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