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Abstract 
Fatigue failure is expected to contribute to injuries and financial losses in industries. The complex interaction 

between the load, time and environment is a major factor that leads to failure. In addition, the material selection, 

geometry, processing and residual stresses produce uncertainties and possible failure modes in the field of 

engineering. The conventional approach is to allow the safety factor approach to deal with the variations and 

circumstances as they occur within the engineering applications. The problems may persist in the computational 

analysis, where a complex model, such as a three-dimensional surface crack, may require many degrees of 

freedom during the analysis. The involvement of uncertainties in variables brings the analysis to a higher level 

of complexity due to the integration of non-linear functions during a probabilistic analysis. Probabilistic methods 

are applicable in industries such as the maintenance of aircraft structures, airframes, biomechanical systems, 

nuclear systems, pipelines and automotive systems. Therefore, a plausible analysis that caters for uncertainties 

and fatigue conditions is demanded. The main objective of this research work was to develop a model for 

uncertainties in fatigue analysis. The aim was to identify a probabilistic distribution of crack growth and stress 

intensity factors for surface crack problems. A sensitivity analysis of all the parameters was carried out to identify 

the most significant parameters affecting the results. The simulation time and the number of generated samples 

were presented as a measurement of the sampling efficiency and sampling convergence. A finite thickness plate 

with surface cracks subjected to random constant amplitude loads was considered for the fracture analysis using 

a newly developed Probabilistic S-version Finite Element Model (ProbS-FEM). The ProbS-FEM was an 

expansion of the standard finite element model (FEM). The FEM was updated with a refined mesh (h-version) 

and an increased polynomial order (p-version), and the combination of the h-p version was known as the 

S-version finite element model. A probabilistic analysis was then embedded in the S-version finite element 

model, and it was then called the ProbS-FEM. The ProbS-FEM was used to construct a local model at the vicinity 

of the crack area. The local model was constructed with a denser mesh to focus the calculation of the stress 

intensity factor (SIF) at the crack front. The SIF was calculated based on the virtual crack closure method. The 

possibility of the crack growing was based on the comparison between the calculated SIF and the threshold SIF. 

The fatigue crack growth was calculated based on Paris’ law and Richard’s criterion. In order to obtain an 

effective sampling strategy, the Monte Carlo and Latin hypercube sampling were employed in the ProbS-FEM. 

The specimens with a notch were prepared and subjected to fatigue loading for verification of the ProbS-FEM 

results. The ProbS-FEM was verified for the SIF calculation, the crack growth for mode I and the mixed mode, 

and the prediction of fatigue life. The major contribution of this research is to the development of a probabilistic 

analysis for the S-version finite element model. The formulation of uncertainties in the analysis was presented 

with the ability to model the distribution of the surface crack growth. The ProbS-FEM was shown to resolve the 

problem of uncertainties in fatigue analysis. The ProbS-FEM can be further extended for a mixed mode fracture 

subjected to variable amplitude loadings in an uncertain environment. 
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Abstrak 
Kegagalan lesu telah menyumbang kepada kecederaan dan kerugian dalam industri. Interaksi kompleks antara 

beban, masa dan persekitaran adalah faktor utama yang membawa kepada kegagalan. Di samping itu, pemilihan 

bahan, geometri, pemprosesan dan tegasan baki menghasilkan ketidakpastian dan mod kegagalan yang mungkin 

berlaku dalam bidang kejuruteraan. Pendekatan konvensional menggunakan kaedah faktor keselamatan bagi 

menangani perubahan dan sebarang kemungkinan yang berlaku semasa applikasi kejuruteraan. Masalah 

berterusan dalam analisis pengiraan, di mana model yang kompleks seperti permukaan retak tiga-dimensi 

memerlukan darjah kebebasan yang banyak. Penglibatan unsur ketidakpastian dalam pembolehubah membawa 

analisis ke tahap yang lebih rumit. Ia disebabkan oleh integrasi fungsi bukan linear semasa analisis 

kebarangkalian. Kaedah kebarangkalian boleh digunakan didalam industri penyelenggaraan struktur pesawat, 

sistem biomekanik, sistem senjata nuklear, saluran paip dan automotif. Oleh itu, analisis yang munasabah dengan 

mengambil kira keadaan ketidaktentuan dan kelesuan diperlukan. Objektif utama penyelidikan ini adalah untuk 

membangunkan satu model ketidaktentuan bagi analisis kelesuan. Tujuannya ialah untuk mengenal pasti taburan 

kebarangkalian pertumbuhan retak dan faktor keamatan tegasan. Analisis sensitiviti bagi semua pembolehubah 

dilakukan bagi mengenal pasti pembolehubah yang paling berpengaruh terhadap kegagalan. Masa simulasi dan 

jumlah sampel yang dihasilkan dibentangkan sebagai pengukuran kepada kecekapan dan penumpuan 

persampelan. Satu plat dengan ketebalan terbatas yang mempunyai retak permukaan dan bebanan rawak yang 

berterusan di analisis menggunakan kaedah kebarangkalian Model Unsur Terhingga Versi-S (ProbS-FEM). 

ProbS-FEM dikembangkan daripada model unsur terhingga (FEM) yang biasa. FEM telah dikemas kini dengan 

jaringan halus (versi-h) dan peningkatan kuasa polinomial (versi-p) dan hasil gabungan versi h-p dipanggil 

sebagai model unsur terhingga versi-S. Kemudian, analisis kebarangkalian disertakan di dalam model unsur 

terhingga versi-S dan diberi nama ProbS-FEM. ProbS-FEM menggunakan kaedah pembinaan model tempatan 

di sekitar kawasan retak. Model tempatan dibina dengan jejaring yang lebih padat untuk memberi tumpuan 

terhadap pengiraan faktor keamatan tekanan (SIF) pada bahagian retak hadapan. SIF dikira berdasarkan kaedah 

penutupan retak maya. Kebarangkalian retak untuk berkembang adalah berdasarkan kepada perbandingan di 

antara nilai SIF yang dikira dan nilai SIF ambang. Pertumbuhan retak lesu dikira berdasarkan model Paris dan 

kriteria Richard. Persampelan Monte Carlo dan Latin hiperkiub digunakan di dalam ProbS-FEM untuk 

mendapatkan srategi persampelan yang berkesan. Spesimen-spesimen dengan takuk disediakan dan diuji dengan 

bebanan lesu untuk tujuan pengesahan. Probs-FEM disahkan dengan pengiraan SIF; pertumbuhan retak untuk 

mod I dan mod campuran; dan ramalan hayat lesu. Sumbangan utama kajian ini ialah pembangunan analisis 

kebarangkalian untuk model unsur terhingga versi-S. Formula ketidaktentuan didalam analisis telah 

dibentangkan dengan keupayaan untuk memodelkan taburan pertumbuhan permukaan-retak. ProbS-FEM telah 

menunjukkan keupayaan untuk menyelesaikan masalah ketidaktentuan dalam analisis kelesuan. Ia boleh 

dikembangkan lagi untuk kes mod patah campuran dengan beban amplitud berubah-ubah dalam persekitaran 

yang tidak menentu. 
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a initial crack depth 

a/c aspect ratio 

b length of specimen 

BG deformation matrix for global 

BL deformation matrix for local 

c initial crack length 
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 constant of VCCM 

D material properties matrix 

 crack growth increment 

 maximum crack growth increment 
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FG force for global region 

FL force for local region 
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h width of specimen 

I
 

node number around the crack tip 

 stiffness matrix 
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 stress intensity factor for mode I, II & 

III 

n
 

fatigue power parameter 

 nodal force 
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failure probability 

r radius of crack growth 

R
 

radius of crack front  

 area after crack front 
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thickness of specimen 

u displacement function  

uG displacement function for global 

uL
 displacement function for local 

Var[ ] variance operator 

 width of element parallel to the crack 

front 

 

nodal displacement between the upper 

and lower crack surfaces 

 crack opening displacement at the crack 

surface 

 
Poisson’s ratio 

 width of the element in the radial 

direction 
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 equivalent stress intensity factor 

 maximum equivalent stress intensity 

factor 

 local mesh region 

 global mesh region 

 strain 

 strain for local region 
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 surface crack angle 

 crack growth angle 
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 boundary condition 

 boundary condition at overlay region 

 shear modulus 
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Bab 1 

Pengenalan  
In Finite Element Model (FEM), the crack shape needs to be reconstructed, in order to simulate the behaviours of 3-

dimensional surface crack growth. Since the crack shape frequently change by the fatigue crack growth, it is essential 

to remodel the mesh at the vicinity of the crack tip. The remodel process is time consuming and deals with a 

complicated solution especially when the structure is subjected to mixed mode loading. The overlay formulation on 

the subdomain of finite element mesh was introduced to untie the unnecessary relation between the finite element 

mesh. The objective of this study is to develop an overlay formulation for surface crack propagation analysis. To 

achieve the objective, the global-local formulation needs to be modelled for used in crack closure integral. After 

modelling of the global-local formulation is performed, then the validation with the case study thru experimental 

work is implemented. With the implementation, it is expected to have new global-local element formulation in 

numerical simulation and new source code for surface crack propagation analysis to specialise for all finite element 

software. A few typical structural components with the existence of surface crack such as cracked plate [1, 2], cracked 

round bar [3-6], cracked pipes [7], cracked shells [8, 9], cracked in notched structural components [10, 11]. Those 

components lead to a failure in the industrial such as petrochemical, aircraft, aerospace, marine structures and others. 

From the engineering point of view, the failure of structure is lead by the combination of three basic fracture 

modes (Mode I, II and III). However, the interfacial defects and self-interstitials as well give some effect to the 

propagation of crack and finally, the failure of the structure. Due to interstitials, the forces are not balanced in the 

same way as for another part in the structure, which results in lattice distortion around the defect. Meanwhile, for the 

interfacial defects, it introduced unbalanced forces which result in relaxation. Therefore, purely analytical solutions 

provide an incomplete picture of reality. A model in finite element needs to be developed in order to characterise the 

material imperfections. 

Based on the majority of work published, the efficiency of FEM can be substantially increased if the 

unnecessary linkage between mesh and region’s orientation is untied [12]. The various technique has been applied in 

order to diagnose the problem such as Finite Element Alternating Method (FEAM)[13] and X-FEM [14]. In the both 

methods, stress field for the crack tip is calculated from singularity function. Meanwhile, a technique without 

reconstructing the whole finite element mesh is introduced by [15]. The technique requires the generation of automatic 

mesh around the crack tip. Then the mesh around the crack tip is overlaid on the whole mesh of complete model. 

Thus, generation of element formulation for the overlaid region is essential since the calculation of stress intensity 

factor is based on mesh around the crack tip [16]. In addition, the problem with crack surfaces singularities brought 

the application of overlay formulation for surface crack analysis into fuzzy since the evaluation of stress intensity 

factor was not clear.  

The main goal of this study is to develop an element formulation for the overlay mesh in FEM for the surface 

crack problem. The overlay formulation consists of global and local element formulation. By overlay the local on the 

global mesh, the surface crack propagation can be modelled efficiently without distorted element with the evaluation 

of stress intensity factor. Finite element model with overlay formulation is expected to have such new global-local 

element formulation in numerical simulation for surface crack propagation and new source code for more accurate 

crack propagation analysis.    
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i) To develop a global-local formulation for used in Finite Element Model. 

ii) To validate the proposed global-local formulation with experimental work. 
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ABSTRACT: Crack growth is defined by the local stress field built around the crack tip by considering linear 

elastic fracture mechanics (LEFM). Failure of the materials occurs once the stress intensity factor (SIF) overtakes 
the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until 
a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical 
and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of 
the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis. The bootstrap 
resampling method is employed in S-version Finite Element Model (S-FEM) to generate the random variables in 
this simulation analysis. The SIF analysis studies are promoted by Bootstrap S-version Finite Element Model 
(BootstrapS-FEM). Virtual Crack Closure-integral method (VCCM) is an important concept to compute the 
energy release rate and SIF. The semi-elliptical crack shape is applied with different crack shape aspect ratio in 
this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model. The mean of 
BootstrapS-FEM is calculated from one hundred samples of the resampling method. The bounds are computed 
based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is 
validated with Newman-Raju solution and deterministic by S-FEM within 95% confidence bounds.  All possible 
values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred 
to as points estimation. The Newman-Raju solution and deterministic S-FEM values are within the 95% 

confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction. 

KEYWORDS: Stress Intensity Factor; S-version Finite Element Model; Bootstrap Resampling Method; Random Variables; 
Bounds 

 

1.0 INTRODUCTION  
 

Fatigue crack growth occurs in manufacturing industries in automotive, aerospace, building, and 
engineering applications. The cracks appear because of inherent defects in the material structures or 
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the damage would happen during the service life of the fundamental materials. The surface cracks may 
be different in the number of cracks, locations, sizes, boundary conditions and crack number. The 
fatigue crack growth thresholds are determined by using load and constant maximum SIF by 
increasing the load ratio. A finite element analysis (FEA) is carried out in order to acquire the SIF for 

III KK ,  and .IIIK The fatigue crack growth rate is returned to the threshold behavior of the material. If 
the crack propagation occurs immediately before it reaches the threshold value, the SIF is not identified 
[1]. If the threshold value is higher than the SIF for the crack, the crack I  assumes no propagating 
occurring in this case. There are several factors that effect crack propagation rates near the threshold 
level such as crack size, loading condition, microstructure and the environment [2]. The fatigue crack 
growth is dependent on the maximum value of SIF. It is noted the last prediction that is derived 
mathematically is a closed form of expression for the driving force [3]. Thus, the SIF of the materials is 
essential to be predicted before it reaches a critical limit. The SIF is one of the Fracture Mechanics 
parameters that should be studied in this analysis. 

Fracture mechanics is developed to describe and solve the limitation of brittle materials under several 
loadings. Fracture mechanics parameters such as SIF are calculated when the stress field builds around 
the crack tip. When the SIF reaches a critical state which is a characteristics parameter, the cracks would 
propagate. The cracks propagated depend on the amount of the loading. If the loading applied is 
higher, the crack failure propagation occurs fast depending on its material properties [4]. Investigation 
of the cracking criterion tends to be more suitable based on fracture mechanics. Crack resistance curve 
will approach from fracture mechanics theory that is not accomplished in energy balance format [5]. 
The LEFM considers the materials to be in linear elastic and isotropic states. Thus, the stress field near 
the crack tip is calculated using the theory of elasticity. The cracks will grow when the stresses around 
the crack tip exceed the material fracture toughness. 

LEFM is a suitable concept to obtain accurate computation of SIF [6]. The SIF depends on the stress 
that acts on the cracks as well as the crack length. As a simple situation, the length of crack in an infinite 
plate reacts with the tensile load. The tensile stress is perpendicular to the crack surface and the SIF 
will be produced from its situation [7]. The materials in brittle case undergo a mainly elastic 
deformation except at small stress around the crack tip. The LEFM is applied when the stress occurs at 
the stress field and the SIF is characterised at the crack tip. This is one factor to get accurate estimation 
of SIF in the crack growth propagation. The stresses at the crack tip and deformation can change 
depending on time or cycles [8], [9]. In LEFM, the SIF and the strain energy release rate are needed as 
the fracture criteria to determine the complication of crack tip at stress field. The energy release rate is 
computed by using several methods such as J-Integral or Virtual Crack Closure-integral Method 
(VCCM). In this analysis, VCCM is needed to solve the computation of energy release rate in three-
dimensional crack growth analysis. 

The VCCM is extensively used for calculating the energy release rate established on results from a 
continuum two-dimensional and three-dimensional FEA. When using the mixed mode fracture 
criterion, the analysis is required to  supply the mode separation [10]. The SIF is calculated from the 
energy release rate and it is the virtual crack extension method. The VCCM is computed from the 
energy release rate based on the differentiation of stiffness matrix at the crack front. The energy release 
rate is calculated from the change of potential energy assuming the small amount of crack extension 
[11]. The computation of energy release rate is quite simple when generated in finite element analysis 
since VCCM requires the nodal displacement and forces. The mechanical components are important 
to predict the crack growth in the material structures. It is difficult to analyse a three-dimensional crack 
growth using a simple FEM. The S-version is introduced to solve crack growth problems.  

The computational effort becomes tedious when the iterations of crack propagation increase.  An 
extended FEM is used to avoid mesh dependent difficulties in modeling of crack growth problems. 
The FEM analysis software is complicated to develop just based on theory, implementation aspect, 
computational experience and engineering issues. It is related with computer hardware and manpower 
cost to be solved by the engineering community [14], [15]. By using the S-version, the problem is 
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effected significantly and provides higher impact in engineering development programme. The crack 
area is modelled by local mesh in S-version Finite Element Model (S-FEM). Local mesh is re-meshed 
automatically by combining with auto-mesh method [16]. Furthermore, the modelling of crack shape 
becomes computational easily in three-dimensional analysis [17], [16].  The solving of residual stress 
problem occurring at the stress concentration field can be determined accurately [18]. Thus, the SIF is 
evaluated along the crack front in VCCM. Calculation of SIF requires high computational effort due to 
repeated geometry modeling. Kikuchi et al. developed combination of S-FEM with auto-meshing 
method to simulate fatigue crack growth [19]. 

Failure is governed by stresses in the victinity of the crack tip. The failure occurs when the SIF exceeds 
the material fracture toughness. The prediction of SIF is important to prevent a rapid crack growth 
occuring without warning. Thus, the prediction of SIF is simulated by using the BootstrapS-FEM. The 
comparison is carried out with Newman-Raju solution and deterministic S-FEM.  Computation of SIFs 
by VCCM is widely used in finite element analysis.  

2.0 METHODOLOGY  

 

This section focuses on describing growth at the crack front in the BootstrapS-FEM. The SIF and energy 
release rate are used as key parameters to figure out the crack growth in LEFM. The energy release rate 
is defined by VCCM. This is used to resolve the direction of the crack growth at the crack front [11]. 
Figure 2.1 shows the opening displacement where 6) 5, 4, 3, 2, 1,(i   near of the crack front as iP , where 

6) 5, 4, 3, 2, 1,(i   in the VCCM. The opening displacement, iv  is shown on the five nodes at the edge 
of the crack front. 

Nodal 
Force

Applied Stress

Applied Stress

Relative 
Displacement

v1

v2
v3

v5

v4

P1

P2 P3

P4

P5
S1

S2

 

Figure 1: VCCM for local mesh at crack front in three-dimensional analysis 
 

The displacement for the lower surface crack is symbolised by iLv  and the displacement of the upper 
crack surface is symbolised by iUv  as shown in Figure 1. Accordingly, the opening displacement, iv  is 
stated as 

                           
iL

v
iU

v
i

v                                                           (2.1)    
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The displacement is computed based on summation of global and local displacements for lower and 
upper surface cracks if the global and local meshes combination are included in the analysis. The 
calculations of displacement for lower and upper surface cracks are expressed as 

                     
L
iL

v
G
iL

v
iL

v

L
iU

v
G
iU

v
iU

v





               (2.2) 

The opening displacement only appears in local mesh for this method. Nevertheless, the opening 
displacement in the global region is assumed consistently zero based on the overlay method in the 
BootstrapS-FEM. Therefore,     

                      
G
iL

v
G
iU

v              (2.3) 

Eq. (2.1), (2.2) and (2.3) are combined to form the total of opening displacement,  
i

v  at the nodes for 
local region only. The 

i
v  is expressed as  

           L
iL

v
L
iU

vL
iL

vG
iL

vL
iU

vG
iU

v
i

v                       (2.4) 

Calculation of energy release rate is done after calculating the opening displacement at the crack front. 
Okada [11] introduced the energy release rate, G  for the non-symmetrical finite element face 
arrangement at the crack front. Okada proposed that the energy spent , IG  be calculated at the time 
of opening of the crack front for the area, 1S  as shown in Figure 2.2. This calculation occurs during the 
failure mode I  in crack growth propagation. This is expressed as  

                                                                  

1

3332

1

S

dSrvr
I

G                 (2.5) 

Figure 2.2 shows the element’s arrangement at the crack front, where   and r are the length and width 
of the element perpendicular and parallel to the crack front mutually, respectively. There are three 
failure modes namely, mode III ,  and III  in crack growth propagation. The cohesive stress, 33  in the 
plane of crack in front with the first subscript 3 illustrates the face that is in vertical direction of the 
crack front. The second subscript 3 illustrates the axes 21, xx  and 3x  as shown in Figure 2.2. The iv  is 
represented as crack opening displacement function with I  direction.  Further information about the 
stress and displacement at the crack face can be referred to Broek [20]. The computation of cohesive 
stress and displacement function are specified by  

                                                           ,
2

33
r

K
r I


       

13

2
4

E

Kr
rv I


               (2.6) 

where EE 1  for the plane stress, and  21 1/ vEE   for the plane strain. E  and r  represent the 
Young’s Modulus and Poisson’s ratio of the material properties, respectively. Based on Figure 2.2, r  
is distance from the crack front and  is angle among the direction of r  and normal direction of the 
crack front. Substituting the stress and displacement into Eq. (2.4) gives 

                                       
 

  








drdrR
E

Kr

r

K
G II

I 


  


1

0

cos2
2

cos2

2

1

             (2.7) 

Thus, Eq. (2.7) can be expressed in terms of SIFs of the areas of 1S  and 2S , as shown in Figure 2, by 
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

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
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1

33

211

1

2

4

1
2

1
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ii
I

I Pv
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E

K
G              (2.8) 
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2S

 2/





1x
2x

3x

 R

O

 1

2 Crack Front

 

Figure 2: Element arrangement at the crack front of the material 
 

The energy release rate for the remaining failure modes are expressed by 

                                             

 














5

1

11

211

1

2

4

1
2

1

i

ii
II

II Pv

SSS
E

K
G                      (2.9) 

                                           

 














5

1

22

211

2

4

1
2

1

2 i

ii
III

III Pv

SSS

K
G


                                (2.10) 

where  is shear modulus. Each component of the energy release rate is represented by a subscript at 
G , whereby the sum of III GG ,  and IIIG produces TotalG . The energy release rate can be changed to SIF, 
as shown in Eq. (2.8), (2.9) and (2.10). Further details of derivation of element arrangement at crack 
front can be referred to Okada et. al. [11]. 

 

3.0 RESULT AND DISCUSSION  
 

Figure 3 shows a three-dimensional tension model followed by Newman and Raju [21] for verification 
of the BootstrapS-FEM. The rectangular model is subjected to fatigue loads in tension. The mode I for 
the SIF along the crack front is calculated and compared for verification purpose. 
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Figure 3: Tension model for surface crack growth. 
 
Two models with different crack shape aspect ratio are examined to show the potential of BootstrapS-
FEM  when generating the SIF values. The details of the model are shown in Table 3.1. 

Table 3.1: Input data for tension models 
Tension 

model 

Crack 

depth, a  

Crack 

length, c 

Crack shape aspect ratio, 

a/c 

Crack size aspect 

ratio, a/t 

Model width 

aspect ratio, c/b 

Tension 

load, 

Mpa 

 (mm) (mm) Mean Standard 

deviation 

   

A 1 2.5  0.4 0.01 0.2 0.1 10 

B 2  2  1.0 0.01 0.2 0.1 10 

 
Tension models A and B have different crack length and crack depth for the semi-elliptical crack shape. 
Thus, the mean of crack shape aspect ratio for these two models are automatically different. The tension 
loads applied on these models have equal values. The predictions of SIFs are simulated using 
BootstrapS-FEM on model A and model B for different crack sizes.  

Figure 3.2 and Figure 3.3 show the normalised SIF along the crack front that consists of Newman-Raju, 
deterministic S-FEM and BoostrapS-FEM. The SIF values are simulated for tension model A and B. The 
dissimilar of crack shape aspect ratios are simulated in BootstrapS-FEM. This proves that Bootstrap 
can be simulated with different crack sizes. These ratios are assigned to the crack shape aspect ratios 
of 0.4 and 1.0 for tension models A and B, respectively, which are expected in different curve types. 
The SIF is computed based on Eq. (2.8) in VCCM approach. The results of SIF are generalised using the 
normalisation equation by a Q(a/c)  . The Q(a/c)  is the shape factor and the detailed explaination 
can be referred to in a study by Murakami [22]. The results produced are not influenced by material 
properties. The results from BootstrapS-FEM also use the normalisation equation for comparison 
purposes. Eq. 3.1 shows the shape factor 
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d
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


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Figure 3.2 shows the comparison of normalised SIF values for tension model A along the crack front. 
The SIF curve at the crack front is created using BoostrapS-FEM to be compared with Newman and 
Raju [21] numerical solution and deterministic S-FEM solution in Figure 3.2 and Figure 3.3. The results 
of Newman-Raju and deterministic S-FEM are construted in a graph with aspect ratio value for tension 
model A. BootstrapS-FEM was simulated for the one hundred samples of SIF with mean and standard 
deviation crack aspect ratio of 0.4 and 0.01, repectively. The crack aspect ratio was distributed in 
Gaussian distribution. The mean of BootstrapS-FEM was calculated from the hundred samples.  The 
bounds were computed based on minimum and maximum values from the hundred samples of 
BootstrapS-FEM.  
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As shown in Figure 3.2, the SIF values reach higher at 1/2    than at 0 . This proves that the results 
from numerical calculations are reasonable. The behaviour of SIF from the mean  BootstrapS-FEM 
agrees well with the Newman-Raju solution. The mean BootstrapS-FEM demonstrates a marginal 
difference between the solution from Newman-Raju. This is impacted by modelling of the uncertainties 
in the analysis. The angle 0/2   to 0.6 , the SIF of mean BootstrapS-FEM starts increasing and 
slightly decreasing on the SIFs of Newman-Raju solution. The deterministic S-FEM solution has a 
slightly decreasing trend from Newman-Raju solution. Figure 3.2 shows 95% confidence bounds for 
the mean BoostrapS-FEM of the hundred samples. The Newman-Raju solution are within the 95% 
confidence bounds of upper limit and lower limit for the mean BootstrapS-FEM. This considerably 
agrees with the Newman-Raju solution because its SIFs are within the bounds of BootstrapS-FEM. The 
SIF from BootstrapS-FEM is considered valid for the prediction. 

 

 
 

Figure 3.2: Normalised SIFs along the crack front 0.4)(a/c   for tension model A with 95% lower and 
upper confidence bounds 

Figure 3.3 shows the comparison of normalised SIF for tension model B along the crack front. The crack 
aspect ratio for tension model B is different with tension model A when the angle is increased to 1.0 . 
The crack size and model width aspect ratio for tension model B are retained the same as with tension 
model A. The tension load applied on tension model B is the same as that applied on model A based 
on Table 3.1. The difference of aspect ratio is used to verify the prediction of the SIFs by the BootstrapS-
FEM. The computation of SIFs are compared with Newman and Raju [21] and the deterministic S-FEM 
solutions. The hundred samples results of normalised SIF for the mean BoostrapS-FEM are plotted in 
Figure 3.3. The mean and standard deviation of the crack aspect ratio are used as 1.0 and 0.01, 
respectively.  

The mean Bootstrap-FEM shown in Figure 3.3 includes the 95% confidence bounds for the upper 
bound and lower bounds. The results of deterministic S-FEM and Newman-Raju solutions are plotted 
in Figure 3.3 for comparison of SIF. The comparison shows that the mean of BootstrapS-FEM is slightly 
different with the numerical Newman-Raju solution. The mean BootstrapS-FEM is closer than 
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deterministic S-FEM between Newman-Raju solution. The SIF of Newman-Raju is located within the  
95% confidence bounds of mean BootstrapS-FEM, except at 0/2  . Thus, the prediction of SIF by 
mean BootstrapS-FEM agrees well with the Newman-Raju solution. 

 

 
 

Figure 3.3: Normalised SIFs along the crack front 1.0)(a/c   for tension model B with 95% lower and 
upper confidence bounds. 

The prediction of SIF by BootstrapS-FEM for tension model A and B are validated in Figure 3.2 and 
Figure 3.3, respectively. They are shown to be in agreement with other deterministic numerical 
computations namely, deterministic S-FEM and Newman-Raju solution. 

4.0 CONCLUSION  
 

The SIF are vital issues that occur in crack growth propagation. Thus, the prediction of SIF by S-FEM 
is useful with embedded bootstrap resampling method. The SIF is analysed and validated by 
deterministic S-FEM and Newman-Raju solution. The prediction results of SIFs by BootstrapS-FEM for 
different crack shape factor are in good agreement with deterministic S-FEM and Newman-Raju 
solution. The BootstrapS-FEM of SIF predictions are considered valid because the deterministic S-FEM 
and Newman-Raju solution lay within the 95% confidence bounds. The mean and bounds produced 
by the BootstrapS-FEM show that there is an augmentation in the prediction of SIF. 
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ABSTRACT 

Stress intensity factor (SIF) is one of the most fundamental and useful parameters in all of fracture mechanics. The SIF describes the 

stress state at a crack tip, is related to the rate of crack growth, and used to establish failure criteria due to fracture. The SIF is 

determined to define whether the crack will grow or not. The aims of this paper is to examine the best sampling statistical distributions 

in SIF analysis along the crack front of a structure. Box-Muller transformation is used to generate the statistical distributions which 

is in normal and lognormal distributions. This method transformed from the random number of the variables within range zero and 

one. The SIFs are computed using the virtual crack-closure method (VCCM) in bootstrap S-version finite element model (BootstrapS-

FEM). The normal and lognormal distributions are represented in 95% of confidence bounds from the one hundred of random samples. 

The prediction of SIFs are verified with Newman-Raju solution and deterministic S-FEM in 95% of confidence bounds. The prediction 

of SIFs by BootstrapS-FEM in different statistical distribution are accepted because of the Newman-Raju solution is located in between 

the 95% confidence bounds. Thus, the lognormal distribution for SIFs prediction is more acceptable between normal distributions. 

 

Keywords 

Stress intensity factor; Statistical distributions; Box-Muller transformation; Random samples; Regression analysis  

  

1. Introduction 
Defects on the material are essential to investigate because it 

caused the catastrophic failure. It became critical points for the 

fatigue strength and lifetime of the materials component. 

Defects have potential sites for crack initiation from the surface 

crack growth. Thus, it is caused failure of the component 

structure. The stress concentration is occurred at the surface 

defects that leads to inhomogeneous stress field. Nevertheless, 

the endurance limit of the materials is explored from fatigue 

tests with un-notched materials specimen. In this condition, the 

stress concentration is in homogenous stress field with critical 

cross section [1]. The SIF is important to define because it can 

affected the crack growth propagation. Fracture mechanics is 

introduced SIF parameter in crack growth problems. 

 

Fracture mechanics is used to study of the propagation of crack 

in the materials structures. The investigation of crack 

propagation is useful based on the fracture mechanics. It can 

evaluate the long term performance by using the different 

materials [2], [3]. The method from fracture mechanics is used 

with several theoretical and parametric applications. Ability of 

this method is to predict the influence of different mechanical, 

geometrical and microstructural parameters in its definition [4]. 

The failure time is obtained through integration of crack speed. 

By using different fracture mechanics test types, it is give more 

affected when compared with environment performance on an 

initiation time or crack speed basis. The experiment was 

conduct to investigate the lifetime based on fracture mechanics. 

The data from it is analysed in terms of the SIF at the crack tip 

for any given crack size. Linear elastic fracture mechanics 

(LEFM) is assumed that the material in isotropic and linear 

elastic. The stress field near the crack tip is computed based on 

the theory of elasticity. 

 

LEFM is the concept or theory in the all energy dissipation that 

is related with the fracture process. It is showed that the 

deformation is occurred in linear elastic region but not in 
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plasticity region. SIF is defined as a function applied stress, 

specimen geometry and crack length. However, the LEFM 

concept is becomes invalid when the size of plastic zone at the 

crack tip becomes large compared to the crack length or the 

remaining life [5]. LEFM supposed that a linear elastic body is 

consisted a sharp crack. So, LEFM is described about the 

energy change that occurs in the linear elastic body can go 

through a large or increase in crack area. It is means that the 

fracture increases as the crack size grows to propagate the crack 

[6]. The virtual crack closure method (VCCM) is used to 

calculate the SIF based on the LEFM.  

 

The VCCM is suitable for the applications with p-version of the 

finite element method to compute mixed mode energy release 

rates. The method provides one global total energy release rate 

as global forces on a structural level are multiplied with global 

deformations. This way is calculate the energy available to 

advance the crack.  The total energy release rate is computed 

locally at the crack front. An additional computation, the 

stiffness matrix of the elements is involved in calculation that 

affected by the virtual crack extension. The method is yields the 

total energy release rate as a function of the direction in which 

the crack was extended virtually. The yielding information 

depends on the growth direction [7]. The Finite Element 

Method (FEM) software is complicated to develop that depends 

on the theory, implementation aspect, computational 

experience and engineering. It is related with computer 

hardware and manpower cost to solve by engineering 

community [8], [9]. FEM is applied to LEFM to generated 

suitable mesh for crack model in 2-dimensional or in multiple 

cracks. The interaction integrals is formulated which to applied 

in different types of the materials [20].  

 

The existing integrals infinite element is used for linear 

hyperbolic problems including simple element such as 

triangular and quadrilateral element in 2-dimensional. FEM is 

allowed to use the general polygonal or polyhedral meshes 

which helpful features in adaptive mesh refinements. FEM is 

come up with a symmetric and positive definite system [10]. 

The singular stress field is created by refining mesh at the crack 

tip or using special types of elements such as quarter point 

elements [11]. A suitable mesh is handled by advanced re-

meshing algorithms. The fine mesh is used at the vicinity of the 

crack tip and crack front so that the singular stress field is 

determined accurately [12]. The extended version is applied to 

improve the quality of FEM calculations by using the existing 

adaptive techniques such as h-version and p-version. The 

combination of two methods are produced the S-version 

method which is increased a polynomial order and finer mesh. 

 

By using the S-version, the problems are solved significantly 

and give more impact in program of engineering development. 

Especially, the program STRIPE (Aeronautical Research 

Institute of Sweden), Applied Structure (Rasna Corp., 

California, USA), PHLEX (Computational Mechanics, Texas, 

USA) and MSC/PROBE (MacNeal Schwendler, California, 

USA) [8]. The mathematical theorem is important to conduct 

the software in two and three dimensional model [13], [14]. 

There are many major commercial based on the h-version of 

FEM such as MSCNASTRAN, ADINA, ANSYS and etc. 

There are only two of commercial programs such as FIESTA 

and MSCPROBE based on p-version and hp-version [15]. 

Thus, SIF is evaluated along the crack front. The calculation of 

SIF is required great computational effort due to geometry 

modeling of the crack growth propagation. Kikuchi et al. is 

developed combination of S-FEM and auto-meshing method to 

simulate the fatigue crack growth [16]. Probabilistic method is 

useful to predict the SIF in hundreds random of samples. It is 

avoided from the scatter prediction of SIFs.  

 

The probabilistic is defined the input parameters as 

distributions and predict the output of distributions and bounds 

of performance [17]. The types of distributions are normally 

used such as normal, lognormal, Weibull distributions and etc. 

The data of the crack growth can used to estimate in the types 

of distributions [18], [19]. In the commercial software, the 

probabilistic simulation is widely used in the ABAQUS 

software. The distribution is randomly generated by using the 

distribution function based on the determined parameters [17], 

[18]. Thus, the probabilistic method is widely applied in the 

engineering studies.  

 

See that failure by fracture include the growth of cracks it 

created that monitoring the size of a crack in a specific structure 

give a method for evaluating quantitatively the strength before 

failure completely. The stress analysis was carried out from the 

BootstrapS-FEM and the parameters of fracture mechanics 

were computed. The prediction of SIFs are simulated in 

BootstrapS-FEM based on the statistical distribution between 

normal and lognormal distributions. The SIFs are compared 

between numerical Newman-Raju solution and deterministic S-

FEM. 

2. Methodology 
This section is explaining the principle of generating normal 

and lognormal distributions using Box-Muller transform 

algorithm. The normal and lognormal distributions are 

developed from the random samples using the Box Muller 

transformation method. The SIFs value is predicted by 

BootstrapS-FEM for one hundred of random samples. The SIF 

and energy release rate are the parameters that will figured out 
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the crack growth in LEFM. The fracture parameters are 

predicted by using VCCM method. 

2.1 Box-Muller Transform Algorithm 
Box and Muller [21] proposed another efficient transform 

algorithm. This method is generated two independent samples 

from a standard normal distribution. Their proposed Box-

Muller transformation algorithm is competent to sample 

bivariate Standard Gaussian random variables,  1,0;~ jj zNZ  

and  1,0;~ kk zNZ  where jZ  and kZ  are two independent 

random variables. Suppose that  1,0;~ jj xUX  and 

 1,0;~ kk xUX  are two independent uniform random variables 

with   ,
Njj xX     ;

Nkk xX   Nkj ,...,3,2,1.   and

 1,0, kj xx . In addition, suppose that the relationship between 

jkj zxx ,,  and kx  can be expressed as 
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By applying the change-of-variable techniques, the joint 

probability density function (PDF) corresponds to two 

independent Standard Gaussian random variables,  kj zzf ,  is 

resulted as follows. 

 

             
 
 kj

kj
kjkkjjkj

zz

xx
zzxzzxfzzf

,

,
,,,,




          (2.3) 

The cumulative distribution function is 
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The idea behind the Box-Muller transform is to imagine two 

independent samples  1,0~, NZZ kj  are plotted in the 

Cartesian plane as shown in Figure 2.1. This is represented as a 

polar coordinates which it needed the distance, R  between 

 kj ZZ ,  and the origin along with the angle,   in x-axis.  

 

1

-1

θ

 

v

u 1-1

R

jz

kz

 

Fig. 2.1:  Polar form in the Cartesian plane  

The equation is presented from the origin, 22
kj ZZR   and 

simplified to 222
kj ZZR  . The polar coordinates for two 

independent standard normal by converting back to Cartesian 

as 

 

          cosRZ j                                    (2.5) 

         sinRZk                                    (2.6) 

 

where jxR log2 and kx 2 . 

 

Eq. (2.4) consolidated that the Eq. (2.2) and Eq. (2.3) is 

competent to transform variables jX  and kX  into jZ  and kZ  

respectively. By manipulating Eq. (2.2) and Eq. (2.3), both 

equations can be rewritten based on Eq. (2.5) and Eq. (2.6) as 

 

   kjj xxz 2coslog2                     (2.7) 

 

   jkk xxz 2coslog2           (2.8)

                                                                                                

Where  .  represents the partial derivative function and  .log  

represents the natural logarithm function. Since this study 

merely focused on univariate random variable, therefore the 

efficiency of Eq. (2.7) and Eq. (2.8) of the transformation 

algorithms are evaluated, respectively. 

2.2 Transformation a Standard Normal 

Random      Variable into Gaussian and 

Lognormal Random Variable  
Based on Table 3.1, the mean and standard deviation for the 

crack aspect ratio are used in transform normal and lognormal 

as    2,~/ Nca . Therefore, transforming the Standard 

Gaussian random variables into a Gaussian random variables is 

indeed much needed. The Gaussian random variables is 

resulted when the rules for transforming Gaussian random 

variables is applied, including scalar multiplication and adding 

a constant. In mathematics, 
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        zca N /                                (2.9) 

 

Based on the probability theory, the lognormal random 

variables are resulted from taking exponential of Eq. (2.9), such 

that  

 

           zca L exp/                             (2.10) 

 

2.3 Virtual Crack Closure Method (VCCM) 
The SIFs are calculated based on the energy release rate, G  

using the VCCM. The Eq. (2.11) can be expressed in terms of 

the SIFs of the areas of 1S  and 2S , as shown in Figure 2.2, by 
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Fig. 2.2:  Element arrangement at the crack front 
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The energy release rate for the remaining failure modes are 

expressed by 
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Where  is the shear modulus. Each component of the energy 

release rate is represented by a subscript at G , whereby the sum 

of III GG ,  and IIIG  produces TotalG . The energy release rate can 

be changed to the SIF, as shown in Eqs. (2.11), (2.12) and 

(2.13). For further details of derivation of element arrangement 

at crack front can be referred to Okada et. al. [11]. 

3. Result and Discussion 
The BootstrapS-FEM generates the normal and lognormal 

distribution for one hundred of samples. The value of SIFs are 

computed based on the Eq. (2.11) for mode I  crack growth 

propagation. Figure 3.1 shows the three-dimensional model that 

subjected to tension load with semi-elliptical crack shape. The 

model was used for verification of SIF between BootstrapS-

FEM and Newman & Raju [22]. The comparison of SIF was 

represented in two different distributions which is normal and 

lognormal distribution. 
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Fig. 3.1:  Comparison of normalised SIFs along the crack front 
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Table. 3.1:  Details parameter of the model. 

Crack depth, a 

(mm) 

Crack length, 

c (mm) 

Crack shape aspect, ratio, a/c Crack size aspect 

ratio, a/t 

Model width aspect 

ratio, c/b 

Tension load, 

MPa 

Mean Standard deviation 

1 2.5 0.4 0.01 0.2 0.1 10 

 

The model was considered to show the ability of the 

BootstrapS-FEM in producing SIF values. Thus, the prediction 

of SIFs results are compared with numerical method Newman-

Raju solution. The parameter details of the model is shown in 

Table 3.1.  

 

Figure 3.2 shows the comparison of the normalised SIFs along 

the crack front for the tension model. The SIF curve that  

 

constructed using the BootstrapS-FEM with the numerical 

solution by Newman & Raju [22] and deterministic S-FEM. 

The BootstrapS-FEM was generated in Gaussian and lognormal 

distribution. Two means of BootsrapS-FEM was represented in 

Figure 3.2 for distinguish the distributions. The means of the 

BootsrapS-FEM were constructed build upon a 100 samples.  

 

 

Fig. 3.2:  Comparison of normalised SIFs along the crack front 

Figure 3.3 shows the results of the normalized SIFs by the 

Newman-Raju solution and mean BootstrapS-FEM in normal 

distribution. The bounds in Figure 3.3 had a 95% confidence 

interval based on the maximum and minimum 100 samples of 

SIFs. The 95% of confidence bounds are the range within which 

95% of the result of BoostrapS-FEM in normal distribution can 

be defined. The SIFs of Newman–Raju solution was located 

inside the 95% confidence bounds of upper limit and lower 

limit for mean BootstrapS-FEM (Normal). This was 

significantly agreed with the Newman-Raju solution because 

the points falls within the range of 95% bounds by BootstrapS-

FEM. Furthermore, the prediction of SIFs by BoostrapS-FEM 

(Normal) examined valid based on the 95% confidence bounds 

 

The mean BoostrapS-FEM of normalized SIFs for lognormal 

statistical distribution are shown in Figure 3.4 including the 

95% confidence bounds. The results are compared with 

Newman-Raju solution for validation process as a prediction. 

The comparison shows that the mean of BootstrapS-FEM 

(Lognormal) slightly contrasting between numerical Newman-

Raju solution. The mean of BoostrapS-FEM (Lognormal) is 

more closer than BostrapS-FEM (Normal) towards Newman-

Raju solution. The SIFs of Newman-Raju solution is discovered 

inside the 95% confidence bounds of the mean BootstrapS-

FEM (Lognormal). Thus, the estimation of SIFs by the mean 

BootstrapS-FEM is agreed with the Newman-Raju solution 

. 

Based on the Figure 3.3 and Figure 3.4, the 95% confidence 

bounds of the BootstrapS-FEM (Lognormal) is narrower than 

the BootstrapS-FEM (Normal) which is slightly wider. As a 

consequence, boths BootstrapS-FEM of SIFs predictions are 

valid because the numerical Newman-Raju falls in range of 

95% confidence bounds. 

 

The prediction of SIFs by BootstrapS-FEM in normal and 

lognormal distributions are validated based on the Figure 3.3 

and Figure 3.4 respectively. The prediction of SIFs by 

BootstrapS-FEM in different distribution shows agreement 
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with the numerical solution Newman-Raju and deterministic S-

FEM. 

 

4. Conclusions 
The SIFs is the main parameter in analysis process since it will 

affects the remaining life of structures. Thus, the prediction of 

SIFs by BootstrapS-FEM is useful for statistical analysis. This 

paper used normal and lognormal distribution to predict the 

SIFs along the crack front. The result for both distributions are 

analysed and validated by Newman-Raju solution and 

deterministic S-FEM. The Bootstrap (Normal) and BootstrapS-

FEM (Lognormal) are considered valid based on the 95% 

confidence bounds. The Newman-Raju solution is indicated in 

between the 95% confidence bounds. Furthermore, the best 

distribution by BootstrapS-FEM is lognormal distribution. The 

lognormal distribution is more accurate than normal 

distributions around one percent error differences against 

Newman-Raju solution.  
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Fig. 3.3:  Normalised SIFs along the crack front for normal distribution with 95% upper and lower bound 
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Fig. 3.4:  Normalised SIFs along the crack front for lognormal distribution with 95% upper and lower bound 
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Abstract.   
Prediction of fatigue crack growth is one of the important issues to prevent catastrophic failure from 

damage tolerance perspective. The surface of crack shape usually in semi-elliptical that was 

maintained during the whole propagation. The aim of this paper is to illustrate the surface crack 

growth that subjected to fatigue loading. The four-point bending and  three point bending have been 

simulated by using the S-version Finite Element Model (S-FEM). The simulation is conducted for 

aluminium alloy A7075-T6 and A2017-T3 with all of the parameters based on the previous 

experiment. The semi-elliptical crack shape is applied during the simulation process to represent 

with the reality of crack growth phenomena. Paris’ Law model approach is presented in fatigue crack 

growth simulation. The S-FEM produced the surface crack growth and fatigue life prediction. The 

result of the S-FEM prediction was compared with the previous experiment. The result was 

presented in a graph for comparison between S-FEM prediction with the experimental result. The 

S-FEM result obtained is good agreement with the experiment result. 

 

1. Introduction 
Defects on the materials such as initial flaws or imperfections in the materials are essential to study 

seriously. The flaw normally affects mechanical behaviors and structures of materials as defects. Then, the 

performances and components of the materials are changed naturally. Crack is formed from the flaw in 

materials structure when applied load. When flaw reaches a critical size, the crack may propagate in this 

condition. The catastrophic failure is presented in the materials component [1]. Nowadays, an indication of 

initial flaws is the main source that affecting the structural materials. It is produced by impact for the critical 

failure in the engineering industries such as automotive, aerospace and others/etc. Initial flaw size of the 

crack growth is the one of a factor for the failure occurred. The initial flaws size can be modeled to 

investigate the fatigue life of the materials [2], [3]. The bending model is simulated with the numerical 

method using the powerful computational tool. 

 Fatigue crack growth an embedded crack is studied with some parameters such as crack shapes, sizes 

and stress ratio. It is to investigate the fatigue crack growth behavior of interacting cracks. The crack growth 

is simulated by using the finite element method (FEM). It is able to characterize an arbitrary crack in FEM 

with meshing. The initial crack is beginning of degradation at crack initiation. The simulation can meet the 

criterion of crack initiation when it started [4]. The computational effort becomes very large when the 

iterations of crack propagation increase. Extended FEM is used to avoid mesh dependent difficulties in the 

modeling of crack growth problems. It is used as the partition of unity enrichment [5]. The shape function 

in FEM is enrichment functions. FEM application in LEFM has formed the enrichment function as well as 

singular crack tip expansion functions. It is used to define the displacement or stress contours with a 3D 

crack in an elastic medium accurately. The global error is controlled by the quality of local error. If the 

local error is presented in high enrichment function, it is expected good global accuracy as well [6]. The 

meshing problems and difficulty of embedded crack shape is resolved with some improvement in FEM. 

 The extended version can be applied to improve the quality of FEM calculations by using the existing 

adaptive techniques such as h-version and p-version. The h-method is used for mesh refining and the p-
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method is used for increased the polynomial order. The finite element mesh based on the h-method has 

subdivided the elements in the same order into the small elements. It is purposed to get fine the in the 

meshing of the elements. The p-method is used to increase the polynomial order approximation in the same 

mesh [7]. The p-version leaves the mesh unchanged and increases the polynomial degree of the shape 

functions locally or globally [8]. Lastly, the combination for both of them can increase the polynomial 

degree and mesh refinement. It is called as s-version that has a great advantage to utilized [9], [7], [10]. The 

s-version has increased the resolution the higher order hierarchical elements by superimposing additional 

meshes. The s-version is implemented in FEM as S-FEM to solve the various problems. The S-FEM is 

applied in surface crack growth to know its lifetime and crack propagation based on its parameter [11].  

 In numerical method, the problem is about meshing process between the model with the initial crack 

shape. The prediction of fatigue life is difficult to compute when the fracture start propagates and failure. 

This paper presents the analysis of S-FEM for fatigue surface crack. The aim of this paper is to illustrate 

the surface crack growth under bending fatigue loads. The fatigue life is computed and presented in this 

paper simultaneously. The S-FEM is used as a method to solve the fatigue crack growth for the bending 

model. In this study, the result from the S-FEM simulation for four-point bending and three-point bending 

is compared with previous researcher’s experimental results.  

 

2. Materials 
The Aluminium 7075-T6 was used for aircraft parts in the aircraft industry. The 7075 aluminum alloy was 

an aluminum alloy, with zinc as the primary alloying element. It was strong, with strength comparable to 

many sheets of steel, and had good fatigue strength and average machinability. The 7075 aluminum alloy's 

composition roughly includes 5.6 - 6.1 % zinc, 2.1 - 2.5 % magnesium, 1.2 - 1.6 % copper, and less than a 

half percent of silicon, iron, manganese, titanium, chromium, and other metals. Table 1 shows the parameter 

detail for four-point bending model of Aluminium 7075-T6.  

 

Table 1. Input for Aluminium alloy 7075-T6 from Ohdama et al. [12]. 

Variable Value 
Critical stress intensity factor, KIC 29 MPa∙√m 
Fatigue power parameter, n 2.88 
Tensile Strength, Yield 691 MPa 
Young’s modulus, E 71.7 GPa 
Paris coefficient, C 6.54x10-13 
Threshold value, ΔKth 5.66 MPa∙√m 
Maximum crack growth increment, damax 1.3 mm 
Initial crack length, c 4.5 mm 
Initial crack depth, a 3.5 mm 

 

 Aluminium 2017-T3 was used commonly in the manufacture of aircraft components, screw machine 

products and fittings, pulleys, gauges, coat hangers, and in crochet and knitting needles. The chemical 

composition of Aluminium 2017-T3 was included 91.5 - 95.5 % aluminium, 3.5 - 4.5 % copper, 0.7 % iron, 

0.4 - 1 % manganese, 0.4 - 0.8 % magnesium, 0.2 - 0.8 silicon, 0.25 % zinc, 0.15 % titanium and 0.1 % of 

chromium. The input detail for Aluminium 2017-T3 three-point bending model is shown in Table 2.  
 

Table 2. Input for the Aluminium alloy 2017-T3 from Kikuchi et al. [13]. 

Variable Value 

Critical stress intensity factor, KIC 26 MPa∙√m 

Fatigue power parameter, n 2.93 

Tensile Strength, Yield 333 Mpa 

Young’s modulus, E 70.2 Gpa 

Paris coefficient, C 2.66x10-10 

Threshold value, ΔKth 6.7 MPa∙√m 
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Initial crack length, c 2.85 mm 

Initial crack depth, a 5.00 mm 

 

3. Methodology 
3.1 Four-point bending and three-point bending 

 

The S-FEM concepts were applied in this simulation to analyze the surface crack growth. The semi-

elliptical crack shape is introduced at the center of the models [14], [15]. The four-point bending model 

with 2b = 65 mm, 2h = 160 mm and t = 25 mm was designed and simulated in the S-FEM model was shown 

in Figure 4 (a). The crack was propagated based on the simulation until the fracture propagated completely. 

The semi-elliptical crack shape was located at the middle of the specimen model. An initial crack shape 

aspect is with a = 3.5 mm and 2c = 4.5 mm. 

 Figure 1 (b) shows the details dimension for geometry of three-point bending of Aluminium 2017-

T3 with 2h = 150 mm, 2b = 50 mm and t = 15 mm. The model was analyzed in S-FEM model based on 

the fatigue crack growth. The semi-elliptical crack shape as an initial crack was designed with a = 5 mm 

and 2c = 2.85 mm.  

t

2b

2h
2c

a

y

x

z

2c

a

 
(a) Details dimensions of four-point bending model with semi-elliptical crack shape for Aluminium 

alloy A7075-T6. 

 

2h

2b

t

2c

a

 
(b) Details dimensions of four-point bending model with semi-elliptical crack shape for Aluminium 

alloy 2017-T3. 

 

Figure 1. The geometry of four-point bending of (a) and three-point bending of (b). 
 

 Figure 2 (a) shows the model for four-point bending in a meshing with a boundary condition.  The 

model had used 0.1 as stress ratio to produce beach marks. The model (a) was conducted with 45 kN as a 

loading in cyclic load. The use 45kN was ensured that it discovered in fatigue region, which affirmed that 

the fatigue would occur for the dimensions of this material. The crack shape aspect ratio, a/c  was 0.8. The 

three-point bending was shown in Figure 2 (b). The 9 kN as a load was applied repeatedly on the surface 
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model (b) with a stress ratio also 0.1. The crack aspect ratio, a/c for the model (b) was 1.7.  The parameters 

detail was the same as the previous experimental specimen based on Table 1 and Table 2. The model was 

modeled in S-FEM with input and parameters. 

Load 

Constraint

Semi-elliptical crack

 
(a) Model four-point bending 

Load

Constraint

Semi-elliptical 

crack 

 
 (b) Model three-point bending 

 

Figure 2. Overlaid local mesh in wireframe view and global mesh with boundary condition. 

 

3.2 S-version Finite Element Model (S-FEM) 

The concept of S-FEM was exhibited in Figure 3 that implementation in this surface cracks growth analysis. 

There were consisted of two parts area such as local and global area. These two parts of the area were 

important to generate the meshing of the model analysis. The local area was discovered the crack tip 

meshing and the global area was discovered for the whole model. 

Local Mesh

Global Mesh
Global Mesh

Crack

 

 

Local Mesh

Crack

 
 

 

 
 

 

 

: Global Area

: Local Area

Displacement of Function

f

f

 
Figure 3. The concept of S-FEM. 
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The two of parts meshing were combined as followed as S-FEM concept. The different orientation of mesh 

was produced such as coarser mesh and denser mesh. The local area was generated by coarser mesh and 

the denser mesh was generated for the global area. The crack tip was discovered by the local area during 

the creation of the local mesh, L . The global mesh, G was produced for the whole global area. The 

local mesh subsequently was enveloped onto the global mesh. The boundary of each area was represented 

as  . The global area was applied by the boundary of constraint displacement, u , and the boundary of 

force, t . The local area was embedded in the global area is represented as overlay boundary, GL . The 

overlay boundary was examined to compute the displacement of each node. The displacement in the 

overlaid area was computed from the local and global meshes as follows as:  
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The strain at the overlaid area was computed by calculation summation of strain at the local and global area 

as follows: 

     G Lx x x     (2) 

The equation of principal of virtual work was related to the stress and strain relationship as follows: 
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(3) 

Where G L  represents the non-overlay area. In matrix form, the equation for S-FEM is: 
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The [𝐵] is the displacement-strain matrix and [𝐾] matrix is the stiffness matrix for local and global in the 

overlaid area. The nodal force, {𝐹𝐿} at the local area and the nodal force, {𝐹𝐺} at global area respectively. 

The displacement of each node is calculated by computing the equation 4 for both global and local meshes. 

The local mesh is changed the size and global mesh was not affected for it. The re-meshing process can be 

generated for a local area alone. The re-meshing process was needed for the fatigue crack growth model. 

Figure 2 shows the combination of local mesh with the global mesh. The combination was applied based 

on the boundary condition such as loading and constrain. In every iteration, the local mesh crack growth 

was expanded time by time until the fracture completed. The value of energy release rate is calculated for 

every new size of local mesh. The stress intensity factor (SIF) was obtained based from the calculation of 

energy release rate. 

  ,I IK EG   ,II IIK EG   2III IIIK G  (5) 

   

𝐸 is Young’s modulus of elasticity under the plane stress condition. For the plain strain condition the 

equation as follows E/1-𝑣2.The 𝑣 is a Poisson’s ratio. Fracture was analyzed by using the of linear fracture 

mechanics concepts; the crack propagation condition is assumed to be based upon the critical energy release 

rate. The energy release rate was utilized in the crack growth analysis.  

 

The Virtual Crack Closure Method (VCCM) was applied in this analysis to determine the energy release 

rate [16]. The VCCM was examined the crack tip opening displacement that located near to the crack front. 

The VCCM were calculated by using the according to the equation: 
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where 𝐼 is a nodes number that be located around the crack tip. The nodal force, 𝑃𝑖
𝐼 and the opening 

displacement, 𝑣𝑖
𝐼  at the five nodes at the front edge of the crack front. The triangle shape, ∆ is the width of 

the element in the radial direction. The width of the element parallel is 𝑤 𝐽 to the crack front. The constant 

𝐶𝐼 is expressed as: 
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The crack plane with a certain condition with VCCM implementation. The segments were used to define 

the displacement and stresses. The areas of the element before, 𝑆2
𝐽
 and after, 𝑆1

𝐽
  crack front are expressed 

as: 
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(8) 

The energy release rate, implemented by [16]. The equations are shown below: 
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(11) 

 

where 𝑣𝑖 is the crack opening displacement at the crack face and 𝜎3𝑖 is the cohesive stress at the local axis, 

𝑥3. Then, the energy release rate can be converted to the ∆𝐾𝑒𝑞 via Eq.(5). The crack growth rate is expressed 

by Paris’s law equation as follows: 
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Where 𝑁 and 𝑑𝑎 are the number of cycles and crack growth increment, respectively. 𝐶 and 𝑛 coefficients 

are material constants. The crack length is presented as:  
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The ∆𝐾𝑒𝑞 is the equivalent SIF. It is a parameter that associated with the fatigue crack growth rate under 

mixed-mode conditions. The equivalent SIF ∆𝐾𝑒𝑞 is presented by: 
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The crack growth angle,   is influenced by the value of 𝐾𝐼, 𝐾𝐼𝐼, and 𝐾𝐼𝐼𝐼. Based on Richard et al. [17], the 

crack growth angle can be calculated as follows: 
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where 0
  for 0IIK   and 0

  for 0IIK   and 0IK  .  

4. Results and discussion 
Figure 4 is illustrated the beach marks for the surface crack growth of four-point bending and three-point 

bending model. Fracture surface is propagated when it reached a critical size. The models produce 6 beach 

marks based on their cycles of fatigue loading.  

 

Beach mark 1 Beach mark 2

Beach mark 5 Beach mark 6Beach mark 4

Beach mark 3

 
(a) Surface crack for four-point bending. 

Beach mark 1 Beach mark 2 Beach mark 3

Beach mark 4 Beach mark 5 Beach mark 6

 
(b) Surface crack for three-point bending. 

 

Figure 4. The beach marks surface fatigue crack. 

 

Figure 5 shows the crack depth, a versus crack length, c based on the fatigue surface crack 

propagation. The surface crack from the four-point bending experiment produces five beach marks. The 

line of beach marks is presented in the graph by coordinate for a comparison. The crack is propagated from 

the initial flaws until completely fracturing. The S-FEM produces another beach marks to compare with 

experiment. Based on the obtained results, it was observed that the beach marks for experiment between S-

FEM slightly different. The initial beach marks for S-FEM was same as the experiment and changed slightly 

until it fractures. The point of crack length for S-FEM was less than 20 percent differences between surface 

crack from the experiment. While the point of crack depth for S-FEM is moderately far apart from the 

experiment. In the overall graph, the S-FEM result is validated to compare with experiment result. The 

surface fatigue crack is computed by following Paris’s law theory that stated in equation (14) and (15). 
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Figure 5. The comparison surface cracks four-point bending between Ohdama et al. [12] experiment. 

 

  

 
 

Figure 6. The fatigue life of four-point bending. 

 

The crack length, c versus the cycles, N as a time period to crack growth rate until it a failure is 

shown in Figure 6. The fatigue life comparison from experiment between S-FEM is illustrated in Figure 6. 

The S-FEM is reached a maximum point at 20 mm crack length and 136382 cycles. While the experiment 

is reached a maximum point at 20 mm for crack length with 473367 cycles. There are significant difference 

of a maximum point between S-FEM and experiment. The S-FEM has quickly reached a failure compare 

with the experiment. 
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Figure 7. The fatigue life of Aluminium 2017-T3. 

 

 The experiment results from Kikuchi et al. [13] are presented to compare with S-FEM result for 

fatigue life of Aluminium 2017-T3 in three-point bending. Figure 7 is illustrated the fatigue life based on 

crack length, c versus cycles, N until it failure propagation. The S-FEM is achieved maximum point at 14 

mm of crack length and 44463 N of cycles. Then, the experiment is reached a maximum point at 14 mm of 

crack length with 43856 N of cycles. The comparison of S-FEM and experiment is slightly accurate as a 

prediction. 

 

5. Conclusions 
The crack growth surface was simulated by S-FEM useful for prediction beach marks of a surface fatigue 

crack. The beach marks were produced from the S-FEM near with the experiment. Besides that, the fatigue 

life between four-point bending and three-point bending is produced a different result that compared with 

the experimental result. It was concluded the model of S-FEM for four-point bending had mistaken in 

meshing or error of coding S-FEM simulation. Further investigations of the numerical method in S-FEM 

are required to extend the present work. 
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Kesimpulan 
 

Overall, the ProbS-FEM was developed to consider the uncertainties in the analysis. The verification 

of the developed code was presented to show the capability of the ProbS-FEM in predicting the SIF, 

the crack growth for different modes of loading, and the fatigue life distribution. Single and multiple 

surface cracks were simulated to indicate the level of complexity that could be solved by the ProbS-

FEM. The new understanding of the SIF, crack growth and fatigue life distribution, particularly for the 

case of single and multiple surface cracks, have been discussed. The integrity of the components could 

be observed through the ProbS-FEM analysis. The ProbS-FEM produced a range of outputs because 

of the existence of uncertainty in the material properties and the crack initiation. The new contribution 

has improved the previous solution model that mostly revealed the static or deterministic results only. 

The range of outputs produced in the ProbS-FEM provided a remedy for stray deterministic 

predictions, particularly in fatigue behaviour. Computationally, the application of the probabilistic 

approach by the developed algorithm contributed to the enhancement of the S-FEM compared to the 

previous approach. 

 

The work that has been carried out provides several promising avenues for further probabilistic surface 

crack researches as follows:  

(i) The dispersion of the presented initial surface crack size was limited to the standard deviation 

approach. Thus, a study on a new methodology to calculate the equivalent initial flaw size distribution 

is highly encouraged. The initial flaw size distribution should be determined to confirm the changes in 

the fatigue life results.  

(ii) The variable amplitude loading for mode I and II with the same geometrical model should be 

conducted to assess the change in the mixed mode fracture, and the dominant mode can be determined. 

In addition, it is essential to consider the introduction of a variable amplitude load in the ProbS-FEM. 

The variable amplitude load exposes the scatter input in an analysis.  
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