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ABSTRACT 

 

Classification of imbalanced data sets is one of the important researches in Data Mining 

community, since the data sets in many real-world problems mostly are imbalanced 

class distribution. This thesis aims to develop the simple and effective imbalanced 

classification algorithms by previously improving the algorithms performance of 

general classifiers i.e. Kernel Logistic Regression Newton-Raphson (KLR-NR) and 

Regularized Logistic Regression NR (RLR-NR) which are Logistic Regression (LR)-

based methods. Both LR-based methods have strong statistical foundation and well 

known classifiers which have simple solution of unconstrained optimization problem in 

performing the good performance as well as Support Vector Machine (SVM) which is 

determined as state-of-the art classifier in Kernel methodology and Data Mining 

community. However, the imbalanced LR-based methods are not extensively developed 

such as imbalanced SVM-based methods. Hence, it is required to develop effective 

imbalanced LR-based methods to be widely used in data mining applications. 

Numerical results have showed that the use of Truncated Newton method for KLR-NR 

and RLR-NR which respectively resulted in Newton Truncated Regularized KLR 

(NTR-KLR) and NTR RLR (NTR-LR), is effective in handling the numerical problems 

on the huge matrix of linear system of Newton-Raphson update rule i.e. the training 

time and the singularity problem. These results can be seen as further explanation on the 

success of Truncated Newton method in TR-KLR  and TR Iteratively Re-weighted 

Least Square (TR-IRLS) algorithm respectively, because of the equivalence of iterative 

method used by these algorithms. Moreover, only with the use of simple solution of 

unconstrained optimization problem, numerical results have demonstrated that proposed 

NTR-KLR and proposed NTR-LR respectively have comparable classification 

performance with RBFSVM (SVM with Radial Basis Function Kernel).  

The imbalanced problem of both proposed general classification algorithms which is the 

limitation of accuracy performance specifically in classifying on the minority class has 

motivated this research to improve their classification performance on imbalanced data 

sets. In general, numerical results have showed that the use of adapted Modified 

AdaBoost methods for NTR-KLR and NTR-LR which respectively resulted in 

AdaBoost NTR Weighted KLR (AB-WKLR) and AB NTR Weighted RLR (AB-WLR) 

is significantly successful in improving the accuracy and stability performance of 

general classifiers i.e. NTR-KLR and NTR-LR respectively. The improvements on both 

error by g-means and standard deviation of g-means with 5-Fold SCV could be 

achieved as high as more than 60. Furthermore, numerical results have demonstrated 

that proposed AB-WKLR and proposed AB-WLR respectively have comparable 

performances with AdaBoostSVM in classifying imbalanced data sets, only with the use 

of simple solution of unconstrained weighted optimization problem. Thus, both 

proposed imbalanced LR-based methods is simple and effective for classification of 

imbalanced data sets and have promising results. 
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ABSTRAK 

 

 

Pengelasan set data yang tidak seimbang adalah salah satu kajian yang penting dalam 

masyarakat perlombongan data, kerana set data yang digunakan dalam dunia sebenar 

kebanyakannya adalah pengagihan kelas tidak seimbang. Tesis ini bertujuan untuk 

membangunkan algoritma pengelasan tidak seimbang yang mudah dan berkesan dengan 

meningkatkan prestasi algoritma pengelas umum iaitu Kernel Logistic Regression 

Newton-Raphson (KLR-NR) dan Regularized Logistic Regression NR (RLR-NR) yang 

merupakan kaedah berasaskan Logistic Regression (LR). Kedua-dua LR-based methods 

mempunyai asas statistik yang kukuh dan terkenal sebagai pengelas yang mempunyai 

penyelesaian yang mudah dari unconstrained optimization problem dalam 

melaksanakan prestasi yang sama baik dengan Support Vector Machine (SVM) yang 

ditentukan sebagai state-of-the-art pengelas dalam metodologi Kernel dan masyarakat 

Perlombongan Data. Walau bagaimanapun, imbalanced LR-based methods tidak 

dibangunkan secara meluas seperti imbalanced SVM-based methods. Oleh itu, ia 

diperlukan untuk membangunkan imbalanced LR-based methods yang berkesan yang 

digunakan secara meluas dalam banyak aplikasi perlombongan data. 

Keputusan berangka telah menunjukkan bahawa penggunaan kaedah Truncated Newton 

untuk KLR-NR dan RLR-NR yang masing-masing mengakibatkan Newton Truncated 

Regularized KLR (NTR-KLR) dan NTR RLR (NTR-LR), adalah berkesan dalam 

menangani masalah berangka pada matriks besar dari sistem linear Newton-Raphson 

update rule iaitu masalah masa latihan dan ketunggalan. Keputusan ini boleh dilihat 

sebagai penjelasan lanjut mengenai kejayaan kaedah Truncated Newton di TR-KLR dan 

TR Iterative Re-weighted Least Square (TR-IRLS) algoritma, kerana kesetaraan kaedah 

lelaran yang digunakan oleh algoritma-algoritma ini. Selain itu, dengan hanya 

menggunakan penyelesaian yang mudah dari unconstrained optimization problem, 

keputusan berangka telah menunjukkan bahawa cadangan NTR-KLR dan cadangan 

NTR-LR masing-masing mempunyai prestasi klasifikasi setanding dengan RBFSVM 

(SVM dengan Radial Basis Function).  

Masalah tidak seimbang kedua-dua algoritma klasifikasi umum yang dicadangkan yang 

merupakan had prestasi ketepatan khususnya dalam mengklasifikasikan kelas minoriti 

telah mendorong kajian ini untuk meningkatkan prestasi klasifikasi mereka pada set 

data yang tidak seimbang. Secara umum, keputusan berangka telah menunjukkan 

bahawa penggunaan kaedah adapted Modified AdaBoost untuk NTR-KLR dan NTR-LR 

yang masing-masing mengakibatkan AdaBoost NTR Weighted KLR (AB-WKLR) dan AB 

NTR Weighted RLR (AB-WLR) adalah lebih berjaya dalam meningkatkan prestasi 

ketepatan dan kestabilan pengelas umum iaitu NTR-KLR dan NTR-LR. Peningkatan 

bermakna oleh kedua-duanya atas kesilapan g-means dan sisihan piawai g-means 

dengan 5-Lipat SCV boleh dicapai setinggi lebih daripada 60. Tambahan pula, 

keputusan berangka telah menunjukkan bahawa cadangan AB-WKLR dan cadangan AB-

WLR masing-masing mempunyai persembahan yang setanding dengan AdaBoostSVM 

dalam mengklasifikasikan set data tidak seimbang, hanya dengan menggunakan 

penyelesaian yang mudah dari unconstrained weighted optimization problem. Oleh itu, 

kedua-dua cadangan imbalanced LR-based methods merupakan kaedah yang mudah dan 

berkesan untuk pengkelasan set data yang tidak seimbang dan mendapat keputusan yang 

menjanjikan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1      BACKGROUND 

 

The interface of statistics, database technology, pattern recognition, machine 

learning, and other areas are termed as Data Mining.  It is concerned with the analysis 

of large databases by using machine learning methods, in identifying previously 

unsuspected pattern which are of interest or value to the data. (Hand, 1998; Tan et al., 

2005). 

 

Classification is a supervised data mining task, which is a predictive task with 

qualitative outcome. In the last decade, it is found that, beside the evaluation of data in 

manual, the use of classifier system is also very important factor in helping expert to 

make decision, i.e. to identify pattern and make prediction. Classifier system can 

achieve a fast, objective, more detailed and accurate classification by minimizing 

possible errors due to fatigued or inexperienced expert. (Huang et al., 2007; Polat et al., 

2007; West, 2000). 

 

In the last decade, the resulting family of Kernel learning methods (Scholkopf 

and Smola, 2002; Shawe and Christianini, 2004) have frequently demonstrated state-of-

the-art performance on a wide range of benchmark and real-world applications. Most of 

these kernel-based methods, however, are presented in the literature along with the 

Support Vector Machine (SVM) method. SVM (Vapnik, 1998; Vapnik, 2000), which 

was developed based on the theory of Structural Risk Minimization (SRM), is popular 

with its effectiveness in the Kernel Machine Learning and Data Mining Community, 



 2 

such that it is considered as state-of-the-art algorithm for classifying non-linear binary 

data.  

 

Beside SVM, Kernel Logistic Regression (KLR) (Roth, 2001; Zhu and Hastie, 

2004; Zhu and Hastie, 2005) is one of the most important recent developments for 

classification task in Kernel-machine techniques. It is the Kernel version of Regularized 

Logistic Regression (RLR) (Minka, 2003; Zhang and Oles, 2001) classifier. The use of 

Kernel in KLR algorithm is to improve the generalization performance of RLR on 

overcoming the non-linear problem that has low-to-medium-dimensional data (Maalouf, 

2009).  

 

Meanwhile, RLR is the regularized version of Logistic Regression (LR) 

(Hosmer and Lemeshow, 2000; Dreitsel and Machado, 2002; Hastie et al., 2001; 

McCulagh and Nelder, 1989) which is the fundamental and well known statistical 

method for classification task. It is a classifier which is well applied to linear problem 

with high-dimensional data (Komarek and Moore, 2005). Hence, RLR is considered as 

state-of-the-art algorithm for linear discriminant data. 

 

KLR and RLR have received more extensive research attention, since they have 

similar loss function with SVM (Patra et. al., 2008; Rahimi, 2006; Rennie, 2005; Zhang 

and Oles, 2001; Zhang et al., 2003; Zhu and Hastie, 2005). Furthermore, by using total 

accuracy metric, the classification performance of KLR is similar to non-linear SVM 

(Karsmaker et al., 2007), while the classification performance of RLR is comparably 

accurate to linear SVM (Zhang et al., 2003; Zhang and Oles, 2001). However, 

optimization of SVM needs to be solved with quadratic constrained optimization, while 

KLR and RLR only need to be solved by unconstrained optimization (Maalouf, 2009), 

although it also can be stated as constrained optimization problem (Karsmaker et al., 

2007; Kerthi et al., 2005).  In addition, unlike SVM, both classifiers naturally provide 

probability of classification membership (Zhu, 2003; Zhang et al., 2003).  

 

Many problem domains require transparent reasoning as well as accurate 

classifier (Ridgeway et.al, 1998). Trust in a system is developed by the quality of the 

results (accuracy) and also by clear description of how they were derived (transparent 
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reasoning) (Swartout, 1983). Good accuracy enables correct assessments / diagnosis / 

treatment and thus avoiding any heavy losses associated with wrong prediction 

(Lahsasna et al, 2008; West, 2000). Transparency enables expert to understand the 

classification/decision process. The capability of classifier to describe its analysis often 

affects the end-user acceptance. In types of situation like these, LR-based methods, i.e. 

KLR and RLR, are appropriate methods. 

  

In summary, LR-based methods have simple optimization function than SVM-

based methods on performing comparable accuracy. Moreover, the transparency of LR-

based methods is supported by providing the membership probability naturally. 

Furthermore, LR-based methods are well known methods and have strong statistical 

foundation. However, as further as limited knowledge, the LR-based methods have less 

extensive research than SVM-based methods on imbalanced classification problem. 

Hence, in order to take the advantages of LR-based methods and to give further 

contribution on the research of LR-based methods, this thesis aims to further develop 

the LR-based methods for solving the classification problems, either general or 

imbalanced problem.  

 

1.2       PROBLEM STATEMENT AND MOTIVATION 

 

This thesis interests to conduct study on two main problems of KLR and RLR. The 

problems can be stated as follows:  

 

(i) Newton-Raphson (Rennie, 2003) is the most commonly method to solve the 

non-linear optimization problem of KLR and RLR. Newton-Raphson method 

iteratively solves the linear system of Newton-Raphson Update Rule (NRUR). 

As has been reported in literatures, however, the use of Newton-Raphson 

method for KLR and RLR has numerical problem that the huge Hessian matrix 

needs to be inverted (Lin et al., 2008; Zhu and Hastie, 2005). Due to the density 

of its matrices, their computation can be slow (Komarek, 2004; Karsmakers et 

al. 2007; Maalouf, 2009).  

(ii) General classifiers, such as SVM, KLR and RLR, were developed and evaluated 

on the assumption that the data has balanced class distribution (Japkowicz, 
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2000; Maalouf, 2009). However, in many real-world problems, it was faced that 

the data sets have imbalanced class distribution. The class imbalance problem 

corresponds to domains for which one class is represented by a large number of 

examples while the other is represented by only a few (Guo and Viktor, 2004; 

Japkowicz, 2000). In the case of binary classification, data sets are said to be 

imbalanced, if the number of negative instances are heavily larger than the 

positive ones (Akbani et al., 2004; Maalouf, 2009). Commonly, for two-class 

classification of imbalanced data set, the negative class is the notation for the 

majority class, while the positive class is the notation for the minority class. In 

imbalanced classification problems, the minority class is the class of primary 

interest. As has been reported in literatures of Kernel learning, it seems difficult 

for general classifier algorithms, even though SVM, to detect regularities within 

the minority class on imbalanced data problems (Akbani et al, 2004; Maalouf, 

2009). Therefore, they have good specificity, but poor sensitivity (Akbani et al., 

2004; Maloouf, 2003). King and Zeng (2001c) stated similarly that when non-

kernel of probabilistic method such as logistic regression, is used, it 

underestimates the probability of rare events, because it tends to be biased 

towards the majority class, which is the less important class. Recently, in 

relation to further development of KLR and RLR respectively, this thesis has 

confirmed the limitation performance of both general classification algorithms 

on imbalanced data sets. The report can be found in Chapter 4.  

 

The motivation of this research is described as follows: 

 

(i) Several methods have been proposed for solving the numerical problem of KLR 

and RLR. Detail analysis of those methods proposed will be reported in Chapter 

2. In the last decade, the use of Truncated Newton methods are the most 

proposed methods on applying KLR and RLR. However, so far, the success of 

Truncated Newton method in both algorithms has not been totally explored. 

Therefore, this thesis intends to contribute further explanation on the success of 

Truncated Newton for KLR and RLR specifically on improving the algorithm 

performance of these both LR-based methods.  
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(ii) For solving the imbalanced classification problem, a number of methods have 

been proposed in literatures of Kernel learning. Discussion on the limitation of 

those methods will be reported in detail, in Chapter 2.  Based on those methods 

proposed, in general, the research of imbalanced LR-based methods are not as 

many as the research of imbalanced SVM-based methods which have good 

accuracy performance. Furthermore, the imbalanced techniques used on LR-

based methods have led their accuracy performances for classification of 

imbalanced data sets that still require an improvement.  Hence, it is important to 

develop the effective imbalanced LR-based methods for solving the imbalanced 

classification problem of general LR-based methods. 

     

1.3 THE APPROACHES 

 

This research concerns on developing better general and imbalanced 

classification algorithms for KLR-NR and RLR-NR. Related to this concern, there are 

two main problems that must be handled in this thesis, as stated in the previous section. 

The approach for solving those problems can be described as follows: 

 

(i) In order to develop the simple and effective of general classification algorithms 

for KLR-NR and RLR-NR respectively, this research proposes the 

implementation of Truncated Newton method. Among other Truncated Newton 

LR-based method, the simplicity and the effectiveness of Truncated Regularized 

KLR (TR-KLR) (Maalouf et al., 2010) and TR Iteratively Re-weighted Least 

Square (TR-IRLS) (Komarek and Moore, 2005) have inspired this research. TR-

KLR is as accurate as, and much faster than, non-Linear SVM on small-to-

medium size data sets of non-linear classification problem. Meanwhile, TR-

IRLS is comparably accurate with, and faster than, Linear SVM on large size 

data sets of linear classification problem.  

In general, the use of Truncated Newton method typically consists of truncated 

inner algorithm and outer algorithm (Nash, 2000). In TR-KLR and TR-IRLS, 

the use of Truncated Newton includes Linear Conjugate Gradient (CG) method 

(Gilbert, 2006; Nash and Sofer, 1996; Shewchuk, 1994) and Iteratively Re-
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weighted Least Square (IRLS) procedure (Mc Cullagh and Nelder, 1989; 

Nabney, 1999; Hastie et al., 2001) for KLR and RLR respectively. 

In summary, the approaches for solving the numerical problem of KLR-NR and 

RLR-NR can be explained as follows: 

(a) It is necessary to keep the use of unconstrained optimization problem for 

KLR-NR and RLR-NR respectively. This optimization problem typically 

has simpler solution than the constrained ones.  

(b) It is also necessary to keep the use of Linear CG method, as the truncated 

inner algorithm of Truncated Newton method for KLR and RLR 

respectively. This method has faster computation in approximating the 

Newton’s solution.  

(c) Instead of IRLS procedure as used by TR-KLR and TR-IRLS, this approach 

uses Newton-Raphson method as the outer algorithm of Truncated Newton 

method. Newton-Raphson and IRLS are equivalent method for KLR and 

RLR. In addition, Newton-Raphson method is mathematically simple, 

because IRLS procedure is a representation of Newton-Raphson method. 

The use of Truncated Newton method for solving the numerical problem of 

KLR-NR and RLR-NR algorithm respectively results in proposed Newton TR-

KLR (NTR-KLR) and proposed Newton TR RLR (NTR-LR) algorithm. 

Because of the equivalency between Newton-Raphson method and IRLS 

procedure, the accuracy performance of both proposed classifier can be expected 

to have similar performance for TR-KLR and TR-IRLS respectively. In 

addition, both proposed algorithms can be seen as the Newton version of TR-

KLR and the Newton version of TR-IRLS algorithm. Hence, both proposed 

algorithms can be used to contribute further explanation on the success of 

Truncated Newton method in TR-KLR and TR-IRLS respectively.  

Moreover, the development of both proposed algorithms can be seen as 

preliminary representation of idea stated by Komarek (2004) that whether the 

behaviour of Newton-Raphson and Linear CG combination would be identical 

to IRLS and Linear CG combination. In specific, development of proposed 

NTR-KLR algorithm can be seen also as preliminary representation of Kernel 

version to the Trust Region Newton RLR that was proposed by Lin et al. (2008). 
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(ii)    In order to develop the effective imbalanced classification algorithms for NTR- 

      KLR and NTR-LR respectively, this thesis proposes the use of Modified 

AdaBoost method (with some adaptations). This is motivated by the success of 

imbalanced SVM-based method i.e. Adaptive Boosting SVM (AdaBoostSVM) 

(Li et al., 2008) with the use of this imbalanced technique. AdaBoostSVM has 

much better performance than SVM on solving the imbalanced classification 

problem. The use of AdaBoost-based method (Freund and Schapire, 1997) 

typically contains ensemble method and component classifier. In 

AdaBoostSVM, the ensemble method used is Modified AdaBoost and the 

component classifier is SVM with Radial Basis Function (RBF) Kernel 

(RBFSVM). 

Detail strategies for solving the imbalanced classification problem of general 

LR-based methods are described in the following: 

a. It is necessary to keep the use of Modified AdaBoost (with some 

adaptations) as the ensemble method of proposed imbalanced LR-based 

methods. Boosting mechanism of Modified AdaBoost forces the component 

classifiers to focus on the misclassified samples from the minority class by 

increasing the weights of training data. This prevents the minority class from 

being consider as noise in the majority class and be wrongly classified on 

imbalanced problem. 

b. Instead of SVM, this approach uses NTR-KLR and NTR-LR respectively as 

the component classifier of proposed imbalanced LR-based methods. As 

proposed previously, NTR-KLR and NTR-LR are representation of KLR-

NR and RLR-NR with Truncated Newton method respectively. The 

similarity of loss function among NTR-KLR, NTR-LR and SVM, has led 

these classifiers can be expected to have comparable accuracy. In addition, 

with the use of unconstrained optimization problem, NTR-KLR and NTR-

LR have simpler solution of optimization problem than SVM. 

 

The implementation of adapted Modified AdaBoost ensemble method for 

solving the imbalanced classification problem of NTR-KLR and NTR-LR component 

classifier respectively are called as Adaptive Boosting NTR Weighted KLR (AB-

WKLR) and AB NTR Weighted RLR (AB-WLR) algorithm. As further as limited 
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knowledge, Nishida and Kurita (2006) were the first researchers who applied Boosting 

method, i.e. LogitBoost, on sparse version of KLR, i.e. Import Vector Machine (IVM) 

(Zhu and Hastie, 2005), While Huang et al. (2005) was the first to employ classic 

AdaBoost method on Logistic Regression (LR) that used weighted least-squares as the 

objective function and batch gradient descent algorithm for its optimization. 

 

Since there is similarity loss function between component classifiers used, the 

accuracy performance of the proposed algorithms can be expected as well as 

AdaBoostSVM in classifying the imbalanced data sets. Moreover, the comparable 

accuracy only requires to be obtained by the simple solution of unconstrained 

optimization problem.  

 

1.4       OBJECTIVES AND SCOPES 

 

The main objective of the research is to develop the simple and effective 

classification algorithms using LR-based methods.  

The research objective can be stated in detail as follows: 

 

(ii) To develop general classification algorithms, i.e. NTR-KLR and NTR-LR 

(iii) To develop imbalanced classification algorithms, i.e. AB-WKLR and AB-

WLR 

 

The scope of this research covers the following: 

 

(i) This thesis considers 2-class classification and the data sets used mostly are 

imbalance. 

(ii) Proposed general classification algorithms are developed based on KLR-NR 

and RLR-NR algorithm respectively, while proposed imbalanced classification 

algorithms were developed based on NTR-KLR and NTR-LR algorithm 

respectively. 

(iii)  Proposed NTR-KLR and proposed AB-WKLR are applied on small-to-

medium size of data sets, while proposed NTR-LR and proposed AB-WLR are 

employed on large size data sets. 
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1.5       CONTRIBUTIONS  

 

The primary contributions of this research are as follows: 

 

(i) NTR-KLR and NTR-LR algorithm were developed. Both proposed algorithms 

contribute to the study of KLR-NR and RLR-NR respectively, by providing the 

simple and effective general classification algorithms for KLR-NR and RLR-

NR respectively with the use of Truncated Newton method. Both proposed 

algorithms are also provided specifically to conduct further explanation on the 

success of Truncated Newton method in TR-KLR and TR-IRLS respectively, 

since both proposed algorithms are equivalent to TR-KLR and TR-IRLS 

respectively. In general, both proposed algorithms contribute to the general 

classification research of LR-based methods. 

(ii) AB-WKLR and AB-WLR algorithm were developed. Both proposed 

algorithms contribute to the research of KLR-NR and RLR-NR with Truncated 

Newton method respectively, by providing the simple and effective imbalanced 

classification algorithms for NTR-KLR and NTR-LR respectively with the use 

of adapted Modified AdaBoost method. In general, both proposed algorithms 

contribute to the imbalanced classification research of LR-based methods. 

 

1.6       OUTLINE OF THE THESIS 

 

This thesis is organized as follows. Chapter 2 gives extended reviews of TR-

IRLS, TR-KLR, AdaBoost algorithms for SVM and some basic theories of numerical 

experiment. Chapter 3 describes the proposed algorithms and the research methodology. 

In chapter 4, several numerical results of experiment are reported and discussed. At the 

end, conclusions for this research and recommendations for the further work are given 

in chapter 5. 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

This chapter presents the reviews of General and Imbalanced Classification 

Research, including TR-IRLS, TR-KLR, Adaptive Boosting (AdaBoost) algorithms for 

SVM and some basic theories on conducting numerical experiment. These reviews are 

required as fundamental theory in order to propose new algorithm of KLR and RLR, on 

both the algorithmic level and in dealing with the imbalanced problems. 

 

2.2 CLASSIFICATION  

 

Globally, data mining tasks are divided into two categories, namely supervised 

and unsupervised task. As mentioned in Chapter 1, classification is a supervised data 

mining task on predicting categorical response.  

 

 In the last decade, there are many classification methods that have been 

proposed on general and imbalanced data assumption.  Among other classification 

methods, the maturity of LR-based methods has motivated this thesis for exploring 

these methods as the simple and effective classifier to be widely used in data mining 

application, either on general or imbalanced data sets.  

 

 In order to develop better performance of general and imbalanced classification 

algorithms for LR-based methods i.e. KLR and RLR, it is important to study the 

limitation of related previous research. In the following, summary of the latest research 

of LR-based methods in relation with general and imbalanced data are reviewed. In 
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relation with imbalanced researches of LR-based methods, the imbalanced researches 

SVM-based methods also are reviewed in summary.  

 

2.2.1 GENERAL CLASSIFICATION  

   

Several methods have been proposed for solving the numerical problem of LR-

based method. Keerthi et al. (2005) suggested the popular sequential minimal 

optimization (SMO) algorithm for KLR by developing dual optimization problem. Zhu 

and Hastie (2005) offered the Import Vector Machine (IVM) algorithm in taking the 

advantage of SVM sparsity into Iteratively Re-weighted Least Square (IRLS) procedure 

(Hastie et al., 2001; Mc Cullagh and Nelder, 1989; Nabney, 1999) for KLR. 

Karsmakers et al. (2007) incorporated a fixed-size approach based on the number of 

support vectors with the method of alternating descent for solving multi-class KLR 

problem by using Least Square SVM (LS-SVM) (Suyken and Vandewalle, 1999; 

Suyken et al., 2000) frame work and IRLS  procedure. For large scale RLR problem, 

Zhang et al. (2003) used non-linear Conjugate Gradient (non-linear CG) on the targeted 

text classification tasks. Komarek and Moore (2005) proposed Truncated Regularized 

IRLS (TR-IRLS) for RLR that modified the IRLS procedure using Linear CG (Nash 

and Sofer, 1996; Shewchuk, 1994) method. In 2007, Truncated Newton Interior Point 

was proposed by Koh et al. (2007) for solving the large scale problem on RLR. Lin et 

al. (2008) proposed Trust Region Newton (TRN) method that employs constrained CG 

method to approximate the Trust Region solution of RLR. Maalouf et al. (2010) then 

suggested Truncated Regularized KLR (TR-KLR) algorithm that combine TR-IRLS 

with Kernel method for solving non-linear classification problem. 

 

 The aforementioned methods have a restriction. SMO for KLR (Keerthi et al., 

2005), fixed size of KLR with LS-SVM frame work (Karsmaker et al., 2007) and 

Truncated Newton interior point (Koh et al., 2007) need to be solved by previously 

reformulating the unconstrained optimization problem as the constrained one. IVM 

(Zhu and Hastie) has complex solution, specifically when employ to data set which has 

large number of attributes. The inner algorithm of Truncated Newton method in Trust 

Region RLR (Lin et al., 2008) is constrained Linear CG. Hence, it has also complex 

solution. The method which was proposed by Zhang et al. (2003) applied the 
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combination of Newton-Raphson method with non-linear CG method which is slower 

than Linear CG method. The outer algorithm of Truncated Newton method in TR-KLR 

(Maalouf et al., 2010) and TR-IRLS (Komarek and Moore, 2005) is IRLS procedure. It 

is required previously to restate the Newton-Raphson formula as the Weighted Least 

Square (WLS) problem. Based on aforementioned methods, in the last decade the use of 

Truncated Newton methods are the most proposed methods on applying KLR and RLR 

respectively. However, the effectiveness of Truncated Newton method for these LR-

based methods has not been totally explored, specifically on improving their algorithms 

performances. 

 

2.2.2 IMBALANCED CLASSIFICATION  

 

 General classification algorithm, such as SVM, TR-KLR and TR-IRLS were 

developed under balanced data assumption, such that they have limited performance 

when applied on imbalanced data sets which is the most type of data in many real-world 

problems. Examples of imbalanced problem include the oil spills detection in satellite 

radar images (Kubat et al., 1998), micro array data clustering (Pearson et al., 2004), 

document categorization (del Castillo and Serrano, 2004), word mispronunciation 

(Busser and Daelemans, 1999), credit risk assessment (Lai et al., 2006; Yu et al., 2006), 

credit card fraud detection (Chan and Stolfo, 1998; Fawcett and Provost, 1997), queues 

series (Tsoucas, 1992), international conflicts (King and Zeng, 2001a), state failure 

(King and Zeng, 2001b), tornadoes detection (Trafalis et al., 2003), landslides 

susceptibility (Bai et al., 2008; Eeckhaut et al., 2006), telecommunication equipment 

failures (Weiss and Hirsh, 2000), train derailments (Quigley et al., 2007), and other 

imbalanced problems.  

 

 The latest research on data mining in relation to imbalanced data can be mapped 

in general into Algorithm Level Techniques, Data Level Techniques and Kernel-based 

Techniques (Maalouf, 2009). The extensive research of Kernel-based techniques in the 

last decade, have inspired this thesis to study the effectiveness and the limitation of 

imbalanced techniques used.    
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A number of methods have been proposed in literatures of Kernel learning in 

dealing with the imbalanced problem (Chawla, 2004). Yan et al. (2003) proposed the 

SVM ensembles method that is another example of the use of advanced sampling in 

SVM. Tang et al. (2009) proposed the Granular Support Vector Machines-Repetitive 

Under-sampling (GSVM-RU) algorithm that combines classification algorithm of 

Granular Support Vector Machines (GSVM) (Tang et al., 2005) and under-sampling 

method (Kubat and Matwin, 1997). Wu and Chang (2005) proposed an algorithm of 

Kernel Boundary Aligment (Cristianini et al., 2006) that adjusts the kernel matrix to fit 

the training data. Akbani et al. (2004) combined SMOTE (Synthetic Minority Over-

sampling Technique) (Chawla et al., 2002) and Different Cost (Veropoulos, 1999) as 

the SMOTE Difference Cost (SDC) for SVM, Li et al. (2005 and 2008) designed the 

strategy of parameter adjusting in AdaBoost algorithm for SVM specifically, i.e. 

AdaBoostSVM, Wang et al. (2010) proposed a new loss function for SVM to adjust 

SVM solution by taking into account the sample sizes of the two class, Maalouf and 

Trafalis (2011) suggested Rare Event Weighted Kernel Logistic Regression (RE-

WKLR) algorithm that combines TR-KLR (Maalouf et al., 2010), weighting and bias 

correction. Meanwhile, in probabilistic non-kernel methodology, King and Zeng 

(2001a) proposed Rare Event Logistic Regression (RE-LR) that combines weighting 

and bias correction, and Owen (2007) developed Infinitely Imbalanced Logistic 

Regression (IILR) by reformulating the likelihood unconstrained optimization problem 

as the Gaussian Mixture Model (GMM) optimization problem.  

 

 Most of those aforementioned methods were applied for the imbalanced SVM-

based methods which resulted in good accuracy performance for classification on 

imbalanced data sets. However, these methods typically need to be solved by 

constrained optimization problem which has complex solution. IILR (Owen, 2007) has 

also complex optimization problem. RE-WKLR (Maalouf and Trafalis, 2011) and its 

non-kernel version i.e. RE-LR (King and Zeng, 2001a) are the imbalanced LR-based 

methods. Both classifiers keep the use of unconstrained optimization problem which 

only requires to be solved by simple solution. However, the imbalanced techniques used 

have led their accuracy performances for classification of imbalanced data sets that still 

require to be improved.  Furthermore, based on aforementioned methods in general, the 
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number of research of imbalanced LR-based methods are not as many as that of 

imbalanced SVM-based methods. 

 

2.3  RLR-IRLS AND KLR-IRLS WITH )1,0(y  

 

Logistic Regression (LR) is the fundamental method of classification which is 

predictive task whose qualitative labels. Supposing there are n pairs of training data (xi, 

yi), where xi is input vector with dimension d (number of features) for i
th

 instance and 

corresponding label yi. Considering a binary or two-class classification problem yi 

, for every instance xi, the label is either yi =0 or yi=1, i=1,2.., n. The instance xi 

belongs to class 1 with probability p(yi=1|xi) and it belongs to class 0 with probability 

p(yi=0|xi) = 1 - p(yi=1|xi) (Hosmer and Lemeshow, 2000). 

 

In binary LR, it is required to model the posterior probability of two classes via 

linear functions (Hastie et al., 2001). 

 

                                                         βXx iif                      (2.1) 

 

where  denotes the coefficient vector with size (dim+1) x 1, including the bias term, 

while Xi = [xi 1]. 

The output of linear function, f(xi), can be interpreted as an estimate posterior 

probability of two class by the use of logit transformation  to eq. (2.1), 
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          ix1  = 1 - p(yi=1|xi,) 

              = p(yi=0|xi,) 
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Logistic response function on eq. (2.3) maps the values of linear model, f(x), to the 

range [0,1] as can be displayed on Fig. 2.1. 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
=

1
/(

1
+

e
x
p
(-

f(
x
))

f(x)
 

 

Figure 2.1: Logistic Response Function 

 

Moreover, the logistic response function implicitly places f(x) = 0 as a separating 

hyperplane between class 0 and class 1, and the classification rule will be described in 

subsection 2.3.1. 

 

2.3.1 Regularized optimization function of RLR and KLR 

 

For those pairs (xi, yi) where yi=1, the conditional probability is  ix , and for 

those pairs where yi=0, the conditional probability is  ix1 . Therefore, (xi, yi) is 

assumed to follow Bernoulli distribution (Hosmer and Lemeshow, 2000). 
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LR models are usually fit by Maximum Likelihood Estimation (MLE) 

(Garthwaite et al., 2002, Hogg, 1994) method. Since the observations are assumed to be 

independent, the likelihood function is obtained as the product of the terms given in eq. 

(2.6) as follows; 

 

        ii y

i

n

i

y

il





1

1

1 xxβ                 (2.6) 

 

The principle of maximum likelihood states that estimate of  is the value which 

maximizes the expression in eq. (2.6). MLE estimates of LR can be found by 

maximizing the log-likelihood optimization function and set its derivatives to zero. 

However, it is mathematically easier to work with the log of eq. (2.6). This expression, 

the log likelihood, is defined as, 
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Over-fitting training data may arise in LR, especially when the data are very high 

dimensional and/or sparse (Zhang and Yang, 2003). Quadratic regularization (Hoerl and 

Kennard, 1973) is one of most popular methods to control the bias-variance trade-off 

(Geman et al., 1992), by introducing a penalty on large fluctuations of MLE estimate. 

Hence, in order to avoid the over-fitting problem and to obtain better generalization, it 

is necessary to add quadratic regularization to the log likelihood function such that we 

have regularized log likelihood. (Maalouf, 2009; Park and Hastie, 2008) 
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RLR 

 

In RLR, the regularized optimization problem can be stated as (Lee and Silvapulle, 

1988; Le Cessie, S. and Van Houwelingen, 1992). 
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TTL

2
exp1log.


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where : 

y is vector of labels with dimension n x 1 

 is vector of coefficient with dimension (d+1) x 1, including the bias term.  

X is matrix [x 1]  

  Xβx f  

             = regularization parameter ( > 0), where bias term is not regularized  

 

The Hessian matrix of eq. (2.8) is positive definite, so the regularized function of RLR 

is convex optimization function (Boyd and Vandenberghe, 2004; Lin et al., 2008). 

Hence, there is only one solution which is global minimum. 

The loss function or the deviance, DEV, for RLR is given by formula  

 

            ββ lDEV log2  

                     βL2        (2.9) 

 

KLR 

 

The optimization function of KLR can be obtained by kernelizing the optimization 

function of RLR on eq. (2.8), based on the Representer Theorem (Cawley and Talbot, 

2005; Cawley and Talbot, 2008; Scholkopf et al., 2002); 

 

                      αxβ φ                (2.10) 
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where  x  is a function to map the original data x  in input space into feature space, in 

order to convert the non-linear relation into linear relation. 

 

 

 

Figure 2.2: Kernel trick 

 

Source: Nugroho et al. (2003) 

 

The dot product in feature space can be expressed in terms of input vectors 

through the kernel function. The Kernel function is a transformation function that must 

satisfy Mercer‟s necessary and sufficient conditions (Mercer, 1970). A kernel function 

must be expressed as inner product and must be positive semi-definite. The decision 

function (logit model) of KLR, f(x), can be expressed in the form,  

 

                     xx  Tf   

                             αxx 
T

  

                          Kα                (2.11) 

 

where K is a Kernel matrix. Each cell of Kernel matrix, kij, is an inner product between 

individuals i and j that holds a measure of similarity (Tenenhaus et al., 2007). 

 

By substituting eq. (2.10) and eq. (2.11) on eq. (2.8), the regularized 

optimization function of KLR can be defined as (Katz et al., 2006; Maalouf et al. 2010). 

 

K(x,x) 
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         αKααKαKy1α 211
2

exp1log. TTL


                     (2.12) 

 

where : 

y is vector of label with dimension n x 1 

 is vector of coefficient with dimension (d+1) x 1, including the bias term.  

K1 is matrix [K 1]  

  αKx 1f  

 = regularization parameter 

 K2 is matrix 








00

0K
(the bias term is not regularized) 

K is kernel matrix of size n x n.  Two of the most popular kernel functions are 

Linear kernel and RBF kernel.  

 

Similar to RLR, the regularized function of KLR is convex optimization function 

(Cawley and Talbot,  2008), with the deviance, DEV, (Maalouf et al., 2010). 

 

      αα lDEV log2  

                   αL2                            (2.13) 

 

Minimizing the deviance is equivalent to maximizing the log-likelihood 

(Hosmer and Lemeshow, 2000). As the non-linearity of MLE estimates, minimizing the 

deviance of RLR and KLR requires numerical method, such as the Iteratively Re-

weighted Least Squares (IRLS) method, in order to find MLE estimates.  

Once the optimal MLE estimates for RLR and KLR are found, classification of given 

instance, xi, is carried according to the following rules; 

      0or   0 if  ,1
^^^


iii

pfy x  

                         otherwise  ,0                 (2.14) 
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2.3.2 IRLS method for RLR and KLR 

 

The IRLS method is an algorithm that iteratively solves the linear system of 

Weighted Least Squares (WLS) problem. The IRLS method is a representation of 

Newton-Raphson method (Hastie et al. 2001; Nabney, 1999; Roth, 2001); 

 

 ttt
sθθ  )()1(

 

 

 )(1)()( )(        ttt
gHθ

                               (2.15) 

 

 

where t  is the iteration index, while g and H are the gradient and the Hessian which is 

achieved by differentiating the regularized NLL function with respect to . 

 

RLR with IRLS method (RLR-IRLS) 

 

The IRLS method for RLR can be defined as (Hastie et al., 2001; Park et al., 

2008); 

 

                                     ttt
sββ  )()1(  

                                             )(1)()( )( ttt
gHβ

          

                                              

 
 
  





























β

β

ββ

β
β

LL
T

t

1
2

)(

)(
  

                                 ttTtTt λ βpyXIXVXβ 
1

           (2.16)  

    

where V = diag(p.(1-p)) with size n x n 

 

Such that the linear system of WLS problem on using IRLS method for RLR can be 

written as; 

 

                              ttttTttT
pyVXβVXβIXVX 

 11                   

            ttT
ZVX                (2.17) 
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where Z is known as adjusted response. 

 

KLR with IRLS method (KLR-IRLS) 

 

The IRLS method for KLR can be expressed as (Cawley and Talbot, 2008; Roth, 

2001;); 

 

                 ttt
sαα  )()1(  

                           )(1)()()1( )( tttt
gHαα

           

                            
 

 
  





























α

α

αα

α
α

LL
T

t

1
2

)(
                        

                        ttTtTt λ αKpyKKKVKα 21

1

211 


      (2.18) 

 

Therefore, the linear system of WLS on using IRLS method for KLR can be stated as; 

 

                              ttttTttT
pyVαKVKαKKVK 

 1

11

1

211                  

                  ttT
ZVK1               (2.19) 

 

The Hessian matrix of RLR and KLR are dense, such that the iterative 

computation could become unacceptably slow. It is the numerical problem on using the 

IRLS method for RLR and KLR in order to find the WLS solution. (Komarek, 2004; 

Maalouf, 2009) 

 

2.4 RLR-IRLS AND KLR-IRLS WITH TRUNCATED NEWTON METHOD  

 

For solving large scale data of nonlinear optimization problem, such as MLE, 

Truncated-Newton method is a suitable method. Truncated Newton method contains a 

doubly iterative method: an outer iteration and an inner iteration. Komarek and Moore 

(2005) was the first to propose the implementation of Truncated Newton, by Linear 

Conjugate Gradient (Linear CG) approach, as the inner iteration, to approximate the 

WLS solution on using IRLS method, that as the outer iteration, for search the MLE of 

RLR. As mentioned earlier, the proposed method is called TR-IRLS. The early stopping 
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of Linear CG iteration is referred as the Truncated Newton method with accompanying 

convergence guarantees (Komarek and Moore, 2005; Lewis et al., 2006). Inspired by 

the effectiveness of TR-IRLS for solving large scale data of classification problems, 

Maalouf et al. (2010) then proposed to combine the speed of TR-IRLS with the 

accuracy generated by the use of kernel method for solving non-linear classification 

problems that resulted in TR-KLR.  

 

Linear CG method is almost always used as an inner iterative algorithm in a 

Truncated Newton method, such as TR-IRLS or TR-KLR. CG method is an optimal 

iterative method for solving a positive-definite linear system AP = b. It means that the 

i
th

 iteration of Pi minimizes the associated quadratic function,   bPAPPP
TTQ 

2

1
 

(Nash, 2000). Recent studies have showed that the Conjugate Gradient (CG) method 

provides better results to estimate RLR model than any other numerical methods 

(Malouf, 2002; Minka, 2003). CG only requires computation of matrix-vector products 

such that simplifying the computation. The use of CG method has an advantage that it 

guarantees convergence in at most n steps (Lewis et al., 2006). Linear CG is the 

application of CG to find the optimal value of quadratic form. The numerical problem 

of IRLS method for RLR and KLR, respectively, can be solved by the use of Linear CG 

method to quadratic form of WLS linear system (Komarek and Moore, 2005; Maalouf 

et al. 2010).  

 

In general, TR-IRLS and TR-KLR algorithm respectively contains two loops. 

First algorithm represents the outer loop (main algorithm) that finds the MLE by using 

IRLS method. The main algorithm is terminated when the relative difference of 

optimization function is no larger than a specified threshold, . Second algorithm 

represents the truncated inner loop that solves the linear system of WLS problem by 

using the Linear CG method to approximate the WLS solution on first algorithm. This 

algorithm is terminated when the square residual is no greater than a specified 

threshold,   
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2.4.1 TR-IRLS: RLR-IRLS with Truncated Newton method 

 

In TR-IRLS, solving the linear system of WLS problem on eq. (2.17) for RLR-

IRLS by using the approach of Linear CG, as the truncated inner algorithm, is 

equivalent to minimizing the quadratic form, 

 

                  
             ttTtTttTtT

ZVXββIXVXβ
111

2

1 
                   (2.20) 

            

For Algorithm 2.1.1 (RLR-IRLS), the maximum number of iterations for RLR-NR is set 

to 30, while for Algorithm 2.1.2 (Linear CG for RLR-IRLS), the maximum number of 

iterations for Linear CG is set to 200 iterations. Moreover, threshold of the difference of 

optimization function values for RLR-NR in Algorithm 1 is set to 0.01 ( 1 and the 

convergence threshold for Linear CG in Algorithm 2 is set to 0.005 ( 2 . The success to 

control a trade off between convergence speed and accuracy has been shown by the use 

of these default parameter values. (Komarek and Moore., 2005; Maalouf, 2009). 

 

Algorithm 2.1 TR-IRLS  

 

Algorithm 2.1.1. RLR-IRLS (Outer loop) 

Input : X, y,  

Initialize : 


, DEV
(1) 

Output : 
 

Do while 
   

  11

1








t

tt

DEV

DEVDEV
 

     For t = 1 to max RLR-IRLS iterations 

    (1) Compute probability: p
(t)

 = 1./(1+exp(-X
(t)

))
 

    (2) Compute variance: V
(t)

 = diag(p
(t)

.(1-p
(t)

))
 

    (3) Compute WLS solution, (X
T
VX+I)


=(X

T
VZ) 

    (4) Compute DEV
(t+1)

 

    End For 

where 1 =0.01,  max RLR- IRLS iterations = 30  
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Algorithm 2.1.2 Linear CG for  RLR-IRLS (Truncated inner loop) 

Input : A= (X
T
VX+I) and b=(X

T
VZ) 

Initialize: 


, r
(1)

=b, d
(1)

= r
(1)

  

Output : 


 

Do while r
T
r > 2  

    For t=1 to max Linear CG iterations 

    (1) Compute the optimal step length: a


 = r
 T (t)

 r
(t)

/ (d
T(t)

 
 
A d

(t)
) 

    (2) Update the approximate solution: 


  = 


 + a


 d
(t)

 

    (3) Update the residual: r
(t+1)

 = r
(t)

 – a
(t)

 A d
(t)

 

    (4) Update A-Conjugacy enforcer: c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r

(t)
 

    (5) Update the search direction: d
(t+1)

  = r
(t+1)

 + c
 (t)

  d
(t)

 

    End For 

where 2 =0.005, max Linear CG iterations = 200  

 

2.4.2 TR-KLR: KLR-IRLS with Truncated Newton method 

 

In TR-KLR, solving the linear system of WLS problem in eq. (2.19) for KLR-

IRLS by using the approach of Linear CG is equivalent to minimizing the quadratic 

form, 

 

                
             ttTtTttTtT

ZVKααKKVKα 1

11

211

1

2

1 
                (2.21)   

  

Except the value of 1 all setting of TR-KLR are similar to TR-IRLS algorithm above. 

For TR-KLR, threshold of the difference of optimization function values in Algorithm 

2.2.1 is set to 2.5 ( 1 The use of these default parameter values have shown adequate 

accuracy and also maintained good convergence speedHowever, to obtain better 

accuracy in some cases, it may be advisable to make this threshold smaller(Maalouf et 

al., 2010) 
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Algorithm 2.2 TR-KLR  

Algorithm 2.2.1 KLR-IRLS (Outer loop) 

Input: X, K1, y, 

Initialize:


, DEV
(1)

, 

Output : 
 

Do while 
   

  11

1








t

tt

DEV

DEVDEV
 

     For t = 1 to max KLR-NR iterations 

    (1) Compute probability: p
(t)

 = 1./(1+exp(y.K1
(t)

))
 

    (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))
 

    (3) Compute WLS solution : (K1
T
VK1+K2)

(t+1)
=(K1

T
VZ) 

    (4) Compute DEV
(t+1)

 

    End For 

 

where 1 =2.5, max KLR- NR iterations = 30  

 

Algorithm 2.2.2 Linear CG for  KLR-IRLS (Truncated inner loop) 

Input : A= (K1
T
VK1+K2) and b=(K1

T
VZ) 

Initialize: 


, r
(1)

=b, d
(1)

= r
(1)

  

Output : 


 

Do while r
T
r > 2  

    For t=1 to max Linear CG iterations 

    (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

 
 
A d

(t)
) 

    (2) Update the approximate solution : 


  = 


 + a


 d
(t)

 

    (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 A d
(t)

 

    (4) Update A-Conjugacy enforcer : c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r

(t)
 

    (5) Update the search direction : d
(t+1)

  = r
(t+1)

 + c
 (t)

  d
(t)

 

    End For 

 

where 2 =0.005, max Linear CG iterations = 200 
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2.5 ADAPTIVE BOOSTING METHOD 

 

AdaBoost (Freund and Schapire, 1997) is the most popular Boosting method 

(Freund, 1993; Freund, 1995; Schapire, 1990; Schapire, 1992). Beside Bootstraap 

Agregating (Bagging) (Breiman, 1998), Boosting is the commonly used ensemble 

method (Opiz and Maclin, 1999), which is one of the major recent developments in 

machine learning and data mining community for classification task (Friedman et al., 

2000). Ensemble method is a technique to combine the moderate predictions of the 

multiple component classifiers to produce a single classifier (an ensemble) which has 

generally highly accurate (strong) prediction such that better, i.e. low bias and variance 

(Bauer and Kohavi; Friedman et al. 2000; Oza, 2001; Oza and Russel, 2001; Schapire et 

al., 1998), than any of the individual classifier making up the ensemble. AdaBoost 

creates an ensemble, collection of component classifiers, by maintaining a set of 

weights over training data and adaptively adjusting these weights after each Boosting 

iterations (Li et al., 2008). 

 

 Supposing there are n pairs of training data (xi,yi) with  1,1iy , AdaBoost 

combines many component classifiers to develop an ensemble as follows (Zhou and 

Wei, 2009); 

 

       xx t

T

t

t hF 



1

                (2.21) 

 

where  ht(x) is the weighted prediction of component classifier,    1,1ith x  

           t is the importance factor indicating the contribution of corresponding 

component classifier to an ensemble (t >0) 

T is the number of AdaBoost iterations, i.e. the number of component classifiers 

in ensemble  

 

Moreover, given the instance xi, predictions of AdaBoost classifier can be found by 

 

            iipred Fsigny xx                (2.22) 
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Thus, the classification rule of AdaBoost classifier is determined by a weighted 

majority vote of T component classifiers that have moderate total accuracy values, 

where each t is a weight assigned to each ht(x). The voting process removes the 

uncorrelated error of moderately accurate component classifiers such that it leads to 

better generalization performance of AdaBoost. Moderately accurate component 

classifiers often have larger diversity (larger disagree with each other or lower 

correlated error) than those component classifiers which are very accurate (Li et al., 

2008; Shin and Soghn, 2005). 

 

 The AdaBoost algorithm estimates t in a stepwise manner. Detail algorithm of 

AdaBoost is given below (Freund and Schapire, 1997). 

 

Algorithm 2.3 AdaBoost 

Input : x, y 

Initialize: The weight of training samples wt(i), where w1(i)= 1/n; i = 1,2,..n 

Output : the class prediction,    







 

T

t

ttpred hsigny xx   

Do while (t < ) 

(1) Get the model, ft, and then get the weighted prediction, ht, by performing 

component classifier on weighted training data 

(2) Calculate the weighted error of ht :    



n

i

ttt hyiw
1

i , x   

and choose ht with minimal error 

(3) Set the weight of ht: 








 


t

t
t






1
ln

2

1
 

(4) For i = 1 to n 

       Update the weight of training samples:  

                     
     

   








itt

itt

t

t
t

hy

hy
x

Z

iw
iw

x

x

i

i

1
 ,exp

    ,exp




 

                        Zt  is normalization factor 

    End For 

      End For      
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As mentioned earlier in this section, AdaBoost maintains and adaptively adjust a 

set of weights over training data after each Boosting iterations. Hence, component 

classifier should be designed for taking into account the weight distribution in training 

process. All the weights wt(i) are kept as probability distribution such that data are 

processed according to a probability distribution.  

 

In practice, there are two ways to process training data and the corresponding 

probability distribution (Zhou and Wei, 2009): 

 

(i) A component classifier can be trained using corresponding weights on 

training data directly by using weighting technique. 

(ii) Corresponding weights can not be applied on algorithm of component 

classifier directly, so that re-sampling is used to bypass the difficulty. The 

training data are re-sampled according to the probability distribution, and 

these re-sampled data are used to train a component classifier. 

 

Algorithm of AdaBoost can be described as follows: at the beginning of 

iteration, component classifier is trained by using weight distribution on training data. 

Initially, weights of training data are set equally to 
n

1
 (w1(i)). The weighted prediction 

of component classifier (ht) that has minimal weighted error (t) is selected. 



        



n

i

ttt hyiw
1

i , x                 (2.23) 



The weighted error should be slightly less than 0.5 (50%).  Weight (wt(i)) is added in t, 

when samples are misclassified   0itihy x . The importance of component classifier 

is then evaluated by 

 

    
t

t

t








1
ln

2

1
               (2.24) 
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Sincet should be slightly less than 0.5, t will be greater than zero. 

 

 In AdaBoost algorithm, the weights, wt(i), is updated using the rule: weights of 

training samples which are misclassified   0itihy x  by current component classifier 

will be increased while weights of training data which are correctly classified 

  0itihy x  will be decreased. The formula to update weights can be written as, 

 

    
    

t

ititt

t
Z

hyiw
iw

x


exp
1                          (2.25) 

 

where  



n

i

ititit hywZ
1

exp( x  is the normalization factor such that wt+1(i) is a 

probability distribution,   

n

i

t iw 11 . AdaBoost processes component classifier 

repeatedly until T iterations. Finally, an ensemble is combined linearly by these trained 

component classifiers with corresponding weights. 

 

The effect of weight update rule in AdaBoost algorithm is to reduce the training 

error of an ensemble during Boosting iterations (Iyer, 1999). It can be shown that the 

training error drops exponentially (Schapire and Singer, 1999): 

 

                                



n

i

t

n

i

iiiipred ZFy
n

yyi
n 11

exp
1

:
1

xx             (2.26) 

 

 

By unravelling the update rule in eq. (2.25), it is found that, 

 

                            

 




















T

t

t

T

t

itti

Zn

hy

1

1

exp x

 

 

                            
  







T

t

t

ii

Zn

Fy

1

exp x
               (2.27) 
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Moreover, if  ipredi yy x  then   0iiFy x  implying that    1exp  ii Fy x , thus 

 

 

             iiiipred Fyyy xx  exp(               (2.28) 

 

 

The inequality in eq. (2.26) can be described by combining eq. (2.27) and eq. (2.28) 
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In order to minimize training error rapidly, eq. (2.26) suggests that ht and t should be 

chosen on round t to minimize the normalization factor  
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Figure 2.3: Training error of AdaBoost 
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(a) Finding t  

 

We attempt to minimize Zt by finding t as follows, 
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The smaller error of ht (t), the larger the importance of component classifier 

(t) (Fig. 2.4). This indicates that a component classifier that has slightly “stronger” 

discriminating power plays a more important role in the ensemble for making decision. 
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Figure 2.4: Plot  vs 
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(b) Choosing ht 

 

Zt is minimized by selecting ht with minimal weighted error (. Justification of 

weighted error minimization can be described from eq. (2.29) as follows 
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By finding t as has been described above, the upper bound on training error (eq. 2.26) 

is simplified to 
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where t measures how much better the ht‟s prediction compare to the random, that is 

tt  
2

1
. This property means that AdaBoost is able to improve in efficiency if any 

component classifiers have weighted error slightly lower than the worst case error 

t
2

1
. 

 

2.6 ADABOOST ALGORITHM FOR SVM 

 

Analysis of boosting techniques shows that Boosting is tied to the choice of 

component classifier (Joshi et al., 2000; Joshi et al., 2001). This section describes two 

AdaBoost algorithms that are specifically designed for Support Vector Machine (SVM) 

with RBF kernel parameter, i.e. AdaBoostSVM and WwBoost-SVM. Both algorithms 

are the foundation on developing proposed AdaBoost algorithms for DTR-KLR and 

DTR-LR respectively.  
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SVM was developed from the theory of Structural Risk Minimization (Vapnik, 

1998 and 2000) that has drawn considerable attentions in various research areas. By 

using a kernel trick to map the training samples from an input space to a high-

dimensional feature space, SVM finds an optimal separating hyperplane in the feature 

spaces with solving constrained optimization problem. SVM also uses a regularization 

parameter (C) to control its model complexity and training error. 

 

The total accuracy value of SVM classifier is often high and cannot meet the 

requirement on a component classifier given in AdaBoost that needs to be only slightly 

better than 50%. Due to the fact that SVM is strong classifier (highly accurate 

classifier), AdaBoost is not expected to improve the performance of SVM and 

sometimes they even worsen the performance (Wickramaratna et al., 2001). The 

characteristic of AdaBoost causes SVM to concentrate too much on few very hard 

samples or outliers at the expense of the majority of the training samples, causing over-

fitting problem, hence resulting in unproductive or counterproductive behaviour of 

AdaBoost.   

 

By employing SVM with RBF kernel parameter (), i.e. RBFSVM, as the 

component classifier in standard AdaBoost, Li et al. (2005 and 2008) also confirmed the 

similar problems when applying a single to all of SVM component classifier. They 

conducted experiments by setting the value of  since the performance of SVM largely 

depends on the value if a roughly suitable C is given (although SVM cannot learn 

well when a very low value of C is used) (Valentini and Dietterich, 2004).  Having too 

large value of , the classification accuracy of SVM is often less than 50% (too weak 

classification) and cannot meet the requirement on a component classifier given in 

AdaBoost. On the other hand, a smaller  often makes the SVM component classifier 

stronger, causing highly correlated errors among component classifiers and moreover, 

too small can even make SVM over-fit the training data. A single best parameter  

may be found for SVM component classifiers by using model selection techniques such 

as k-fold or leave-one-out cross-validation. However, the process of model selection is 

time-consuming and should be avoided if possible. Hence, it seems that SVM 
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component classifiers do not perform optimally if only one single value of  is used 

during AdaBoost iterations. 

 

2.6.1 AdaBoostSVM 

 

In order to benefit from boosting SVM, based on concept of the idea suggested 

by Valentini and Dietterich (2004) that AdaBoost with heterogeneous SVMs could 

work well, Li et al. (2008) proposed AdaBoost algorithm which is specifically designed 

for SVM with RBF kernel parameter by adaptively adjusting the performance of SVM 

component classifier during AdaBoost iterations. Therefore, it can meet the requirement 

on a component classifier given in AdaBoost that needs a set of moderately accurate 

component classifiers. Their proposed AdaBoost algorithm for SVM resulted in 

AdaBoostSVM (Li et al., 2008). 

 

The performance of SVM in AdaBoostSVM can be adjusted by simply changing 

the value of during AdaBoost iterations, based on analysis of parameter influence on 

SVM performance. In detail, it can be described as follows: 

 

(i) In certain range of testing data, a larger often leads to a reduction in 

classifier complexity but at the same lowers the classification performance. 

(ii) A smaller often increases the learning complexity and leads to higher 

classification performance in general. 

 

Since SVM is a strong classifier, Li et al. (2008) weakened appropriately the SVM 

component classifier, as suggested by Dietterich (2000). Hence, in AdaBoostSVM, a 

relatively large , which corresponds to SVM with relatively weak learning ability, is 

preferred. Generally, algorithm of AdaBoostSVM as mentioned in Algorithm 2.4 can be 

described as follows: 

 

(i) Initially a large value is set to max). Then, SVM with this is trained as 

many cycles as possible as long as more than half accuracy can be obtained. 
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(ii) Otherwise, this  value is decreased slightly step) to increase the learning 

capability of SVM to help it achieve more than half accuracy. This process is 

continued until the  is decreased up to the given minimal value ini).   

 

Algorithm 2.4 AdaBoostSVM 

 

Input : x, y, C  

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n 

                  The initial max; the minimal min; the step of step 

Output : the class prediction,    







 

T

t

ttpred xhsignxy   

Do while ( > min) 

(1) Get the decision function, ft, and then get the weighted prediction, ht, by performing 

SVM on weighted training data. 

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x  

(3) If  t > 0.5, decrease value bystep  and go back to (1) 

(4) Set the weight of ht: 
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(5) For i = 1 to n 

       Update the weight of training data:  
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                        Zt  is normalization factor 

            End For 

      End For      

 

where max is set as the scatter radius of the training samples in the input samples (is set 

as about 10 to 15 times of min

minis set as the average minimal distance between any two training samples 

step is set to value within 1-3 

           C is empirically set as a value within 10 - 100 
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

In AdaBoostSVM,  value is decreased slightly in order to prevent the new SVM from 

being too strong for the current weighted training samples, and thus moderately accurate 

SVM component classifiers are obtained.  

 

2.6.2 WwBoost-SVM 

 

Wang and Li (2007) focused on designing a new weighting rule in addition to 

above adjusting parameter strategies, which are proposed by Li et al. (2008). Hence, 

their proposed algorithm is called WwBoost-SVM (new Weighting rule and Weakened 

SVM-based Boosting). 

 

When decreasing the RBF kernel parameter in AdaBoostSVM process, the 

possibility of the over-fitting on hard data or outliers is increasing, such that boosting 

SVM tends to be unproductive or counterproductive. In order to avoid over-fitting 

problem, the new weighting rule is designed to prevent hard data or outliers from being 

assigned very high weight. The new weighting rule for AdaBoostSVM pays separated 

attention to different type of data rather than only pays much attention to erroneous 

data, as follows: 

 

(i) Data correctly classified and lying far from the separating hyperplane are 

considered as „easy data‟, thus their weights will be decreased more than 

other correctly classified data. 

(ii) Data correctly classified but lying near the separating hyperplane are 

considered as „critical data‟, thus their weights will be decreased less than 

other correctly classified data. 

(iii) Data misclassified but lying near the separating hyperplane are also 

considered as „critical data‟, thus their weights will be increased more than 

other misclassified data. 

(iv) Data misclassified and lying far from the separating hyperplane are 

considered as „hard data or outliers‟, thus their weights will be increased less 

than other misclassified data. 
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In SVM, the distance of a sample from the separating hyperplane is measured by 

   itiii fyydis xx , , with ft  is the decision function and yi is the class label of input 

data xi. Data xi is misclassified if   0iti fy x  and is correctly classified if   0iti fy x . 

In new weighting rule, Wang and Li (2007) reset weights of correctly classified by 

[1,H] and reset the weights of correctly classified data by [L,1], where  tH exp  is a 

higher limit value and  tL  exp  is a lower limit value. Weights of data with low 

value of  ii ydis ,x  increase more than data with high value of  ii ydis ,x , while weights 

of data with high value of  ii ydis ,x  decrease more than data with low value of 

 ii ydis ,x . The weight of the misclassified data farthest from the hyperplane and the 

weight of the correctly classified data nearest from the hyperplane are almost 

unchanged. 

 

The new weighting rule which is proposed by Wang and Li (2007) can be 

expressed as 

 

                  ititt fyxgiwiw x1     (2.32) 
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with 10    (when 0 , we get the classical weighting rule) 

 

In   iti fyg x , the first term is the classical weighting error that only pays attention to 

the weighted error. The second term in   iti fyg x  is the new weighting rule that takes 

into account both the weighted error and the distance of data from the separating 

hyperplane. Both terms are considered equally in WwBoost-SVM algorithm, such that 

we use fixed value of    1 . 
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 Basic steps of the WwBoost-SVM algorithm are described below. In WwBoost-

SVM algorithm, the value of RBF kernel parameter is adaptively adjusted as proposed 

in AdaBoostSVM (Li et al., 2008) and the new weighting rule is used as proposed by 

Wang and Li (2007). At first, the optimization problem of SVM is modified, so that it 

can directly deal with weights distribution which is generated by WwBoost algorithm. 

 

Algorithm 2.5 WwBoost-SVM 

Input : x, y, C  

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n 

                  The initial max; the minimal min; the step of step 

Output : the class prediction,    







 

T

t

ttpred xhsignxy   

Do while ( > min) 

     For t = 1 to max iteration for each  

(1)  Get the decision function, ft, and then get the weighted prediction, ht, by performing 

Weighted SVM (SVM with w). 

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x  

(3) If  t > 0.5, decrease value bystep  and go back to (1) 

(4)  Set the weight of ht: 
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(5) For i = 1 to n 

       Update the weight of training data:  

           
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                        Zt  is normalization factor 

            End For 

      End For      

 

where max is set as the scatter radius of the training samples in the input samples (is set 

as about 10 to 15 times of min

minis set as the average minimal distance between any two training samples 
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step is set to 1 

           C is empirically set as a value within 10 - 100 

           max iterations for each 

            

The algorithm of WwBoost-SVM continues until the value of RBF kernel parameter is 

decreased to given minimal value or reaches the ensemble size.  

 

2.7 k-Fold Stratified Cross Validation 

 

On imbalanced data sets, standard (unstratified) cross validation (CV) 

(Christmann et al., 2005) might sample the data such that there are folds with no 

minority examples. When standard CV was used on imbalanced data, there might be 

different distributions between training (the available data from which predictive tasks 

are constructed) and testing data fold (the resulting model performance and accuracy are 

assessed using data). This problem is referred as sample selection bias (Maalouf, 2009). 

Stratified Cross Validation (SCV) (Akbani et al., 2004; Diamantidis et al., 2000; Li et 

al., 2008) is a variant of Cross Validation (CV) where the class distribution in each fold 

is approximately the same as in the initial data set in order to avoid the sample selection 

bias problem.  

 

The steps of k-Fold SCV: 

 

(i) The data set is divided into k disjoint sets (folds)  

(ii) Each fold is once used as the test data whereas the other k - 1 folds are put 

together to form the training data.  

Partitions observations into a randomized training and a testing data fold is 

stratified. The stratification was conducted by using the information of class 

proportion in the initial dataset, such that both training and testing data folds 

have roughly the same class proportions as in the initial data set.  

 

In this thesis, we set k = 10 for balanced data set and k = 5 for imbalanced data sets. 
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2.7.1 Evaluation Criterion 

 

The main criterion on evaluating the performance of the classifier is the 

accuracy (Christmann et al., 2005). There are several metrics to measure the accuracy. 

This thesis considers two main metrics, i.e. total accuracy and g-means.  

 

Total accuracy is the most commonly used metric to asses the accuracy of the 

classifier (Maalouf, 2009), while g-means is a type of evaluation metric which was 

suggested for measuring the accuracy performance of classifier on imbalanced problems 

(Akbani et al., 2004; Kubat and Matwin, 1997; Li et al., 2008; Weiss, 2004). In this 

research, total accuracy and g-means are measured based on the Confusion Matrix 

(CM) of binary class classification problem (Table 2.1).  

                

Table 2.1:  CM of binary class 

 

Actual Predicted 

Positive Negative 

Positive a11 a12 

Negative a21 a22 
 

       

 where : 

    a11 = the number of correctly classified positive instances 

    a12 = the number of incorrectly classified positive instances 

    a21= the number of incorrectly classified negative instances 

       a22 = the number of correctly classified negative instances 

 

Total accuracy is measured as proportion of the total number of correctly classified 

positive and negative instances, which can be written as, 

 

total accuracy 
22211211

2211

aaaa

aa




     (2.33) 

 
 

G-means is measured based on sensitivity (the accuracy of positive class) and 

specificity (the accuracy of negative class) metrics, 
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  yspecificitysensitivitmeansg .               (2.34) 
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a
yspecificit


                (2.36)

   

 

Total accuracy and g-means are measured by using k-Fold SCV method. The average of 

total accuracy and g-means values on k testing fold are used as the metric of accuracy 

on evaluating the performance of classifier with the given parameters (Christmann et 

al., 2005; Hsu et al., 2003 (updated 2010)). KLR has two parameters, i.e. Regularization 

and RBF kernel, i.e. ( , ), while RLR has one parameter, i.e. regularization parameter 

( ). This thesis also measures the average of sensitivity and specificity by using k-Fold 

SCV method, to give an even better idea of the performance of the classifier. 

 

This research also measures the standard deviation of total accuracy and g-

means respectively, as a result of the use of k-Fold SCV, as the second criterion on 

evaluating the performance of classifier. Standard deviation measures the stability of 

classifier on resulting in total accuracy and g-means values during k-Fold SCV. 

Therefore, the classifier has good performance if it has high total accuracy or g-means 

values and low standard deviation value. 

 

2.7.2 Model Selection  

 

Model selection (parameter search) (Cawley and Talbot, 2008) is the process to 

find the optimal value of classifier‟s parameter in order to achieve the optimal 

generalization performance of classifier. The main criterion is the accuracy of classifier, 

as explained in sub section 2.6.1. In KLR, model selection is the process to find the best 

combination of Regularization and RBF Kernel parameters ( , ). Meanwhile, in RLR, 

model selection is the process to obtain optimal value of regularization parameter ( ). 

 

Grid Search (GS) and k-Fold SCV method (Christmann et al., 2005; Diamantidis 

et al., 2000; Hsu et al., 2003 (updated 2010); Huang et al., 2007) are used on performing 
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the model selection in this thesis. GS method is used in order to determine a number of 

pairs of ( , ).  

 

 The model selection on KLR is conducted as follows: 

 

(i) Determining the grid range of ( , ) and the grid step. 

         The grid values were used in this study i.e. i
c

e 1 and i
c

e 2 . 

         The coefficients, i.e. c1i and c2i, are equidistant points (with the grid step = -

0.5) which spreads over respectively with the grid range (2,-7) and (6,-3). 

(ii)    By using k-Fold SCV (as explained on sub section 2.6), estimate the average 

of total accuracy or g-means values for each pair of ( , ). 

(iii)   The pair of ( , ) with the best of the average of total accuracy or g-means 

on the k test fold, is determined as optimal parameters. 

 

The model selection on RLR is similar to KLR, but only using regularization parameter 

(
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CHAPTER 3 

 

 

PROPOSED ALGORITHMS AND RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

Theory of proposed algorithms and its methodology are explained in this chapter. 

Referring to research objective of the thesis in Chapter 1, proposed algorithms consist 

of general classification algorithms (proposed NTR-KLR and NTR-LR algorithm) and 

imbalanced classification algorithms (proposed AB-WKLR and AB-WLR), while 

research procedures and numerical experiment design in achieving the research 

objective are included in research methodology. 

 

3.2 PROPOSED NTR-KLR AND PROPOSED NTR-LR ALGORITHM  

 

This section describes the development of proposed algorithms, i.e. proposed 

NTR-KLR and proposed NTR-LR. The description of KLR Newton-Raphson, RLR 

Newton-Raphson and Truncated Newton method are included in this section. 

 

3.2.1 KLR Newton-Raphson and RLR Newton-Raphson with  1,1y  

 

The goal of classification task is to estimate a classification rule (decision 

function) from n pairs of training data (xi, yi), where xi is input vector with dimension d 

(number of features) for i
th

 instance and corresponding label yi. Considering two-class 

classification problem yi , the label is either yi =-1 or yi=1, i=1,2.., n, for every 

instance xi. Therefore when given a new input xi, a class label can be assigned to it 

(Zhu, 2003). 
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(i) Classification rule of KLR and RLR  

 

The classification rule of KLR and RLR can be estimated using (Zhu, 2003; Zhu 

and Hastie, 2005) 

 

    sign(p1(x) – 0.5)   or       (3.1) 
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sign =   xfsign                 (3.2) 

 

Considering two-class classification problem, general conditional probability of class 

membership for KLR and RLR (Minka, 2003;Zhu and Hastie, 2005) can be stated as, 
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Hence, probability of instance xi that belongs to class 1 becomes 
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Conditional probability of class membership for KLR can be written as 
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Hence,  
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And then conditional probability for RLR, 
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Hence, 
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Therefore, the main problem to estimate the classification rule of RLR and KLR is how 

to find the estimate of linear model, f(x), which will be explained later in this sub 

section.  

 

(ii) Regularized optimization function of RLR and KLR 

 

In Logistic Regression (LR), supposing this research has random samples of n 

pairs of training data (xi,yi). Considering binary classification problem, (xi, yi) is 

assumed as identical, independent and follows Bernoulli distribution (yi=0,1) with input 

xi. (Hosmer and Lemeshow, 2000) 

Probability density function of (xi, yi) can be written as, 

 

    ii
y

i

y

ii




1
)(1)()( xxx                      (3.9) 

 

where : 

 

 
 
 βX

βX
xx

i

i

iii yP
exp1

exp
)|1(


  

                                                                

 βX i


exp1

1
,    

        
 βX

xx
i

iii yP
exp1

1
)|0(1


  

  

The Maximum Likelihood Estimation (MLE) of  can be solved by minimizing 

the Negative Log Likelihood (NLL) function, which is the optimization function of LR. 
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Instead of  1,0iy , by assuming  1,1iy , the NLL function becomes (Zhang, 

2010).
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In order to avoid over-fitting problem on the training data by controlling the bias 

variance trade-off (Geman et al., 1992), it is necessary to give penalty (to be 

regularized) on the fluctuation of MLE estimates (Cawley and Talbot, 2008)his 

study uses the Ridge Regularization, which is added to the NLL function (Hoerl and 

Kennard, 1970; Minka, 2003; Zhang et al., 2003; Zhang and Oles, 2001; Zhu, 2003). It 

resulted in quadratically-regularized NLL for RLR and KLR respectively.  

 

RLR 

 

The Regularized version of LR has optimization function, 
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TTL

2
.exp1log(1


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where : 

y is vector of labels with dimension n x 1 

 is vector of coefficient with dimension (d+1) x 1, including the bias term.  

X is matrix [x 1]  

  Xβx f  
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 = regularization parameter, with bias term is not regularized  

 

KLR 

 

The optimization function of KLR can be obtained by kernelizing the optimization 

function of RLR in eq. (3.11), based on the representer theorem (Scholkopf et al. 2002, 

Zhu and Hastie, 2005) 

 

                      αxβ φ                (3.12) 

 

where  x  is a function to map the original data x  in input space into feature space in 

order to convert the non-linear relation into linear relation. 

 

Rather than defining the feature space explicitly, it is instead defined by a kernel 

function that evaluates the inner product between the images of input vectors in the 

feature space and must be positive semi-definite (Mercer, 1970). Hence, the decision 

function (logit model) of KLR, f(x), can be expressed in the form,  
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where K is a Kernel matrix (Tenenhaus et al., 2007). 

 

By substituting f(x) and  on equation (3.11), the regularized optimization function of 

KLR is obtained as,  
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where : 

y is vector of label with dimension n x 1 
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 is vector of coefficient with dimension (d+1) x 1, including the bias term.  

K1 is matrix [K 1]  

  αKx 1f  

 = regularization parameter 

 K2 is matrix 








00

0K
(the bias term is not regularized) 

K is Kernel matrix of size n x n, which in this study, we considered to employ 

the universal Kernel (Hsu et al., 2010), i.e. Radial Basis Function (RBF) Kernel, 
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The regularized function of LR and KLR are convex optimization function 

(Boyd and Vandenberghe, 2004; Cawley and Talbot, 2008; Lin et al., 2008), such that 

there is only one solution which is global minimum. MLE estimates of RLR and KLR 

can be found by minimizing the regularized NLL functions. Since the MLE estimates 

have non-linear form, the equation can not be solved analytically, such that iterative 

technique, such as Newton-Raphson method, must be used. (Minka, 2003; Park et. al, 

2008; Zhu and Hastie, 2005).  

 

(iii) The relationship among SVM, KLR and RLR  

 

Globally, the regularized function estimation problem contains two parts: a loss 

function and a regularization term, 
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Several researchers have noted the relationship between the SVM and regularized 

optimization problem (Hastie et al., 2001). Fitting an SVM is equivalent to minimizing 

the regularized optimization problem that uses the Hinge loss function, 
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Figure 3.1: Loss functions of SVM, KLR and RLR 

 

If the Hinge loss function is replaced by the NLL loss function, the problem becomes 

the regularized optimization problem of KLR (Zhu and Hastie, 2005), 
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Without the use of Kernel function, the regularized optimization of KLR becomes the 

RLR problem (Park et al., 2008). Hence, both classifiers have the same loss function.  

 

If the Hinge loss function is plotted along with the NLL loss function, it can be 

seen that the NLL has similar shape to that of SVM (Fig. 3.1).The Hinge and NLL loss 

function are all Bayes consistent and margin-maximizing loss function. Because of the 

similarity between both loss functions, the fitted function of KLR and RLR performs 

similarly to the SVM (Zhang et al., 2003; Zhang and Oles, 2001; Zhu and Hastie, 

2005;). However, as aforementioned, SVM needs to be solved with constrained 

regularized optimization problem, while KLR and RLR only need to be solved with 

unconstrained regularized optimization problem (Maalouf, 2009). 
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(iv) Newton-Raphson method for KLR and RLR 

 

The Newton-Raphson method is an algorithm that iteratively solves the linear 

system of Newton-Raphson update rule (NRUR) in order to estimate the Newton 

direction (Lin et al., 2008), as can be seen in the Newton-Raphson formula,  
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where t  is the iteration index. s
(t)

 is the Newton direction, which is the solution of the 

linear system of Newton-Raphson update rule, 
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The gradient (g) and the Hessian (H) are achieved respectively by differentiating the 

regularized NLL function with respect to  

  

RLR with Newton-Raphson method (RLR-NR) 

 

The iterative method of Newton-Raphson for RLR has the form  
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For RLR, the linear system of Newton-Raphson update rule can be expressed as 
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KLR with Newton-Raphson method (KLR-NR) 

 

The iterative method of Newton-Raphson for KLR can be written as  
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The linear system of Newton-Raphson update rule of KLR, becomes 
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where V = diag(p.(1-p)) with size n x n               

 

As mentioned in Chapter 1, there is a numerical problem to find the approximate 

Newton direction on using the linear systems of Newton-Raphson update rule. The 

numerical problem is the huge matrix to be inverted, which is a linear system of n 

equations and n variables. (Lin et al., 2008; Zhu and Hastie, 2004; Zhu and Hastie, 

2005;) 

 

3.2.2 KLR-NR and RLR-NR with Truncated Newton method 

 

 Truncated Newton methods are a family of suitable methods for solving large 

scale data of non-linear optimization problem (Nash, 2000). A solid convergence theory 

has been derived for the methods. A Truncated Newton method consists of doubly 

iterative method: an outer iteration for the non-linear optimization problem (such as 

MLE in this research) and an inner iteration for the Newton equation. Before the 

solution to the Newton equation is obtained, the inner iteration is typically stopped or 

“truncated". At each iteration of Truncated Newton method, the current estimate of the 

solution is updated, i.e. a step is computed, by approximately solving the Newton 
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equation of an iterative algorithm. For large scale data of non-linear optimization 

problem, the result of Truncated Newton methods typically has a collection of powerful, 

flexible and adaptable tools. 

 

This research proposes the use of Truncated Newton for KLR and RLR 

respectively, by keeping the use of Linear CG as the truncated inner algorithm, and the 

origin Newton Raphson method as the outer algorithm. Linear CG finds the 

approximate Newton direction by solving the numerical problem on using the linear 

system of Newton-Raphson update rule.  

 

The numerical problem of Newton-Raphson method for RLR and KLR can be 

solved by the use of Linear CG method to quadratic form of Newton-Raphson update 

rule (Lin et al., 2008), 
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The use of Linear CG that simply requires matrix-vector products simplifies the 

computation of the linear system, such that time required in each iteration of KLR-NR 

and RLR-NR algorithms respectively to be fast (Komarek and Moore, 2005). In order to 

avoid the long computation that Linear CG may suffer from, the number of CG 

iterations is limited on approximating the Newton direction (Maalouf, 2009). Truncated 

Newton method accommodates the need for a “trade off “between convergence speed 

and accurate Newton direction. 

 

Similar to TR-KLR (Maalouf et al., 2010) and TR-IRLS (Komarek and Moore, 

2005) algorithm, NTR-KLR and NTR-LR algorithm respectively consist of two loops, 

i.e. outer and inner loops. Main algorithm represents the outer loop which is iterations to 

find the Newton direction by using the iterative method of Newton-Raphson. When the 

relative difference of optimization function is no larger than a specified threshold, , 

then the iteration is terminated. Second algorithm represents the inner loop which is 

iterations to find the approximation of the Newton direction by using the Linear CG 



 53 

method. When the square residual is no greater than a specified threshold, then the 

iteration is terminated. 

 

The choices of parameter values (and setting of number of iterationfor both 

proposed algorithms mostly are considered appropriate following the previous research 

on Truncated Newton methods for KLR and RLR (Komarek and Moore, 2005; Malouf 

et al., 2010). The specified threshold values are considered to sufficiently reach good 

accuracy and convergence speed at the same time. The parameters will be given in 

detail in the proposed Algorithms 1 and 2 below.  

 

KLR-NR with Truncated Newton method (Proposed NTR-KLR) 

 

 The numerical problem of Newton-Raphson method for KLR can be solved by 

the use of Linear CG method, as the Truncated Newton to quadratic form of Newton-

Raphson update rule, 
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Similar to TR-KLR, the maximum number of iterations for Algorithm 1 (KLR-NR) is 

set to 30 and the threshold of the difference of optimization function value is set to 2.5 

( 1 . For Algorithm 2 (Linear CG for KLR-NR), the convergence threshold is set to 

0.005 ( 2 . Unlike TR-KLR, the maximum number of iterations for Linear CG in NTR-

KLR is set to 1000 iterations for accommodating the complexity of data used. 

 

Algorithm 3.1 The proposed NTR-KLR  

 

Algorithm 1. KLR-NR (Outer loop) 

Input: X, K1, y, 

Initialize:


, L
(1)

, 

Output : 
 
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Do While 
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     For t = 1 to max KLR-NR iterations 

    (1) Compute probability: p
(t)

 = 1./(1+exp(y.K
(t)

))
 

    (2) Compute variance: V
(t)

 = diag(p
(t)

.(1-p
(t)

))
 

    (3) Compute g
(t)

 dan H
(t)

 of KLR 

    (4) Compute NR update rule solution: H
(t)

 s
(t)

 = -g
(t)

 

    (5) Compute 


by NR




s

(t)
 

    (6) Compute L
(t+1)

 

    End For 

where 1 =2.5, max KLR- NR iterations = 30  

 

Algorithm 2. Linear CG (Inner loop) 

Input : g
(t)

 and H
(t)

 of KLR-NR 

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

  

Output : s


 

Do While r
T
r > 2  

    For t=1 to max Linear CG iterations 

    (1) Compute the optimal step length: a


 = r
 T (t)

 r
(t)

/ (d
T(t)

 
 
H d

(t)
) 

    (2) Update the approximate solution: s


  = s


 + a


 d
(t)

 

    (3) Update the residual: r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 

    (4) Update A-Conjugacy enforcer: c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r

(t)
 

    (5) Update the search direction: d
(t+1)

  = r
(t+1)

 + c
(t)

  d
(t)

 

    End For 

where 2 =0.005, max Linear CG iterations = 1000  

 

RLR-NR with Truncated Newton method (Proposed NTR-LR) 

 

 The numerical problem of Newton-Raphson method for RLR can be solved by 

the use of Linear CG method to quadratic form of Newton-Raphson update rule, 
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All settings of NTR-LR are similar to TR-IRLS algorithm, except setting for the 

regularization parameter. TR-IRLS sets a fixed value of regularization parameter, while 

NTR-LR sets an optimal value of regularization parameter with Grid Search method 

and 5-Fold SCV.  

 

Algorithm 3.2 The Proposed NTR-LR  

 

Algorithm 1. RLR-NR (Outer loop) 

Input : X, y,  

Initialize : 


, L
(1) 

Output : 
 

Do While 
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     For t = 1 to max RLR-NR iterations 

    (1) p
(t)

 = 1./(1+exp(y.x
(t)

))
 

    (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))
 

    (3) Compute g
(t)

 dan H
(t)

 of RLR 

    (4) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

 

    (5) Compute 


by NR 




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(t)
 

    (6) Compute L
(t+1)

 

    End For 

where 1 =0.01,  max RLR- NR iterations = 30  

 

Algorithm 2. Linear CG (Inner loop) 

Input : g
(t)

 and H
(t)

  of RLR-NR 

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

  

Output : s


 

Do while r
T
r > 2  

    For t=1 to max Linear CG iterations 
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    (1) Compute the optimal step length : a
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    (2) Update the approximate solution : s


  = s


 + a


 d
(t)

 

    (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 

    (4) Update A-Conjugacy enforcer : c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r
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    (5) Update the search direction : d
(t+1)

  = r
(t+1)

 + c
 (t)

  d
(t)

 

    End For 

where 2 =0.005, max Linear CG iterations = 200  

 

3.3 PROPOSED AB-WKLR AND PROPOSED AB-WLR ALGORITM  

 

The development of imbalanced classification algorithms for NTR-KLR and 

NTR-LR, i.e. proposed AB-WKLR and proposed AB-WLR respectively, is explained in 

this section. In general, both proposed algorithms consist of Weighted version of 

general classification algorithms (NTR Weighted KLR and NTR Weighted RLR) and 

adapted Modified AdaBoost methods. In relation to the development of imbalanced 

classification algorithms, study on the imbalanced problem of general classification 

algorithms and the proper use of evaluation metric is reported previously in sub section 

3.3.1.  

 

3.3.1  Study on the imbalanced problem and the proper use of evaluation metric  

 

Table 3.1 summarizes the numerical results of NTR-KLR and NTR-LR by 

maximizing total accuracy value, in order to study the proper use of g -means metric as 

evaluation metric on imbalanced classification problem as compared to total accuracy. 

Total accuracy is the most common metric to evaluate the accuracy of classifier. As 

displayed in Table 3.1 and Fig. 3.2, total accuracy metric evaluates the performance of 

NTR-KLR classifier properly on Australia data set, which is balanced data. It can be 

seen that balanced data have almost equal value of sensitivity value and specificity. 

Total accuracy metric places the same weight, on the majority and minority classes, as 

observed in Fig. 3.2. This result has confirmed the proper use of total accuracy metric 

on balanced data, because it is theoretically developed under balanced data assumption. 

However, total accuracy metric has value towards to the majority class at the expense 

of the minority class on other data sets, which are imbalanced data, as shown in Table 
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3.1 and Fig. 3.2. It can be seen more clearly in Balance2 (5) and LetterImg26 (9) data 

sets.  

 

Table 3.1: Summary of NTR-KLR and NTR-LR  

by maximizing total accuracy value with 5-Fold SCV 
 

No. 
Name of 

Data set 

Optimal Parameter            Class Accuracy Evaluation Metrics 

opt opt 
Minority (+) 

(Sensitivity) 

Majority (-) 

(Specificity) 

Total 

Accuracy 
g-means 

NTR-KLR       

1 Australia  Exp(0) Exp(2) 0.8763 0.8748 0.8754 0.8755 

2 Parkinson Exp(-6.5) Exp(1) 0.8800 0.9965 0.9436 0.9195 

3 Glass7  Exp(-5) Exp(1) 0.8667 0.9946 0.9766 0.9257 

4 ImgSegment1  Exp(-3) Exp(0) 0.9879 0.9995 0.9978 0.9937 

5 Balance2  Exp(-6) Exp(1) 0.02 1 0.9232 0.0632 

6 Car3 Exp(-5) Exp(0) 0.8275 0.9976 0.9907 0.9073 

NTR-LR       

7 GammaImg Exp(0.5) - 0.5906 0.9000 0.7912 0.7291 

8 Shuttle2to7 Exp(-3) - 0.9186 0.9862 0.9717 0.9518 

9 LetterImg26 Exp(-3) - 0.6757 0.9951 0.9833 0.8199 
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Figure 3.2: Comparison between g-means and total accuracy metrics on imbalanced 

problem 
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Table 3.1 and Fig. 3.2 show that g-means metric evaluates the accuracy of NTR-

KLR such as total accuracy metric, on balanced data. Moreover, g-means metric 

evaluates the accuracy of NTR-KLR and NTR-KLR properly on eight data sets of 

imbalanced problem. It is displayed that the g-means metric accommodates minority 

and majority classes equally, as it is measured at the geometric mean value between 

sensitivity and specificity value. These results have confirmed the proper use of g-means 

metric that was suggested by Kubat and Matwin (1997) and has been used also by 

several researchers for evaluating the accuracy of classifier on imbalanced problem. As 

this thesis focuses on imbalanced problem research, it is considered to use g-means as 

the main evaluation metric for classifier performance on imbalanced problem, by 

maximizing the g-means value with 5-Fold SCV. The summary of results can be 

observed in Table 3.2. 

 

NTR-KLR and NTR-LR by maximizing g-means value with 5-Fold SCV (Table 

3.2), have the same parameters and accuracy result, such as by maximizing total 

accuracy value with 5-Fold SCV (Table 3.1), with exception to GammaImg data set. 

The similarity of parameter and accuracy results in explaining the influence of 

parameters to the classification performance of NTR-KLR and NTR-LR either by 

maximizing total accuracy or g-means metric will be studied and discussed later in the 

sub section 3.3.3. 

 

It is indicated in Table 3.2 and Figure 3.3, that NTR-KLR and NTR-LR tend to 

classify everything as negative class which is majority class, such that they have almost 

perfect specificity values on classifying imbalanced problems. However, it seems not 

easy for both algorithms, which are general classifiers to identify the pattern of minority 

class.  Therefore, they have poor sensitivity values. These results are similar to that 

achieved by Akbani et al. (2004) but under different optimization function. 
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Table 3.2: Summary of NTR-KLR and NTR-LR  

by maximizing g-means value with 5-Fold SCV 

 

No. 
Name of 

Data set 

Optimal Parameter Class Accuracy 
g-means 

(Sg-means) opt opt 
Minority (+) 

(Sensitivity) 

Majority (-) 

(Specificity) 

NTR-KLR      

1 Parkinson Exp(-6.5) Exp(1) 0.8800 0.9655 
0.9195 

(0.0716) 

2 Glass7 Exp(-5) Exp(1) 0.8667 0.9946 
0.9257 

(0.0732) 

3 ImgSegment1 Exp(-3) Exp(0) 0.9879 0.9995 
0.9937 

(0.0065) 

4 Balance2 Exp(-6) Exp(1) 0.0200 1 
0.0632 

(0.1414) 

5 Car3 Exp(-5) Exp(0) 0.8429 0.9982 
0.9073 

(0.0509) 

NTR-LR      

6 GammaImg Exp(-0.5) - 0.5908 0.8999 
0.7291 

(0.0071) 

7 Shuttle2to7 Exp(-3) - 0.9186 0.9862 
0.9518 

(0.0048) 

8 LetterImg26 Exp(-3) - 0.6757 0.9951 
0.8199 

(0.0115) 
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Figure 3.3: Performance of sensitivity and specificity on imbalanced problem 
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It can be observed in this study that the minority class is the important class that 

needs to be focused by NTR-KLR and NTR-LR on imbalanced problem research, since 

it presents poor sensitivity value. This thesis proposes a modification of NTR-KLR and 

NTR-LR algorithm respectively which are designed specifically for imbalanced 

classification problem. The proposed algorithms unavoidably sacrifice the specificity 

value in improving the sensitivity value. Hence, unlike RE-WKLR classifier (Maalouf et 

al., 2011), this research considers to use g-means as the proper metric to evaluate the 

accuracy performance of proposed classifiers on imbalanced problem in order to 

accommodate sensitivity and specificity value equally. The development of imbalanced 

NTR-KLR and NTR-LR algorithm respectively will be started to explain in sub section 

3.3.2. 

 

3.3.2   NTR Weighted KLR and NTR Weighted RLR 

 

In order to improve the performance of Boosting NTR-KLR and NTR-LR using 

adapted Modified AdaBoost methods respectively, it is required to modify the Negative 

Log-Likelihood (NLL) function on the regularized optimization function of KLR and 

RLR into Weighted NLL, such that they can directly deal with weight distributions, 

which are generated by modified AdaBoost algorithm for solving the imbalanced 

problem. King and Zheng (2001) and Maalouf et al. (2011) proposed the use of 

weighted loss function for solving the imbalanced classification problem in RLR and 

TR-KLR under different scheme. 

 

This research proposes the use of Weighted NLL loss function on the 

regularized optimization function of KLR and RLR, hence KLR becomes a Weighted 

KLR (WKLR) and RLR becomes a Weighted RLR (WLR). The use of Weighted NLL 

on the regularized optimization function of WKLR and RLR, for instance NLL loss 

function, resulted in the regularized weighted optimization function of WKLR and 

WLR. 

 

The regularized weighted optimization function of WKLR and WLR 

 

The regularized weighted optimization function of WKLR can be written as, 
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                           αKααKywα 21
2

.exp1log TTL


             (3.26) 

 

On WLR, the regularized weighted optimization function can be stated as, 

 

        ββXβywβ
TTL

2
.exp1log(


              (3.27) 

 

where w = weight distribution with dimension n x 1 

 

The gradient and the Hessian of WKLR and WLR are derived by differentiating the 

regularized weighted NLL function with respect to  and respectively. Similar to 

NTR-KLR and NTR-LR, WKLR and WLR use Truncated Newton method in order to 

approximate the Newton direction of WKLR and WLR in using the Newton-Raphson 

method.  

 

WKLR and WLR with Truncated Newton method  

 

For WKLR, the linear system of Newton-Raphson update rule can be stated as 

 

          
       αKpyWKsKKDK 21211 .  

Ttt
               (3.28) 

 

while the linear system of Newton-Raphson update rule for WLR becomes 

 

                 βpyWXsIXDX   .TttT                  (3.29) 

 

where D = diag(v.w); v = p.(1-p) 

           W =diag(w) 

 

Solving the linear system of Newton-Raphson update rule of WKLR through the 

approach of Linear CG, as the truncated inner method, is equivalent to minimizing the 

quadratic form, 
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     
 

         ttttTt
tTTt sq sKKDKssαKpyWK 21121

2

1
.              (3.30) 

 

Meanwhile, solving the linear system of Newton Raphson Update Rule of WLR 

by the approach of Linear CG, as the truncated inner method for WLR, is equivalent to 

minimizing the quadratic form, 

 

     
 

         tttTtTt
tTTt sq sIXDXssβpyWX  

2

1
.             (3.31) 

 

The use of Truncated Newton method for WKLR resulted in NTR-WKLR, while the 

use of Truncated Newton for WLR resulted in NTR-WLR. Because of the similarity to 

the NTR-KLR and NTR-LR algorithm, detail algorithm of WKLR and WLR will be 

displayed next in the sub section 3.3.3. 

 

3.3.3   NTR-WKLR and NTR-WLR with adapted Modified AdaBoost method 

 

This sub section contains the description of NTR-WKLR, NTR-WLR and The 

Adaptations of Modified AdaBoost method. The main adaptations of Modified 

AdaBoost method for NTR-KLR and NTR-LR classifier respectively were conducted 

by determining the strategies of parameter adjusting on applying the Modified 

AdaBoost, based on the parameters influence of NTR-KLR and NTR-LR classifiers 

respectively. The setting of parameters is adjusted appropriately during the process of 

adapted Modified AdaBoost methods iterations. In relation to this, study on the 

influence of parameters to the classification performance of NTR-KLR and NTR-LR 

respectively is reported previously.  

 

(i) Study on the influence of parameters to classification performance  

 

This sub section describes the study on influence of parameters to classification 

performance of NTR-KLR and NTR-RLR which can be seen as representation of KLR 

and RLR classifier, but under Truncated Newton method. This study is important for 
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determining the strategy of parameter adjusting during the process of adapted Modified 

AdaBoost. The classification performance of NTR-KLR and NTR-LR are measured by 

using g-means and total accuracy metric. 

 

The influence of parameters () to classification performance of NTR-KLR 

 

This research considers using NTR-KLR with RBF kernel. Parameters of NTR-KLR 

include the regularization parameter () and the RBF kernel parameter, Gaussian width 

(). Fig. 3.4 –3.8 shows that the variation of  leads to larger variation of classification 

performance than variation of . This means that the kernel parameter,  is regarded 

more important than the regularization parameter, on changing the classification 

performance of NTR-KLR, by total accuracy and g-means metric.  
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Figure 3.4: The influence of parameter using Parkinson data set 
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Figure 3.5: The influence of parameter using Glass7 data set 
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Figure 3.6: The influence of parameter using ImgSegment1 data set 
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(b) total accuracy 

 

Figure 3.7: The influence of parameter using Balance2 data set 
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Figure 3.8: The influence of parameter using Car3 data set 
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It can be seen also in Fig. 3.4 – 3.8 that the classification performance on training 

data (left side) decreases with higher  when using a roughly suitable Meanwhile the 

classification performance on testing data (right side) decreases after reaching a high 

value region. Unlike on training data, the classification performance on testing data 

increases until reaching a high value region. This fact supports the conjecture of over 

fitting with small value of The value of   has similar behaviour to  that the 

classification performance of NTR-KLR decreases with higher  Zhu and Hastie 

(2005) has realized this for Import Vector Machine (IVM) scheme which is 

representation of KLR with import vector. However, the variation of  leads to smaller 

variation of classification performance than variation of Hence,is regarded less 

important than on changing the classification performance of NTR-KLR. 

 

Generally, it is demonstrated that g-means values has similar behaviour to total 

accuracy values in explaining the influence of parameters to classification 

performance of NTR-KLR, with exception to testing data of Balance2 data set. 

 

The influence of parameter (to classification performance of NTR-LR 

 

        It is shown in Fig. 3.9 – 3.11 that the classification performance of NTR-LR 

decreases with higher regularization parameter ().   
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Figure 3.9: The influence of parameter using GammaImg data set 
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Figure 3.10:  The influence of parameter using Shuttle2to7 data set 
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Figure 3.11: The influence of parameter using LetterImg26 data set 

 

The classification performance of NTR-LR changes slightly along low value 

ofigher value of then leads to larger variation of classification performance. 

As on NTR-KLR, it is displayed that g-means values have similar behaviour to the 

total accuracy values, as shown on Fig. 3.9 – 3.11. 



The analysis of parameters influence to classification performance of NTR-KLR 

and NTR-LR by total accuracy metric is used to employ the proper tuning of 

parameters on applying the algorithms of adapted Modified Adaboost for NTR-KLR 

and NTR-LR. Meanwhile, the similarity influence in this study has explained the 
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similarity of parameter and accuracy results by maximizing g-means and total accuracy 

metric in determining the optimal performance of NTR-KLR and NTR-LR classifier, as 

has been shown in sub section 3.3.1. In addition, g-means value provides geometric 

mean of sensitivity and specificity value such that it can evaluate properly on 

imbalanced classification problem rather than total accuracy, as has been confirmed in 

sub section 3.3.1.  

 

(ii) Adaptations of Modified AdaBoost method 

 

The adaptations of Modified AdaBoost algorithm for NTR-KLR and NTR-LR 

which are highly accurate (strong) classifiers respectively were conducted in order to 

benefit from Boosting mechanism. The adaptations can be explained briefly as follows: 

 

(i) The adaptations adjust the parameter values of NTR-KLR and NTR-LR 

respectively, during the process of AdaBoost iterations to achieve a set of 

moderately accurate classifiers in order to benefit from Boosting NTR-KLR 

and NTR-LR respectively. These adaptations are similar to that strategy 

used in AdaBoostSVM (Li et al., 2008). 

(ii) It uses the new weighting rule of AdaBoost algorithm, instead of the classic 

algorithm, in order to prevent the over-fitting problem. The new weighting 

rule which was proposed by Wang and Li (2007) is specifically designed for 

maximum margin classifiers such as SVM, KLR and RLR. 

(iii) The adaptations use criteria „perfect‟ (weighted error by total accuracy is 

zero), beside criteria no better than random (weighted error by total 

accuracy is 0.5 or more) or a fixed number of iterations, in adjusting the 

parameter values of NTR-KLR and NTR-LR during AdaBoost iterations. 

These criteria have been proposed by Meir et al. (2003), for AdaBoost 

algorithm with fixed parameter value.  

 

The adaptation of Modified AdaBoost for NTR-KLR classifier resulted in adapted 

Modified AdaBoost I, while the adaptation for NTR-KLR classifier resulted in adapted 

Modified AdaBoost I. The algorithms of adapted Modified AdaBoost are applied to 

NTR-WKLR and NTR-WLR respectively. 
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(iii) The implementations of adapted Modified AdaBoost to NTR-WKLR and 

NTR-WLR 

 

The implementations of adapted Modified AdaBoost to NTR-WKLR and NTR-

WLR component classifier respectively resulted in proposed AB-WKLR and proposed 

AB-WLR. Both proposed algorithms mainly consist of two loops, adapted Modified 

AdaBoost and weighted component classifier (NTR-WKLR or NTR-WLR). First main 

loop represents the outer loop which is adapted Modified AdaBoost iterations to 

generate weight adaptively and to ensemble a set of weighted component classifier. 

Starting from large parameter value, corresponding to component classifier with weak 

learning ability (have low total accuracy), it is trained as long possible to meet criteria 

“perfect accuracy” or „‟less than half accuracy” or maximum iterations. Otherwise, we 

decrease the parameter value to increase the learning ability of component classifier. 

The process of adapted Modified AdaBoost continues until given minimal value of 

parameter. Second main loop represents the inner loop for AB-WKLR and AB-WLR 

which is weighted component classifier (NTR-WKLR or NTR-WLR) iterations that 

find the Newton direction approximation of WKLR and WLR respectively by using 

Truncated Newton approach. The weighted component classifier iterations are 

terminated when Linear CG iterations are terminated and the relative difference of 

optimization function is no larger than a specified threshold, . Linear CG iterations are 

terminated, when the square residual is no greater than a specified threshold,   

 

Proposed AB-WKLR: The use of adapted Modified AdaBoost I to NTR-WKLR 

 

The strategy of parameter adjusting for AB-WKLR is designed in the following. 

Minimal value of RBF kernel parameter, min, is determined as optimal parameter value 

of It is obtained by doing selection model of NTR-KLR. The selection model is 

conducted with grid search method and 5-Fold SCV, by maximizing total accuracy 

value. Therefore min = opt of NTR-KLR = exp(c2). 

 

 The initial maximal value of RBF kernel parameter, max, are defined by 

formula, max = exp(c2 + du). Upper deviation parameter, du, is determined as number of 
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 adjusting which is empirically set as a value within 0.5 – 6. We choose du that gives 

best generalization of AB-WKLR. The max is decreased with step =-0.5, by 

transforming the value of with previous log natural. The max is decreased slightly to 

prevent the new NTR-KLR from being too strong for the current weight distribution. 

The maximum number iterations for AB-WKLR is set by calculating with formula, 30 x 

n, where nis defined as number of  which is set asx du) + 1. 

 

 As the classification performance of NTR-KLR is mainly affected by RBF 

kernel parameter, , a fixed value of regularization parameter () can be employed. In 

order to achieve optimal generalization performance of AB-WKLR,  is empirically set 

as an optimal value within exp(-3) to exp(-6) for all experiments.  The optimal  for 

AB-WKLR is conducted with grid search method and 5-Fold SCV by maximizing g-

means value. 

 

Algorithm 3.3 The Proposed AB-WKLR  

Algorithm 1. Adapted Modified AdaBoost  I (Outer loop) 

Input : x, y, 


  

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n 

                  The initial max; the minimal min; the step of step 

Output : the class prediction,    







 

T

t

ttpred hsigny xx   

Do while ( > min) 

     For t = 1 to max iteration for each  

(1) Get the logit model, ft, and then get the estimation of classification rule, ht, by 

performing NTR-WKLR (NTR-KLR with w). 

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x  

(3) If  t > 0.5 or t =0 , decrease value bystep  and go back to (1) 

(4)  Set the weight of ht: 








 


t

t
t






1
ln

2

1
 

(5) For i = 1 to n 

       Update the weight of training data:  



 71 

           
            

          








0 ,expexp1exp

0 ,exp1exp1exp
1

itiititt

itiititt

t

t
t

fyfy

fyfy
x

Z

iw
iw

xx

xx




 

                        Zt  is normalization factor 

            End For 

      End For      

where max iterations for each 

 

Algorithm 2. NTR-WKLR (Inner loop) 

Algorithm 2a. Weighted KLR-NR (Outer iterations) 

Input:  K1
(t)

,y,  w
(t)

, 
(t)



Initialize:


, L
(1)

, 

Output : 


Do while 
   

  11

1







t

tt

L

LL
 

     For t = 1 to max WKLR-NR iterations 

    (1) Compute p
(t)

 = 1./(1+exp(y.K1
(t)

))
 

    (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

)) 

    (3) Compute g
(t)

 dan H
(t)

 of WKLR 

    (4) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

  

    (5) Compute 


by NR 




s

(t)
 

    (6) Compute L
(t+1)

 

     End For 

where 1 =2.5, max Weighted KLR- NR iterations = 30  

Algorithm 2b. Linear CG (Inner Iterations) 

Input : g
(t)

 and H
(t)

 of WKLR 

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

  

Output : s


 

Do while r
T
r > 2  

    For t=1 to max Linear CG iterations 

    (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

 
 
H d

(t)
) 

    (2) Update the approximate solution : s


  = s


 + a


 d
(t)

 

    (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)
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    (4) Update A-Conjugacy enforcer : c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r

(t)
 

    (5) Update the search direction : d
(t+1)

  = r
(t+1)

 + c
 (t)

  d
(t)

 

    End For 

 

where 2 =0.005, max Linear CG iterations = 1000  

 

 

Proposed AB-WLR: The use of adapted Modified AdaBoost II to NTR-WLR 

 

Design of the parameter adjusting for AB-WLR is explained in the following. 

Similar to AB-WLR, selection model of NTR-LR with Grid Search method is 

conducted by maximizing total accuracy value with 5-Fold SCV, such that it gets min = 

opt of NTR-LR = exp(c1).  

 

 The initial  is determined by formula, max = exp(c1 + du), where du is defined as 

number of  adjusting. In order to obtain best generalization for AB-WLR, du is   

empirically set as a value within 20 – 26. By transforming the value of  with previous 

log natural, the max is decreased with step =-1.  Different from AB-WKLR, the max is 

decreased larger, because the variation of  leads to smaller variation of classification 

performance. Similar to AB-WKLR, the maximum number of iterations for AB-WLR is 

set by calculated with formula, 30 x n, where nis determined as number of which is 

set as x du) + 1. Evaluation of the effectiveness of AB-WLR classifier is performed 

by maximizing g-means value with 5-Fold SCV. 

 

Algorithm 3.4 The Proposed AB-WLR  

Algorithm 1. Adapted Modified AdaBoost II (Outer loop) 

Input : x, y, 
(t)

   

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n 

                  The initial max; the minimal min; the step of step 

Output : the class prediction,    







 

T

t

ttpred hsigny xx   

Do while ( > min) 

     For t = 1 to max iteration for each  
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(1) Get the logit model, ft, and then get the estimation of classification rule, ht, by 

performing NTR-WLR (NTR-LR with w). 

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x  

(3) If  t > 0.5 or t =0, decrease value bystep  and go back to (1) 

(4)  Set the weight of ht: 








 


t

t
t






1
ln

2

1
 

(5) For i = 1 to n 

       Update the weight of training data:  

           
            

          








0 ,expexp1exp

0 ,exp1exp1exp
1

itiititt

itiititt

t

t
t

fyfy

fyfy
x

Z

iw
iw

xx

xx




 

                        Zt  is normalization factor 

            End For 

      End For      

where max iterations for each 

 

Algorithm 2. NTR-WLR (Inner loop) 

Algorithm 2a. Weighted RLR-NR (Outer iterations) 

Input: x, y, 
(t)
 w

(t)

Initialize:


, L
(1)

, 

Output : 
 

Do while 
   

  11

1







t

tt

L

LL
 

     For t = 1 to max WLR-NR iterations 

    (1) Compute p
(t)

 = 1./(1+exp(y.X
(t)

))
 

    (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

)) 

    (3) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

  

    (5) Compute 


by NR 




s

(t)
 

    (6) Compute L
(t+1)

 

     End For 

where 1 =0.01, max Weighted RLR- NR iterations = 30  
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Algorithm 2b. Linear CG (Inner Iterations) 

Input : g
(t)

 and H
(t)

 of WLR 

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

  

Output : s


 

Do while r
T
r > 2  

    For t=1 to max Linear CG iterations 

    (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

 
 
H d

(t)
) 

    (2) Update the approximate solution : s


  = s


 + a


 d
(t)

 

    (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 

    (4) Update A-Conjugacy enforcer : c
(t)

  = r
T(t+1)

 
 
r

(t+1)
  / r

T (t)
r

(t)
 

    (5) Update the search direction : d
(t+1)

  = r
(t+1)

 + c
 (t)

  d
(t)

 

    End For 

where 2 =0.005, max Linear CG iterations = 200  

 

 

3.4       RESEARCH METHODOLOGY 

 

This section contains the description of Research Procedure and Design of 

Numerical Experiment.  

 

3.4.1 RESEARCH PROCEDURES 

 

This sub section describes procedures as shown in Fig. 3.12 which are required to 

achieve the research objective of the thesis as follows: 

 

(i) Developing the NTR-KLR algorithm as the Newton version of TR-KLR 

algorithm, and NTR-LR algorithm, as the Newton version of TR-IRLS 

algorithm (it can be seen also as non-Kernel version of NTR-KLR algorithm) 

(Section 3.2). This step includes; 

a. Defining the regularized Negative Log-Likelihood (NLL) function of KLR 

and RLR respectively by assuming )1,1(y  instead of )1,0(y . Then, 

obtain the gradient and Hessian matrix, by differentiating the regularized 

NLL function with respect to and respectively. 
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b. Determining the linear system of Newton-Raphson update rule for KLR and 

RLR. 

c.  Apply Linear CG method to quadratic form of Newton-Raphson update 

rule, in order to find iteratively the approximation of Newton direction for 

KLR-NR and RLR-NR respectively. 

d.  Find, iteratively, the MLE estimate of for KLR and the MLE estimate of 

for RLR, by using Newton-Raphson method.  

Detail algorithm of NTR-KLR and NTR-LR respectively has been explained in sub 

section 3.2.2. 

 

(ii) Develop the AB-WKLR algorithm, as the imbalanced NTR-KLR algorithm and 

AB-WLR algorithm, as the imbalanced NTR-LR algorithm (Section 3.3). 

(a) Developing NTR-Weighted KLR (NTR-WKLR) and NTR-Weighted RLR 

(NTR-WLR) such that can directly deal with weight distributions which are 

generated by adaptation of modified AdaBoost algorithms respectively. 

(1) Modifying the NLL loss function on regularized optimization function of 

KLR and RLR respectively as the Weighted NLL loss function. Hence, KLR 

model becomes Weighted KLR (WKLR) model and RLR becomes 

Weighted RLR (WLR). The regularized function of WKLR and WLR 

respectively is termed as Regularized Weighted NLL function. 

(2) By using similar steps as on NTR-KLR and NTR-LR algorithm above, 

estimate WKLR and WLR model respectively using Truncated Newton 

method. 

Detail algorithm of NTR-WKLR and NTR-WLR are included in algorithm of 

AB-WKLR and AB-WLR respectively in sub section 3.3.3 (iii). 

(b) Developing the adaptations of Modified AdaBoost algorithm for NTR-KLR and 

NTR-LR which are highly accurate (strong) classifier respectively in order to 

benefit from Boosting mechanism (Sub section 3.3.3 (ii)). 

The both adaptations of modified AdaBoost algorithm focus on determining the 

process of AdaBoost iterations by taking into account the parameter influence on 

classification performance of NTR-KLR and NTR-LR respectively.  
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Detail strategies of parameter adjusting during the process of adapted Modified 

AdaBoost iterations and algorithms of both adaptations are included in 

algorithm of AB-WKLR and AB-WLR respectively in sub section 3.3.3 (iii). 

 

(c) Employing the adapted Modified AdaBoost I to NTR-WKLR and applying the 

adapted Modified AdaBoost II to NTR-WLR (Sub section 3.3.3 (iii)). This step 

includes;  

(1) Train NTR-WKLR and NTR-WLR respectively then obtain the weighted 

prediction. 

(2) Calculate the weighted error of NTR-WKLR and NTR-WLR respectively. 

(3) Compute the weight of weighted prediction for NTR-WKLR and NTR-WLR 

respectively. 

(4) Update the weight of training data for NTR-WKLR and NTR-WLR 

respectively. 

      Iterate step (1) – (4) by using the strategies of parameter adjusting respectively 

until finish, then predict by weighted majority vote.  

 

Detail algorithm of AB-WKLR and AB-WLR respectively has been explained in sub 

section 3.3.3 (iii). 
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Figure 3.12: Research Procedure 
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3.4.2  DESIGN OF NUMERICAL EXPERIMENTS 

 

This section includes explanation of data preparation and performance 

evaluation of several numerical experiments.  The numerical experiments were 

conducted in order to evaluate the performance of the proposed algorithms. All of the 

computations were performed on a 2 GB RAM Computer, by using Matlab 7.  

 

Data Preparation 

 

This thesis uses several benchmark data sets from UCI Machine Learning (Frank 

and Asucion, 2010), in order to evaluate the performance of the proposed algorithms.  

Nine data sets with varying size, dimension and degrees of class imbalance were used in 

this research, as presented in Table 3.3. 

 

Except Australia, Parkinson and GammaImg data sets, most of data sets 

originally have more than two classes. This research converted them into imbalanced 

two-class data sets by combining some classes with reference to the previous research 

(Akbani et al., 2004; Li et al., 2008). The suffix after each name of data sets indicates 

the class used as the positive (minority) class. Eight data sets are imbalanced, except 

Australia which is the reference base.  

 

The complexity of data depends on the product of sample (n) and number of 

attributes (dim) (Komarek, 2004). The complexity of GammaImg, Shuttle2to7, and 

LetterImg26 data set are widely higher than remaining data sets, as displayed in Table 

3.3. Hence, this thesis categorizes these data sets to be large, while the remains data sets 

are small-to-medium. This categorization was decided based on the size of complexity 

of data used on the previous researches (Komarek, 2004; Maalouf, 2009).  
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Table 3.3: General Profiles of Data Sets 

 

No. 

Name of  

Data set 

Attribute 

(dim) 
Sample 

(n) 

Minority (+) 

Class 

Majority (-) 

Class Imbalanced 

1 Australia  

(Credit Risk) 

14 690 307 383 1.25 Balanced 

2 Parkinson 22 195 48 147 3.06 Imbalanced 

3 Glass7 

(Forensic) 

9 214 29 185 6.38 Imbalanced 

4 ImgSegment1 

(Image 

Segmentation) 

19 2310 330 1980 6 Imbalanced 

5 Balance2 

(Psychology) 

4 625 46 576 12.52 Imbalanced 

6 Car3 6 1728 69 1659 24.04 Imbalanced 

7 GammaImg 10 19020 6688 12332 1.84 Imbalanced 

8 Shuttle2to7 8 58000 12414 45586 3.67 Imbalanced 

9 LetterImg26 

(Letter Image) 

16 20000 734 19266 26.25 Imbalanced 

 

 

In the following, short overviews of the data sets are given.  

 

Australia 

This data set contains confidential data with title Australian Credit Approval that 

concerns on credit card application. This dataset is a good mix of attributes, i.e. 

continuous, nominal with small numbers values and nominal with larger numbers of 

values. 

 

Parkinson 

This data set contains attributes of particular voice measure to discriminate healthy 

people from those with Parkinson disease. A range of biomedical voice measurements 

from 31 people, 23 with Parkinson's disease (PD), is composed in this dataset. 

 

Glass7 

This data set contains nine attribute in determining whether the glass was a type of 

headlamp or not. If it is correctly identified, it can be used as evidence in criminological 

investigation. This data set contains, in total, continuously valued. 
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ImgSegment1 

This data set contains 19 continuous attributes with title Image Segmentation Data. The 

classification task is to predict whether the pixel was brickface image or not. 

 

Balance2 

This data set contains 4 attributes of psychological experimental results in order to 

discriminate whether the observation was balanced or not. This data set includes four 

numeric attributes. 

 

Car3 

This data set, which is named as Car Evaluation Database, contains 6 attribute for 

making decision whether the car is good or not. Six categorical attributes are included in 

this data set. 

 

GammaImg 

This data set contains 10 attributes to discriminate gamma image (signal) from the 

image of hadronic showers initiated by cosmics rays in the upper atmosphere 

(background).  All of the data sets are continuous values. 

 

Shuttle2to7 

This data set came from NASA that contains 9 numeric attribute. Further description of 

this data set is not available. 

 

LetterImg26 

This data set contains 16 attributes. The classification task is to recognize a pixel as 

image of capital letter Z or not. All of attributes are numeric values. 

 

All of data sets were randomized previously based on simple random sampling 

technique (Van-Hulse et al., 2007) using random number. The data sets then were 

normalized to ensure the similarity of numerical range, using formula  

 

jx

jji

ji
s

xx
x


ˆ                (3.32) 



 81 

 

where  i = 1,2,..n; j = 1,2, .. no. of attributes 

            
jxs  = standard deviation of attributes 

 

The data sets were pre-processed to guarantee the quality of numerical results, i.e. 

accuracy and stability of the proposed classifiers (Han and Kamber, 2006). 

 

Performance evaluation 

 

Several numerical experiments are conducted to evaluate the performance of 

proposed methods respectively which can be described as follows (Fig. 3.13): 

 

(i)    Proposed NTR-KLR and Proposed NTR-LR 

(a) The effectiveness of Truncated Newton method in NTR-KLR and NTR-LR 

algorithm was shown respectively in solving the numerical problem of KLR-

NR and RLR-NR respectively.  

       It is demonstrated by plotting the training time to convergence versus the 

relative difference of optimization function for: 

(1) NTR-KLR and KLR-NR on five small-to-medium size data sets. 

(2) NTR-LR and RLR-NR on three large size data sets. 

Although proposed NTR-KLR and proposed NTR-LR algorithm are general 

classifiers, all of the data sets used in determining the effectiveness of Truncated 

Newton method, are imbalanced. 

 

(b) Evaluation of the effectiveness performance of proposed NTR-KLR and 

proposed NTR-LR classifier was conducted respectively by comparing both 

proposed algorithms to RBFSVM based on two criteria i.e. g-means and Area 

Under Receiver Operating Curve (AUC) value (Fawcett,2004). 

 . 

 (c) In relation to further development of NTR-KLR and NTR-LR respectively for 

classification of imbalanced data sets, the problem of general classifiers i.e. 

NTR-KLR and NTR-LR on classifying the imbalanced data sets was 

determined previously. It was evaluated respectively along with the study on 
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the proper use of g-means metric, as the accuracy metric on imbalanced 

classification problem. The study on the problem of NTR-KLR and NTR-LR 

on classifying the imbalanced data sets, totally, uses eight imbalanced data 

sets. Meanwhile the study on the proper use of g-means metric uses eight 

imbalanced data sets and one balanced data set as the reference base i.e. 

Australian data set. 

 

(ii)  Proposed AB-WKLR and Proposed AB-WLR. 

(a) The effectiveness of adapted Modified AdaBoost method in AB-WKLR and 

AB-WLR algorithm was shown respectively in solving the imbalanced 

problem of NTR-KLR and NTR-LR respectively, as follows 

(a.1) Compare AB-WKLR to NTR-KLR on five small-to-medium size data 

sets. 

     (a.2) Compare AB-WLR to NTR-LR on three large size data sets. 

     The comparison was conducted based on criteria: improvement in reducing 

error by g-means, standard deviation of g-means values during 5-fold SCV 

and statistical significance using Paired t test (Montgomery, 1991). 

(b) The effectiveness performance of proposed AB-WKLR and AB-WLR 

classifier on imbalanced classification problems was evaluated respectively in 

this thesis, by comparing both proposed algorithms to AdaBoostSVM based 

on two criteria i.e. g-means and AUC value. 

 

The tradeoff between bias and variance in cross validation depends on the number of 

folds (Diamantidis et al., 2000).  Hence, this thesis applies a moderate number of folds 

(5-Fold SCV) on performing the proposed algorithms.  
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Figure 3.13: Performance evaluation 
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CHAPTER 4 

 

 

NUMERICAL RESULTS AND DISCUSSION 

 

 

4.1      INTRODUCTION 

 

This chapter presents several numerical results along with the discussion on the 

performance evaluation of proposed general classification algorithms (NTR-KLR and 

NTR-LR) and proposed imbalanced classification algorithms (AB-WKLR and AB-

WLR). 

 

4.2 PROPOSED NTR-KLR AND NTR-LR: NUMERICAL RESULTS AND 

DISCUSSION 

 

Several numerical results along with the discussion on the performance 

evaluation of NTR-KLR and NTR-LR algorithm respectively are presented in this 

section. In general, this section is divided into three sub sections, i.e.  4.2.1 Accuracy, 

stability and numerical convergence of proposed algorithms; 4.2.2 The effectiveness of 

Truncated Newton method in proposed algorithms; 4.2.3 Performances comparison of 

proposed algorithms to RBFSVM. 

 

4.2.1 Numerical convergence, accuracy, stability and of NTR-KLR and NTR-LR 

 

Table 4.1 displays iterations number and g-means value of NTR-KLR. It can be 

observed that the maximum number of iterations by Linear CG (LCG) during 5-Fold 

SCV did not reach 1000, which is the maximum number of iterations that is set for 

Linear CG, as the inner loop of NTR-KLR algorithm. The maximum number of 

iterations by Linear CG during 5-Fold SCV was reached on ImgSegment1 and Car3 
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data sets which are the most complex data sets among five small-to-medium data sets 

on applying NTR-KLR algorithm.  

 

Table 4.1: Iterations number and g-means value of NTR-KLR algorithm  

by maximizing g-means value with 5-Fold SCV 

 

 

Fold 
No 

Name of 

Data Set 

No. of Iterations g-means 

NR LCG Park Glass7 ImgS1 Blc2 Car3 

 1 Parkinson 2 [115,39] 0.9826     

 2 Glass7 2 [27,14]  0.8165    

1 3 ImgSegment1 2 [468,153]   0.9911   

 4 Balance2 1 45    0  

 5 Car3 2 [777,134]     0.9593 

 1 Parkinson 2 [110,40] 0.8630     

 2 Glass7 2 [26,18]  0.9129    

2 3 ImgSegment1 2 [557,189]   1   

 4 Balance2 1 47    0  

 5 Car3 2 [746,141]     0.8452 

 1 Parkinson 2 [133,33] 0.9154     

 2 Glass7 2 [41,20]  0.9129    

3 3 ImgSegment1 2 [596,165]   1   

 4 Balance2 1 37    0.3162  

 5 Car3 2 [882,137]     0.8851 

 1 Parkinson 2 [117,41] 0.8367     

 2 Glass7 2 [50,17]  1    

4 3 ImgSegment1 2 [626,167]   0.9847   

 4 Balance2 1 37    0  

 5 Car3 2 [774,137]     0.8864 

 1 Parkinson 2 [134,41] 1     

 2 Glass7 2 [47,14]  0.9864    

5 3 ImgSegment1 2 [577,194]   0.9924   

 4 Balance2 1 52    0  

 5 Car3 2 [718,128]     0.9608 

  
Average of g-means 

(S-gmeans) 

0.9195 

(0.0716) 

0.9257 

(0.0732) 

0.9937 

(0.0065) 

0.0632 

(0.1414) 

0.9073 

(0.0509) 

  

The more important is that the maximum number of iterations by iterative 

method of Newton-Raphson (NR) during 5-Fold SCV is 2. It did not reach to 30, which 

is the maximum iterations set for KLR-NR, as the main loop of NTR-KLR classifier. 

Thus, it is convergence guarantee for NTR-KLR algorithm. Table 4.1 also summarizes 

the g-means value in applying the NTR-KLR classifier during 5-Fold SCV. 

 

Similar to the implementation of NTR-KLR algorithm, the maximum number of 

iterations by RLR-NR and Linear CG in applying the NTR-LR algorithm did not reach 
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30 and 200, which are the maximum iterations set for RLR-NR and Linear CG (Table 

4.2).   

 

Table 4.2: Iteration number and g-means value of NTR-LR algorithm  

by maximizing g-means value with 5-Fold SCV 

 

 

Fold 
No 

Name of 

Data Set 

No. of Iterations g-means 

NR LCG GmImg Shuttle LetImg 

 1 GammaImg 3 [11,11,11] 0.7270   

1 2 Shuttle2to7 7 
[11,11,11,

9,11,9,9] 
 0.9514  

 3 LetterImg26 8 

[15,15,15,

14,14,14, 

14,13] 

  0.8185 

 1 GammaImg 3 [11,11,11] 0.7339   

2 2 Shuttle2to7 7 
[11,11,9,9

,11,9,9] 
 0.9573  

 3 LetterImg26 8 

[15,15,14,

14,14,14, 

14,13] 

  0.8144 

 1 GammaImg 3 [11,11,11] 0.7384   

3 2 Shuttle2to7 7 
[11,10,9,9

,11,9,9] 
 0.9508  

 3 LetterImg26 8 

[16,15,14,

14,13,14, 

14,13] 

  0.8266 

 1 GammaImg 3 [11,11,11] 0.7261   

4 2 Shuttle2to7 7 
[10,11,9,1

1,11,9,9] 
 0.9481  

 3 LetterImg26 8 

[15,15,14,

14,13,14, 

14,13] 

  0.8350 

 1 GammaImg 3 [11,11,11] 0.7202   

5 2 Shuttle2to7 7 
[11,11,10,

11,11,9,9] 
 0.9515  

 3 LetterImg26 8 

[15,15,15,

14,14,14, 

14,12] 

  0.8051 

  
Average of g-means 

(S-gmeans) 

0.7291 

(0.0071) 

0.9518 

(0.0048) 

0.8199 

(0.0115) 

 

Those results are similar to that stated by Komarek and Moore (2005) that those 

numbers should not be reached. It is indicated on Table 4.2, during 5-Fold SCV, eight 

was reached as the maximum number of iterations by RLR-NR, while the maximum 

iterations by LCG was 15 which is indicating the consistency with the convergence 

theory of CG method (Lewis et al., 2006). 
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 This research also lists down the g-means values in applying NTR-KLR and 

NTR-LR classifier respectively during 5-Fold SCV. They were measured along with 

standard deviation of g-means values in evaluating the accuracy of NTR-KLR and 

NTR-LR classifier and its stability (Table 4.1 and Table 4.2). 

 

4.2.2 The effectiveness of Truncated Newton in NTR-KLR and NTR-LR  

 

 As aforementioned, the main numerical problem of KLR-NR and RLR-NR is 

the huge matrix that needs to be inverted, such that the computation to be slow and 

probably the matrix to be singular. In this sub section, several experiments were 

conducted in order to evaluate the effectiveness of Truncated Newton in proposed NTR-

KLR and proposed NTR-LR algorithm on solving the numerical problem of KLR-NR 

and RLR-NR respectively.  

 

The effectiveness of Truncated Newton method was determined by plotting the 

training time versus relative difference of optimization function for both proposed 

algorithms then compared to KLR-NR and RLR-NR algorithm respectively. The plots 

can be seen in Fig. 4.1 and Fig. 4.2.  

 

Fig. 4.1 and Fig. 4.2 show that the proposed algorithms have performed faster 

than KLR-NR and RLR-NR respectively in decreasing the relative difference of 

optimization function. Moreover, NTR-KLR can handle the singularity problem as 

indicated in Fig. 4.1 (a.2, a.3 and a.4), on which KLR-NR cannot handle. It means that 

the use of the Truncated Newton method in NTR-KLR and NTR-LR algorithm 

respectively is effective in solving the numerical problem of KLR-NR and RLR-NR i.e. 

the singularity and the training time problem. Therefore, NTR-KLR outperforms KLR-

NR on small-to-medium size data sets when the singularity and the training time 

problem exists, while NTR-LR has performed better than RLR in handling the training 

time problem on large size data sets. These results can be seen as further explanation to 

the effectiveness of Truncated Newton method in TR-KLR (Maalouf et al, 2010) and 

TR-IRLS (Komarek and Moore, 2005) algorithm respectively, because of the 

equivalence of iterative method used by these algorithms. 
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Figure 4.1: Comparison of algorithm performance between NTR-KLR and KLR-NR  
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Figure 4.2: Comparison of algorithm performance between NTR-LR and RLR-NR  

 

4.2.3 Performances Comparison of proposed NTR-KLR and proposed NTR-LR 

to RBFSVM   

 

 Furthermore, the summary of performance comparison between proposed 

classifiers with their related work (RBFSVM) is given in Table 4.3. The performances 

comparison was conducted based on criteria: g-means value and Area Under Receiver 

Operating Curve (AUC) (Fawcett, 2004).  

 

 

 



 90 

Table 4.3: Summary of comparison: proposed NTR-KLR vs RBFSVM and NTR-LR vs 

RBFSVM 

 

Data Set 

g-means AUC 

Proposed  

NTR-KLR 

RBFSVM 

(Li et al., 2008) 

Proposed 

NTR-KLR 

RBFSVM  

(Li et al., 2008) 

Glass7 0.9257* 0.867 0.9723* 0.943 

ImgSegment1 0.9937 0.995* 0.9999* 0.998 

Car3 0.9073* 0 1* 0.631 

 
Proposed  

NTR-LR 

SVM 

(Li et al., 2008) 

Proposed 

NTR-LR 

SVM  

(Li et al., 2008) 

LetterImg26 0.8199* 0.818 0.990439* 0.933 

     

 

It is found that NTR-KLR and RBFSVM have comparable value of g-means and 

AUC on Glass7 and ImgSegment1 data set. Hence, although NTR-KLR performs much 

better than RBFSVSVM on classifying Car3 data set, both classifiers have comparable 

performance in general.  

 

Meanwhile, NTR-LR and RBFSVM have comparable performance on 

LetterImg26 data set. In addition, NTR-LR has simple solution with the use of 

unconstrained optimization problem and without the use of Kernel function. 

 

4.3  PROPOSED AB-WKLR and AB-WLR: NUMERICAL RESULTS and 

DISCUSSION  

 

This section presents and discusses several numerical results on the performance 

evaluation of AB-WKLR and AB-WLR classifier on imbalanced data sets with varying 

degrees of imbalance. Three sub sections are included in this section: 4.3.1 Accuracy, 

stability and numerical convergence of proposed algorithms; 4.3.2 The effectiveness of 

adapted Modified AdaBoost methods in proposed algorithms; 4.3.3 Performances 

comparison of proposed algorithms to AdaBoostSVM. 

 

4.3.1 Accuracy, stability and numerical convergence of AB-WKLR and AB-WLR 

 

Table 4.4 displays the summary of AB-WKLR performance respectively on five 

imbalanced data sets. In detail, it contains  adjusting strategies, optimal value of , 

accuracy values (sensitivity, specificity, g-means) and stability indicator (standard 
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deviation of g-means, Sg-means) with 5-Fold SCV. It can be observed in Table 4.4 that 

AB-WKLR classifier demonstrates best generalization performance on ImgSegment1 

data set. It performs best accuracy performance (highest g-means value) and best 

stability performance (lowest Sg-means).  

 

Meanwhile, the summary of AB-WLR performances on three imbalanced data 

sets is displayed in Table 4.5. It consists of  adjusting strategies, accuracy values 

(sensitivity, specificity, g-means) and stability indicator (standard deviation of g-means, 

Sg-means) with 5-Fold SCV. AB-WLR classifier performs best accuracy performance on 

LetterImg26 data set, while best stability performance of AB-WLR classifier was 

shown on Shuttle2to7 data set as indicated in Table 4.5.  

 

It can be observed also in Table 4.4, AB-WKLR classifier has higher sensitivity 

value than specificity value on Balance2 and Car3 data set, while on other three data 

sets, AB-WKLR classifier performs higher on specificity values. On the other hand, 

AB-WLR classifier has higher sensitivity value than specificity value on GammaImg 

and LetterImg26 data set, while AB-WKLR classifier performs higher specificity value 

on Shuttle2to7 data set, as indicated in Table 4.5. Hence, g-means is the proper 

evaluation metric in accommodating the non-standard and imbalanced situations like 

these. 
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Table 4.4: Summary of AB-WKLR performance 

by maximizing g-means value with 5-Fold SCV 

 

No. 
Name of 

Data set 

Optimal 

Parameter 
Class Accuracy 

g-means 

(Sg-means) 
opt 

Minority (+) 

Sensitivity 

Majority (-) 

Specificity 

1 Parkinson     

 min =exp(1) Exp(-5.5) 0.9246 0.94 0.9320 

 max =exp(1.5)    (0.0433) 

 du = 0.5; step = -0.5     

2 Glass7     

 min =exp(1) Exp(-6) 0.9622 1 0.9808 

 max =exp(5.5)    (0.0157) 

 du = 4.5; step = -0.5     

3 ImgSegment1     

 min =exp(0) Exp(-3) 0.9980 1 0.9990 

 max =exp(1)    (0.0006) 

 du = 1; step = -0.5     

4 Balance2     

 min =exp(1) Exp(-3.5) 0.9045 0.8356 0.8655 

 max =exp(7)    (0.0752) 

 du =6; step = -0.5     

5 Car3     

 min =exp(0) Exp(-3) 0.9940 0.9714 0.9822 

 max =exp(6)    (0.0323) 

 du = 6; step = -0.5     

 

Table 4.5: Summary of AB-WLR performance  

by maximizing g-means value with 5-Fold SCV 
 

No. 
Name of 

Data set 

Class Accuracy 
g-means 

(Sg-means) 
Minority (+) 

Sensitivity 

Majority (-) 

Specificity 

1 GammaImg    

 min =exp(-0.5) 0.8123 0.7087 0.7587 

 max =exp(21.5)   (0.0061) 

 du =  22; step = -1    

2 Shuttle2to7    

 min =exp(-3) 0.9665 0.9799 0.9732 

 max =exp(22)   (0.0025) 

 du = 25; step = -1    

3 LetterImg26    

 min =exp(-3)    

 max =exp(17) 0.9417 0.9414 0.9415 

 du =  20;step = -1   (0.0093) 
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Detail g-means values during 5-Fold SCV along with Sg-means of AB-WKLR are 

summarized in Table 4.6. This table also presents the number of  which is set and the 

number of iterations which was reached by AB-WKLR to converge.  

 

Table 4.6: Number of , number of iterations and g-means value of AB-WKLR 

classifier by maximizing g-means value with 5-Fold SCV 

 

Fold No.  n 

Number 

of 

iterations 

g-means 

Park Glass7 ImgS1 Blc2 Car3 

1 

1 Parkinson 2 2 0.9649     

2 Glass7 10 152  1    

3 ImgSegment1 3 3   0.9987   

4 Balance2 13 172    0.9278  

5 Car3 13 165     0.9955 

2 

1 Parkinson 2 2 0.8808     

2 Glass7 10 140  0.9726    

3 ImgSegment1 3 3   0.9987   

4 Balance2 13 186    0.7472  

5 Car3 13 193     0.9955 

3 

1 Parkinson 2 2 0.8983     

2 Glass7 10 129  0.9864    

3 ImgSegment1 3 5   1   

4 Balance2 13 165    0.9151  

5 Car3 13 206     0.9244 

4 

1 Parkinson 2 2 0.9322     

2 Glass7 10 112  0.9586    

3 ImgSegment1 3 5   1   

4 Balance2 13 151    0.9022  

5 Car3 13 147     0.9985 

5 

1 Parkinson 2 3 0.9837     

2 Glass7 10 132  0.9864    

3 ImgSegment1 3 4   1   

4 Balance2 13 158    0.8351  

5 Car3 13 145     0.9970 

  
Average of g-means 

(Sg-means) 

0.9320 

(0.0433) 

0.9808 

(0.0157) 

0.9990 

(0.0006) 

0. 8655 

(0.0752) 

0.9822 

(0.0323) 

 

 

As explained in Chapter 3, the maximum number of iterations for AB-WKLR is 

set to 30 x n. It can be observed in Table 4.6 that this number has never been reached 

by AB-WKLR. The maximum number of iterations was reached by AB-WKLR during 

5-Fold SCV with 206 iterations. It was reached on Car3 data set. It means that AB-

WKLR classifier takes 206 iterations to converge therefore it consists of 206 NTR-

WKLR component classifiers on final iteration. 
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Table 4.7 provides detail g-means values during 5-Fold SCV along with Sg-means 

of AB-WLR classifier. The number of  which is set and the number of iterations which 

was required by AB-WLR to converge are displayed also in Table 4.7. 

 

Table 4.7: Number of , number of iteration and g-means value of AB-WLR classifier 

by maximizing g-means value with 5-Fold SCV 

 

Fold No. 
Name of 

Data Set 
n 

No. of 

Iterations 

g-means 

GmImg Shuttle LetImg 

 1 GammaImg 23 151 0.7506   

1 2 Shuttle2to7 26 289  0.9734  

 3 LetterImg26 21 253   0.9557 

 1 GammaImg 23 147 0.7673   

2 2 Shuttle2to7 26 289  0.9759  

 3 LetterImg26 21 284   0.9326 

 1 GammaImg 23 145 0.7578   

3 2 Shuttle2to7 26 253  0.9745  

 3 LetterImg26 21 250   0.9420 

 1 GammaImg 23 194 0.7569   

4 2 Shuttle2to7 26 224  0.9691  

 3 LetterImg26 21 238   0.9433 

 1 GammaImg 23 213 0.7609   

5 2 Shuttle2to7 26 122  0.9731  

 3 LetterImg26 21 256   0.9337 

  
Average of g-means 

(S-gmeans) 

0.7587 

(0.0061) 

0.9732 

(0.0025) 

0.9415 

(0.0093) 

 

 

It can be observed in Table 4.7 that the maximum number of iterations for AB-

WLR which is set to 30 x nhasnever been reached by AB-WLR. The maximum 

number of iterations was reached by AB-WLR during 5-Fold SCV with 289 iterations. 

It was reached on Shuttle2to7 data set. It means that, AB-WLR classifier contains 289 

NTR-WLR component classifiers on final iteration.  

 

Fig. 4.3 – Fig 4.7 show the error curves during AB-WKLR iterations, while the 

curves of error during AB-WLR iterations are displayed in Fig. 4.8 – Fig 4.10. In order 

to give better idea on the proper use of g-means metric, error curves by g-means and 

error curves by total accuracy are displayed separately.   
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Figure 4.3: Error curve for AB-WKLR on first fold of Parkinson data set  
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Figure 4.4: Error curve for AB-WKLR on first fold of Glass7 data set  
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Figure 4.5: Error curve for AB-WKLR on first fold of ImgSegment1 data set  
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Figure 4.6: Error curve for AB-WKLR on first fold of Balance2 data set  
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Figure 4.7: Error curve for AB-WKLR on first fold of Car3 data set  
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Figure 4.8: Error curve for AB-WLR on first fold of GammaImg data set  
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

Figure 4.9: Error curve for AB-WLR on first fold of Shuttle2to7 data set  
 

 

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

 

 

Training Error

Testing Error

0 50 100 150 200 250 300
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of NTR-WLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

 

 

Training Error

Testing Error

                                                             
                           (a) Error by g-means        (b) Error by total accuracy 



Figure 4.10: Error curve for AB-WLR on first fold of LetterImg26 data set  

 

It can be seen in Fig. 4.3 – Fig. 4.10 that training error by g-means metric 

decreases rapidly as NTR-WKLR or NTR-WLR component classifier was added. It 

means that training error by g-means metric drops fast to converge until final iteration 

of AB-WKLR and AB-WLR. This indicates the consistency with basic theoretical 

property of AdaBoost algorithm which uses error by total accuracy metric. Testing 

error follows the behaviour of training error similarly.  

 

4.3.2 The effectiveness of adapted Modified AdaBoost in AB-WKLR and AB-

WLR 

 

The comparison results between AB-WKLR and NTR-KLR are summarized in 

Table 4.8 and Fig. 4.11. It can be seen that the accuracy and stability of AB-WKLR are 
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better than NTR-KLR on all five data sets, since AB-WKLR has better g-means and 

standard deviations of g-means (Sg-means).  

 

Table 4.8: Summary of comparison results between AB-WKLR and NTR-KLR  

by maximizing g-means value with 5-Fold SCV 

 

No. 
Name of 

Data set 

Sensitivity Specificity 
g-means 

(Sg-means) 

NTR-

KLR 
AB-WKLR 

NTR-

KLR 

AB-

WKLR 

NTR-

KLR 
AB-WKLR 

1 Parkinson 0.8800 
 

0.9246 

 

0.9655 0.94 

0.9195 

(0.0716) 
0.9320 

(0.0433) 

2 Glass7 0.8667 
 

0.9622 

 

0.9946 1 

0.9257 

(0.0732) 
0.9808 

(0.0157) 

3 ImgSegment1 0.9879 
 

0.9990 

 

0.9995 1 

0.9937 

(0.0065) 
0.9990 

(0.0006) 

4 Balance2 0.02 
 

0.9045 

 

1 0.8356 

0.0632 

(0.1414) 
0. 8655 

(0.0752) 

5 Car3 0.8275 0.9940 0.9976 0.9714 

0.9073 

(0.0509) 
0.9822 

(0.0323) 

 

 

 
 

Figure 4.11: Comparison of g-means and Sg-means between AB-WKLR and NTR-KLR  
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standard deviations of g-means (Sg-means), such that the accuracy and stability of AB-

WLR is better than NTR-LR on all of three data sets.  

 

Table 4.9: Summary of comparison results between AB-WLR and NTR-LR  

by maximizing g-means value with 5-Fold SCV 

 

No. 
Name of 

Data set 

Sensitivity Specificity 
g-means 

(Sg-means) 

NTR-LR AB-WLR NTR-LR AB-WLR NTR-LR AB-WLR 

1 GammaImg 0.5908 0.8123 0.8999 

 

0.7087 

0.7291 

(0.0071) 
0.7587 

(0.0061) 

2 Shuttle2to7 0.9186 0.9665 0.9862 

 

0.9799 

0.9518 

(0.0048) 
0.9732 

(0.0025) 

3 LetterImg26 0.6757 0.9417 0.9951 

 

0.9414 

0.8199 

(0.0115) 
0.9415 

(0.0093) 

 

 
 

Figure 4.12: Comparison of g-means and Sg-means between AB-WLR and NTR-LR  

 

It can be observed also in Table 4.8 and Fig. 4.11 that AB-WKLR has better 

sensitivity value than NTR-KLR on all five imbalanced data sets, while AB-WLR 

performs better sensitivity value than NTR-LR on all three imbalanced data sets as 

indicated in Table 4.9 and Fig. 4.12. These results indicate the effectiveness of AB-

WKLR and AB-WLR in solving the problem of minority class on imbalanced data sets, 
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inevitably has worse specificity value on three of five imbalanced data sets, while AB-

WLR produces worse specificity value on all three imbalanced data sets. 

 

Table 4.10, Fig. 4.13 and Fig. 4.14 give the summary of AB-WKLR 

improvements to NTR-KLR. It can be observed that improvements on both error by g-

means and standard deviation of g-means with 5-Fold SCV could be as high as more 

than 90%. Hence, AB-WKLR is more accurate and more stable classifier than NTR-

KLR in classifying on small-to-medium size of imbalanced data sets. Furthermore, AB-

WKLR is useful specifically for data sets which have degrees of imbalance within 6 to 

24, as indicated in Table 4.10.  

 

Table 4.10: Summary of AB-WKLR improvements to NTR-KLR  

in reducing error by g-means and standard deviation of g-means 

 

Name 

Of  

Data Set 

Degree of 

Imbalanced 

Average 5-Fold 

SCV Error  

(1 - gmeans) 

Improvement 

on Reducing 

Error  

by g-means 

(%) 

Standard 

Deviation of 

g-means (Sg-means) 

Improvement 

on reducing 

Sg-means   

(%) 

NTR-

KLR 

AB-

WKLR 

NTR-

KLR 

AB-

WKLR 

Parkinson 3.06 0.0805 0.068 15.5280 0.0716 0.0433 39.5251 

Glass7 6.38 0.0743 0.0192 74.1588 0.0732 0.0157 78.5519 

ImgSegment1 6 0.0063 0.001 84.127 0.0065 0.0006 90.7692 

Balance2 12.52 0.9368 0.1345 85.6426 0.1414 0.0752 46.8175 

Car3 24.04 0.0927 0.0178 80.7983 0.0509 0.0323 36.5422 

 

Largest contribution of AB-WKLR in improving the accuracy of NTR-KLR was 

shown on Balanced2 data set, while largest contribution of AB-WKLR in improving the 

stability was shown on ImgSegment1 data set as observed in Table 4.10, Fig. 4.13 and 

Fig. 4.14. 
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Figure 4.13: Improvements of AB-WKLR to NTR-KLR  

in reducing error by g-means 
 

 
 

Figure 4.14: Improvements of AB-WKLR to NTR-KLR  

in reducing standard deviation of g-means 
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The summary of AB-WLR improvements to NTR-LR is provided in Table 4.11, 

Fig. 4.15 and Fig. 4.16. As compared to NTR-LR, it can be seen that AB-WLR is more 

accurate and more stable classifier in classifying on large size of imbalanced data sets, 

because its improvements on both error by g-means and standard deviation of g-means 

with 5-Fold SCV could be achieved more than 60%. Similar to AB-WKLR, AB-WLR 

is useful specifically for data sets which have high degrees of imbalance i.e. 3.6 and 26 

in this research, as shown in Table 4.11.  

 

Table 4.11: Summary of AB-WLR improvements to NTR-LR  

in reducing error by g-means and standard deviation of g-means 
 

Name 

Of  

Data Set 

Degree of 

Imbalanced 

Average Error  

With 5-fold SCV  

 (1 – gmeans) 

Improvement 

on Reducing 

Error  

by g-means 

(%) 

Standard 

Deviation of g-

means (Sg-means) 

Improvement 

on reducing 

Sg-means   

(%) 

NTR-

LR 

AB-

WLR 

NTR-

LR 

AB-

WLR 

GammaImg 1.84 0.2709 0.2413 10.9265 0.0071 0.0061 14.0845 

Shuttle2to7 3.67 0.0482 0.0268 44.3983 0.0048 0.0025 47.9167 

LetterImg26 26.25 0.1801 0.0585 67.5180 0.0115 0.0093 19.1304 

 

Table 4.10, Fig. 4.13 and Fig. 4.14 indicate that AB-WLR has largest contribution in 

improving the accuracy of NTR-LR on LetterImg26 data set, while largest contribution 

of AB-WKLR in improving the stability was showed in Shutte2to7 data set. 

 

 
 

Figure 4.15: Improvement of AB-WLR to NTR-LR 

in reducing error by g-means 
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Figure 4.16: Improvement of AB-WLR to NTR-LR 

in reducing standard deviation of g-means 
 

 

In general, the effectiveness of adapted Modified Adaboot methods in AB-

WKLR and AB-WLR algorithm respectively has been tested statistically, as presented 

in Table 4.12. Statistical significance was conducted by comparing the accuracy 

performance of AB-WKLR to NTR-KLR and AB-WLR to NTR-LR using Paired-

Samples t-test (=0.05) (Montgomery, 1991).  

 

Table 4.12: Summary of statistical significances: AB-WKLR vs NTR-KLR and AB-

WLR vs NTR-LR 

 

Data Set 

Average of g-means  

With 5-fold SCV  

(Sg-means) 

Paired-Samples t-test 

(=0.05) 

NTR-KLR AB-WKLR p-value 
Statistical 

Significance 

Parkinson 

0.9195  

(0.0716) 
0.9320  

(0.0433) 

.599 No 

Glass7 

0.9257  

(0.0732) 
0.9808  

(0.0157) 

.223 No 

ImgSegment1 

0.9937 

 (0.0065) 
0.9990 

 (0.0006) 

.124 No 

Balance2 

0.0632  

(0.1414) 
0. 8655  

(0.0752) 

0 Yes 

Car3 

0.9073 

(0.0509) 
0.9822 

(0.0323) 

.035 Yes 
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Table 4.12: Continued 

 

 

Data Set 

Average of g-means  

With 5-fold SCV  

(Sg-means) 

Paired-Samples t-test 

(=0.05) 

NTR-

KLR 
AB-WKLR p-value 

Statistical 

Significance 

GammaImg 0.7291 0.7587  0.01 Yes 

Shuttle2to7 0.9518  0.9732  0 Yes 

LetterImg26 0.8199  0.9415  0 Yes 

TOTAL (5 Yes, 3 No) 

 

The results of statistical tests in Table 4.12 describe that the use of Modified AdaBoost 

methods in AB-WKLR and AB-WLR algorithm respectively is effective significantly 

on 5 data sets out of total 8 data sets, since their p-value < 0.05 ( 

 

4.3.3 Performances Comparison of proposed AB-WKLR and proposed AB-WLR 

to AdaBoostSVM 

 

Table 4.13 displays the summary of performances comparison between the 

proposed algorithms with their related work i.e. AdaBoostSVM.  It can be observed that 

AB-WKLR and AdaBoostSVM have comparable value of g-means and AUC on three 

imbalanced data sets. AB-WLR and AdaBoostSVM also performs similarly on 

LetterImg26 data set. 

 

 Although AB-WKLR performs slightly better than AdaBoostSVM in 

classifying three imbalanced data sets, both classifiers have comparable performance in 

general. In addition, NTR-KLR component classifier used in AB-WKLR has simple 

solution of unconstrained optimization problem. On the other hand, with the use of 

unconstrained optimization problem and without the use of Kernel function, AB-WLR 

has simpler solution than AdaBoostSVM in performing comparable performance on 

LetterImg26 data set.  
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Table 4.13: Summary of comparison: between proposed algorithms and AdaBoostSVM 

 

Data Set 

g-means AUC 

Proposed 

AB-WKLR 

AdaBoostSVM 

(Li et al., 2008) 

Proposed 

AB-WKLR 

AdaBoostSVM 

(Li et al., 2008) 

Glass7 0.9808*  0.885 1* 0.963 

ImgSegment1 0.9990*  0.965 1* 0.991 

Car3 0.9822* 0.975 1* 0.997 

 
Proposed 

AB-WLR

AdaBoostSVM 

(Li et al., 2008) 

Proposed 

AB-WLR

AdaBoostSVM 

(Li et al., 2008) 

LetterImg26 0.9415  0.9968* 0.985 

 

 

 

4.4 SUMMARY 

 

This chapter has reported and analyzed the performances of proposed 

classification algorithms i.e. general classification algorithms (NTR-KLR and NTR-LR) 

and imbalanced classification algorithms (AB-WKLR and AB-WLR) based on several 

numerical experiments. The effectiveness of the proposed classification algorithms and 

the method used was evaluated.  The numerical convergence, accuracy and stability of 

proposed classification algorithms were provided previously. Furthermore, the 

limitation of proposed general classification algorithms was also determined, in relation 

to the development of proposed imbalanced classification algorithms. 
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1     INTRODUCTION 

 

The conclusion which related to Research Objective of the thesis is given in this 

chapter, based on numerical results and discussion in Chapter 4. The recommendations 

for further work are described then in this chapter.  

 

5.2     CONCLUSIONS 

 

In general, this thesis has developed proposed general and imbalanced 

classification algorithm. The numerical converge of the proposed classification 

algorithms have been provided also respectively, along with their accuracy and stability. 

Proposed general classification algorithms respectively are NTR-KLR and NTR-LR, 

while proposed imbalanced classification algorithms respectively are AB-WKLR and 

AB-WLR.  

 

5.2.1 NTR-KLR and NTR-LR 

 

Numerical results have shown that the use of Truncated Newton method in 

NTR-KLR and NTR-LR algorithm is effective in handling the numerical problem of 

KLR-NR and RLR-NR respectively on the huge matrix of linear system of Newton-

Raphson update rule i.e. the training time and the singularity problem. These results can 

be seen as further explanation on the success of Truncated Newton method in TR-KLR 

(Maalouf et al., 2010) and TR Iteratively Re-weighted Least Square (TR-IRLS) 

(Komarek and Moore, 2005) algorithm respectively, because of the equivalence of 
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iterative method used by these algorithms. Moreover, only with the use of 

unconstrained optimization problem which has simple solution, NTR-KLR and NTR-

LR respectively have comparable performance with SVM which is determined as state-

of-the-art classifier in Kernel methodology and Data Mining community. However, 

numerical results have confirmed that the performances accuracy of both proposed 

general classifiers is limited when applied on imbalanced data sets, specifically in 

classifying the minority class. 

 

5.2.2 AB-WKLR and AB-WLR 

 

Numerical results have demonstrated that the use of adapted Modified AdaBoost 

methods in AB-WKLR and AB-WLR algorithm respectively has performed 

significantly effective performance in improving the accuracy and stability 

performances of general classifiers i.e. NTR-KLR and NTR-LR respectively, on 

imbalanced data sets. The improvements on both error by g-means and standard 

deviation of g-means with 5-Fold SCV could be achieved as high as more than 60 to 

90%. 

Furthermore, numerical results have shown that AB-WKLR and AB-WLR 

respectively have comparable performances with AdaBoostSVM in classifying 

imbalanced data sets. In addition, both proposed imbalanced classification algorithms 

employ the weighted version of NTR-KLR (NTR-WKLR) and the weighted version of 

NTR-LR (NTR-WLR) component classifier respectively which have simple solution of 

unconstrained weighted optimization problem.  

 

5.3 RECOMMENDATIONS 

 

A number of recommendations for future works may enhance the promising results 

which have been demonstrated in this thesis. Those are outlined as follows: 

a. Combine or replace the Newton-Raphson method with other method, as the outer 

algorithm of Truncated Newton method in approximating the solution of Newton-

Raphson update rule to search the MLE for KLR and RLR respectively. 

b. Extend the algorithm of NTR-KLR, NTR-LR, AB-WKLR and AB-WLR 

respectively for multi-class data sets problem. 
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c. Instead of Grid Search with k-Fold SCV, explore the use of other model selection 

methods, in order to obtain shorter time in process of model selection. 
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APPENDIX B 

 

THE INFLUENCE OF PARAMETER  

TO CLASSIFICATION PERFORMANCE OF NTR-KLR 

 

1. Parkinson 

a.1 G-means values on training data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.08 0.16 

 0 0 0 0 0 0 0 0 0 0 0 0.14 0.55 0.64 0.67 0.68 0.68 0.69 0.69 

 0 0 0 0 0 0 0 0 0 0.16 0.55 0.64 0.67 0.68 0.69 0.7 0.69 0.69 0.7 

 0 0 0 0 0 0 0 0.17 0.56 0.64 0.67 0.68 0.7 0.7 0.7 0.7 0.71 0.71 0.71 

 0 0 0 0 0 0.14 0.59 0.65 0.66 0.69 0.7 0.72 0.72 0.73 0.73 0.75 0.75 0.76 0.76 

 0 0 0 0.09 0.54 0.65 0.68 0.7 0.72 0.73 0.74 0.75 0.77 0.77 0.76 0.76 0.76 0.77 0.77 

 0 0 0.35 0.65 0.67 0.69 0.71 0.73 0.75 0.77 0.78 0.78 0.78 0.82 0.84 0.85 0.86 0.88 0.87 

 0 0.26 0.65 0.68 0.69 0.73 0.76 0.78 0.8 0.84 0.88 0.92 0.94 0.95 0.97 0.98 0.98 0.99 0.99 

 0 0.31 0.62 0.68 0.71 0.78 0.84 0.91 0.95 0.97 0.99 0.99 0.99 0.99 1 1 1 1 1 

 0 0 0.38 0.58 0.76 0.88 0.97 0.99 0.99 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0.38 0.63 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0.05 0.36 0.55 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0.16 0.41 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
0
 



 

 

 

 

a.2 Total accuracy values on training data 

 

Exp.   1                 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.85 0.85 0.85 0.85 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.86 0.85 0.86 0.86 0.86 0.86 0.86 0.86 

 0.75 0.75 0.75 0.75 0.75 0.76 0.84 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88 

 0.75 0.75 0.75 0.76 0.83 0.85 0.86 0.86 0.87 0.87 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

 0.75 0.75 0.79 0.86 0.86 0.86 0.87 0.87 0.88 0.89 0.89 0.89 0.89 0.91 0.92 0.92 0.93 0.94 0.93 

 0.75 0.78 0.86 0.86 0.86 0.87 0.89 0.9 0.91 0.93 0.94 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99 

 0.75 0.79 0.85 0.87 0.88 0.91 0.93 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1 

 0.75 0.75 0.79 0.84 0.9 0.95 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.79 0.85 0.94 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.76 0.79 0.83 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.75 0.76 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.75 0.75 0.77 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

 1
2
1
 



 

 

b.1 G-means values on testing data (Parkinson) 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.09 0.09 

 0 0 0 0 0 0 0 0 0 0 0 0.06 0.51 0.66 0.66 0.69 0.68 0.68 0.68 

 0 0 0 0 0 0 0 0 0 0.06 0.51 0.66 0.68 0.68 0.68 0.68 0.69 0.69 0.69 

 0 0 0 0 0 0 0 0.06 0.51 0.66 0.66 0.68 0.68 0.68 0.69 0.69 0.71 0.71 0.71 

 0 0 0 0 0 0 0.53 0.66 0.68 0.69 0.7 0.7 0.7 0.71 0.71 0.74 0.74 0.74 0.75 

 0 0 0 0 0.53 0.66 0.67 0.7 0.7 0.7 0.72 0.74 0.75 0.74 0.74 0.74 0.75 0.75 0.75 

 0 0 0.29 0.65 0.68 0.7 0.7 0.73 0.74 0.74 0.76 0.78 0.79 0.76 0.76 0.77 0.77 0.78 0.76 

 0 0.06 0.63 0.68 0.69 0.7 0.73 0.76 0.77 0.77 0.77 0.79 0.8 0.84 0.83 0.88 0.83 0.85 0.87 

 0 0.22 0.55 0.66 0.68 0.75 0.78 0.8 0.79 0.81 0.84 0.86 0.87 0.91 0.91 0.91 0.91 0.92 0.92 

 0 0 0.24 0.47 0.6 0.68 0.78 0.84 0.89 0.89 0.89 0.88 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

 0 0 0 0.13 0.25 0.47 0.58 0.67 0.7 0.73 0.71 0.73 0.76 0.76 0.77 0.77 0.8 0.8 0.8 

 0 0 0 0 0.07 0.13 0.31 0.31 0.33 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 

 0 0 0 0 0 0 0.07 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2 0.26 0.26 0.26 0.26 0.26 0.26 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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b.2 Total accuracy values on testing data (Parkinson) 

 

Exp.   1                 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.86 0.84 0.84 0.84 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.85 0.84 0.84 0.84 0.84 0.84 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.85 0.85 0.85 

 0.75 0.75 0.75 0.75 0.75 0.75 0.83 0.86 0.86 0.86 0.87 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87 

 0.75 0.75 0.75 0.75 0.83 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86 

 0.75 0.75 0.78 0.86 0.86 0.86 0.85 0.86 0.87 0.87 0.88 0.89 0.89 0.88 0.88 0.88 0.87 0.86 0.86 

 0.75 0.76 0.85 0.86 0.87 0.86 0.87 0.88 0.89 0.89 0.88 0.89 0.89 0.91 0.9 0.92 0.88 0.89 0.89 

 0.75 0.77 0.83 0.86 0.87 0.89 0.9 0.9 0.89 0.89 0.9 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.94 

 0.75 0.75 0.78 0.81 0.85 0.87 0.9 0.92 0.94 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

 0.75 0.75 0.75 0.76 0.78 0.81 0.84 0.87 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.9 0.9 0.9 

 0.75 0.75 0.75 0.75 0.76 0.76 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 

 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.77 0.75 0.77 0.77 0.77 0.77 0.77 0.77 0.77 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 
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2. Glass7 

a.1 G-means values on training data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.31 0.8 0.88 0.89 0.91 0.92 

 0 0 0 0 0 0 0 0 0 0 0.08 0.48 0.85 0.88 0.89 0.9 0.9 0.9 0.9 

 0 0 0 0 0 0 0 0 0.08 0.56 0.86 0.88 0.89 0.89 0.89 0.9 0.9 0.9 0.9 

 0 0 0 0 0 0 0.08 0.56 0.83 0.9 0.9 0.91 0.9 0.92 0.93 0.93 0.94 0.94 0.94 

 0 0 0 0 0.08 0.55 0.83 0.9 0.91 0.91 0.91 0.92 0.93 0.94 0.94 0.95 0.94 0.95 0.95 

 0 0 0 0.42 0.82 0.89 0.91 0.91 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0 0 0.73 0.88 0.9 0.92 0.93 0.93 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0.24 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0.61 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0.08 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0.14 0.66 0.8 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0.39 0.8 0.85 0.87 0.98 0.98 0.99 1 1 1 1 1 1 1 1 1 1 

 0 0.54 0.85 0.85 0.87 0.91 0.96 0.98 0.98 0.98 0.99 1 1 1 1 1 1 1 1 

 0 0.73 0.85 0.88 0.9 0.94 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
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a.2 Total accuracy values on training data 

 

Exp.   1                 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.95 0.96 0.96 0.97 0.96 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.89 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 

 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

 0.86 0.86 0.86 0.89 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.86 0.86 0.94 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.86 0.94 0.96 0.97 0.97 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.91 0.96 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.89 0.95 0.96 0.97 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.87 0.92 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.87 0.89 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.86 0.91 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 1 1 1 
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b.1 G-means values on testing data (Glass7) 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0.78 0.87 0.88 0.88 0.9 

 0 0 0 0 0 0 0 0 0 0 0 0.21 0.83 0.87 0.88 0.9 0.9 0.9 0.9 

 0 0 0 0 0 0 0 0 0 0.44 0.82 0.86 0.88 0.88 0.9 0.92 0.92 0.92 0.92 

 0 0 0 0 0 0 0 0.44 0.8 0.84 0.9 0.9 0.9 0.9 0.92 0.92 0.92 0.92 0.92 

 0 0 0 0 0 0.44 0.8 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.91 0.91 

 0 0 0 0.29 0.8 0.86 0.88 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 

 0 0 0.6 0.85 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

 0 0.6 0.83 0.85 0.85 0.87 0.87 0.89 0.91 0.91 0.91 0.91 0.91 0.91 0.93 0.93 0.93 0.93 0.93 

 0 0.32 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.87 0.87 0.87 0.85 0.87 0.85 0.85 0.85 0.85 0.85 

 0 0 0 0.7 0.78 0.8 0.83 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

 0 0 0 0 0.09 0.63 0.74 0.76 0.74 0.76 0.78 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

 0 0 0 0 0 0 0 0.17 0.29 0.25 0.29 0.45 0.45 0.45 0.45 0.49 0.52 0.52 0.55 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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b.2 Total accuracy values on testing data (Glass7) 

 

Exp.   1                 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.94 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.95 0.96 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.95 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.89 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 

 0.86 0.86 0.86 0.88 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

 0.86 0.86 0.93 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

 0.86 0.93 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 

 0.86 0.89 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.93 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.87 0.92 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.9 0.9 0.9 0.91 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 
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3. ImgSegment1 

a.1 G-means values on training data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.08 0.19 0.23 0.4 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.21 0.51 0.72 0.82 0.9 

 0 0 0 0 0 0 0 0 0 0 0 0.06 0.25 0.55 0.74 0.84 0.92 0.94 0.96 

 0 0 0 0 0 0 0 0 0 0.08 0.26 0.56 0.74 0.84 0.91 0.94 0.96 0.96 0.96 

 0 0 0 0 0 0 0 0.06 0.26 0.56 0.75 0.85 0.91 0.95 0.96 0.97 0.97 0.97 0.97 

 0 0 0 0 0 0.06 0.29 0.59 0.77 0.88 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

 0 0 0 0 0.32 0.64 0.81 0.92 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0 0 0.37 0.71 0.87 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.42 0.77 0.9 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.89 0.93 0.96 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.93 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 

 0.89 0.95 0.96 0.96 0.97 0.98 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0.75 0.86 0.93 0.95 0.95 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0.23 0.57 0.75 0.85 0.91 0.95 0.96 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0 0.06 0.37 0.55 0.72 0.84 0.95 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0.1 0.37 0.61 0.83 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0.41 0.63 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0.4 0.45 1 1 1 1 1 1 1 1 1 1 1 1 

 

 1
2
8
 



 

  

a.2 Total accuracy values on training data 

 

Exp.   1                 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.93 0.95 0.97 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.98 0.99 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.94 0.97 0.98 0.99 0.99 0.99 0.99 1 1 1 1 

 0.86 0.86 0.86 0.86 0.87 0.92 0.95 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.88 0.93 0.96 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.88 0.94 0.97 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.97 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.97 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.94 0.96 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.9 0.94 0.96 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.88 0.9 0.93 0.96 0.98 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.88 0.91 0.96 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.88 0.91 1 1 1 1 1 1 1 1 1 1 1 1 

 0.86 0.86 0.86 0.86 0.86 0.88 0.89 1 1 1 1 1 1 1 1 1 1 1 1 
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b.1 G-means values on testing data (ImgSegment1) 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.05 0.18 0.22 0.38 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.19 0.51 0.71 0.83 0.9 

 0 0 0 0 0 0 0 0 0 0 0 0.05 0.24 0.52 0.74 0.83 0.91 0.95 0.96 

 0 0 0 0 0 0 0 0 0 0.05 0.24 0.54 0.74 0.83 0.91 0.95 0.96 0.96 0.96 

 0 0 0 0 0 0 0 0.05 0.24 0.55 0.74 0.84 0.91 0.95 0.96 0.97 0.96 0.97 0.97 

 0 0 0 0 0 0.02 0.27 0.57 0.77 0.88 0.94 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 

 0 0 0 0 0.31 0.62 0.81 0.92 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0 0 0.35 0.7 0.87 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.42 0.77 0.9 0.95 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.9 0.93 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.93 0.96 0.96 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.88 0.94 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.72 0.84 0.91 0.93 0.93 0.95 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.21 0.52 0.69 0.81 0.85 0.89 0.89 0.92 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 

 0 0 0.27 0.45 0.59 0.69 0.75 0.79 0.78 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.86 0.86 

 0 0 0 0 0.15 0.31 0.48 0.55 0.6 0.57 0.61 0.62 0.63 0.64 0.64 0.64 0.64 0.64 0.64 

 0 0 0 0 0 0 0.26 0.41 0.41 0.42 0.41 0.42 0.43 0.43 0.43 0.43 0.44 0.44 0.44 

 0 0 0 0 0 0 0.06 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
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b.2 Total accuracy values on testing data (ImgSegment1) 

 

Exp.   1                 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.93 0.95 0.97 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.97 0.98 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99 0.99 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.97 0.99 0.99 0.99 0.99 0.99 0.99 

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 1 1 1 

 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1 

 0.86 0.86 0.87 0.93 0.96 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.88 0.94 0.97 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.97 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.98 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0.93 0.96 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 

 0.86 0.9 0.93 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.86 0.86 0.87 0.89 0.91 0.93 0.94 0.95 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.86 0.86 0.86 0.86 0.86 0.87 0.89 0.9 0.91 0.9 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 
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4. Balance2 

a.1 G-means values on training data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.03 0.06 0.1 0.21 0.25 

 0 0 0 0 0 0 0 0 0 0.03 0.06 0.1 0.16 0.24 0.28 0.27 0.28 0.32 0.32 

 0 0 0 0 0 0 0.03 0.03 0.08 0.24 0.3 0.41 0.47 0.52 0.59 0.64 0.65 0.67 0.68 

 0 0 0 0 0 0 0.03 0.2 0.59 0.87 0.99 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
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a.2 Total accuracy values on training data 

 

Exp.   1                 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.96 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.95 0.98 1 1 1 1 1 1 1 1 1 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 
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b.1 G-means values on testing data (Balance2) 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.06 0.06 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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b.2 Total accuracy values on testing data (Balance2) 

 

Exp.   1                 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.89 0.89 0.89 0.88 0.88 0.88 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.9 0.88 0.86 0.84 0.82 0.8 0.79 0.78 0.78 0.78 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 
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5. Car3 

a.1 G-means values on training data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0.23 0.23 0.23 

 0 0 0 0 0 0 0 0 0 0 0 0.07 0.21 0.25 0.26 0.28 0.34 0.36 0.37 

 0 0 0 0 0 0 0 0 0.19 0.25 0.31 0.41 0.45 0.48 0.51 0.53 0.55 0.56 0.57 

 0 0 0 0 0 0.14 0.28 0.43 0.49 0.54 0.58 0.6 0.68 0.74 0.8 0.85 0.88 0.89 0.9 

 0 0 0 0.09 0.33 0.51 0.59 0.72 0.81 0.88 0.93 0.96 0.98 0.98 0.99 1 1 1 1 

 0 0 0 0.14 0.42 0.71 0.87 0.97 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0.2 0.69 0.99 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 0.03 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
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a.2 Total accuracy values on training data 

 

Exp.   1                 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 

 0.96 0.96 1 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.98 1 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1 
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b.1 G-means values on testing data 

 

Exp.   1                 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.13 0.15 0.15 

 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0.13 0.2 0.25 0.25 0.28 0.28 

 0 0 0 0 0 0 0 0 0.11 0.18 0.24 0.31 0.37 0.43 0.49 0.49 0.5 0.51 0.51 

 0 0 0 0 0 0.05 0.24 0.34 0.42 0.48 0.5 0.51 0.58 0.62 0.65 0.72 0.73 0.73 0.74 

 0 0 0 0.06 0.31 0.43 0.49 0.59 0.67 0.68 0.75 0.79 0.83 0.86 0.89 0.9 0.91 0.91 0.91 

 0 0 0 0.06 0.33 0.5 0.66 0.71 0.75 0.82 0.85 0.87 0.88 0.91 0.91 0.91 0.91 0.91 0.91 

 0 0 0 0 0 0 0.22 0.33 0.51 0.6 0.65 0.67 0.73 0.78 0.78 0.81 0.81 0.82 0.85 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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b.2 Total accuracy values on testing data 

 

Exp.   1                 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 

 0.96 0.96 1 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

 0.96 0.96 1 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 
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APPENDIX C 

 

THE INFLUENCE OF PARAMETER  

TO CLASSIFICATION PERFORMANCE OF NTR-LR 

 

 

1. Magic data set 

 



Exp. 

Total Accuracy G-means 

Training 

Data 

Testing 

Data 

Training 

Data 

Testing 

Data 

7 0.778128 0.778181 0.683088 0.683148 

6.5 0.781165 0.780915 0.696242 0.696057 

6 0.783636 0.783386 0.705629 0.705017 

5.5 0.787605 0.787224 0.717168 0.716377 

5 0.788775 0.789064 0.721262 0.721346 

4.5 0.789235 0.789274 0.723532 0.723742 

4 0.790142 0.790221 0.725728 0.72608 

3.5 0.790457 0.790431 0.726872 0.726935 

3 0.790786 0.790641 0.727796 0.727605 

2.5 0.790786 0.791009 0.728064 0.728435 

2 0.79097 0.791009 0.728417 0.728614 

1.5 0.791115 0.791062 0.728745 0.728765 

1 0.791246 0.791115 0.729006 0.7288 

0.5 0.791207 0.79122 0.729011 0.729046 

0 0.79122 0.791167 0.729064 0.729013 

-0.5 0.79122 0.79122 0.729094 0.729106 

-1 0.791259 0.79122 0.729148 0.729106 

-1.5 0.791246 0.79122 0.72914 0.729106 

-2 0.791233 0.79122 0.729131 0.729106 

-2.5 0.79122 0.79122 0.729123 0.729106 

-3 0.791246 0.79122 0.729155 0.729106 

-3.5 0.791246 0.79122 0.729155 0.729106 

-4 0.791259 0.79122 0.729178 0.729106 

-4.5 0.791259 0.79122 0.729178 0.729106 

-5 0.791259 0.79122 0.729178 0.729106 

-5.5 0.791259 0.79122 0.729178 0.729106 

-6 0.791259 0.79122 0.729178 0.729106 

-6.5 0.791259 0.79122 0.729178 0.729106 

-7 0.791259 0.79122 0.729178 0.729106 
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2. Shuttle2to7 data set 

 

  

Exp. 

Total Accuracy G-means 

Training 

Data 

Testing 

Data 

Training 

Data 

Testing 

Data 

7 0.924302 0.924224 0.819632 0.819522 

6.5 0.932444 0.932414 0.845438 0.845388 

6 0.943004 0.942966 0.87624 0.876314 

5.5 0.947651 0.947586 0.889765 0.889662 

5 0.952522 0.952638 0.902796 0.903074 

4.5 0.955289 0.955379 0.911054 0.911491 

4 0.95806 0.957897 0.918668 0.918326 

3.5 0.960185 0.960259 0.924243 0.924524 

3 0.961539 0.961534 0.927925 0.928053 

2.5 0.963099 0.962948 0.931796 0.931552 

2 0.964491 0.964397 0.935255 0.935153 

1.5 0.965582 0.96531 0.937831 0.937177 

1 0.966784 0.966793 0.940485 0.9404 

0.5 0.967974 0.967948 0.942975 0.943 

0 0.968513 0.968466 0.943998 0.943979 

-0.5 0.968629 0.968569 0.944574 0.944674 

-1 0.96919 0.969293 0.945959 0.946406 

-1.5 0.969534 0.969483 0.946579 0.946525 

-2 0.970892 0.970707 0.949637 0.949344 

-2.5 0.971526 0.971414 0.951174 0.951057 

-3 0.971966 0.971741 0.952169 0.951819 

-3.5 0.971996 0.971724 0.952234 0.951742 

-4 0.971767 0.971586 0.951665 0.951347 

-4.5 0.971578 0.971483 0.951112 0.951033 

-5 0.971526 0.971431 0.950893 0.95075 

-5.5 0.971466 0.971379 0.950723 0.950625 

-6 0.971392 0.971397 0.95053 0.950667 

-6.5 0.971362 0.971362 0.950449 0.950583 

-7 0.971332 0.97131 0.950376 0.950458 
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3. LetterImg26 data set 

 



Exp. 

Total Accuracy G-means 

Training 

Data 

Testing 

Data 

Training 

Data 

Testing 

Data 

7 0.9633 0.9633 0 0 

6.5 0.96735 0.9673 0.331837 0.32834 

6 0.96955 0.96955 0.412628 0.411954 

5.5 0.970913 0.9709 0.45944 0.456928 

5 0.9731 0.97295 0.53021 0.525145 

4.5 0.975375 0.9751 0.596795 0.590972 

4 0.97795 0.9777 0.666579 0.661034 

3.5 0.9808 0.98055 0.736323 0.731471 

3 0.982038 0.9818 0.769248 0.765828 

2.5 0.982625 0.98235 0.784859 0.77972 

2 0.982963 0.98255 0.795065 0.79078 

1.5 0.983125 0.9828 0.802176 0.799254 

1 0.983213 0.983 0.806941 0.805982 

0.5 0.98325 0.983 0.810639 0.809256 

0 0.983363 0.98315 0.813738 0.813368 

-0.5 0.9834 0.98315 0.815576 0.814996 

-1 0.983425 0.9831 0.816394 0.815786 

-1.5 0.983425 0.9831 0.817205 0.815786 

-2 0.98345 0.9833 0.817618 0.819102 

-2.5 0.98345 0.9833 0.817618 0.819102 

-3 0.983463 0.98335 0.817825 0.819922 

-3.5 0.983463 0.98335 0.817825 0.819922 

-4 0.983463 0.98335 0.817825 0.819922 

-4.5 0.983488 0.98335 0.818241 0.819922 

-5 0.983488 0.98335 0.818241 0.819922 

-5.5 0.983488 0.98335 0.818241 0.819922 

-6 0.983488 0.98335 0.818241 0.819922 

-6.5 0.983488 0.98335 0.818241 0.819922 

-7 0.983488 0.98335 0.818241 0.819922 
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APPENDIX D 

MATLAB CODE OF PROPOSED NTR-KLR ALGORITHM 

 

 

x=xtr; 
n=size(x,1); 

  
y=ytr; 

  
xval=xts; 
n1=size(xval,1); 

  
yval=yts; 

 
%rbf 
sigma2=sigma*sigma; 
gamma=(1/(2*sigma2)); 
XXh = sum(x.^2,2)*ones(1,n); 
ktr = XXh+XXh'-2*x*x'; 
ktr = exp(-gamma*ktr); 

 
% kernel matrix testing 
%rbf   
XXh1 = sum(x.^2,2)*ones(1,n1); 
    XXh2 = sum(xval.^2,2)*ones(1,n); 
    kts = exp(-gamma*kts); 
    kts = kts';                     

  
% adding bias term 
% training 
[n,n]=size(ktr); 
ktr=[ktr ones(n,1)]; 
[n,m]=size(ktr); 
ktrp=[ktr' zeros(m,1)]; 
[m,m]=size(ktrp); 

  
[n1,n]=size(kts); 
kts=[kts ones(n1,1)]; 
[n1,m]=size(kts); 

  
ktry=zeros(n,m); 
for j=1:m;  
    for i=1:n; 
        ktry(i,j)=ktr(i,j)*y(i); 
    end; 
end; 

  
Id=eye(m);Id(m,m)=0; 
alpha=zeros(m,1); 

  
h=ones(1,n)*log(1+exp(-ktry*alpha))+(lambda/2))*alpha; 
 

for iterKLR = 1:30 
  old_alpha = alpha; 
  old_h = h; 
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   % s1 is n by 1 
  % s1 = 1-sigma; 
  s1 = 1./(1+exp(ktry*alpha)); 
  v = s1.*(1-s1); 

  
  ktryv=zeros(n,m); 
for j=1:m;  
    for i=1:n; 
        ktryv(i,j)=ktry(i,j)*v(i); 
    end; 
end; 
    g = -ktry'*s1+ lambda*(Id*ktrp)*alpha; 
    H = ktryv'*ktry + lambda*(Id*ktrp); 

         
    [s,itercg,rtr] = cg_klr(H, g); 
    alpha = alpha + s; 
 

  if nargout > 1 
    run.alpha(:,iterKLR) = alpha; 
  end 

     
    etr=abs(h - old_h)/abs(h); 

 
  if etr < 2.5 
    break 
  end 
end 
 

 

function [s,itercg,rtr] = cg_klr(H, g) 

 
b = -g; 
m = length(b); 
maxiter = 1000; 
errtol = 0.005; 
s = zeros(m,1); 
r = b; 
rtr = r'*r; 
d = r; 

  
itercg = 0; 
while rtr > errtol  &&  itercg < maxiter 
    itercg = itercg+1; 

     
    Hd = H*d; 
    a = rtr / (d'*Hd); 
    s = s + a * d; 

    
    old_rtr = rtr; 
    r = r - a * Hd; 
    bta = rtr / old_rtr; 
    d = r + bta * d; 

   
end; 
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APPENDIX E 

MATLAB CODE OF PROPOSED NTR-LR ALGORITHM 

 

x=xtr; 
y=ytr; 
xval=xts; 
yval=yts; 

  
% adding bias term 
[n,d]=size(x); 
x=[x ones(n,1)]; 
[n,p]=size(x); 

  
[n1,d]=size(xval); 
xval=[xval ones(n1,1)]; 
[n1,p]=size(xval); 

  
xy=zeros(n,p); 
for j=1:p;  
    for i=1:n; 
        xy(i,j)=x(i,j)*y(i); 
    end; 
end; 

  
Id=eye(p);Id(p,p)=0; 
beta=zeros(p,1); 
h=ones(1,n)*log(1+exp(-xy*beta; 
 

for iterRLR = 1:30 
  old_beta = beta; 
  old_h = h; 
  % s1 = 1-sigma 
  % s1 is n by 1 
  s1 = 1./(1+exp(xy*beta)); 
  v = s1.*(1-s1); 

  
   xyv=zeros(n,p); 
for j=1:p;  
    for i=1:n; 
        xyv(i,j)=xy(i,j)*v(i); 
    end; 
end; 

  
   g = -xy'*s1+ lambda*Id*beta; 
    H = (xyv'*xy) + lambda*Id; 
        [s,itercg,rtr] = cg_reglr(H, g); 
    beta = beta + s; 
     

h=ones(1,n)*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta; 
  if nargout > 1 
    run.beta(:,iterRLR) = beta; 
  end 
        etr=abs(h - old_h)/abs(h); 
if etr < 1e-2 
     break 
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  end 
end 
% prediction with training data 
p1tr=1./(1+exp(-x*beta)); 

  
% labelling of training data 

class=sign(p1tr-(1/2)); 
 

% prediction with testing data 
p1val=1./(1+exp(-xval*beta)); 

  
% labelling of testing data 
classval=sign(p1val-(1/2)); 
 

 

function [s,itercg,rtr] = cg_reglr(H,g) 
 

b = -g; 
p = length(b); 
maxiter = 200; 
errtol = 0.005; 
r = b; 
rtr = r'*r; 
d = r; 

  
itercg = 0; 
while rtr > errtol  &&  itercg < maxiter 
    itercg = itercg+1; 

     
    Hd = H*d; 
    s = s + a * d; 

    
    old_rtr = rtr; 
    r = r - a * Hd; 
    rtr = r'*r; 
    bta = rtr / old_rtr; 
    d = r + bta * d; 

   
end; 

 

 

 

 

 

 

 

 

 

 

 

 

 



 147 

 

APPENDIX F 

MATLAB CODE OF PROPOSED AB-WKLR ALGORITHM 

 

 

x=xtr; 
n=size(x,1); 

  
y=ytr; 

  
Smin=lnsigma; 
Smax=lnsigma+du; 

  
%parameter 
sigmap=exp(Smax:step:Smin); 
nS=size(sigmap,2); 

  
%initialization 
we = zeros(n,1); 
we(1:n) = 1/n; % weight initialization 
PSI = []; 
Alpha =[]; 
H = []; 
SIGMA=[]; 

 
iterRBF=0; 
    for S=1:nS; 
        sigma=sigmap(S); 

  
%rbf train 
sigma2=sigma*sigma; 
gamma=(1/(2*sigma2)); 
XXh = sum(x.^2,2)*ones(1,n); 
ktr = exp(-gamma*sqe); 
[n,n]=size(ktr); 

  
% adding bias term 
% training 
ktr=[ktr ones(n,1)]; 
[n,m]=size(ktr); 

 
    for t=1:30; 
    %fprintf('new training data...\n');  
    [alpha,iterKLR,iterCG] = adaweight_trklr(ktr,y,lambda,we); 
    f = ktr*alpha; 
    p1tr=1./(1+exp(-f)); 
    ht=sign(p1tr-0.5); 

    n_ierr = sum(i_err); 
    E = (we'*i_err);%weighted error of ht 
    if E == 0  
     %E = 1e-20; 
        break 
    end 
    if E > 0.5     
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         break 
    end 

      
    iterRBF=iterRBF+1; 

     
    psi = 0.5*log((1-E)/E); 

     
    Alpha = [Alpha alpha]; 
    SIGMA=[SIGMA sigma]; 
    H = [H ht]; 
    PSI = [PSI psi];   

      
    for i = 1:n 
        %we(i) = we(i)*exp(-PSI(:,t)*(y(i).*h(i))); 

     
        m(i)=y(i).*f(i); 

         
        if m(i) <= 0 
        g(i)=exp(PSI(:,t))+ 1*(1-exp(PSI(:,t)))*(1-exp(y(i).*f(i))); 
        else 
        g(i)=exp(-PSI(:,t))+ 1*(1-exp(-PSI(:,t)))*exp(-(y(i).*f(i)));    
        end 
        we(i) = we(i)*g(i); 

     
    end 

     
    we = (we/sum(we));%A.*i_err; 
  end 
    end 

  
iterSi=iterRBF/nS; 
Ftr = zeros(n,1); 
for t=1:T 
ftr= PSI(:,t)*H(:,t); 
Ftr=Ftr+ftr; 
class=sign(Ftr); 
end 

 
%validation 
%data test 

  
xval=xts; 
n1=size(xval,1); 

   
yval=yts; 

  
HTS=[]; 
Fts=zeros(n1,1); 
 

 

 

for t = 1:T 
    %rbf test 
    sigma2=SIGMA(:,t)*SIGMA(:,t); 
    gamma=(1/(2*sigma2)); 
    XXh1 = sum(x.^2,2)*ones(1,n1); 
    XXh2 = sum(xval.^2,2)*ones(1,n); 
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    kts = exp(-gamma*sqe1); 
    kts = kts';     
    [n1,n]=size(kts); 

  
   % adding bias term 
   % testing 
   kts=[kts ones(n1,1)]; 
   [n1,m]=size(kts);  

    
    f1 = kts*Alpha(:,t); 
    p1ts=1./(1+exp(-f1)); 
    hts=sign(p1ts-0.5);   
    HTS=[HTS hts]; 
    fts= PSI(:,t)*HTS(:,t); 
    Fts=Fts+fts;   
    classval = sign(Fts); 
end 

 

function [alpha,iterKLR,itercg] = adaweight_trklr(ktr,y,lambda,we) 

  
[n,m]=size(ktr); 
ktrp=[ktr' zeros(m,1)]; 
[m,m]=size(ktrp); 

  
ktry=zeros(n,m); 
for j=1:m;  
    for i=1:n; 
        ktry(i,j)=ktr(i,j)*y(i); 
    end; 
end; 

  
we=we/mean(we); 
ktryw=zeros(n,m); 
for j=1:m;  
    for i=1:n; 
        ktryw(i,j)=ktry(i,j)*we(i); 
    end; 
end; 

  
Id=eye(m);Id(m,m)=0; 
alpha=zeros(m,1); 

  
h=(we'.*ones(1,n))*log(1+exp(ktry*alpha))+(lambda/2)*alpha'*(Id*ktrp)*

alpha; 

 

for iterKLR = 1:30 
  old_alpha = alpha; 
  % s1 is n by 1 
  % s1 = 1-sigma; 
  s1 = 1./(1+exp(ktry*alpha)); 
  v = s1.*(1-s1); 

   
ktrywv=zeros(n,m); 
for j=1:m;  
    for i=1:n; 
        ktrywv(i,j)=ktryw(i,j)*v(i); 
    end; 
end; 
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    g = -ktryw'*s1+ lambda*(Id*ktrp)*alpha; 
    H = ktrywv'*ktry + lambda*(Id*ktrp); 

      
    [s,itercg,rtr] = cg_klr(H, g); 
            

h=(we'.*ones(1,n))*log(1+exp(ktry*alpha))+(lambda/2)*alpha'*(Id*ktrp)*

alpha; 

   
  if nargout > 1 
   run.alpha(:,iterKLR) = alpha; 
  end 

     
    etr=abs(h - old_h)/abs(h); 

     
 if etr < 2.5 
    break 
  end 
end 
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APPENDIX G 

MATLAB CODE OF PROPOSED AB-WLR ALGORITHM 

 

 

x=xtr; 

  
% adding bias term 
[n,d]=size(x); 
x=[x ones(n,1)]; 
[n,p]=size(x); 

  
y=ytr; 

  
Lmin=lnlambda; 
Lmax=lnlambda+du; 

  
%parameter 
lambdap=exp(Lmax:step:Lmin); 
nL=size(lambdap,2); 

  
%initialization 
we = zeros(n,1); 
we(1:n) = 1/n; % weight initialization 
PSI = []; 
BETA =[]; 
H = []; 
LAMBDA=[]; 

 
iterWB=0; 
for l=1:nL; 
        lambda=lambdap(l); 

  
    for t=1:30; 
    %fprintf('new training data...\n');     
    [beta,iterRLR,itercg,rtr] = adaweight_trreglr(x,y,lambda,we); 

     
    f = x*beta; 
    ht=sign(p1tr-0.5);     
    i_err = (ht~=y);     
    n_ierr = sum(i_err); 

            
    E = (we'*i_err);%weighted error of ht 
    if E == 0 
    %   E = 1e-20; 
    break 
    end 

     
    if E > 0.5 
         break 
    end 
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    iterWB=iterWB+1; 

     
    psi = 0.5*log((1-E)/E); 

     
    BETA = [BETA beta]; 
    H = [H ht]; 
    PSI = [PSI psi];   
    LAMBDA=[LAMBDA lambda]; 

     
    for i = 1:n 
        %we(i) = we(i)*exp(-PSI(:,t)*(y(i).*h(i))); 

     
        m(i)=y(i).*f(i); 

         
        if m(i) <= 0 
        g(i)=exp(PSI(:,t))+ 1*(1-exp(PSI(:,t)))*(1-exp(y(i).*f(i))); 
        else 
        g(i)=exp(-PSI(:,t))+ 1*(1-exp(-PSI(:,t)))*exp(-(y(i).*f(i)));    
        end 

         
        we(i) = we(i)*g(i); 
    end 

     
    we = we/sum(we); 

      
    end 
end 

    
iterLi=iterWB/nL; 
T = size(PSI,2); 

 
for t=1:T 
ftr= PSI(:,t)*H(:,t); 
Ftr=Ftr+ftr; 
class=sign(Ftr); 
end 

  
%validation 
%data test 
xval=xts; 

  
% adding bias term 
[n1,d]=size(xval); 
xval=[xval ones(n1,1)]; 
[n1,p]=size(xval); 

  
yval=yts; 

   
HTS=[]; 
Fts=zeros(n1,1); 

 

for t = 1:T  
    f1 = xval*BETA(:,t); 
    p1ts=1./(1+exp(-f1)); 
    hts=sign(p1ts-0.5);   
    HTS=[HTS hts]; 
    fts= PSI(:,t)*HTS(:,t); 
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    Fts=Fts+fts;   
    classval = sign(Fts); 
end 
  

 

 
function [beta,iterRLR,itercg,rtr]=adaweight_trreglr(x,y,lambda,we) 

   
[n,p]=size(x); 

  
xy=zeros(n,p); 
for j=1:p;  
    for i=1:n; 
        xy(i,j)=x(i,j)*y(i); 
    end; 
end; 

  
we=we/mean(we); 
for j=1:p;  
    for i=1:n; 
        xyw(i,j)=xy(i,j)*we(i); 
    end; 
end; 

  
Id=eye(p);Id(p,p)=0; 
h=(we'.*ones(1,n))*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta; 

  
for iterRLR = 1:30 
  old_beta = beta; 
  old_h = h; 
  % s1 = 1-sigma 
  % s1 is n by 1 
  s1 = 1./(1+exp(xy*beta)); 
  v = s1.*(1-s1); 

   
  xywv=zeros(n,p); 
for j=1:p;  
    for i=1:n; 
        xywv(i,j)=xyw(i,j)*v(i); 
    end; 
end; 

  
   g = -xyw'*s1+ lambda*Id*beta; 
    H = (xywv'*xy) + lambda*Id; 

     
    [s,itercg,rtr]=cg_reglr(H, g); 
    beta = beta + s; 
     

h=(we'.*ones(1,n))*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta; 
     

 

  if nargout > 1 
    run.beta(:,iterRLR) = beta; 
  end 

     
    etr=abs(h - old_h)/abs(h); 

     
 if etr < 1e-2 
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     break 
  end 
end 

 


