

LOGISTIC REGRESSION METHODS

FOR CLASSIFICATION OF IMBALANCED

DATA SETS

SANTI PUTERI RAHAYU

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

UI{IVERSITI MALAYSIA PAHANG

NOTES: If the thesis is CONFIDENTIAL or RE,STRICTED, please attach with the letter from
the organization with period and reasons for confidentially and restriction

n

DECLARATION OF THESIS AND COPYRIGHT

Author's full name

Date of birth

Title

SANTI PUTERI RAHAYU

15 JANUARY 197 5

LOGISTIC REGRESSION METHODS
FOR CLASSIFICATION OF IMBALANCED
DATA SETS

Academic Session 2011t20t2

I declare that this thesis is clarified as :

n
CONFIDENTIAL (Contain confidential information under the Official Secret

Act 1972*

RESTRICTED (Contain restricted information as specified by the
organization where research was done)*

I agree that my thesis to be published as online open
access (Full text)

d OPEN ACCESS

I acknowledge that Universiti Malaysia Pahang reserve the rights as follows:

1 . The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies for the

purpose of research only

3. The Library has the right to make copies of the thesis for academic exchange.

Certified bv:

(Student's signature)

A0080024 PROF. DR. JASNI MOHAMAD ZA

New IC / Passport Number
/ '

Date t 2f , / f l i L ' ' rz-

Name of Supervisor

Date : n /q l2otr

fnature of Supervisor)

LOGISTIC REGRESSION METHODS

FOR CLASSIFICATION OF IMBALANCED DATA SETS

SANTI PUTERI RAHAYU

Thesis submitted in fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy in Computer Science

Faculty of Computer System and Software Engineering

UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2012

STATEMENT OF AWARD FOR DEGREE

Thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

I hereby declare that I

in terms of scope and

Computer Science.

SUPERVISOR' S DECLARATION

have checked this thesis and in my opinion, this
quality for the award of the degree of Doctor

thesis is adequate

of Philosophy in

Signature

Name of Supervisor:

Position

Date

Mohamad Zain,r6,
i l7 lZ l>o; F

STUDENT’S DECLARATION

I hereby declared that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature :

Name : Santi Puteri Rahayu

ID Number : PCC07002

Date :

iv

In the name of Allah,

The most Gracious, the Most Merciful.

And I (Allah) created not the jinn and mankind

except that they should worship Me (Alone)

(QS. 51: 56)

Dedicated specially to Da’wah ila Allah SWT,

my beloved husband (Juwari) and my children (Joesan’s juniors: Izdihar, Taqy, Faiza,

…)

my beloved parents (Ibunda Widiarti and alm. Ayahanda Marsudi Djojosoemarto),

my beloved grand parents (alm. Eyang kakung Khoiron and Eyang putri Hafidah),

my beloved brothers and sister (Bagus N. Wibowo, Dian Saraswati and W. Candra N.),

my beloved nephew and niece (N. M. Darmawan, S. Widya P, …)

my beloved grand children (Lathifah, ...)

and my beloved big family.

 v

ACKNOWLEDGEMENTS

All praise and thanks are Allah’s, the Lord of the ‘Alamin (mankind, jinn and all

that exist). Alhamdulillah, thanks God, to make this research possible.

I would to express my deep gratitude to Prof. Dr. Jasni Mohamad Zain for the

freedom to determine the path of my PhD Research and for having served as my advisor

during my study in University Malaysia Pahang (UMP), Malaysia. I would also like to

thank Prof. Dr. Abdullah Embong for his advice and wisdom.

I would like to thank Prof. Sabira K., Prof. Dr. Siti Mariyam binti Shamsuddin

and Dr. Tutut Herawan for their valuable input, comments and suggestions. My

appreciation also goes to all my ‘teachers’, either formal or informal.

I would like to acknowledge UMP for giving me a financial support during my

study. I would also like to acknowledge Department of Statistics, Institut Teknologi

Sepuluh Nopember (ITS) Surabaya (Indonesia) for giving me a chance to further study

in UMP.

I would like to thank Dr. Juwari Purwo Sutikno for his patience and invaluable

help specially in providing basic of Matlab programming in this research and in editing

layout of this thesis. I would like also to thank Dr. Anwaruddin Hisyam for taking time

to edit English in this thesis. My appreciation also goes to all researchers for their useful

researches which are the references of this research.

I would like to thank my colleagues (specially for Santi Wulan Purnami and

Wibawati) and my friends (specially for Sita Fitriana, Dewi Anggoro, Amik Purbowati,

Rini Susanah, Mulyati Ajisman, Wanti Utami, Ambikka and Mamiek Setyaningsih) for

their attention, invaluable support and help during my study.

Finally, I would like to give my warm thanks to my husband, my children, my

parents, my parents in law, my grandparents, my brothers-sisters and my big family for

their love, wisdom, understanding, patience and strong support during my study.

 vi

ABSTRACT

Classification of imbalanced data sets is one of the important researches in Data Mining

community, since the data sets in many real-world problems mostly are imbalanced

class distribution. This thesis aims to develop the simple and effective imbalanced

classification algorithms by previously improving the algorithms performance of

general classifiers i.e. Kernel Logistic Regression Newton-Raphson (KLR-NR) and

Regularized Logistic Regression NR (RLR-NR) which are Logistic Regression (LR)-

based methods. Both LR-based methods have strong statistical foundation and well

known classifiers which have simple solution of unconstrained optimization problem in

performing the good performance as well as Support Vector Machine (SVM) which is

determined as state-of-the art classifier in Kernel methodology and Data Mining

community. However, the imbalanced LR-based methods are not extensively developed

such as imbalanced SVM-based methods. Hence, it is required to develop effective

imbalanced LR-based methods to be widely used in data mining applications.

Numerical results have showed that the use of Truncated Newton method for KLR-NR

and RLR-NR which respectively resulted in Newton Truncated Regularized KLR

(NTR-KLR) and NTR RLR (NTR-LR), is effective in handling the numerical problems

on the huge matrix of linear system of Newton-Raphson update rule i.e. the training

time and the singularity problem. These results can be seen as further explanation on the

success of Truncated Newton method in TR-KLR and TR Iteratively Re-weighted

Least Square (TR-IRLS) algorithm respectively, because of the equivalence of iterative

method used by these algorithms. Moreover, only with the use of simple solution of

unconstrained optimization problem, numerical results have demonstrated that proposed

NTR-KLR and proposed NTR-LR respectively have comparable classification

performance with RBFSVM (SVM with Radial Basis Function Kernel).

The imbalanced problem of both proposed general classification algorithms which is the

limitation of accuracy performance specifically in classifying on the minority class has

motivated this research to improve their classification performance on imbalanced data

sets. In general, numerical results have showed that the use of adapted Modified

AdaBoost methods for NTR-KLR and NTR-LR which respectively resulted in

AdaBoost NTR Weighted KLR (AB-WKLR) and AB NTR Weighted RLR (AB-WLR)

is significantly successful in improving the accuracy and stability performance of

general classifiers i.e. NTR-KLR and NTR-LR respectively. The improvements on both

error by g-means and standard deviation of g-means with 5-Fold SCV could be

achieved as high as more than 60. Furthermore, numerical results have demonstrated

that proposed AB-WKLR and proposed AB-WLR respectively have comparable

performances with AdaBoostSVM in classifying imbalanced data sets, only with the use

of simple solution of unconstrained weighted optimization problem. Thus, both

proposed imbalanced LR-based methods is simple and effective for classification of

imbalanced data sets and have promising results.

 vii

ABSTRAK

Pengelasan set data yang tidak seimbang adalah salah satu kajian yang penting dalam

masyarakat perlombongan data, kerana set data yang digunakan dalam dunia sebenar

kebanyakannya adalah pengagihan kelas tidak seimbang. Tesis ini bertujuan untuk

membangunkan algoritma pengelasan tidak seimbang yang mudah dan berkesan dengan

meningkatkan prestasi algoritma pengelas umum iaitu Kernel Logistic Regression

Newton-Raphson (KLR-NR) dan Regularized Logistic Regression NR (RLR-NR) yang

merupakan kaedah berasaskan Logistic Regression (LR). Kedua-dua LR-based methods

mempunyai asas statistik yang kukuh dan terkenal sebagai pengelas yang mempunyai

penyelesaian yang mudah dari unconstrained optimization problem dalam

melaksanakan prestasi yang sama baik dengan Support Vector Machine (SVM) yang

ditentukan sebagai state-of-the-art pengelas dalam metodologi Kernel dan masyarakat

Perlombongan Data. Walau bagaimanapun, imbalanced LR-based methods tidak

dibangunkan secara meluas seperti imbalanced SVM-based methods. Oleh itu, ia

diperlukan untuk membangunkan imbalanced LR-based methods yang berkesan yang

digunakan secara meluas dalam banyak aplikasi perlombongan data.

Keputusan berangka telah menunjukkan bahawa penggunaan kaedah Truncated Newton

untuk KLR-NR dan RLR-NR yang masing-masing mengakibatkan Newton Truncated

Regularized KLR (NTR-KLR) dan NTR RLR (NTR-LR), adalah berkesan dalam

menangani masalah berangka pada matriks besar dari sistem linear Newton-Raphson

update rule iaitu masalah masa latihan dan ketunggalan. Keputusan ini boleh dilihat

sebagai penjelasan lanjut mengenai kejayaan kaedah Truncated Newton di TR-KLR dan

TR Iterative Re-weighted Least Square (TR-IRLS) algoritma, kerana kesetaraan kaedah

lelaran yang digunakan oleh algoritma-algoritma ini. Selain itu, dengan hanya

menggunakan penyelesaian yang mudah dari unconstrained optimization problem,

keputusan berangka telah menunjukkan bahawa cadangan NTR-KLR dan cadangan

NTR-LR masing-masing mempunyai prestasi klasifikasi setanding dengan RBFSVM

(SVM dengan Radial Basis Function).

Masalah tidak seimbang kedua-dua algoritma klasifikasi umum yang dicadangkan yang

merupakan had prestasi ketepatan khususnya dalam mengklasifikasikan kelas minoriti

telah mendorong kajian ini untuk meningkatkan prestasi klasifikasi mereka pada set

data yang tidak seimbang. Secara umum, keputusan berangka telah menunjukkan

bahawa penggunaan kaedah adapted Modified AdaBoost untuk NTR-KLR dan NTR-LR

yang masing-masing mengakibatkan AdaBoost NTR Weighted KLR (AB-WKLR) dan AB

NTR Weighted RLR (AB-WLR) adalah lebih berjaya dalam meningkatkan prestasi

ketepatan dan kestabilan pengelas umum iaitu NTR-KLR dan NTR-LR. Peningkatan

bermakna oleh kedua-duanya atas kesilapan g-means dan sisihan piawai g-means

dengan 5-Lipat SCV boleh dicapai setinggi lebih daripada 60. Tambahan pula,

keputusan berangka telah menunjukkan bahawa cadangan AB-WKLR dan cadangan AB-

WLR masing-masing mempunyai persembahan yang setanding dengan AdaBoostSVM

dalam mengklasifikasikan set data tidak seimbang, hanya dengan menggunakan

penyelesaian yang mudah dari unconstrained weighted optimization problem. Oleh itu,

kedua-dua cadangan imbalanced LR-based methods merupakan kaedah yang mudah dan

berkesan untuk pengkelasan set data yang tidak seimbang dan mendapat keputusan yang

menjanjikan.

 viii

TABLE OF CONTENTS

 Page

SUPERVISOR’S DECLARATION ii

STUDENT’S DECLARATION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xv

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Problem Statement and Motivation 3

1.3 The Approaches 5

1.4 Objectives and Scopes 8

1.5 Contributions 9

1.6 Outline of the Thesis 9

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10

2.2 Classification 11

 2.2.1 General classification 11

 2.2.2 Imbalanced classification 12

2.3 RLR-IRLS and KLR-IRLS with)1,0(y 14

 2.3.1 Regularized optimization function of RLR and KLR 15

 2.3.2 IRLS method for RLR and KLR 20

2.4 RLR-IRLS and KLR-IRLS with Truncated Newton method 21

 2.4.1 TR-IRLS: RLR-IRLS with Truncated Newton method 23

 ix

 2.4.2 TR-KLR: KLR-IRLS with Truncated Newton method 24

2.5 Adaptive Boosting Method 26

2.6 Adaboost Algorithm for SVM 32

 2.6.1 AdaBoostSVM 34

 2.6.2 WwBoost 36

2.7 k-Fold Stratified Cross Validation 39

 2.7.1 Evaluation Criterion 40

 2.7.2 Model Selection 41

CHAPTER 3 PROPOSED ALGORITHMS AND RESEARCH METHODOLOGY

3.1 Introduction 43

3.2 Proposed NTR- KLR and NTR-LR Algorithm 43

 3.2.1 KLR Newton-Raphson and RLR Newton-Raphson with

)1,1(y

43

 3.2.2 KLR-NR and RLR-NR with Truncated Newton method 51

3.3 Proposed AB-WKLR and AB-WLR algorithm 56

 3.3.1 Study on the imbalanced problem and the proper use of

evaluation metrics

56

 3.3.2 NTR Weighted KLR and NTR Weighted RLR 60

 3.3.3 NTR-WKLR and NTR-WLR with adapted Modified

AdaBoost Method

62

3.4 Research Methodology 74

 3.4.1 Research Procedures 74

 3.4.2 Design of Numerical Experiment 78

CHAPTER 4 NUMERICAL RESULTS AND DISCUSSION

4.1 Introduction 84

4.2 Proposed NTR-KLR and NTR-LR: Numerical Results and Discussion 84

 4.4.1 Numerical convergence, accuracy and ability of NTR-

KLR and NTR-LR

84

 4.4.2 The effectiveness of Truncated Newton in NTR-KLR and

NTR-LR
87

 4.4.3 Performances Comparison of proposed NTR-KLR and

proposed NTR-LR to RBFSVM

89

4.3 Proposed AB-WKLR and AB-WLR: Numerical Results and

Discussion

90

 x

 4.3.1 Acuracy, stability and numerical convergence of AB-

WKLR and AB-WLR

90

 4.3.2 The effectiveness of adapted Modified AdaBoost in AB-

WKLR and AB-WLR

97

 4.3.3 Performances Comparison of proposed AB-WKLR and

AB-WLR to AdaBoostSVM

104

4.4 Summary 105

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 106

5.2 Conclusions 106

 5.2.1 NTR-KLR and NTR-LR 106

 5.2.2 AB-WKLR and AB-WLR 107

5.3 Recommendations 107

REFERENCES 109

APPENDICES

A List of Publications 119

B The Influence of Parameter to Classification Performance of NTR-KLR 120

C The Influence of Parameter to Classification Performance of NTR-LR 140

D Matlab Code of Proposed NTR-KLR Algorithm 143

E Matlab Code of Proposed NTR-LR Algorithm 145

F Matlab Code of Proposed AB-WKLR Algorithm 147

G Matlab Code of Proposed AB-WLR Algorithm 151

 xi

LIST OF TABLES

Table No. Title Page

2.1 CM of Binary Class 40

3.1 Summary of NTR-KLR and NTR-LR by maximizing total

accuracy value with 5-Fold SCV

57

3.2 Summary of NTR-KLR and NTR-LR by maximizing g-means

value with 5-Fold SCV

59

3.3 General Profiles of Data Sets 79

4.1 Iteration number and g-means value of NTR-KLR algorithm by

maximizing g-means value with 5-Fold SCV

85

4.2 Iteration number and g-means value of NTR-LR algorithm by

maximizing g-means value with 5-Fold SCV

86

4.3 Summary of comparison results between proposed classifiers

and RBFSVM

90

4.4 Summary of AB-WKLR performance by maximizing g-means

value with 5-Fold SCV

92

4.5 Summary of AB-WLR by maximizing g-means value

with 5-Fold SCV

92

4.6 Number of , number of iterations and g-means value of AB-

WKLR algorithm by maximizing g-means value with 5-Fold

SCV

93

4.7 Number of , number of iteration and g-means value of AB-

WLR algorithm by maximizing g-means value with 5-Fold SCV

94

4.8 Summary of comparison results between AB-WKLR and NTR-

KLR by maximizing g-means value with 5-Fold SCV

98

4.9 Summary of comparison results between AB-WLR and NTR-

LR by maximizing g-means value with 5-Fold SCV

99

4.10 Summary of AB-WKLR improvements to NTR-KLR in

reducing error by g-means and standard deviation of g-means

100

4.11 Summary of AB-WLR improvements to NTR-LR in reducing

error by g-means and standard deviation of g-means

102

 xii

Table No. Title Page

4.12 Summary of statistical significances: AB-WKLR vs NTR-KLR

and AB-WLR vs NTR-LR

103

4.13 Summary of comparison: between proposed algorithms and

AdaBoostSVM

105

 xiii

LIST OF FIGURES

Figure No. Title Page

2.1 Logistic Response Function 15

2.2 Kernel trick 18

2.3 Training error of AdaBoost 30

2.4 Plot  vs  31

3.1 Loss Function of SVM, KLR and RLR 49

3.2 Comparison between g-means and total accuracy metrics on

imbalanced problem

57

3.3 Performance of sensitivity and specificity on imbalanced

problem

59

3.4 The influence of parameter using Parkinson data set 63

3.5 The influence of parameter using Glass7 data set 64

3.6 The influence of parameter using ImgSegment1 data set 64

3.7 The influence of parameter using Balance2 data set 65

3.8 The influence of parameter using Car3 data set 65

3.9 The influence of parameter using GammaImg data set 66

3.10 The influence of parameter using Shuttle2to7 data set 67

3.11 The influence of parameter using LetterImg26 data set

67

3.12 Research Procedures 77

3.13 Numerical Experiment Design 83

4.1 Comparison of algorithm performance between NTR-KLR and

KLR-NR

88

4.2 Comparison of algorithm performance between NTR-LR and

RLR-NR

89

 xiv

Figure No. Title Page

4.3 Error curve for AB-WKLR on first fold of Parkinson data set 95

4.4 Error curve for AB-WKLR on first fold of Glass7 data set 95

4.5 Error curve for AB-WKLR on first fold of ImgSegment1 data

set

95

4.6 Error curve for AB-WKLR on first fold of Balance2 data set

96

4.7 Error curve for AB-WKLR on first fold of Car3 data set 96

4.8 Error curve for AB-WLR on first fold of GammaImg data set 96

4.9 Error curve for AB-WLR on first fold of Shuttle2to7 data set 97

4.10 Error curve for AB-WLR on first fold of LetterImg26 data set 97

4.11 Comparison of g-means and Sg-means between AB-WKLR and

NTR-KLR

98

4.12 Comparison of g-means and Sg-means between AB-WLR and

NTR-LR

99

4.13 Improvements of AB-WKLR to NTR-KLR in reducing error

by g-means

101

4.14 Improvements of AB-WKLR to NTR-KLR in reducing

standard deviation of g-means

101

4.15 Improvements of AB-WLR to NTR-LR in reducing error by g-

means

102

4.16 Improvements of AB-WLR to NTR-LR in reducing standard

deviation of g-means

103

 xv

LIST OF SYMBOLS

a The optimal step length

 Coefficient vector of Kernel Logistic Regression

 Coefficient vector of Regularized Logistic Regression

c Conjugacy enforcer

d The search direction

dis The distance of a sample from the separating hyperplane

dim Number of attributes

D Diagonal matrix of variance and weight vector

 Threshold of the difference of optimization function values

 The convergence threshold for Linear CG

t The weighted error of component classifier on t-th round

f Linear function

F Ensemble function

ht The weighted prediction of component classifier on t-th round

g Gradient vector

H Hessian matrix

K Kernel matrix

k Number of fold

kij Cell of kernel matrix

K1 Kernel matrix with the bias term

K2 Matrix that consist of diagonal element: K and the bias term is not

regularized

l Likelihood function

 xvi

L Log-likelihood function

 Regularization parameter

n Number of samples

n Number of  during AB-WKLR iterations

n Number of  during AB-WLR iterations

p Probability of given input

 Function to map the original data x in input space into feature space

q Quadratic form

r Residual

s Vector of Newton direction

Sgmeans Standard deviation of g-means values

 RBF Kernel parameter

 the number of AdaBoost iterations,

 Vector of general parameter

v Variance vector

V Diagonal matrix of v

w Weight vector of training samples

W Diagonal matrix of w

 The importance factor of corresponding component classifier to an ensemble

x Input vector without bias term

y Vector of input label

ypred Predictions of AdaBoost classifier

Zt The normalization factor on t-th round

Z Vector of adjusted response

 xvii

 Function of Bernoulli distribution

 xviii

LIST OF ABBREVIATIONS

AB-WKLR Adaptive Boosting Weighted Kernel Logistic Regression

AB-WLR Adaptive Boosting Weighted Regularized Logistic Regression

AdaBoost Adaptive Boosting

AdaBoostSVM Adaptive Boosting Support Vector Machine

AUC Area Under Receiver Operating Curve

CG Conjugate Gradient

CM Confusion Matrix

CV Cross Validation

DEV Deviance

IVM Import Vector Machine

NR Newton-Raphson

NRUR Newton-Raphson update rule

NTR-LR Newton Truncated Regularized Logistic Regression

NTR-KLR Newton Truncated Regularized Kernel Logistic Regression

NTR-WKLR Newton Truncated Regularized Weighted Kernel Logistic

Regression

NTR-WLR Newton Truncated Regularized Weighted Regularized Logistic

Regression

GS Grid Search

GSVM-RU Granular Support Vector Machine-Repetitive Under-sampling

IRLS Iteratively Re-Weighted Least Square

KLR Kernel Logistic Regression

KLR-IRLS Kernel Logistic Regression Iteratively Re-Weighted Least

Square

 xix

KLR-NR Kernel Logistic Regression Newton-Raphson

LCG Linear Conjugate Gradient

MLE Maximum Likelihood Estimation

NLL Negative Log-Likelihood

NR Newton-Raphson

RBF Radial Basis Function

RE-WKLR Rare Event Weighted Kernel Logistic Regression

RLR Regularized Logistic Regression

RLR-IRLS Regularized Logistic Regression Iteratively Re-Weighted Least

Square

RLR-NR Regularized Logistic Regression Newton-Raphson

SCV Stratified Cross Validation

SDC Smote with Different Cost

SMO Sequential Minimization Organization

SMOTE Synthetically Minority Over-sampling Technique

SVM Support Vector Machine

TR-IRLS Truncated Regularized Iteratively Re-Weighted Least Square

TR-KLR Truncated Regularized Kernel Logistic Regression

WKLR Weighted Kernel Logistic Regression

WLR Weighted Regularized Logistic Regression

WLS Weighted Least Square

WWBOOST-SVM Weighting rule and Weakened Support Vector Machine based

Boosting

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The interface of statistics, database technology, pattern recognition, machine

learning, and other areas are termed as Data Mining. It is concerned with the analysis

of large databases by using machine learning methods, in identifying previously

unsuspected pattern which are of interest or value to the data. (Hand, 1998; Tan et al.,

2005).

Classification is a supervised data mining task, which is a predictive task with

qualitative outcome. In the last decade, it is found that, beside the evaluation of data in

manual, the use of classifier system is also very important factor in helping expert to

make decision, i.e. to identify pattern and make prediction. Classifier system can

achieve a fast, objective, more detailed and accurate classification by minimizing

possible errors due to fatigued or inexperienced expert. (Huang et al., 2007; Polat et al.,

2007; West, 2000).

In the last decade, the resulting family of Kernel learning methods (Scholkopf

and Smola, 2002; Shawe and Christianini, 2004) have frequently demonstrated state-of-

the-art performance on a wide range of benchmark and real-world applications. Most of

these kernel-based methods, however, are presented in the literature along with the

Support Vector Machine (SVM) method. SVM (Vapnik, 1998; Vapnik, 2000), which

was developed based on the theory of Structural Risk Minimization (SRM), is popular

with its effectiveness in the Kernel Machine Learning and Data Mining Community,

 2

such that it is considered as state-of-the-art algorithm for classifying non-linear binary

data.

Beside SVM, Kernel Logistic Regression (KLR) (Roth, 2001; Zhu and Hastie,

2004; Zhu and Hastie, 2005) is one of the most important recent developments for

classification task in Kernel-machine techniques. It is the Kernel version of Regularized

Logistic Regression (RLR) (Minka, 2003; Zhang and Oles, 2001) classifier. The use of

Kernel in KLR algorithm is to improve the generalization performance of RLR on

overcoming the non-linear problem that has low-to-medium-dimensional data (Maalouf,

2009).

Meanwhile, RLR is the regularized version of Logistic Regression (LR)

(Hosmer and Lemeshow, 2000; Dreitsel and Machado, 2002; Hastie et al., 2001;

McCulagh and Nelder, 1989) which is the fundamental and well known statistical

method for classification task. It is a classifier which is well applied to linear problem

with high-dimensional data (Komarek and Moore, 2005). Hence, RLR is considered as

state-of-the-art algorithm for linear discriminant data.

KLR and RLR have received more extensive research attention, since they have

similar loss function with SVM (Patra et. al., 2008; Rahimi, 2006; Rennie, 2005; Zhang

and Oles, 2001; Zhang et al., 2003; Zhu and Hastie, 2005). Furthermore, by using total

accuracy metric, the classification performance of KLR is similar to non-linear SVM

(Karsmaker et al., 2007), while the classification performance of RLR is comparably

accurate to linear SVM (Zhang et al., 2003; Zhang and Oles, 2001). However,

optimization of SVM needs to be solved with quadratic constrained optimization, while

KLR and RLR only need to be solved by unconstrained optimization (Maalouf, 2009),

although it also can be stated as constrained optimization problem (Karsmaker et al.,

2007; Kerthi et al., 2005). In addition, unlike SVM, both classifiers naturally provide

probability of classification membership (Zhu, 2003; Zhang et al., 2003).

Many problem domains require transparent reasoning as well as accurate

classifier (Ridgeway et.al, 1998). Trust in a system is developed by the quality of the

results (accuracy) and also by clear description of how they were derived (transparent

 3

reasoning) (Swartout, 1983). Good accuracy enables correct assessments / diagnosis /

treatment and thus avoiding any heavy losses associated with wrong prediction

(Lahsasna et al, 2008; West, 2000). Transparency enables expert to understand the

classification/decision process. The capability of classifier to describe its analysis often

affects the end-user acceptance. In types of situation like these, LR-based methods, i.e.

KLR and RLR, are appropriate methods.

In summary, LR-based methods have simple optimization function than SVM-

based methods on performing comparable accuracy. Moreover, the transparency of LR-

based methods is supported by providing the membership probability naturally.

Furthermore, LR-based methods are well known methods and have strong statistical

foundation. However, as further as limited knowledge, the LR-based methods have less

extensive research than SVM-based methods on imbalanced classification problem.

Hence, in order to take the advantages of LR-based methods and to give further

contribution on the research of LR-based methods, this thesis aims to further develop

the LR-based methods for solving the classification problems, either general or

imbalanced problem.

1.2 PROBLEM STATEMENT AND MOTIVATION

This thesis interests to conduct study on two main problems of KLR and RLR. The

problems can be stated as follows:

(i) Newton-Raphson (Rennie, 2003) is the most commonly method to solve the

non-linear optimization problem of KLR and RLR. Newton-Raphson method

iteratively solves the linear system of Newton-Raphson Update Rule (NRUR).

As has been reported in literatures, however, the use of Newton-Raphson

method for KLR and RLR has numerical problem that the huge Hessian matrix

needs to be inverted (Lin et al., 2008; Zhu and Hastie, 2005). Due to the density

of its matrices, their computation can be slow (Komarek, 2004; Karsmakers et

al. 2007; Maalouf, 2009).

(ii) General classifiers, such as SVM, KLR and RLR, were developed and evaluated

on the assumption that the data has balanced class distribution (Japkowicz,

 4

2000; Maalouf, 2009). However, in many real-world problems, it was faced that

the data sets have imbalanced class distribution. The class imbalance problem

corresponds to domains for which one class is represented by a large number of

examples while the other is represented by only a few (Guo and Viktor, 2004;

Japkowicz, 2000). In the case of binary classification, data sets are said to be

imbalanced, if the number of negative instances are heavily larger than the

positive ones (Akbani et al., 2004; Maalouf, 2009). Commonly, for two-class

classification of imbalanced data set, the negative class is the notation for the

majority class, while the positive class is the notation for the minority class. In

imbalanced classification problems, the minority class is the class of primary

interest. As has been reported in literatures of Kernel learning, it seems difficult

for general classifier algorithms, even though SVM, to detect regularities within

the minority class on imbalanced data problems (Akbani et al, 2004; Maalouf,

2009). Therefore, they have good specificity, but poor sensitivity (Akbani et al.,

2004; Maloouf, 2003). King and Zeng (2001c) stated similarly that when non-

kernel of probabilistic method such as logistic regression, is used, it

underestimates the probability of rare events, because it tends to be biased

towards the majority class, which is the less important class. Recently, in

relation to further development of KLR and RLR respectively, this thesis has

confirmed the limitation performance of both general classification algorithms

on imbalanced data sets. The report can be found in Chapter 4.

The motivation of this research is described as follows:

(i) Several methods have been proposed for solving the numerical problem of KLR

and RLR. Detail analysis of those methods proposed will be reported in Chapter

2. In the last decade, the use of Truncated Newton methods are the most

proposed methods on applying KLR and RLR. However, so far, the success of

Truncated Newton method in both algorithms has not been totally explored.

Therefore, this thesis intends to contribute further explanation on the success of

Truncated Newton for KLR and RLR specifically on improving the algorithm

performance of these both LR-based methods.

 5

(ii) For solving the imbalanced classification problem, a number of methods have

been proposed in literatures of Kernel learning. Discussion on the limitation of

those methods will be reported in detail, in Chapter 2. Based on those methods

proposed, in general, the research of imbalanced LR-based methods are not as

many as the research of imbalanced SVM-based methods which have good

accuracy performance. Furthermore, the imbalanced techniques used on LR-

based methods have led their accuracy performances for classification of

imbalanced data sets that still require an improvement. Hence, it is important to

develop the effective imbalanced LR-based methods for solving the imbalanced

classification problem of general LR-based methods.

1.3 THE APPROACHES

This research concerns on developing better general and imbalanced

classification algorithms for KLR-NR and RLR-NR. Related to this concern, there are

two main problems that must be handled in this thesis, as stated in the previous section.

The approach for solving those problems can be described as follows:

(i) In order to develop the simple and effective of general classification algorithms

for KLR-NR and RLR-NR respectively, this research proposes the

implementation of Truncated Newton method. Among other Truncated Newton

LR-based method, the simplicity and the effectiveness of Truncated Regularized

KLR (TR-KLR) (Maalouf et al., 2010) and TR Iteratively Re-weighted Least

Square (TR-IRLS) (Komarek and Moore, 2005) have inspired this research. TR-

KLR is as accurate as, and much faster than, non-Linear SVM on small-to-

medium size data sets of non-linear classification problem. Meanwhile, TR-

IRLS is comparably accurate with, and faster than, Linear SVM on large size

data sets of linear classification problem.

In general, the use of Truncated Newton method typically consists of truncated

inner algorithm and outer algorithm (Nash, 2000). In TR-KLR and TR-IRLS,

the use of Truncated Newton includes Linear Conjugate Gradient (CG) method

(Gilbert, 2006; Nash and Sofer, 1996; Shewchuk, 1994) and Iteratively Re-

 6

weighted Least Square (IRLS) procedure (Mc Cullagh and Nelder, 1989;

Nabney, 1999; Hastie et al., 2001) for KLR and RLR respectively.

In summary, the approaches for solving the numerical problem of KLR-NR and

RLR-NR can be explained as follows:

(a) It is necessary to keep the use of unconstrained optimization problem for

KLR-NR and RLR-NR respectively. This optimization problem typically

has simpler solution than the constrained ones.

(b) It is also necessary to keep the use of Linear CG method, as the truncated

inner algorithm of Truncated Newton method for KLR and RLR

respectively. This method has faster computation in approximating the

Newton’s solution.

(c) Instead of IRLS procedure as used by TR-KLR and TR-IRLS, this approach

uses Newton-Raphson method as the outer algorithm of Truncated Newton

method. Newton-Raphson and IRLS are equivalent method for KLR and

RLR. In addition, Newton-Raphson method is mathematically simple,

because IRLS procedure is a representation of Newton-Raphson method.

The use of Truncated Newton method for solving the numerical problem of

KLR-NR and RLR-NR algorithm respectively results in proposed Newton TR-

KLR (NTR-KLR) and proposed Newton TR RLR (NTR-LR) algorithm.

Because of the equivalency between Newton-Raphson method and IRLS

procedure, the accuracy performance of both proposed classifier can be expected

to have similar performance for TR-KLR and TR-IRLS respectively. In

addition, both proposed algorithms can be seen as the Newton version of TR-

KLR and the Newton version of TR-IRLS algorithm. Hence, both proposed

algorithms can be used to contribute further explanation on the success of

Truncated Newton method in TR-KLR and TR-IRLS respectively.

Moreover, the development of both proposed algorithms can be seen as

preliminary representation of idea stated by Komarek (2004) that whether the

behaviour of Newton-Raphson and Linear CG combination would be identical

to IRLS and Linear CG combination. In specific, development of proposed

NTR-KLR algorithm can be seen also as preliminary representation of Kernel

version to the Trust Region Newton RLR that was proposed by Lin et al. (2008).

 7

(ii) In order to develop the effective imbalanced classification algorithms for NTR-

 KLR and NTR-LR respectively, this thesis proposes the use of Modified

AdaBoost method (with some adaptations). This is motivated by the success of

imbalanced SVM-based method i.e. Adaptive Boosting SVM (AdaBoostSVM)

(Li et al., 2008) with the use of this imbalanced technique. AdaBoostSVM has

much better performance than SVM on solving the imbalanced classification

problem. The use of AdaBoost-based method (Freund and Schapire, 1997)

typically contains ensemble method and component classifier. In

AdaBoostSVM, the ensemble method used is Modified AdaBoost and the

component classifier is SVM with Radial Basis Function (RBF) Kernel

(RBFSVM).

Detail strategies for solving the imbalanced classification problem of general

LR-based methods are described in the following:

a. It is necessary to keep the use of Modified AdaBoost (with some

adaptations) as the ensemble method of proposed imbalanced LR-based

methods. Boosting mechanism of Modified AdaBoost forces the component

classifiers to focus on the misclassified samples from the minority class by

increasing the weights of training data. This prevents the minority class from

being consider as noise in the majority class and be wrongly classified on

imbalanced problem.

b. Instead of SVM, this approach uses NTR-KLR and NTR-LR respectively as

the component classifier of proposed imbalanced LR-based methods. As

proposed previously, NTR-KLR and NTR-LR are representation of KLR-

NR and RLR-NR with Truncated Newton method respectively. The

similarity of loss function among NTR-KLR, NTR-LR and SVM, has led

these classifiers can be expected to have comparable accuracy. In addition,

with the use of unconstrained optimization problem, NTR-KLR and NTR-

LR have simpler solution of optimization problem than SVM.

The implementation of adapted Modified AdaBoost ensemble method for

solving the imbalanced classification problem of NTR-KLR and NTR-LR component

classifier respectively are called as Adaptive Boosting NTR Weighted KLR (AB-

WKLR) and AB NTR Weighted RLR (AB-WLR) algorithm. As further as limited

 8

knowledge, Nishida and Kurita (2006) were the first researchers who applied Boosting

method, i.e. LogitBoost, on sparse version of KLR, i.e. Import Vector Machine (IVM)

(Zhu and Hastie, 2005), While Huang et al. (2005) was the first to employ classic

AdaBoost method on Logistic Regression (LR) that used weighted least-squares as the

objective function and batch gradient descent algorithm for its optimization.

Since there is similarity loss function between component classifiers used, the

accuracy performance of the proposed algorithms can be expected as well as

AdaBoostSVM in classifying the imbalanced data sets. Moreover, the comparable

accuracy only requires to be obtained by the simple solution of unconstrained

optimization problem.

1.4 OBJECTIVES AND SCOPES

The main objective of the research is to develop the simple and effective

classification algorithms using LR-based methods.

The research objective can be stated in detail as follows:

(ii) To develop general classification algorithms, i.e. NTR-KLR and NTR-LR

(iii) To develop imbalanced classification algorithms, i.e. AB-WKLR and AB-

WLR

The scope of this research covers the following:

(i) This thesis considers 2-class classification and the data sets used mostly are

imbalance.

(ii) Proposed general classification algorithms are developed based on KLR-NR

and RLR-NR algorithm respectively, while proposed imbalanced classification

algorithms were developed based on NTR-KLR and NTR-LR algorithm

respectively.

(iii) Proposed NTR-KLR and proposed AB-WKLR are applied on small-to-

medium size of data sets, while proposed NTR-LR and proposed AB-WLR are

employed on large size data sets.

 9

1.5 CONTRIBUTIONS

The primary contributions of this research are as follows:

(i) NTR-KLR and NTR-LR algorithm were developed. Both proposed algorithms

contribute to the study of KLR-NR and RLR-NR respectively, by providing the

simple and effective general classification algorithms for KLR-NR and RLR-

NR respectively with the use of Truncated Newton method. Both proposed

algorithms are also provided specifically to conduct further explanation on the

success of Truncated Newton method in TR-KLR and TR-IRLS respectively,

since both proposed algorithms are equivalent to TR-KLR and TR-IRLS

respectively. In general, both proposed algorithms contribute to the general

classification research of LR-based methods.

(ii) AB-WKLR and AB-WLR algorithm were developed. Both proposed

algorithms contribute to the research of KLR-NR and RLR-NR with Truncated

Newton method respectively, by providing the simple and effective imbalanced

classification algorithms for NTR-KLR and NTR-LR respectively with the use

of adapted Modified AdaBoost method. In general, both proposed algorithms

contribute to the imbalanced classification research of LR-based methods.

1.6 OUTLINE OF THE THESIS

This thesis is organized as follows. Chapter 2 gives extended reviews of TR-

IRLS, TR-KLR, AdaBoost algorithms for SVM and some basic theories of numerical

experiment. Chapter 3 describes the proposed algorithms and the research methodology.

In chapter 4, several numerical results of experiment are reported and discussed. At the

end, conclusions for this research and recommendations for the further work are given

in chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents the reviews of General and Imbalanced Classification

Research, including TR-IRLS, TR-KLR, Adaptive Boosting (AdaBoost) algorithms for

SVM and some basic theories on conducting numerical experiment. These reviews are

required as fundamental theory in order to propose new algorithm of KLR and RLR, on

both the algorithmic level and in dealing with the imbalanced problems.

2.2 CLASSIFICATION

Globally, data mining tasks are divided into two categories, namely supervised

and unsupervised task. As mentioned in Chapter 1, classification is a supervised data

mining task on predicting categorical response.

 In the last decade, there are many classification methods that have been

proposed on general and imbalanced data assumption. Among other classification

methods, the maturity of LR-based methods has motivated this thesis for exploring

these methods as the simple and effective classifier to be widely used in data mining

application, either on general or imbalanced data sets.

 In order to develop better performance of general and imbalanced classification

algorithms for LR-based methods i.e. KLR and RLR, it is important to study the

limitation of related previous research. In the following, summary of the latest research

of LR-based methods in relation with general and imbalanced data are reviewed. In

 11

relation with imbalanced researches of LR-based methods, the imbalanced researches

SVM-based methods also are reviewed in summary.

2.2.1 GENERAL CLASSIFICATION

Several methods have been proposed for solving the numerical problem of LR-

based method. Keerthi et al. (2005) suggested the popular sequential minimal

optimization (SMO) algorithm for KLR by developing dual optimization problem. Zhu

and Hastie (2005) offered the Import Vector Machine (IVM) algorithm in taking the

advantage of SVM sparsity into Iteratively Re-weighted Least Square (IRLS) procedure

(Hastie et al., 2001; Mc Cullagh and Nelder, 1989; Nabney, 1999) for KLR.

Karsmakers et al. (2007) incorporated a fixed-size approach based on the number of

support vectors with the method of alternating descent for solving multi-class KLR

problem by using Least Square SVM (LS-SVM) (Suyken and Vandewalle, 1999;

Suyken et al., 2000) frame work and IRLS procedure. For large scale RLR problem,

Zhang et al. (2003) used non-linear Conjugate Gradient (non-linear CG) on the targeted

text classification tasks. Komarek and Moore (2005) proposed Truncated Regularized

IRLS (TR-IRLS) for RLR that modified the IRLS procedure using Linear CG (Nash

and Sofer, 1996; Shewchuk, 1994) method. In 2007, Truncated Newton Interior Point

was proposed by Koh et al. (2007) for solving the large scale problem on RLR. Lin et

al. (2008) proposed Trust Region Newton (TRN) method that employs constrained CG

method to approximate the Trust Region solution of RLR. Maalouf et al. (2010) then

suggested Truncated Regularized KLR (TR-KLR) algorithm that combine TR-IRLS

with Kernel method for solving non-linear classification problem.

 The aforementioned methods have a restriction. SMO for KLR (Keerthi et al.,

2005), fixed size of KLR with LS-SVM frame work (Karsmaker et al., 2007) and

Truncated Newton interior point (Koh et al., 2007) need to be solved by previously

reformulating the unconstrained optimization problem as the constrained one. IVM

(Zhu and Hastie) has complex solution, specifically when employ to data set which has

large number of attributes. The inner algorithm of Truncated Newton method in Trust

Region RLR (Lin et al., 2008) is constrained Linear CG. Hence, it has also complex

solution. The method which was proposed by Zhang et al. (2003) applied the

 12

combination of Newton-Raphson method with non-linear CG method which is slower

than Linear CG method. The outer algorithm of Truncated Newton method in TR-KLR

(Maalouf et al., 2010) and TR-IRLS (Komarek and Moore, 2005) is IRLS procedure. It

is required previously to restate the Newton-Raphson formula as the Weighted Least

Square (WLS) problem. Based on aforementioned methods, in the last decade the use of

Truncated Newton methods are the most proposed methods on applying KLR and RLR

respectively. However, the effectiveness of Truncated Newton method for these LR-

based methods has not been totally explored, specifically on improving their algorithms

performances.

2.2.2 IMBALANCED CLASSIFICATION

 General classification algorithm, such as SVM, TR-KLR and TR-IRLS were

developed under balanced data assumption, such that they have limited performance

when applied on imbalanced data sets which is the most type of data in many real-world

problems. Examples of imbalanced problem include the oil spills detection in satellite

radar images (Kubat et al., 1998), micro array data clustering (Pearson et al., 2004),

document categorization (del Castillo and Serrano, 2004), word mispronunciation

(Busser and Daelemans, 1999), credit risk assessment (Lai et al., 2006; Yu et al., 2006),

credit card fraud detection (Chan and Stolfo, 1998; Fawcett and Provost, 1997), queues

series (Tsoucas, 1992), international conflicts (King and Zeng, 2001a), state failure

(King and Zeng, 2001b), tornadoes detection (Trafalis et al., 2003), landslides

susceptibility (Bai et al., 2008; Eeckhaut et al., 2006), telecommunication equipment

failures (Weiss and Hirsh, 2000), train derailments (Quigley et al., 2007), and other

imbalanced problems.

 The latest research on data mining in relation to imbalanced data can be mapped

in general into Algorithm Level Techniques, Data Level Techniques and Kernel-based

Techniques (Maalouf, 2009). The extensive research of Kernel-based techniques in the

last decade, have inspired this thesis to study the effectiveness and the limitation of

imbalanced techniques used.

 13

A number of methods have been proposed in literatures of Kernel learning in

dealing with the imbalanced problem (Chawla, 2004). Yan et al. (2003) proposed the

SVM ensembles method that is another example of the use of advanced sampling in

SVM. Tang et al. (2009) proposed the Granular Support Vector Machines-Repetitive

Under-sampling (GSVM-RU) algorithm that combines classification algorithm of

Granular Support Vector Machines (GSVM) (Tang et al., 2005) and under-sampling

method (Kubat and Matwin, 1997). Wu and Chang (2005) proposed an algorithm of

Kernel Boundary Aligment (Cristianini et al., 2006) that adjusts the kernel matrix to fit

the training data. Akbani et al. (2004) combined SMOTE (Synthetic Minority Over-

sampling Technique) (Chawla et al., 2002) and Different Cost (Veropoulos, 1999) as

the SMOTE Difference Cost (SDC) for SVM, Li et al. (2005 and 2008) designed the

strategy of parameter adjusting in AdaBoost algorithm for SVM specifically, i.e.

AdaBoostSVM, Wang et al. (2010) proposed a new loss function for SVM to adjust

SVM solution by taking into account the sample sizes of the two class, Maalouf and

Trafalis (2011) suggested Rare Event Weighted Kernel Logistic Regression (RE-

WKLR) algorithm that combines TR-KLR (Maalouf et al., 2010), weighting and bias

correction. Meanwhile, in probabilistic non-kernel methodology, King and Zeng

(2001a) proposed Rare Event Logistic Regression (RE-LR) that combines weighting

and bias correction, and Owen (2007) developed Infinitely Imbalanced Logistic

Regression (IILR) by reformulating the likelihood unconstrained optimization problem

as the Gaussian Mixture Model (GMM) optimization problem.

 Most of those aforementioned methods were applied for the imbalanced SVM-

based methods which resulted in good accuracy performance for classification on

imbalanced data sets. However, these methods typically need to be solved by

constrained optimization problem which has complex solution. IILR (Owen, 2007) has

also complex optimization problem. RE-WKLR (Maalouf and Trafalis, 2011) and its

non-kernel version i.e. RE-LR (King and Zeng, 2001a) are the imbalanced LR-based

methods. Both classifiers keep the use of unconstrained optimization problem which

only requires to be solved by simple solution. However, the imbalanced techniques used

have led their accuracy performances for classification of imbalanced data sets that still

require to be improved. Furthermore, based on aforementioned methods in general, the

 14

number of research of imbalanced LR-based methods are not as many as that of

imbalanced SVM-based methods.

2.3 RLR-IRLS AND KLR-IRLS WITH)1,0(y

Logistic Regression (LR) is the fundamental method of classification which is

predictive task whose qualitative labels. Supposing there are n pairs of training data (xi,

yi), where xi is input vector with dimension d (number of features) for i
th

 instance and

corresponding label yi. Considering a binary or two-class classification problem yi

, for every instance xi, the label is either yi =0 or yi=1, i=1,2.., n. The instance xi

belongs to class 1 with probability p(yi=1|xi) and it belongs to class 0 with probability

p(yi=0|xi) = 1 - p(yi=1|xi) (Hosmer and Lemeshow, 2000).

In binary LR, it is required to model the posterior probability of two classes via

linear functions (Hastie et al., 2001).

   βXx iif  (2.1)

where  denotes the coefficient vector with size (dim+1) x 1, including the bias term,

while Xi = [xi 1].

The output of linear function, f(xi), can be interpreted as an estimate posterior

probability of two class by the use of logit transformation to eq. (2.1),

 
 

 i

i

i f x
x

x














1
ln (2.2)

Such that its results in  ix = p(yi=1|xi,)

  
  i

i

i
f

f
p

x

x

exp1

exp




  if x


exp1

1
 (2.3)

 15

  ix1 = 1 - p(yi=1|xi,)

 = p(yi=0|xi,)

  if xexp1

1


 (2.4)

Logistic response function on eq. (2.3) maps the values of linear model, f(x), to the

range [0,1] as can be displayed on Fig. 2.1.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
=

1
/(

1
+

e
x
p
(-

f(
x
))

f(x)

Figure 2.1: Logistic Response Function

Moreover, the logistic response function implicitly places f(x) = 0 as a separating

hyperplane between class 0 and class 1, and the classification rule will be described in

subsection 2.3.1.

2.3.1 Regularized optimization function of RLR and KLR

For those pairs (xi, yi) where yi=1, the conditional probability is  ix , and for

those pairs where yi=0, the conditional probability is  ix1 . Therefore, (xi, yi) is

assumed to follow Bernoulli distribution (Hosmer and Lemeshow, 2000).

 16

     ii
y

i

y

iix



1

)(1)(xx  (2.5)

LR models are usually fit by Maximum Likelihood Estimation (MLE)

(Garthwaite et al., 2002, Hogg, 1994) method. Since the observations are assumed to be

independent, the likelihood function is obtained as the product of the terms given in eq.

(2.6) as follows;

        ii y

i

n

i

y

il





1

1

1 xxβ  (2.6)

The principle of maximum likelihood states that estimate of  is the value which

maximizes the expression in eq. (2.6). MLE estimates of LR can be found by

maximizing the log-likelihood optimization function and set its derivatives to zero.

However, it is mathematically easier to work with the log of eq. (2.6). This expression,

the log likelihood, is defined as,

  



n

i

iiii yylL
1

)](1log[)1()](log[)(log)(xxββ 

 
 

 
 

 






























n

i i

i

i

i

i yy
1 exp1

1
log1

exp1

exp
log

βXβX

βX

      



n

i

iiiy
1

exp1log βXβX (2.7)

Over-fitting training data may arise in LR, especially when the data are very high

dimensional and/or sparse (Zhang and Yang, 2003). Quadratic regularization (Hoerl and

Kennard, 1973) is one of most popular methods to control the bias-variance trade-off

(Geman et al., 1992), by introducing a penalty on large fluctuations of MLE estimate.

Hence, in order to avoid the over-fitting problem and to obtain better generalization, it

is necessary to add quadratic regularization to the log likelihood function such that we

have regularized log likelihood. (Maalouf, 2009; Park and Hastie, 2008)

 17

RLR

In RLR, the regularized optimization problem can be stated as (Lee and Silvapulle,

1988; Le Cessie, S. and Van Houwelingen, 1992).

          ββXβXβy1β
TTL

2
exp1log.


 (2.8)

where :

y is vector of labels with dimension n x 1

 is vector of coefficient with dimension (d+1) x 1, including the bias term.

X is matrix [x 1]

  Xβx f

  = regularization parameter ( > 0), where bias term is not regularized

The Hessian matrix of eq. (2.8) is positive definite, so the regularized function of RLR

is convex optimization function (Boyd and Vandenberghe, 2004; Lin et al., 2008).

Hence, there is only one solution which is global minimum.

The loss function or the deviance, DEV, for RLR is given by formula

    ββ lDEV log2

  βL2 (2.9)

KLR

The optimization function of KLR can be obtained by kernelizing the optimization

function of RLR on eq. (2.8), based on the Representer Theorem (Cawley and Talbot,

2005; Cawley and Talbot, 2008; Scholkopf et al., 2002);

  αxβ φ (2.10)

 18

where  x is a function to map the original data x in input space into feature space, in

order to convert the non-linear relation into linear relation.

Figure 2.2: Kernel trick

Source: Nugroho et al. (2003)

The dot product in feature space can be expressed in terms of input vectors

through the kernel function. The Kernel function is a transformation function that must

satisfy Mercer‟s necessary and sufficient conditions (Mercer, 1970). A kernel function

must be expressed as inner product and must be positive semi-definite. The decision

function (logit model) of KLR, f(x), can be expressed in the form,

    xx  Tf 

    αxx 
T



 Kα (2.11)

where K is a Kernel matrix. Each cell of Kernel matrix, kij, is an inner product between

individuals i and j that holds a measure of similarity (Tenenhaus et al., 2007).

By substituting eq. (2.10) and eq. (2.11) on eq. (2.8), the regularized

optimization function of KLR can be defined as (Katz et al., 2006; Maalouf et al. 2010).

K(x,x)

 19

         αKααKαKy1α 211
2

exp1log. TTL


 (2.12)

where :

y is vector of label with dimension n x 1

 is vector of coefficient with dimension (d+1) x 1, including the bias term.

K1 is matrix [K 1]

  αKx 1f

 = regularization parameter

 K2 is matrix 








00

0K
(the bias term is not regularized)

K is kernel matrix of size n x n. Two of the most popular kernel functions are

Linear kernel and RBF kernel.

Similar to RLR, the regularized function of KLR is convex optimization function

(Cawley and Talbot, 2008), with the deviance, DEV, (Maalouf et al., 2010).

    αα lDEV log2

  αL2 (2.13)

Minimizing the deviance is equivalent to maximizing the log-likelihood

(Hosmer and Lemeshow, 2000). As the non-linearity of MLE estimates, minimizing the

deviance of RLR and KLR requires numerical method, such as the Iteratively Re-

weighted Least Squares (IRLS) method, in order to find MLE estimates.

Once the optimal MLE estimates for RLR and KLR are found, classification of given

instance, xi, is carried according to the following rules;

   0or 0 if ,1
^^^


iii

pfy x

 otherwise ,0 (2.14)

 20

2.3.2 IRLS method for RLR and KLR

The IRLS method is an algorithm that iteratively solves the linear system of

Weighted Least Squares (WLS) problem. The IRLS method is a representation of

Newton-Raphson method (Hastie et al. 2001; Nabney, 1999; Roth, 2001);

 ttt
sθθ )()1(

)(1)()()(ttt
gHθ

 (2.15)

where t is the iteration index, while g and H are the gradient and the Hessian which is

achieved by differentiating the regularized NLL function with respect to .

RLR with IRLS method (RLR-IRLS)

The IRLS method for RLR can be defined as (Hastie et al., 2001; Park et al.,

2008);

  ttt
sββ )()1(

)(1)()()(ttt
gHβ



  

 
 
  





























β

β

ββ

β
β

LL
T

t

1
2

)(

)(

           ttTtTt λ βpyXIXVXβ 
1

 (2.16)

where V = diag(p.(1-p)) with size n x n

Such that the linear system of WLS problem on using IRLS method for RLR can be

written as;

               ttttTttT
pyVXβVXβIXVX 

 11

    ttT
ZVX (2.17)

 21

where Z is known as adjusted response.

KLR with IRLS method (KLR-IRLS)

The IRLS method for KLR can be expressed as (Cawley and Talbot, 2008; Roth,

2001;);

  ttt
sαα )()1(

)(1)()()1()(tttt
gHαα

 

    
 

 
  





























α

α

αα

α
α

LL
T

t

1
2

)(

           ttTtTt λ αKpyKKKVKα 21

1

211 


 (2.18)

Therefore, the linear system of WLS on using IRLS method for KLR can be stated as;

               ttttTttT
pyVαKVKαKKVK 

 1

11

1

211 

    ttT
ZVK1 (2.19)

The Hessian matrix of RLR and KLR are dense, such that the iterative

computation could become unacceptably slow. It is the numerical problem on using the

IRLS method for RLR and KLR in order to find the WLS solution. (Komarek, 2004;

Maalouf, 2009)

2.4 RLR-IRLS AND KLR-IRLS WITH TRUNCATED NEWTON METHOD

For solving large scale data of nonlinear optimization problem, such as MLE,

Truncated-Newton method is a suitable method. Truncated Newton method contains a

doubly iterative method: an outer iteration and an inner iteration. Komarek and Moore

(2005) was the first to propose the implementation of Truncated Newton, by Linear

Conjugate Gradient (Linear CG) approach, as the inner iteration, to approximate the

WLS solution on using IRLS method, that as the outer iteration, for search the MLE of

RLR. As mentioned earlier, the proposed method is called TR-IRLS. The early stopping

 22

of Linear CG iteration is referred as the Truncated Newton method with accompanying

convergence guarantees (Komarek and Moore, 2005; Lewis et al., 2006). Inspired by

the effectiveness of TR-IRLS for solving large scale data of classification problems,

Maalouf et al. (2010) then proposed to combine the speed of TR-IRLS with the

accuracy generated by the use of kernel method for solving non-linear classification

problems that resulted in TR-KLR.

Linear CG method is almost always used as an inner iterative algorithm in a

Truncated Newton method, such as TR-IRLS or TR-KLR. CG method is an optimal

iterative method for solving a positive-definite linear system AP = b. It means that the

i
th

 iteration of Pi minimizes the associated quadratic function,   bPAPPP
TTQ 

2

1

(Nash, 2000). Recent studies have showed that the Conjugate Gradient (CG) method

provides better results to estimate RLR model than any other numerical methods

(Malouf, 2002; Minka, 2003). CG only requires computation of matrix-vector products

such that simplifying the computation. The use of CG method has an advantage that it

guarantees convergence in at most n steps (Lewis et al., 2006). Linear CG is the

application of CG to find the optimal value of quadratic form. The numerical problem

of IRLS method for RLR and KLR, respectively, can be solved by the use of Linear CG

method to quadratic form of WLS linear system (Komarek and Moore, 2005; Maalouf

et al. 2010).

In general, TR-IRLS and TR-KLR algorithm respectively contains two loops.

First algorithm represents the outer loop (main algorithm) that finds the MLE by using

IRLS method. The main algorithm is terminated when the relative difference of

optimization function is no larger than a specified threshold, . Second algorithm

represents the truncated inner loop that solves the linear system of WLS problem by

using the Linear CG method to approximate the WLS solution on first algorithm. This

algorithm is terminated when the square residual is no greater than a specified

threshold, 

 23

2.4.1 TR-IRLS: RLR-IRLS with Truncated Newton method

In TR-IRLS, solving the linear system of WLS problem on eq. (2.17) for RLR-

IRLS by using the approach of Linear CG, as the truncated inner algorithm, is

equivalent to minimizing the quadratic form,

             ttTtTttTtT

ZVXββIXVXβ
111

2

1 
  (2.20)

For Algorithm 2.1.1 (RLR-IRLS), the maximum number of iterations for RLR-NR is set

to 30, while for Algorithm 2.1.2 (Linear CG for RLR-IRLS), the maximum number of

iterations for Linear CG is set to 200 iterations. Moreover, threshold of the difference of

optimization function values for RLR-NR in Algorithm 1 is set to 0.01 (1 and the

convergence threshold for Linear CG in Algorithm 2 is set to 0.005 (2 . The success to

control a trade off between convergence speed and accuracy has been shown by the use

of these default parameter values. (Komarek and Moore., 2005; Maalouf, 2009).

Algorithm 2.1 TR-IRLS

Algorithm 2.1.1. RLR-IRLS (Outer loop)

Input : X, y, 

Initialize : 


, DEV
(1)

Output : 


Do while
   

  11

1








t

tt

DEV

DEVDEV

 For t = 1 to max RLR-IRLS iterations

 (1) Compute probability: p
(t)

 = 1./(1+exp(-X
(t)

))

 (2) Compute variance: V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute WLS solution, (X
T
VX+I)


=(X

T
VZ)

 (4) Compute DEV
(t+1)

 End For

where 1 =0.01, max RLR- IRLS iterations = 30

 24

Algorithm 2.1.2 Linear CG for RLR-IRLS (Truncated inner loop)

Input : A= (X
T
VX+I) and b=(X

T
VZ)

Initialize: 


, r
(1)

=b, d
(1)

= r
(1)

Output : 


Do while r
T
r > 2

 For t=1 to max Linear CG iterations

 (1) Compute the optimal step length: a


 = r
 T (t)

 r
(t)

/ (d
T(t)

A d

(t)
)

 (2) Update the approximate solution: 


 = 


 + a


 d
(t)

 (3) Update the residual: r
(t+1)

 = r
(t)

 – a
(t)

 A d
(t)

 (4) Update A-Conjugacy enforcer: c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction: d
(t+1)

 = r
(t+1)

 + c
 (t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 200

2.4.2 TR-KLR: KLR-IRLS with Truncated Newton method

In TR-KLR, solving the linear system of WLS problem in eq. (2.19) for KLR-

IRLS by using the approach of Linear CG is equivalent to minimizing the quadratic

form,

             ttTtTttTtT

ZVKααKKVKα 1

11

211

1

2

1 
  (2.21)

Except the value of 1 all setting of TR-KLR are similar to TR-IRLS algorithm above.

For TR-KLR, threshold of the difference of optimization function values in Algorithm

2.2.1 is set to 2.5 (1 The use of these default parameter values have shown adequate

accuracy and also maintained good convergence speedHowever, to obtain better

accuracy in some cases, it may be advisable to make this threshold smaller(Maalouf et

al., 2010)

 25

Algorithm 2.2 TR-KLR

Algorithm 2.2.1 KLR-IRLS (Outer loop)

Input: X, K1, y, 

Initialize:


, DEV
(1)

,

Output : 


Do while
   

  11

1








t

tt

DEV

DEVDEV

 For t = 1 to max KLR-NR iterations

 (1) Compute probability: p
(t)

 = 1./(1+exp(y.K1
(t)

))

 (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute WLS solution : (K1
T
VK1+K2)

(t+1)
=(K1

T
VZ)

 (4) Compute DEV
(t+1)

 End For

where 1 =2.5, max KLR- NR iterations = 30

Algorithm 2.2.2 Linear CG for KLR-IRLS (Truncated inner loop)

Input : A= (K1
T
VK1+K2) and b=(K1

T
VZ)

Initialize: 


, r
(1)

=b, d
(1)

= r
(1)

Output : 


Do while r
T
r > 2

 For t=1 to max Linear CG iterations

 (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

A d

(t)
)

 (2) Update the approximate solution : 


 = 


 + a


 d
(t)

 (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 A d
(t)

 (4) Update A-Conjugacy enforcer : c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction : d
(t+1)

 = r
(t+1)

 + c
 (t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 200

 26

2.5 ADAPTIVE BOOSTING METHOD

AdaBoost (Freund and Schapire, 1997) is the most popular Boosting method

(Freund, 1993; Freund, 1995; Schapire, 1990; Schapire, 1992). Beside Bootstraap

Agregating (Bagging) (Breiman, 1998), Boosting is the commonly used ensemble

method (Opiz and Maclin, 1999), which is one of the major recent developments in

machine learning and data mining community for classification task (Friedman et al.,

2000). Ensemble method is a technique to combine the moderate predictions of the

multiple component classifiers to produce a single classifier (an ensemble) which has

generally highly accurate (strong) prediction such that better, i.e. low bias and variance

(Bauer and Kohavi; Friedman et al. 2000; Oza, 2001; Oza and Russel, 2001; Schapire et

al., 1998), than any of the individual classifier making up the ensemble. AdaBoost

creates an ensemble, collection of component classifiers, by maintaining a set of

weights over training data and adaptively adjusting these weights after each Boosting

iterations (Li et al., 2008).

 Supposing there are n pairs of training data (xi,yi) with  1,1iy , AdaBoost

combines many component classifiers to develop an ensemble as follows (Zhou and

Wei, 2009);

    xx t

T

t

t hF 



1

 (2.21)

where ht(x) is the weighted prediction of component classifier,    1,1ith x

 t is the importance factor indicating the contribution of corresponding

component classifier to an ensemble (t >0)

T is the number of AdaBoost iterations, i.e. the number of component classifiers

in ensemble

Moreover, given the instance xi, predictions of AdaBoost classifier can be found by

     iipred Fsigny xx  (2.22)

 27

Thus, the classification rule of AdaBoost classifier is determined by a weighted

majority vote of T component classifiers that have moderate total accuracy values,

where each t is a weight assigned to each ht(x). The voting process removes the

uncorrelated error of moderately accurate component classifiers such that it leads to

better generalization performance of AdaBoost. Moderately accurate component

classifiers often have larger diversity (larger disagree with each other or lower

correlated error) than those component classifiers which are very accurate (Li et al.,

2008; Shin and Soghn, 2005).

 The AdaBoost algorithm estimates t in a stepwise manner. Detail algorithm of

AdaBoost is given below (Freund and Schapire, 1997).

Algorithm 2.3 AdaBoost

Input : x, y

Initialize: The weight of training samples wt(i), where w1(i)= 1/n; i = 1,2,..n

Output : the class prediction,    







 

T

t

ttpred hsigny xx 

Do while (t < )

(1) Get the model, ft, and then get the weighted prediction, ht, by performing

component classifier on weighted training data

(2) Calculate the weighted error of ht :    



n

i

ttt hyiw
1

i , x

and choose ht with minimal error

(3) Set the weight of ht: 








 


t

t
t






1
ln

2

1

(4) For i = 1 to n

 Update the weight of training samples:

  
     

   








itt

itt

t

t
t

hy

hy
x

Z

iw
iw

x

x

i

i

1
 ,exp

 ,exp





 Zt is normalization factor

 End For

 End For

 28

As mentioned earlier in this section, AdaBoost maintains and adaptively adjust a

set of weights over training data after each Boosting iterations. Hence, component

classifier should be designed for taking into account the weight distribution in training

process. All the weights wt(i) are kept as probability distribution such that data are

processed according to a probability distribution.

In practice, there are two ways to process training data and the corresponding

probability distribution (Zhou and Wei, 2009):

(i) A component classifier can be trained using corresponding weights on

training data directly by using weighting technique.

(ii) Corresponding weights can not be applied on algorithm of component

classifier directly, so that re-sampling is used to bypass the difficulty. The

training data are re-sampled according to the probability distribution, and

these re-sampled data are used to train a component classifier.

Algorithm of AdaBoost can be described as follows: at the beginning of

iteration, component classifier is trained by using weight distribution on training data.

Initially, weights of training data are set equally to
n

1
 (w1(i)). The weighted prediction

of component classifier (ht) that has minimal weighted error (t) is selected.



    



n

i

ttt hyiw
1

i , x (2.23)



The weighted error should be slightly less than 0.5 (50%). Weight (wt(i)) is added in t,

when samples are misclassified   0itihy x . The importance of component classifier

is then evaluated by

t

t

t








1
ln

2

1
 (2.24)

 29

Sincet should be slightly less than 0.5, t will be greater than zero.

 In AdaBoost algorithm, the weights, wt(i), is updated using the rule: weights of

training samples which are misclassified   0itihy x by current component classifier

will be increased while weights of training data which are correctly classified

  0itihy x will be decreased. The formula to update weights can be written as,

  
    

t

ititt

t
Z

hyiw
iw

x


exp
1 (2.25)

where  



n

i

ititit hywZ
1

exp(x is the normalization factor such that wt+1(i) is a

probability distribution,   

n

i

t iw 11 . AdaBoost processes component classifier

repeatedly until T iterations. Finally, an ensemble is combined linearly by these trained

component classifiers with corresponding weights.

The effect of weight update rule in AdaBoost algorithm is to reduce the training

error of an ensemble during Boosting iterations (Iyer, 1999). It can be shown that the

training error drops exponentially (Schapire and Singer, 1999):

       



n

i

t

n

i

iiiipred ZFy
n

yyi
n 11

exp
1

:
1

xx (2.26)

By unravelling the update rule in eq. (2.25), it is found that,

 




















T

t

t

T

t

itti

Zn

hy

1

1

exp x

  







T

t

t

ii

Zn

Fy

1

exp x
 (2.27)

 30

Moreover, if  ipredi yy x then   0iiFy x implying that    1exp  ii Fy x , thus

     iiiipred Fyyy xx  exp((2.28)

The inequality in eq. (2.26) can be described by combining eq. (2.27) and eq. (2.28)

     



n

i

ii

n

i

iipred Fy
n

yy
n 11

exp(
11

xx

   
 


n

i

T

t

tt Ziw
1 1

1 



T

t

tZ
1

In order to minimize training error rapidly, eq. (2.26) suggests that ht and t should be

chosen on round t to minimize the normalization factor

  



n

i

ititit hywZ
1

exp(x (2.29)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

T
ra

in
in

g
 e

rr
o
r

yF(x)

Figure 2.3: Training error of AdaBoost

 31

(a) Finding t

We attempt to minimize Zt by finding t as follows,

      0exp(  itiiitit

t

t hyhyiw
d

dZ
xx 



  
 

   
 

  0expexp
::

 


t

xhyi

tt

xhyi

t

iti

iwiw 

      tttt  expexp1  =0

t

t

t








1
ln

2

1

The smaller error of ht (t), the larger the importance of component classifier

(t) (Fig. 2.4). This indicates that a component classifier that has slightly “stronger”

discriminating power plays a more important role in the ensemble for making decision.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3





Figure 2.4: Plot  vs 





 32

(b) Choosing ht

Zt is minimized by selecting ht with minimal weighted error (. Justification of

weighted error minimization can be described from eq. (2.29) as follows

 



n

i

ititit hywZ
1

exp(x

  
 

   
 

 t

xhyi

tt

xhyi

t

iti

iwiw  expexp
::






      tttt  expexp1  (2.30)

By finding t as has been described above, the upper bound on training error (eq. 2.26)

is simplified to

   
 











T

t

T

t

tt

T

t

tt

1 1

22

1

2exp4112  (2.31)

where t measures how much better the ht‟s prediction compare to the random, that is

tt  
2

1
. This property means that AdaBoost is able to improve in efficiency if any

component classifiers have weighted error slightly lower than the worst case error

t
2

1
.

2.6 ADABOOST ALGORITHM FOR SVM

Analysis of boosting techniques shows that Boosting is tied to the choice of

component classifier (Joshi et al., 2000; Joshi et al., 2001). This section describes two

AdaBoost algorithms that are specifically designed for Support Vector Machine (SVM)

with RBF kernel parameter, i.e. AdaBoostSVM and WwBoost-SVM. Both algorithms

are the foundation on developing proposed AdaBoost algorithms for DTR-KLR and

DTR-LR respectively.

 33

SVM was developed from the theory of Structural Risk Minimization (Vapnik,

1998 and 2000) that has drawn considerable attentions in various research areas. By

using a kernel trick to map the training samples from an input space to a high-

dimensional feature space, SVM finds an optimal separating hyperplane in the feature

spaces with solving constrained optimization problem. SVM also uses a regularization

parameter (C) to control its model complexity and training error.

The total accuracy value of SVM classifier is often high and cannot meet the

requirement on a component classifier given in AdaBoost that needs to be only slightly

better than 50%. Due to the fact that SVM is strong classifier (highly accurate

classifier), AdaBoost is not expected to improve the performance of SVM and

sometimes they even worsen the performance (Wickramaratna et al., 2001). The

characteristic of AdaBoost causes SVM to concentrate too much on few very hard

samples or outliers at the expense of the majority of the training samples, causing over-

fitting problem, hence resulting in unproductive or counterproductive behaviour of

AdaBoost.

By employing SVM with RBF kernel parameter (), i.e. RBFSVM, as the

component classifier in standard AdaBoost, Li et al. (2005 and 2008) also confirmed the

similar problems when applying a single to all of SVM component classifier. They

conducted experiments by setting the value of  since the performance of SVM largely

depends on the value if a roughly suitable C is given (although SVM cannot learn

well when a very low value of C is used) (Valentini and Dietterich, 2004). Having too

large value of , the classification accuracy of SVM is often less than 50% (too weak

classification) and cannot meet the requirement on a component classifier given in

AdaBoost. On the other hand, a smaller  often makes the SVM component classifier

stronger, causing highly correlated errors among component classifiers and moreover,

too small can even make SVM over-fit the training data. A single best parameter 

may be found for SVM component classifiers by using model selection techniques such

as k-fold or leave-one-out cross-validation. However, the process of model selection is

time-consuming and should be avoided if possible. Hence, it seems that SVM

 34

component classifiers do not perform optimally if only one single value of  is used

during AdaBoost iterations.

2.6.1 AdaBoostSVM

In order to benefit from boosting SVM, based on concept of the idea suggested

by Valentini and Dietterich (2004) that AdaBoost with heterogeneous SVMs could

work well, Li et al. (2008) proposed AdaBoost algorithm which is specifically designed

for SVM with RBF kernel parameter by adaptively adjusting the performance of SVM

component classifier during AdaBoost iterations. Therefore, it can meet the requirement

on a component classifier given in AdaBoost that needs a set of moderately accurate

component classifiers. Their proposed AdaBoost algorithm for SVM resulted in

AdaBoostSVM (Li et al., 2008).

The performance of SVM in AdaBoostSVM can be adjusted by simply changing

the value of during AdaBoost iterations, based on analysis of parameter influence on

SVM performance. In detail, it can be described as follows:

(i) In certain range of testing data, a larger often leads to a reduction in

classifier complexity but at the same lowers the classification performance.

(ii) A smaller often increases the learning complexity and leads to higher

classification performance in general.

Since SVM is a strong classifier, Li et al. (2008) weakened appropriately the SVM

component classifier, as suggested by Dietterich (2000). Hence, in AdaBoostSVM, a

relatively large , which corresponds to SVM with relatively weak learning ability, is

preferred. Generally, algorithm of AdaBoostSVM as mentioned in Algorithm 2.4 can be

described as follows:

(i) Initially a large value is set to max). Then, SVM with this is trained as

many cycles as possible as long as more than half accuracy can be obtained.

 35

(ii) Otherwise, this  value is decreased slightly step) to increase the learning

capability of SVM to help it achieve more than half accuracy. This process is

continued until the  is decreased up to the given minimal value ini).

Algorithm 2.4 AdaBoostSVM

Input : x, y, C

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n

 The initial max; the minimal min; the step of step

Output : the class prediction,    







 

T

t

ttpred xhsignxy 

Do while ( > min)

(1) Get the decision function, ft, and then get the weighted prediction, ht, by performing

SVM on weighted training data.

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x

(3) If t > 0.5, decrease value bystep and go back to (1)

(4) Set the weight of ht: 








 


t

t
t






1
ln

2

1

(5) For i = 1 to n

 Update the weight of training data:

  
     

   








itt

itt

t

t
t

hy

hy
x

Z

iw
iw

x

x

i

i

1
 ,exp

 ,exp





 Zt is normalization factor

 End For

 End For

where max is set as the scatter radius of the training samples in the input samples (is set

as about 10 to 15 times of min

minis set as the average minimal distance between any two training samples

step is set to value within 1-3

 C is empirically set as a value within 10 - 100

 36



In AdaBoostSVM,  value is decreased slightly in order to prevent the new SVM from

being too strong for the current weighted training samples, and thus moderately accurate

SVM component classifiers are obtained.

2.6.2 WwBoost-SVM

Wang and Li (2007) focused on designing a new weighting rule in addition to

above adjusting parameter strategies, which are proposed by Li et al. (2008). Hence,

their proposed algorithm is called WwBoost-SVM (new Weighting rule and Weakened

SVM-based Boosting).

When decreasing the RBF kernel parameter in AdaBoostSVM process, the

possibility of the over-fitting on hard data or outliers is increasing, such that boosting

SVM tends to be unproductive or counterproductive. In order to avoid over-fitting

problem, the new weighting rule is designed to prevent hard data or outliers from being

assigned very high weight. The new weighting rule for AdaBoostSVM pays separated

attention to different type of data rather than only pays much attention to erroneous

data, as follows:

(i) Data correctly classified and lying far from the separating hyperplane are

considered as „easy data‟, thus their weights will be decreased more than

other correctly classified data.

(ii) Data correctly classified but lying near the separating hyperplane are

considered as „critical data‟, thus their weights will be decreased less than

other correctly classified data.

(iii) Data misclassified but lying near the separating hyperplane are also

considered as „critical data‟, thus their weights will be increased more than

other misclassified data.

(iv) Data misclassified and lying far from the separating hyperplane are

considered as „hard data or outliers‟, thus their weights will be increased less

than other misclassified data.

 37

In SVM, the distance of a sample from the separating hyperplane is measured by

   itiii fyydis xx , , with ft is the decision function and yi is the class label of input

data xi. Data xi is misclassified if   0iti fy x and is correctly classified if   0iti fy x .

In new weighting rule, Wang and Li (2007) reset weights of correctly classified by

[1,H] and reset the weights of correctly classified data by [L,1], where  tH exp is a

higher limit value and  tL  exp is a lower limit value. Weights of data with low

value of  ii ydis ,x increase more than data with high value of  ii ydis ,x , while weights

of data with high value of  ii ydis ,x decrease more than data with low value of

 ii ydis ,x . The weight of the misclassified data farthest from the hyperplane and the

weight of the correctly classified data nearest from the hyperplane are almost

unchanged.

The new weighting rule which is proposed by Wang and Li (2007) can be

expressed as

       ititt fyxgiwiw x1 (2.32)

Where

  
          

          








0 ,expexp1exp

0 ,exp1exp1exp

itiititt

itiititt

iti
fyfy

fyfy
fyg

xx

xx
x





with 10  (when 0 , we get the classical weighting rule)

In   iti fyg x , the first term is the classical weighting error that only pays attention to

the weighted error. The second term in   iti fyg x is the new weighting rule that takes

into account both the weighted error and the distance of data from the separating

hyperplane. Both terms are considered equally in WwBoost-SVM algorithm, such that

we use fixed value of   1 .

 38

 Basic steps of the WwBoost-SVM algorithm are described below. In WwBoost-

SVM algorithm, the value of RBF kernel parameter is adaptively adjusted as proposed

in AdaBoostSVM (Li et al., 2008) and the new weighting rule is used as proposed by

Wang and Li (2007). At first, the optimization problem of SVM is modified, so that it

can directly deal with weights distribution which is generated by WwBoost algorithm.

Algorithm 2.5 WwBoost-SVM

Input : x, y, C

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n

 The initial max; the minimal min; the step of step

Output : the class prediction,    







 

T

t

ttpred xhsignxy 

Do while ( > min)

 For t = 1 to max iteration for each 

(1) Get the decision function, ft, and then get the weighted prediction, ht, by performing

Weighted SVM (SVM with w).

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x

(3) If t > 0.5, decrease value bystep and go back to (1)

(4) Set the weight of ht: 








 


t

t
t






1
ln

2

1

(5) For i = 1 to n

 Update the weight of training data:

  
            

          








0 ,expexp1exp

0 ,exp1exp1exp
1

itiititt

itiititt

t

t
t

fyfy

fyfy
x

Z

iw
iw

xx

xx





 Zt is normalization factor

 End For

 End For

where max is set as the scatter radius of the training samples in the input samples (is set

as about 10 to 15 times of min

minis set as the average minimal distance between any two training samples

 39

step is set to 1

 C is empirically set as a value within 10 - 100

 max iterations for each 

The algorithm of WwBoost-SVM continues until the value of RBF kernel parameter is

decreased to given minimal value or reaches the ensemble size.

2.7 k-Fold Stratified Cross Validation

On imbalanced data sets, standard (unstratified) cross validation (CV)

(Christmann et al., 2005) might sample the data such that there are folds with no

minority examples. When standard CV was used on imbalanced data, there might be

different distributions between training (the available data from which predictive tasks

are constructed) and testing data fold (the resulting model performance and accuracy are

assessed using data). This problem is referred as sample selection bias (Maalouf, 2009).

Stratified Cross Validation (SCV) (Akbani et al., 2004; Diamantidis et al., 2000; Li et

al., 2008) is a variant of Cross Validation (CV) where the class distribution in each fold

is approximately the same as in the initial data set in order to avoid the sample selection

bias problem.

The steps of k-Fold SCV:

(i) The data set is divided into k disjoint sets (folds)

(ii) Each fold is once used as the test data whereas the other k - 1 folds are put

together to form the training data.

Partitions observations into a randomized training and a testing data fold is

stratified. The stratification was conducted by using the information of class

proportion in the initial dataset, such that both training and testing data folds

have roughly the same class proportions as in the initial data set.

In this thesis, we set k = 10 for balanced data set and k = 5 for imbalanced data sets.

 40

2.7.1 Evaluation Criterion

The main criterion on evaluating the performance of the classifier is the

accuracy (Christmann et al., 2005). There are several metrics to measure the accuracy.

This thesis considers two main metrics, i.e. total accuracy and g-means.

Total accuracy is the most commonly used metric to asses the accuracy of the

classifier (Maalouf, 2009), while g-means is a type of evaluation metric which was

suggested for measuring the accuracy performance of classifier on imbalanced problems

(Akbani et al., 2004; Kubat and Matwin, 1997; Li et al., 2008; Weiss, 2004). In this

research, total accuracy and g-means are measured based on the Confusion Matrix

(CM) of binary class classification problem (Table 2.1).

Table 2.1: CM of binary class

Actual Predicted

Positive Negative

Positive a11 a12

Negative a21 a22

 where :

 a11 = the number of correctly classified positive instances

 a12 = the number of incorrectly classified positive instances

 a21= the number of incorrectly classified negative instances

 a22 = the number of correctly classified negative instances

Total accuracy is measured as proportion of the total number of correctly classified

positive and negative instances, which can be written as,

total accuracy
22211211

2211

aaaa

aa




 (2.33)

G-means is measured based on sensitivity (the accuracy of positive class) and

specificity (the accuracy of negative class) metrics,

 41

 yspecificitysensitivitmeansg . (2.34)

1211

11

aa

a
ysensitivit


 (2.35)

2221

22

aa

a
yspecificit


 (2.36)

Total accuracy and g-means are measured by using k-Fold SCV method. The average of

total accuracy and g-means values on k testing fold are used as the metric of accuracy

on evaluating the performance of classifier with the given parameters (Christmann et

al., 2005; Hsu et al., 2003 (updated 2010)). KLR has two parameters, i.e. Regularization

and RBF kernel, i.e. ( ,), while RLR has one parameter, i.e. regularization parameter

(). This thesis also measures the average of sensitivity and specificity by using k-Fold

SCV method, to give an even better idea of the performance of the classifier.

This research also measures the standard deviation of total accuracy and g-

means respectively, as a result of the use of k-Fold SCV, as the second criterion on

evaluating the performance of classifier. Standard deviation measures the stability of

classifier on resulting in total accuracy and g-means values during k-Fold SCV.

Therefore, the classifier has good performance if it has high total accuracy or g-means

values and low standard deviation value.

2.7.2 Model Selection

Model selection (parameter search) (Cawley and Talbot, 2008) is the process to

find the optimal value of classifier‟s parameter in order to achieve the optimal

generalization performance of classifier. The main criterion is the accuracy of classifier,

as explained in sub section 2.6.1. In KLR, model selection is the process to find the best

combination of Regularization and RBF Kernel parameters ( ,). Meanwhile, in RLR,

model selection is the process to obtain optimal value of regularization parameter ().

Grid Search (GS) and k-Fold SCV method (Christmann et al., 2005; Diamantidis

et al., 2000; Hsu et al., 2003 (updated 2010); Huang et al., 2007) are used on performing

 42

the model selection in this thesis. GS method is used in order to determine a number of

pairs of ( ,).

 The model selection on KLR is conducted as follows:

(i) Determining the grid range of ( ,) and the grid step.

 The grid values were used in this study i.e. i
c

e 1 and i
c

e 2 .

 The coefficients, i.e. c1i and c2i, are equidistant points (with the grid step = -

0.5) which spreads over respectively with the grid range (2,-7) and (6,-3).

(ii) By using k-Fold SCV (as explained on sub section 2.6), estimate the average

of total accuracy or g-means values for each pair of ( ,).

(iii) The pair of ( ,) with the best of the average of total accuracy or g-means

on the k test fold, is determined as optimal parameters.

The model selection on RLR is similar to KLR, but only using regularization parameter

(

43

CHAPTER 3

PROPOSED ALGORITHMS AND RESEARCH METHODOLOGY

3.1 INTRODUCTION

Theory of proposed algorithms and its methodology are explained in this chapter.

Referring to research objective of the thesis in Chapter 1, proposed algorithms consist

of general classification algorithms (proposed NTR-KLR and NTR-LR algorithm) and

imbalanced classification algorithms (proposed AB-WKLR and AB-WLR), while

research procedures and numerical experiment design in achieving the research

objective are included in research methodology.

3.2 PROPOSED NTR-KLR AND PROPOSED NTR-LR ALGORITHM

This section describes the development of proposed algorithms, i.e. proposed

NTR-KLR and proposed NTR-LR. The description of KLR Newton-Raphson, RLR

Newton-Raphson and Truncated Newton method are included in this section.

3.2.1 KLR Newton-Raphson and RLR Newton-Raphson with  1,1y

The goal of classification task is to estimate a classification rule (decision

function) from n pairs of training data (xi, yi), where xi is input vector with dimension d

(number of features) for i
th

 instance and corresponding label yi. Considering two-class

classification problem yi , the label is either yi =-1 or yi=1, i=1,2.., n, for every

instance xi. Therefore when given a new input xi, a class label can be assigned to it

(Zhu, 2003).

 44

(i) Classification rule of KLR and RLR

The classification rule of KLR and RLR can be estimated using (Zhu, 2003; Zhu

and Hastie, 2005)

 sign(p1(x) – 0.5) or (3.1)

 
 











 x

x

1

1

1
log

p

p
sign =   xfsign (3.2)

Considering two-class classification problem, general conditional probability of class

membership for KLR and RLR (Minka, 2003;Zhu and Hastie, 2005) can be stated as,

 
  x

xX
fy

yYp
i

ii
.exp1

1
|


 (3.3)

Hence, probability of instance xi that belongs to class 1 becomes

    iiii ypyp xXxX  |11|1

  
  x

x
f

p



exp1

1
1 (3.4)

Conditional probability of class membership for KLR can be written as

 
  1

1exp1

1
|




t

i

ii
y

yYp
αK

xX (3.5)

Hence,

  
  1

1

1
exp1

1



t

p
αK

x (3.6)

And then conditional probability for RLR,

 45

 
  1.exp1

1
|




t

i

ii
y

yYp
x

xX (3.7)

Hence,

  
  11

exp1

1



t

p
xβ

x (3.8)

Therefore, the main problem to estimate the classification rule of RLR and KLR is how

to find the estimate of linear model, f(x), which will be explained later in this sub

section.

(ii) Regularized optimization function of RLR and KLR

In Logistic Regression (LR), supposing this research has random samples of n

pairs of training data (xi,yi). Considering binary classification problem, (xi, yi) is

assumed as identical, independent and follows Bernoulli distribution (yi=0,1) with input

xi. (Hosmer and Lemeshow, 2000)

Probability density function of (xi, yi) can be written as,

   ii
y

i

y

ii




1
)(1)()(xxx  (3.9)

where :

 
 
 βX

βX
xx

i

i

iii yP
exp1

exp
)|1(




 βX i


exp1

1
,

  
 βX

xx
i

iii yP
exp1

1
)|0(1




The Maximum Likelihood Estimation (MLE) of  can be solved by minimizing

the Negative Log Likelihood (NLL) function, which is the optimization function of LR.

 46

        ii y

i

n

i

y

iwL




 
1

1

1loglog xx 

  



n

i

iiii yy
1

)](1log[)1()](log[xx 

     



n

i

iiii yy
1

exp(1log)1(exp(1log βXβX

Instead of  1,0iy , by assuming  1,1iy , the NLL function becomes (Zhang,

2010).

  





n

i

ii

y

y
i

1

1

.exp1log(βX

   ii

T fyL x.exp1log1  (3.10)

In order to avoid over-fitting problem on the training data by controlling the bias

variance trade-off (Geman et al., 1992), it is necessary to give penalty (to be

regularized) on the fluctuation of MLE estimates (Cawley and Talbot, 2008)his

study uses the Ridge Regularization, which is added to the NLL function (Hoerl and

Kennard, 1970; Minka, 2003; Zhang et al., 2003; Zhang and Oles, 2001; Zhu, 2003). It

resulted in quadratically-regularized NLL for RLR and KLR respectively.

RLR

The Regularized version of LR has optimization function,

      ββXβyβ
TTL

2
.exp1log(1


 (3.11)

where :

y is vector of labels with dimension n x 1

 is vector of coefficient with dimension (d+1) x 1, including the bias term.

X is matrix [x 1]

  Xβx f

 47

 = regularization parameter, with bias term is not regularized

KLR

The optimization function of KLR can be obtained by kernelizing the optimization

function of RLR in eq. (3.11), based on the representer theorem (Scholkopf et al. 2002,

Zhu and Hastie, 2005)

  αxβ φ (3.12)

where  x is a function to map the original data x in input space into feature space in

order to convert the non-linear relation into linear relation.

Rather than defining the feature space explicitly, it is instead defined by a kernel

function that evaluates the inner product between the images of input vectors in the

feature space and must be positive semi-definite (Mercer, 1970). Hence, the decision

function (logit model) of KLR, f(x), can be expressed in the form,

    xx  Tf 

    αxx 
T



 Kα (3.13)

where K is a Kernel matrix (Tenenhaus et al., 2007).

By substituting f(x) and  on equation (3.11), the regularized optimization function of

KLR is obtained as,

      αKααKy1α 21
2

.exp1log TTL


 (3.14)

where :

y is vector of label with dimension n x 1

 48

 is vector of coefficient with dimension (d+1) x 1, including the bias term.

K1 is matrix [K 1]

  αKx 1f

 = regularization parameter

 K2 is matrix 








00

0K
(the bias term is not regularized)

K is Kernel matrix of size n x n, which in this study, we considered to employ

the universal Kernel (Hsu et al., 2010), i.e. Radial Basis Function (RBF) Kernel,

  












 


2

2

2

||||
exp,



ji

ji

xx
xxK

The regularized function of LR and KLR are convex optimization function

(Boyd and Vandenberghe, 2004; Cawley and Talbot, 2008; Lin et al., 2008), such that

there is only one solution which is global minimum. MLE estimates of RLR and KLR

can be found by minimizing the regularized NLL functions. Since the MLE estimates

have non-linear form, the equation can not be solved analytically, such that iterative

technique, such as Newton-Raphson method, must be used. (Minka, 2003; Park et. al,

2008; Zhu and Hastie, 2005).

(iii) The relationship among SVM, KLR and RLR

Globally, the regularized function estimation problem contains two parts: a loss

function and a regularization term,

       2

2
. xxy fflL


  (3.15)

Several researchers have noted the relationship between the SVM and regularized

optimization problem (Hastie et al., 2001). Fitting an SVM is equivalent to minimizing

the regularized optimization problem that uses the Hinge loss function,

 49

        2

2
.1 xxy ffL


 

 (3.16)

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

z (yf)

f(
z
)

SVM

(K)LR

Figure 3.1: Loss functions of SVM, KLR and RLR

If the Hinge loss function is replaced by the NLL loss function, the problem becomes

the regularized optimization problem of KLR (Zhu and Hastie, 2005),

        2

2
.exp1log xxy ffL


 

 (3.17)

Without the use of Kernel function, the regularized optimization of KLR becomes the

RLR problem (Park et al., 2008). Hence, both classifiers have the same loss function.

If the Hinge loss function is plotted along with the NLL loss function, it can be

seen that the NLL has similar shape to that of SVM (Fig. 3.1).The Hinge and NLL loss

function are all Bayes consistent and margin-maximizing loss function. Because of the

similarity between both loss functions, the fitted function of KLR and RLR performs

similarly to the SVM (Zhang et al., 2003; Zhang and Oles, 2001; Zhu and Hastie,

2005;). However, as aforementioned, SVM needs to be solved with constrained

regularized optimization problem, while KLR and RLR only need to be solved with

unconstrained regularized optimization problem (Maalouf, 2009).

 50

(iv) Newton-Raphson method for KLR and RLR

The Newton-Raphson method is an algorithm that iteratively solves the linear

system of Newton-Raphson update rule (NRUR) in order to estimate the Newton

direction (Lin et al., 2008), as can be seen in the Newton-Raphson formula,

 ttt

sθθ )()1(

)(1)()()(ttt
gHθ

 (3.18)

where t is the iteration index. s
(t)

 is the Newton direction, which is the solution of the

linear system of Newton-Raphson update rule,

      ttt
gsH  (3.19)

The gradient (g) and the Hessian (H) are achieved respectively by differentiating the

regularized NLL function with respect to 

RLR with Newton-Raphson method (RLR-NR)

The iterative method of Newton-Raphson for RLR has the form

  ttt
sββ )()1(

)(1)()()1()(tttt
gHββ

 

  

 
 
  





























β

β

ββ

β
β

LL
T

t

1
2

)(

)(
 \

For RLR, the linear system of Newton-Raphson update rule can be expressed as

        βpXsIXVX   .yTttT (3.20)

 51

KLR with Newton-Raphson method (KLR-NR)

The iterative method of Newton-Raphson for KLR can be written as

  ttt
sαα )()1(

)(1)()()1()(tttt
gHαα

 

    
 

 
  





























α

α

αα

α
α

LL
T

t

1
2

)(
 (3.21)

The linear system of Newton-Raphson update rule of KLR, becomes

       αKpyKsKKVK 21211 .  

TttT
 (3.22)

where V = diag(p.(1-p)) with size n x n

As mentioned in Chapter 1, there is a numerical problem to find the approximate

Newton direction on using the linear systems of Newton-Raphson update rule. The

numerical problem is the huge matrix to be inverted, which is a linear system of n

equations and n variables. (Lin et al., 2008; Zhu and Hastie, 2004; Zhu and Hastie,

2005;)

3.2.2 KLR-NR and RLR-NR with Truncated Newton method

 Truncated Newton methods are a family of suitable methods for solving large

scale data of non-linear optimization problem (Nash, 2000). A solid convergence theory

has been derived for the methods. A Truncated Newton method consists of doubly

iterative method: an outer iteration for the non-linear optimization problem (such as

MLE in this research) and an inner iteration for the Newton equation. Before the

solution to the Newton equation is obtained, the inner iteration is typically stopped or

“truncated". At each iteration of Truncated Newton method, the current estimate of the

solution is updated, i.e. a step is computed, by approximately solving the Newton

 52

equation of an iterative algorithm. For large scale data of non-linear optimization

problem, the result of Truncated Newton methods typically has a collection of powerful,

flexible and adaptable tools.

This research proposes the use of Truncated Newton for KLR and RLR

respectively, by keeping the use of Linear CG as the truncated inner algorithm, and the

origin Newton Raphson method as the outer algorithm. Linear CG finds the

approximate Newton direction by solving the numerical problem on using the linear

system of Newton-Raphson update rule.

The numerical problem of Newton-Raphson method for RLR and KLR can be

solved by the use of Linear CG method to quadratic form of Newton-Raphson update

rule (Lin et al., 2008),

   
       

sHssg
ttTttTt sq

2

1
 (3.23)

The use of Linear CG that simply requires matrix-vector products simplifies the

computation of the linear system, such that time required in each iteration of KLR-NR

and RLR-NR algorithms respectively to be fast (Komarek and Moore, 2005). In order to

avoid the long computation that Linear CG may suffer from, the number of CG

iterations is limited on approximating the Newton direction (Maalouf, 2009). Truncated

Newton method accommodates the need for a “trade off “between convergence speed

and accurate Newton direction.

Similar to TR-KLR (Maalouf et al., 2010) and TR-IRLS (Komarek and Moore,

2005) algorithm, NTR-KLR and NTR-LR algorithm respectively consist of two loops,

i.e. outer and inner loops. Main algorithm represents the outer loop which is iterations to

find the Newton direction by using the iterative method of Newton-Raphson. When the

relative difference of optimization function is no larger than a specified threshold, ,

then the iteration is terminated. Second algorithm represents the inner loop which is

iterations to find the approximation of the Newton direction by using the Linear CG

 53

method. When the square residual is no greater than a specified threshold, then the

iteration is terminated.

The choices of parameter values (and setting of number of iterationfor both

proposed algorithms mostly are considered appropriate following the previous research

on Truncated Newton methods for KLR and RLR (Komarek and Moore, 2005; Malouf

et al., 2010). The specified threshold values are considered to sufficiently reach good

accuracy and convergence speed at the same time. The parameters will be given in

detail in the proposed Algorithms 1 and 2 below.

KLR-NR with Truncated Newton method (Proposed NTR-KLR)

 The numerical problem of Newton-Raphson method for KLR can be solved by

the use of Linear CG method, as the Truncated Newton to quadratic form of Newton-

Raphson update rule,

     
 

         ttttTt
tTTt sq sKKVKssαKpyK 21121

2

1
.   (3.24)

Similar to TR-KLR, the maximum number of iterations for Algorithm 1 (KLR-NR) is

set to 30 and the threshold of the difference of optimization function value is set to 2.5

(1 . For Algorithm 2 (Linear CG for KLR-NR), the convergence threshold is set to

0.005 (2 . Unlike TR-KLR, the maximum number of iterations for Linear CG in NTR-

KLR is set to 1000 iterations for accommodating the complexity of data used.

Algorithm 3.1 The proposed NTR-KLR

Algorithm 1. KLR-NR (Outer loop)

Input: X, K1, y, 

Initialize:


, L
(1)

,

Output : 


 54

Do While
   

  11

1







t

tt

L

LL

 For t = 1 to max KLR-NR iterations

 (1) Compute probability: p
(t)

 = 1./(1+exp(y.K
(t)

))

 (2) Compute variance: V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute g
(t)

 dan H
(t)

 of KLR

 (4) Compute NR update rule solution: H
(t)

 s
(t)

 = -g
(t)

 (5) Compute 


by NR




s

(t)

 (6) Compute L
(t+1)

 End For

where 1 =2.5, max KLR- NR iterations = 30

Algorithm 2. Linear CG (Inner loop)

Input : g
(t)

 and H
(t)

 of KLR-NR

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

Output : s


Do While r
T
r > 2

 For t=1 to max Linear CG iterations

 (1) Compute the optimal step length: a


 = r
 T (t)

 r
(t)

/ (d
T(t)

H d

(t)
)

 (2) Update the approximate solution: s


 = s


 + a


 d
(t)

 (3) Update the residual: r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 (4) Update A-Conjugacy enforcer: c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction: d
(t+1)

 = r
(t+1)

 + c
(t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 1000

RLR-NR with Truncated Newton method (Proposed NTR-LR)

 The numerical problem of Newton-Raphson method for RLR can be solved by

the use of Linear CG method to quadratic form of Newton-Raphson update rule,

 55

     
 

         
2

1
. tttTtTt

tTTt sq sIXVXssλβpyX  (3.25)

All settings of NTR-LR are similar to TR-IRLS algorithm, except setting for the

regularization parameter. TR-IRLS sets a fixed value of regularization parameter, while

NTR-LR sets an optimal value of regularization parameter with Grid Search method

and 5-Fold SCV.

Algorithm 3.2 The Proposed NTR-LR

Algorithm 1. RLR-NR (Outer loop)

Input : X, y, 

Initialize : 


, L
(1)

Output : 


Do While
   

  11

1







t

tt

L

LL

 For t = 1 to max RLR-NR iterations

 (1) p
(t)

 = 1./(1+exp(y.x
(t)

))

 (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute g
(t)

 dan H
(t)

 of RLR

 (4) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

 (5) Compute 


by NR 




s

(t)

 (6) Compute L
(t+1)

 End For

where 1 =0.01, max RLR- NR iterations = 30

Algorithm 2. Linear CG (Inner loop)

Input : g
(t)

 and H
(t)

 of RLR-NR

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

Output : s


Do while r
T
r > 2

 For t=1 to max Linear CG iterations

 56

 (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

H d

(t)
)

 (2) Update the approximate solution : s


 = s


 + a


 d
(t)

 (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 (4) Update A-Conjugacy enforcer : c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction : d
(t+1)

 = r
(t+1)

 + c
 (t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 200

3.3 PROPOSED AB-WKLR AND PROPOSED AB-WLR ALGORITM

The development of imbalanced classification algorithms for NTR-KLR and

NTR-LR, i.e. proposed AB-WKLR and proposed AB-WLR respectively, is explained in

this section. In general, both proposed algorithms consist of Weighted version of

general classification algorithms (NTR Weighted KLR and NTR Weighted RLR) and

adapted Modified AdaBoost methods. In relation to the development of imbalanced

classification algorithms, study on the imbalanced problem of general classification

algorithms and the proper use of evaluation metric is reported previously in sub section

3.3.1.

3.3.1 Study on the imbalanced problem and the proper use of evaluation metric

Table 3.1 summarizes the numerical results of NTR-KLR and NTR-LR by

maximizing total accuracy value, in order to study the proper use of g -means metric as

evaluation metric on imbalanced classification problem as compared to total accuracy.

Total accuracy is the most common metric to evaluate the accuracy of classifier. As

displayed in Table 3.1 and Fig. 3.2, total accuracy metric evaluates the performance of

NTR-KLR classifier properly on Australia data set, which is balanced data. It can be

seen that balanced data have almost equal value of sensitivity value and specificity.

Total accuracy metric places the same weight, on the majority and minority classes, as

observed in Fig. 3.2. This result has confirmed the proper use of total accuracy metric

on balanced data, because it is theoretically developed under balanced data assumption.

However, total accuracy metric has value towards to the majority class at the expense

of the minority class on other data sets, which are imbalanced data, as shown in Table

 57

3.1 and Fig. 3.2. It can be seen more clearly in Balance2 (5) and LetterImg26 (9) data

sets.

Table 3.1: Summary of NTR-KLR and NTR-LR

by maximizing total accuracy value with 5-Fold SCV

No.
Name of

Data set

Optimal Parameter Class Accuracy Evaluation Metrics

opt opt
Minority (+)

(Sensitivity)

Majority (-)

(Specificity)

Total

Accuracy
g-means

NTR-KLR

1 Australia Exp(0) Exp(2) 0.8763 0.8748 0.8754 0.8755

2 Parkinson Exp(-6.5) Exp(1) 0.8800 0.9965 0.9436 0.9195

3 Glass7 Exp(-5) Exp(1) 0.8667 0.9946 0.9766 0.9257

4 ImgSegment1 Exp(-3) Exp(0) 0.9879 0.9995 0.9978 0.9937

5 Balance2 Exp(-6) Exp(1) 0.02 1 0.9232 0.0632

6 Car3 Exp(-5) Exp(0) 0.8275 0.9976 0.9907 0.9073

NTR-LR

7 GammaImg Exp(0.5) - 0.5906 0.9000 0.7912 0.7291

8 Shuttle2to7 Exp(-3) - 0.9186 0.9862 0.9717 0.9518

9 LetterImg26 Exp(-3) - 0.6757 0.9951 0.9833 0.8199

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

G-means

Sensitivity

Specificity

Total Accuracy

Figure 3.2: Comparison between g-means and total accuracy metrics on imbalanced

problem

 58

Table 3.1 and Fig. 3.2 show that g-means metric evaluates the accuracy of NTR-

KLR such as total accuracy metric, on balanced data. Moreover, g-means metric

evaluates the accuracy of NTR-KLR and NTR-KLR properly on eight data sets of

imbalanced problem. It is displayed that the g-means metric accommodates minority

and majority classes equally, as it is measured at the geometric mean value between

sensitivity and specificity value. These results have confirmed the proper use of g-means

metric that was suggested by Kubat and Matwin (1997) and has been used also by

several researchers for evaluating the accuracy of classifier on imbalanced problem. As

this thesis focuses on imbalanced problem research, it is considered to use g-means as

the main evaluation metric for classifier performance on imbalanced problem, by

maximizing the g-means value with 5-Fold SCV. The summary of results can be

observed in Table 3.2.

NTR-KLR and NTR-LR by maximizing g-means value with 5-Fold SCV (Table

3.2), have the same parameters and accuracy result, such as by maximizing total

accuracy value with 5-Fold SCV (Table 3.1), with exception to GammaImg data set.

The similarity of parameter and accuracy results in explaining the influence of

parameters to the classification performance of NTR-KLR and NTR-LR either by

maximizing total accuracy or g-means metric will be studied and discussed later in the

sub section 3.3.3.

It is indicated in Table 3.2 and Figure 3.3, that NTR-KLR and NTR-LR tend to

classify everything as negative class which is majority class, such that they have almost

perfect specificity values on classifying imbalanced problems. However, it seems not

easy for both algorithms, which are general classifiers to identify the pattern of minority

class. Therefore, they have poor sensitivity values. These results are similar to that

achieved by Akbani et al. (2004) but under different optimization function.

 59

Table 3.2: Summary of NTR-KLR and NTR-LR

by maximizing g-means value with 5-Fold SCV

No.
Name of

Data set

Optimal Parameter Class Accuracy
g-means

(Sg-means) opt opt
Minority (+)

(Sensitivity)

Majority (-)

(Specificity)

NTR-KLR

1 Parkinson Exp(-6.5) Exp(1) 0.8800 0.9655
0.9195

(0.0716)

2 Glass7 Exp(-5) Exp(1) 0.8667 0.9946
0.9257

(0.0732)

3 ImgSegment1 Exp(-3) Exp(0) 0.9879 0.9995
0.9937

(0.0065)

4 Balance2 Exp(-6) Exp(1) 0.0200 1
0.0632

(0.1414)

5 Car3 Exp(-5) Exp(0) 0.8429 0.9982
0.9073

(0.0509)

NTR-LR

6 GammaImg Exp(-0.5) - 0.5908 0.8999
0.7291

(0.0071)

7 Shuttle2to7 Exp(-3) - 0.9186 0.9862
0.9518

(0.0048)

8 LetterImg26 Exp(-3) - 0.6757 0.9951
0.8199

(0.0115)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Sensitivity

Specificity

Figure 3.3: Performance of sensitivity and specificity on imbalanced problem

 60

It can be observed in this study that the minority class is the important class that

needs to be focused by NTR-KLR and NTR-LR on imbalanced problem research, since

it presents poor sensitivity value. This thesis proposes a modification of NTR-KLR and

NTR-LR algorithm respectively which are designed specifically for imbalanced

classification problem. The proposed algorithms unavoidably sacrifice the specificity

value in improving the sensitivity value. Hence, unlike RE-WKLR classifier (Maalouf et

al., 2011), this research considers to use g-means as the proper metric to evaluate the

accuracy performance of proposed classifiers on imbalanced problem in order to

accommodate sensitivity and specificity value equally. The development of imbalanced

NTR-KLR and NTR-LR algorithm respectively will be started to explain in sub section

3.3.2.

3.3.2 NTR Weighted KLR and NTR Weighted RLR

In order to improve the performance of Boosting NTR-KLR and NTR-LR using

adapted Modified AdaBoost methods respectively, it is required to modify the Negative

Log-Likelihood (NLL) function on the regularized optimization function of KLR and

RLR into Weighted NLL, such that they can directly deal with weight distributions,

which are generated by modified AdaBoost algorithm for solving the imbalanced

problem. King and Zheng (2001) and Maalouf et al. (2011) proposed the use of

weighted loss function for solving the imbalanced classification problem in RLR and

TR-KLR under different scheme.

This research proposes the use of Weighted NLL loss function on the

regularized optimization function of KLR and RLR, hence KLR becomes a Weighted

KLR (WKLR) and RLR becomes a Weighted RLR (WLR). The use of Weighted NLL

on the regularized optimization function of WKLR and RLR, for instance NLL loss

function, resulted in the regularized weighted optimization function of WKLR and

WLR.

The regularized weighted optimization function of WKLR and WLR

The regularized weighted optimization function of WKLR can be written as,

 61

       αKααKywα 21
2

.exp1log TTL


 (3.26)

On WLR, the regularized weighted optimization function can be stated as,

      ββXβywβ
TTL

2
.exp1log(


 (3.27)

where w = weight distribution with dimension n x 1

The gradient and the Hessian of WKLR and WLR are derived by differentiating the

regularized weighted NLL function with respect to  and respectively. Similar to

NTR-KLR and NTR-LR, WKLR and WLR use Truncated Newton method in order to

approximate the Newton direction of WKLR and WLR in using the Newton-Raphson

method.

WKLR and WLR with Truncated Newton method

For WKLR, the linear system of Newton-Raphson update rule can be stated as

       αKpyWKsKKDK 21211 .  

Ttt
 (3.28)

while the linear system of Newton-Raphson update rule for WLR becomes

        βpyWXsIXDX   .TttT (3.29)

where D = diag(v.w); v = p.(1-p)

 W =diag(w)

Solving the linear system of Newton-Raphson update rule of WKLR through the

approach of Linear CG, as the truncated inner method, is equivalent to minimizing the

quadratic form,

 62

     
 

         ttttTt
tTTt sq sKKDKssαKpyWK 21121

2

1
.   (3.30)

Meanwhile, solving the linear system of Newton Raphson Update Rule of WLR

by the approach of Linear CG, as the truncated inner method for WLR, is equivalent to

minimizing the quadratic form,

     
 

         tttTtTt
tTTt sq sIXDXssβpyWX  

2

1
. (3.31)

The use of Truncated Newton method for WKLR resulted in NTR-WKLR, while the

use of Truncated Newton for WLR resulted in NTR-WLR. Because of the similarity to

the NTR-KLR and NTR-LR algorithm, detail algorithm of WKLR and WLR will be

displayed next in the sub section 3.3.3.

3.3.3 NTR-WKLR and NTR-WLR with adapted Modified AdaBoost method

This sub section contains the description of NTR-WKLR, NTR-WLR and The

Adaptations of Modified AdaBoost method. The main adaptations of Modified

AdaBoost method for NTR-KLR and NTR-LR classifier respectively were conducted

by determining the strategies of parameter adjusting on applying the Modified

AdaBoost, based on the parameters influence of NTR-KLR and NTR-LR classifiers

respectively. The setting of parameters is adjusted appropriately during the process of

adapted Modified AdaBoost methods iterations. In relation to this, study on the

influence of parameters to the classification performance of NTR-KLR and NTR-LR

respectively is reported previously.

(i) Study on the influence of parameters to classification performance

This sub section describes the study on influence of parameters to classification

performance of NTR-KLR and NTR-RLR which can be seen as representation of KLR

and RLR classifier, but under Truncated Newton method. This study is important for

 63

determining the strategy of parameter adjusting during the process of adapted Modified

AdaBoost. The classification performance of NTR-KLR and NTR-LR are measured by

using g-means and total accuracy metric.

The influence of parameters () to classification performance of NTR-KLR

This research considers using NTR-KLR with RBF kernel. Parameters of NTR-KLR

include the regularization parameter () and the RBF kernel parameter, Gaussian width

(). Fig. 3.4 –3.8 shows that the variation of  leads to larger variation of classification

performance than variation of . This means that the kernel parameter,  is regarded

more important than the regularization parameter, on changing the classification

performance of NTR-KLR, by total accuracy and g-means metric.

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

e
s
ti
n
g
 D

a
ta

(a) g-means

-8
-6

-4
-2

0
2

-10

-5

0

5
0.75

0.8

0.85

0.9

0.95

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0.75

0.8

0.85

0.9

0.95

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

e
s
ti
n
g
 D

a
ta

(b) total accuracy

Figure 3.4: The influence of parameter using Parkinson data set

 64

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

e
s
ti
n
g
 D

a
ta

(a) g-means

-8
-6

-4
-2

0
2

-10

-5

0

5
0.85

0.9

0.95

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

e
s
ti
n
g
 D

a
ta

(b) total accuracy

Figure 3.5: The influence of parameter using Glass7 data set

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

e
s
ti
n
g
 D

a
ta

(a) g-means

-8
-6

-4
-2

0
2

-10

-5

0

5
0.85

0.9

0.95

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0.85

0.9

0.95

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

e
s
ti
n
g
 D

a
ta

(b) total accuracy

Figure 3.6: The influence of parameter using ImgSegment1 data set

 65

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.02

0.04

0.06

0.08

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

e
s
ti
n
g
 D

a
ta

(a) g-means

-8
-6

-4
-2

0
2

-10

-5

0

5
0.92

0.94

0.96

0.98

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0.75

0.8

0.85

0.9

0.95

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

e
s
ti
n
g
 D

a
ta

(b) total accuracy

Figure 3.7: The influence of parameter using Balance2 data set

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0

0.2

0.4

0.6

0.8

1

Sigma (ln(exp))Lambda (ln(exp))

g
-m

e
a
n
s
 o

f
T

e
s
ti
n
g
 D

a
ta

(a) g-means

-8
-6

-4
-2

0
2

-10

-5

0

5
0.95

0.96

0.97

0.98

0.99

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

ra
in

in
g
 D

a
ta

-8
-6

-4
-2

0
2

-10

-5

0

5
0.95

0.96

0.97

0.98

0.99

1

Sigma (ln(exp))Lambda (ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y
 o

f
T

e
s
ti
n
g
 D

a
ta

(b) total accuracy

Figure 3.8: The influence of parameter using Car3 data set

 66

It can be seen also in Fig. 3.4 – 3.8 that the classification performance on training

data (left side) decreases with higher  when using a roughly suitable Meanwhile the

classification performance on testing data (right side) decreases after reaching a high

value region. Unlike on training data, the classification performance on testing data

increases until reaching a high value region. This fact supports the conjecture of over

fitting with small value of The value of  has similar behaviour to  that the

classification performance of NTR-KLR decreases with higher  Zhu and Hastie

(2005) has realized this for Import Vector Machine (IVM) scheme which is

representation of KLR with import vector. However, the variation of  leads to smaller

variation of classification performance than variation of Hence,is regarded less

important than on changing the classification performance of NTR-KLR.

Generally, it is demonstrated that g-means values has similar behaviour to total

accuracy values in explaining the influence of parameters to classification

performance of NTR-KLR, with exception to testing data of Balance2 data set.

The influence of parameter (to classification performance of NTR-LR

 It is shown in Fig. 3.9 – 3.11 that the classification performance of NTR-LR

decreases with higher regularization parameter ().

-8 -6 -4 -2 0 2 4 6 8
0.68

0.69

0.7

0.71

0.72

0.73

0.74

Lambda (Ln(exp))

g
-m

e
a
n
s

Training Data

Testing Data

-8 -6 -4 -2 0 2 4 6 8
0.778

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

Lambda (Ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y

Training Data

Testing Data

 (a) g-means (b) total accuracy

Figure 3.9: The influence of parameter using GammaImg data set

 67

-8 -6 -4 -2 0 2 4 6 8
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Lambda (Ln(exp))

g
-m

e
a
n
s

Training Data

Testing Data

-8 -6 -4 -2 0 2 4 6 8
0.92

0.93

0.94

0.95

0.96

0.97

0.98

Lambda (Ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y

Training Data

Testing Data

 (a) g-means (b) total accuracy

Figure 3.10: The influence of parameter using Shuttle2to7 data set

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lambda (Ln(exp))

g
-m

e
a
n
s

Training Data

Testing Data

-8 -6 -4 -2 0 2 4 6 8
0.96

0.965

0.97

0.975

0.98

0.985

0.99

Lambda (Ln(exp))

T
o
ta

l
A

c
c
u
ra

c
y

Training Data

Testing Data

 (a) g-means (b) total accuracy

Figure 3.11: The influence of parameter using LetterImg26 data set

The classification performance of NTR-LR changes slightly along low value

ofigher value of then leads to larger variation of classification performance.

As on NTR-KLR, it is displayed that g-means values have similar behaviour to the

total accuracy values, as shown on Fig. 3.9 – 3.11.



The analysis of parameters influence to classification performance of NTR-KLR

and NTR-LR by total accuracy metric is used to employ the proper tuning of

parameters on applying the algorithms of adapted Modified Adaboost for NTR-KLR

and NTR-LR. Meanwhile, the similarity influence in this study has explained the

 68

similarity of parameter and accuracy results by maximizing g-means and total accuracy

metric in determining the optimal performance of NTR-KLR and NTR-LR classifier, as

has been shown in sub section 3.3.1. In addition, g-means value provides geometric

mean of sensitivity and specificity value such that it can evaluate properly on

imbalanced classification problem rather than total accuracy, as has been confirmed in

sub section 3.3.1.

(ii) Adaptations of Modified AdaBoost method

The adaptations of Modified AdaBoost algorithm for NTR-KLR and NTR-LR

which are highly accurate (strong) classifiers respectively were conducted in order to

benefit from Boosting mechanism. The adaptations can be explained briefly as follows:

(i) The adaptations adjust the parameter values of NTR-KLR and NTR-LR

respectively, during the process of AdaBoost iterations to achieve a set of

moderately accurate classifiers in order to benefit from Boosting NTR-KLR

and NTR-LR respectively. These adaptations are similar to that strategy

used in AdaBoostSVM (Li et al., 2008).

(ii) It uses the new weighting rule of AdaBoost algorithm, instead of the classic

algorithm, in order to prevent the over-fitting problem. The new weighting

rule which was proposed by Wang and Li (2007) is specifically designed for

maximum margin classifiers such as SVM, KLR and RLR.

(iii) The adaptations use criteria „perfect‟ (weighted error by total accuracy is

zero), beside criteria no better than random (weighted error by total

accuracy is 0.5 or more) or a fixed number of iterations, in adjusting the

parameter values of NTR-KLR and NTR-LR during AdaBoost iterations.

These criteria have been proposed by Meir et al. (2003), for AdaBoost

algorithm with fixed parameter value.

The adaptation of Modified AdaBoost for NTR-KLR classifier resulted in adapted

Modified AdaBoost I, while the adaptation for NTR-KLR classifier resulted in adapted

Modified AdaBoost I. The algorithms of adapted Modified AdaBoost are applied to

NTR-WKLR and NTR-WLR respectively.

 69

(iii) The implementations of adapted Modified AdaBoost to NTR-WKLR and

NTR-WLR

The implementations of adapted Modified AdaBoost to NTR-WKLR and NTR-

WLR component classifier respectively resulted in proposed AB-WKLR and proposed

AB-WLR. Both proposed algorithms mainly consist of two loops, adapted Modified

AdaBoost and weighted component classifier (NTR-WKLR or NTR-WLR). First main

loop represents the outer loop which is adapted Modified AdaBoost iterations to

generate weight adaptively and to ensemble a set of weighted component classifier.

Starting from large parameter value, corresponding to component classifier with weak

learning ability (have low total accuracy), it is trained as long possible to meet criteria

“perfect accuracy” or „‟less than half accuracy” or maximum iterations. Otherwise, we

decrease the parameter value to increase the learning ability of component classifier.

The process of adapted Modified AdaBoost continues until given minimal value of

parameter. Second main loop represents the inner loop for AB-WKLR and AB-WLR

which is weighted component classifier (NTR-WKLR or NTR-WLR) iterations that

find the Newton direction approximation of WKLR and WLR respectively by using

Truncated Newton approach. The weighted component classifier iterations are

terminated when Linear CG iterations are terminated and the relative difference of

optimization function is no larger than a specified threshold, . Linear CG iterations are

terminated, when the square residual is no greater than a specified threshold, 

Proposed AB-WKLR: The use of adapted Modified AdaBoost I to NTR-WKLR

The strategy of parameter adjusting for AB-WKLR is designed in the following.

Minimal value of RBF kernel parameter, min, is determined as optimal parameter value

of It is obtained by doing selection model of NTR-KLR. The selection model is

conducted with grid search method and 5-Fold SCV, by maximizing total accuracy

value. Therefore min = opt of NTR-KLR = exp(c2).

 The initial maximal value of RBF kernel parameter, max, are defined by

formula, max = exp(c2 + du). Upper deviation parameter, du, is determined as number of

 70

 adjusting which is empirically set as a value within 0.5 – 6. We choose du that gives

best generalization of AB-WKLR. The max is decreased with step =-0.5, by

transforming the value of with previous log natural. The max is decreased slightly to

prevent the new NTR-KLR from being too strong for the current weight distribution.

The maximum number iterations for AB-WKLR is set by calculating with formula, 30 x

n, where nis defined as number of  which is set asx du) + 1.

 As the classification performance of NTR-KLR is mainly affected by RBF

kernel parameter, , a fixed value of regularization parameter () can be employed. In

order to achieve optimal generalization performance of AB-WKLR,  is empirically set

as an optimal value within exp(-3) to exp(-6) for all experiments. The optimal  for

AB-WKLR is conducted with grid search method and 5-Fold SCV by maximizing g-

means value.

Algorithm 3.3 The Proposed AB-WKLR

Algorithm 1. Adapted Modified AdaBoost I (Outer loop)

Input : x, y, 


Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n

 The initial max; the minimal min; the step of step

Output : the class prediction,    







 

T

t

ttpred hsigny xx 

Do while ( > min)

 For t = 1 to max iteration for each 

(1) Get the logit model, ft, and then get the estimation of classification rule, ht, by

performing NTR-WKLR (NTR-KLR with w).

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x

(3) If t > 0.5 or t =0 , decrease value bystep and go back to (1)

(4) Set the weight of ht: 








 


t

t
t






1
ln

2

1

(5) For i = 1 to n

 Update the weight of training data:

 71

  
            

          








0 ,expexp1exp

0 ,exp1exp1exp
1

itiititt

itiititt

t

t
t

fyfy

fyfy
x

Z

iw
iw

xx

xx





 Zt is normalization factor

 End For

 End For

where max iterations for each 

Algorithm 2. NTR-WKLR (Inner loop)

Algorithm 2a. Weighted KLR-NR (Outer iterations)

Input: K1
(t)

,y,  w
(t)

, 
(t)



Initialize:


, L
(1)

,

Output : 


Do while
   

  11

1







t

tt

L

LL

 For t = 1 to max WKLR-NR iterations

 (1) Compute p
(t)

 = 1./(1+exp(y.K1
(t)

))

 (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute g
(t)

 dan H
(t)

 of WKLR

 (4) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

 (5) Compute 


by NR 




s

(t)

 (6) Compute L
(t+1)

 End For

where 1 =2.5, max Weighted KLR- NR iterations = 30

Algorithm 2b. Linear CG (Inner Iterations)

Input : g
(t)

 and H
(t)

 of WKLR

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

Output : s


Do while r
T
r > 2

 For t=1 to max Linear CG iterations

 (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

H d

(t)
)

 (2) Update the approximate solution : s


 = s


 + a


 d
(t)

 (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 72

 (4) Update A-Conjugacy enforcer : c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction : d
(t+1)

 = r
(t+1)

 + c
 (t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 1000

Proposed AB-WLR: The use of adapted Modified AdaBoost II to NTR-WLR

Design of the parameter adjusting for AB-WLR is explained in the following.

Similar to AB-WLR, selection model of NTR-LR with Grid Search method is

conducted by maximizing total accuracy value with 5-Fold SCV, such that it gets min =

opt of NTR-LR = exp(c1).

 The initial  is determined by formula, max = exp(c1 + du), where du is defined as

number of  adjusting. In order to obtain best generalization for AB-WLR, du is

empirically set as a value within 20 – 26. By transforming the value of  with previous

log natural, the max is decreased with step =-1. Different from AB-WKLR, the max is

decreased larger, because the variation of  leads to smaller variation of classification

performance. Similar to AB-WKLR, the maximum number of iterations for AB-WLR is

set by calculated with formula, 30 x n, where nis determined as number of which is

set as x du) + 1. Evaluation of the effectiveness of AB-WLR classifier is performed

by maximizing g-means value with 5-Fold SCV.

Algorithm 3.4 The Proposed AB-WLR

Algorithm 1. Adapted Modified AdaBoost II (Outer loop)

Input : x, y, 
(t)

Initialize: The weight of training data wt(i), where w1(i)= 1/n; i = 1,2,..n

 The initial max; the minimal min; the step of step

Output : the class prediction,    







 

T

t

ttpred hsigny xx 

Do while ( > min)

 For t = 1 to max iteration for each 

 73

(1) Get the logit model, ft, and then get the estimation of classification rule, ht, by

performing NTR-WLR (NTR-LR with w).

(2) Calculate the weighted error of ht:    



n

i

ttt hyiw
1

i , x

(3) If t > 0.5 or t =0, decrease value bystep and go back to (1)

(4) Set the weight of ht: 








 


t

t
t






1
ln

2

1

(5) For i = 1 to n

 Update the weight of training data:

  
            

          








0 ,expexp1exp

0 ,exp1exp1exp
1

itiititt

itiititt

t

t
t

fyfy

fyfy
x

Z

iw
iw

xx

xx





 Zt is normalization factor

 End For

 End For

where max iterations for each 

Algorithm 2. NTR-WLR (Inner loop)

Algorithm 2a. Weighted RLR-NR (Outer iterations)

Input: x, y, 
(t)
 w

(t)

Initialize:


, L
(1)

,

Output : 


Do while
   

  11

1







t

tt

L

LL

 For t = 1 to max WLR-NR iterations

 (1) Compute p
(t)

 = 1./(1+exp(y.X
(t)

))

 (2) Compute variance : V
(t)

 = diag(p
(t)

.(1-p
(t)

))

 (3) Compute NR update rule solution : H
(t)

 s
(t)

 = -g
(t)

 (5) Compute 


by NR 




s

(t)

 (6) Compute L
(t+1)

 End For

where 1 =0.01, max Weighted RLR- NR iterations = 30

 74

Algorithm 2b. Linear CG (Inner Iterations)

Input : g
(t)

 and H
(t)

 of WLR

Initialize: s


, r
(1)

=-g, d
(1)

= r
(1)

Output : s


Do while r
T
r > 2

 For t=1 to max Linear CG iterations

 (1) Compute the optimal step length : a


 = r
 T (t)

 r
(t)

/ (d
T(t)

H d

(t)
)

 (2) Update the approximate solution : s


 = s


 + a


 d
(t)

 (3) Update the residual : r
(t+1)

 = r
(t)

 – a
(t)

 H d
(t)

 (4) Update A-Conjugacy enforcer : c
(t)

 = r
T(t+1)

r

(t+1)
 / r

T (t)
r

(t)

 (5) Update the search direction : d
(t+1)

 = r
(t+1)

 + c
 (t)

 d
(t)

 End For

where 2 =0.005, max Linear CG iterations = 200

3.4 RESEARCH METHODOLOGY

This section contains the description of Research Procedure and Design of

Numerical Experiment.

3.4.1 RESEARCH PROCEDURES

This sub section describes procedures as shown in Fig. 3.12 which are required to

achieve the research objective of the thesis as follows:

(i) Developing the NTR-KLR algorithm as the Newton version of TR-KLR

algorithm, and NTR-LR algorithm, as the Newton version of TR-IRLS

algorithm (it can be seen also as non-Kernel version of NTR-KLR algorithm)

(Section 3.2). This step includes;

a. Defining the regularized Negative Log-Likelihood (NLL) function of KLR

and RLR respectively by assuming)1,1(y instead of)1,0(y . Then,

obtain the gradient and Hessian matrix, by differentiating the regularized

NLL function with respect to and respectively.

 75

b. Determining the linear system of Newton-Raphson update rule for KLR and

RLR.

c. Apply Linear CG method to quadratic form of Newton-Raphson update

rule, in order to find iteratively the approximation of Newton direction for

KLR-NR and RLR-NR respectively.

d. Find, iteratively, the MLE estimate of for KLR and the MLE estimate of

for RLR, by using Newton-Raphson method.

Detail algorithm of NTR-KLR and NTR-LR respectively has been explained in sub

section 3.2.2.

(ii) Develop the AB-WKLR algorithm, as the imbalanced NTR-KLR algorithm and

AB-WLR algorithm, as the imbalanced NTR-LR algorithm (Section 3.3).

(a) Developing NTR-Weighted KLR (NTR-WKLR) and NTR-Weighted RLR

(NTR-WLR) such that can directly deal with weight distributions which are

generated by adaptation of modified AdaBoost algorithms respectively.

(1) Modifying the NLL loss function on regularized optimization function of

KLR and RLR respectively as the Weighted NLL loss function. Hence, KLR

model becomes Weighted KLR (WKLR) model and RLR becomes

Weighted RLR (WLR). The regularized function of WKLR and WLR

respectively is termed as Regularized Weighted NLL function.

(2) By using similar steps as on NTR-KLR and NTR-LR algorithm above,

estimate WKLR and WLR model respectively using Truncated Newton

method.

Detail algorithm of NTR-WKLR and NTR-WLR are included in algorithm of

AB-WKLR and AB-WLR respectively in sub section 3.3.3 (iii).

(b) Developing the adaptations of Modified AdaBoost algorithm for NTR-KLR and

NTR-LR which are highly accurate (strong) classifier respectively in order to

benefit from Boosting mechanism (Sub section 3.3.3 (ii)).

The both adaptations of modified AdaBoost algorithm focus on determining the

process of AdaBoost iterations by taking into account the parameter influence on

classification performance of NTR-KLR and NTR-LR respectively.

 76

Detail strategies of parameter adjusting during the process of adapted Modified

AdaBoost iterations and algorithms of both adaptations are included in

algorithm of AB-WKLR and AB-WLR respectively in sub section 3.3.3 (iii).

(c) Employing the adapted Modified AdaBoost I to NTR-WKLR and applying the

adapted Modified AdaBoost II to NTR-WLR (Sub section 3.3.3 (iii)). This step

includes;

(1) Train NTR-WKLR and NTR-WLR respectively then obtain the weighted

prediction.

(2) Calculate the weighted error of NTR-WKLR and NTR-WLR respectively.

(3) Compute the weight of weighted prediction for NTR-WKLR and NTR-WLR

respectively.

(4) Update the weight of training data for NTR-WKLR and NTR-WLR

respectively.

 Iterate step (1) – (4) by using the strategies of parameter adjusting respectively

until finish, then predict by weighted majority vote.

Detail algorithm of AB-WKLR and AB-WLR respectively has been explained in sub

section 3.3.3 (iii).

 77

Figure 3.12: Research Procedure

Define

the regularized

optimization function:

NLL loss function and

regularization term

Then obtain the gradient

and the Hessian matrix

Determine

the Newton-Raphson

formula

Determine

the quadratic form of

NRUR

Proposed NTR-KLR

NTR-WKLR

Proposed

AB-WKLR

Proposed

AB-WLR

Adapted

Modified

AdaBoost I
Adapted

Modified

AdaBoost II

Use

Weighted NLL

instead of

NLL loss function

Define

The linear system of

WLS problem

Define

The quadratic form

of WLS problem

TR-KLR

and

TR-IRLS

Employ

Linear CG

Determine the

linear system

of NRUR

Proposed NTR-LR NTR-WLR

Employ

Linear CG

 78

3.4.2 DESIGN OF NUMERICAL EXPERIMENTS

This section includes explanation of data preparation and performance

evaluation of several numerical experiments. The numerical experiments were

conducted in order to evaluate the performance of the proposed algorithms. All of the

computations were performed on a 2 GB RAM Computer, by using Matlab 7.

Data Preparation

This thesis uses several benchmark data sets from UCI Machine Learning (Frank

and Asucion, 2010), in order to evaluate the performance of the proposed algorithms.

Nine data sets with varying size, dimension and degrees of class imbalance were used in

this research, as presented in Table 3.3.

Except Australia, Parkinson and GammaImg data sets, most of data sets

originally have more than two classes. This research converted them into imbalanced

two-class data sets by combining some classes with reference to the previous research

(Akbani et al., 2004; Li et al., 2008). The suffix after each name of data sets indicates

the class used as the positive (minority) class. Eight data sets are imbalanced, except

Australia which is the reference base.

The complexity of data depends on the product of sample (n) and number of

attributes (dim) (Komarek, 2004). The complexity of GammaImg, Shuttle2to7, and

LetterImg26 data set are widely higher than remaining data sets, as displayed in Table

3.3. Hence, this thesis categorizes these data sets to be large, while the remains data sets

are small-to-medium. This categorization was decided based on the size of complexity

of data used on the previous researches (Komarek, 2004; Maalouf, 2009).

 79

Table 3.3: General Profiles of Data Sets

No.

Name of

Data set

Attribute

(dim)
Sample

(n)

Minority (+)

Class

Majority (-)

Class Imbalanced

1 Australia

(Credit Risk)

14 690 307 383 1.25 Balanced

2 Parkinson 22 195 48 147 3.06 Imbalanced

3 Glass7

(Forensic)

9 214 29 185 6.38 Imbalanced

4 ImgSegment1

(Image

Segmentation)

19 2310 330 1980 6 Imbalanced

5 Balance2

(Psychology)

4 625 46 576 12.52 Imbalanced

6 Car3 6 1728 69 1659 24.04 Imbalanced

7 GammaImg 10 19020 6688 12332 1.84 Imbalanced

8 Shuttle2to7 8 58000 12414 45586 3.67 Imbalanced

9 LetterImg26

(Letter Image)

16 20000 734 19266 26.25 Imbalanced

In the following, short overviews of the data sets are given.

Australia

This data set contains confidential data with title Australian Credit Approval that

concerns on credit card application. This dataset is a good mix of attributes, i.e.

continuous, nominal with small numbers values and nominal with larger numbers of

values.

Parkinson

This data set contains attributes of particular voice measure to discriminate healthy

people from those with Parkinson disease. A range of biomedical voice measurements

from 31 people, 23 with Parkinson's disease (PD), is composed in this dataset.

Glass7

This data set contains nine attribute in determining whether the glass was a type of

headlamp or not. If it is correctly identified, it can be used as evidence in criminological

investigation. This data set contains, in total, continuously valued.

 80

ImgSegment1

This data set contains 19 continuous attributes with title Image Segmentation Data. The

classification task is to predict whether the pixel was brickface image or not.

Balance2

This data set contains 4 attributes of psychological experimental results in order to

discriminate whether the observation was balanced or not. This data set includes four

numeric attributes.

Car3

This data set, which is named as Car Evaluation Database, contains 6 attribute for

making decision whether the car is good or not. Six categorical attributes are included in

this data set.

GammaImg

This data set contains 10 attributes to discriminate gamma image (signal) from the

image of hadronic showers initiated by cosmics rays in the upper atmosphere

(background). All of the data sets are continuous values.

Shuttle2to7

This data set came from NASA that contains 9 numeric attribute. Further description of

this data set is not available.

LetterImg26

This data set contains 16 attributes. The classification task is to recognize a pixel as

image of capital letter Z or not. All of attributes are numeric values.

All of data sets were randomized previously based on simple random sampling

technique (Van-Hulse et al., 2007) using random number. The data sets then were

normalized to ensure the similarity of numerical range, using formula

jx

jji

ji
s

xx
x


ˆ (3.32)

 81

where i = 1,2,..n; j = 1,2, .. no. of attributes

jxs = standard deviation of attributes

The data sets were pre-processed to guarantee the quality of numerical results, i.e.

accuracy and stability of the proposed classifiers (Han and Kamber, 2006).

Performance evaluation

Several numerical experiments are conducted to evaluate the performance of

proposed methods respectively which can be described as follows (Fig. 3.13):

(i) Proposed NTR-KLR and Proposed NTR-LR

(a) The effectiveness of Truncated Newton method in NTR-KLR and NTR-LR

algorithm was shown respectively in solving the numerical problem of KLR-

NR and RLR-NR respectively.

 It is demonstrated by plotting the training time to convergence versus the

relative difference of optimization function for:

(1) NTR-KLR and KLR-NR on five small-to-medium size data sets.

(2) NTR-LR and RLR-NR on three large size data sets.

Although proposed NTR-KLR and proposed NTR-LR algorithm are general

classifiers, all of the data sets used in determining the effectiveness of Truncated

Newton method, are imbalanced.

(b) Evaluation of the effectiveness performance of proposed NTR-KLR and

proposed NTR-LR classifier was conducted respectively by comparing both

proposed algorithms to RBFSVM based on two criteria i.e. g-means and Area

Under Receiver Operating Curve (AUC) value (Fawcett,2004).

 .

 (c) In relation to further development of NTR-KLR and NTR-LR respectively for

classification of imbalanced data sets, the problem of general classifiers i.e.

NTR-KLR and NTR-LR on classifying the imbalanced data sets was

determined previously. It was evaluated respectively along with the study on

 82

the proper use of g-means metric, as the accuracy metric on imbalanced

classification problem. The study on the problem of NTR-KLR and NTR-LR

on classifying the imbalanced data sets, totally, uses eight imbalanced data

sets. Meanwhile the study on the proper use of g-means metric uses eight

imbalanced data sets and one balanced data set as the reference base i.e.

Australian data set.

(ii) Proposed AB-WKLR and Proposed AB-WLR.

(a) The effectiveness of adapted Modified AdaBoost method in AB-WKLR and

AB-WLR algorithm was shown respectively in solving the imbalanced

problem of NTR-KLR and NTR-LR respectively, as follows

(a.1) Compare AB-WKLR to NTR-KLR on five small-to-medium size data

sets.

 (a.2) Compare AB-WLR to NTR-LR on three large size data sets.

 The comparison was conducted based on criteria: improvement in reducing

error by g-means, standard deviation of g-means values during 5-fold SCV

and statistical significance using Paired t test (Montgomery, 1991).

(b) The effectiveness performance of proposed AB-WKLR and AB-WLR

classifier on imbalanced classification problems was evaluated respectively in

this thesis, by comparing both proposed algorithms to AdaBoostSVM based

on two criteria i.e. g-means and AUC value.

The tradeoff between bias and variance in cross validation depends on the number of

folds (Diamantidis et al., 2000). Hence, this thesis applies a moderate number of folds

(5-Fold SCV) on performing the proposed algorithms.

 83

Figure 3.13: Performance evaluation

Randomize (x, y)

Normalize x

Divide data with k-Fold SCV

Training Data
Testing Data

Implementation of

proposed methods

A. Performance evaluation of general

classifiers i.e. proposed NTR-KLR

and proposed NTR-LR respectively

B. Performance evaluation of

imbalanced classifiers i.e. proposed

AB-WKLR and proposed AB-WLR

respectively

CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

4.1 INTRODUCTION

This chapter presents several numerical results along with the discussion on the

performance evaluation of proposed general classification algorithms (NTR-KLR and

NTR-LR) and proposed imbalanced classification algorithms (AB-WKLR and AB-

WLR).

4.2 PROPOSED NTR-KLR AND NTR-LR: NUMERICAL RESULTS AND

DISCUSSION

Several numerical results along with the discussion on the performance

evaluation of NTR-KLR and NTR-LR algorithm respectively are presented in this

section. In general, this section is divided into three sub sections, i.e. 4.2.1 Accuracy,

stability and numerical convergence of proposed algorithms; 4.2.2 The effectiveness of

Truncated Newton method in proposed algorithms; 4.2.3 Performances comparison of

proposed algorithms to RBFSVM.

4.2.1 Numerical convergence, accuracy, stability and of NTR-KLR and NTR-LR

Table 4.1 displays iterations number and g-means value of NTR-KLR. It can be

observed that the maximum number of iterations by Linear CG (LCG) during 5-Fold

SCV did not reach 1000, which is the maximum number of iterations that is set for

Linear CG, as the inner loop of NTR-KLR algorithm. The maximum number of

iterations by Linear CG during 5-Fold SCV was reached on ImgSegment1 and Car3

 85

data sets which are the most complex data sets among five small-to-medium data sets

on applying NTR-KLR algorithm.

Table 4.1: Iterations number and g-means value of NTR-KLR algorithm

by maximizing g-means value with 5-Fold SCV

Fold
No

Name of

Data Set

No. of Iterations g-means

NR LCG Park Glass7 ImgS1 Blc2 Car3

 1 Parkinson 2 [115,39] 0.9826

 2 Glass7 2 [27,14] 0.8165

1 3 ImgSegment1 2 [468,153] 0.9911

 4 Balance2 1 45 0

 5 Car3 2 [777,134] 0.9593

 1 Parkinson 2 [110,40] 0.8630

 2 Glass7 2 [26,18] 0.9129

2 3 ImgSegment1 2 [557,189] 1

 4 Balance2 1 47 0

 5 Car3 2 [746,141] 0.8452

 1 Parkinson 2 [133,33] 0.9154

 2 Glass7 2 [41,20] 0.9129

3 3 ImgSegment1 2 [596,165] 1

 4 Balance2 1 37 0.3162

 5 Car3 2 [882,137] 0.8851

 1 Parkinson 2 [117,41] 0.8367

 2 Glass7 2 [50,17] 1

4 3 ImgSegment1 2 [626,167] 0.9847

 4 Balance2 1 37 0

 5 Car3 2 [774,137] 0.8864

 1 Parkinson 2 [134,41] 1

 2 Glass7 2 [47,14] 0.9864

5 3 ImgSegment1 2 [577,194] 0.9924

 4 Balance2 1 52 0

 5 Car3 2 [718,128] 0.9608

Average of g-means

(S-gmeans)

0.9195

(0.0716)

0.9257

(0.0732)

0.9937

(0.0065)

0.0632

(0.1414)

0.9073

(0.0509)

The more important is that the maximum number of iterations by iterative

method of Newton-Raphson (NR) during 5-Fold SCV is 2. It did not reach to 30, which

is the maximum iterations set for KLR-NR, as the main loop of NTR-KLR classifier.

Thus, it is convergence guarantee for NTR-KLR algorithm. Table 4.1 also summarizes

the g-means value in applying the NTR-KLR classifier during 5-Fold SCV.

Similar to the implementation of NTR-KLR algorithm, the maximum number of

iterations by RLR-NR and Linear CG in applying the NTR-LR algorithm did not reach

 86

30 and 200, which are the maximum iterations set for RLR-NR and Linear CG (Table

4.2).

Table 4.2: Iteration number and g-means value of NTR-LR algorithm

by maximizing g-means value with 5-Fold SCV

Fold
No

Name of

Data Set

No. of Iterations g-means

NR LCG GmImg Shuttle LetImg

 1 GammaImg 3 [11,11,11] 0.7270

1 2 Shuttle2to7 7
[11,11,11,

9,11,9,9]
 0.9514

 3 LetterImg26 8

[15,15,15,

14,14,14,

14,13]

 0.8185

 1 GammaImg 3 [11,11,11] 0.7339

2 2 Shuttle2to7 7
[11,11,9,9

,11,9,9]
 0.9573

 3 LetterImg26 8

[15,15,14,

14,14,14,

14,13]

 0.8144

 1 GammaImg 3 [11,11,11] 0.7384

3 2 Shuttle2to7 7
[11,10,9,9

,11,9,9]
 0.9508

 3 LetterImg26 8

[16,15,14,

14,13,14,

14,13]

 0.8266

 1 GammaImg 3 [11,11,11] 0.7261

4 2 Shuttle2to7 7
[10,11,9,1

1,11,9,9]
 0.9481

 3 LetterImg26 8

[15,15,14,

14,13,14,

14,13]

 0.8350

 1 GammaImg 3 [11,11,11] 0.7202

5 2 Shuttle2to7 7
[11,11,10,

11,11,9,9]
 0.9515

 3 LetterImg26 8

[15,15,15,

14,14,14,

14,12]

 0.8051

Average of g-means

(S-gmeans)

0.7291

(0.0071)

0.9518

(0.0048)

0.8199

(0.0115)

Those results are similar to that stated by Komarek and Moore (2005) that those

numbers should not be reached. It is indicated on Table 4.2, during 5-Fold SCV, eight

was reached as the maximum number of iterations by RLR-NR, while the maximum

iterations by LCG was 15 which is indicating the consistency with the convergence

theory of CG method (Lewis et al., 2006).

 87

 This research also lists down the g-means values in applying NTR-KLR and

NTR-LR classifier respectively during 5-Fold SCV. They were measured along with

standard deviation of g-means values in evaluating the accuracy of NTR-KLR and

NTR-LR classifier and its stability (Table 4.1 and Table 4.2).

4.2.2 The effectiveness of Truncated Newton in NTR-KLR and NTR-LR

 As aforementioned, the main numerical problem of KLR-NR and RLR-NR is

the huge matrix that needs to be inverted, such that the computation to be slow and

probably the matrix to be singular. In this sub section, several experiments were

conducted in order to evaluate the effectiveness of Truncated Newton in proposed NTR-

KLR and proposed NTR-LR algorithm on solving the numerical problem of KLR-NR

and RLR-NR respectively.

The effectiveness of Truncated Newton method was determined by plotting the

training time versus relative difference of optimization function for both proposed

algorithms then compared to KLR-NR and RLR-NR algorithm respectively. The plots

can be seen in Fig. 4.1 and Fig. 4.2.

Fig. 4.1 and Fig. 4.2 show that the proposed algorithms have performed faster

than KLR-NR and RLR-NR respectively in decreasing the relative difference of

optimization function. Moreover, NTR-KLR can handle the singularity problem as

indicated in Fig. 4.1 (a.2, a.3 and a.4), on which KLR-NR cannot handle. It means that

the use of the Truncated Newton method in NTR-KLR and NTR-LR algorithm

respectively is effective in solving the numerical problem of KLR-NR and RLR-NR i.e.

the singularity and the training time problem. Therefore, NTR-KLR outperforms KLR-

NR on small-to-medium size data sets when the singularity and the training time

problem exists, while NTR-LR has performed better than RLR in handling the training

time problem on large size data sets. These results can be seen as further explanation to

the effectiveness of Truncated Newton method in TR-KLR (Maalouf et al, 2010) and

TR-IRLS (Komarek and Moore, 2005) algorithm respectively, because of the

equivalence of iterative method used by these algorithms.

 88

NTR-KLR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

2
.5

x
1
0y

)

NTR-KLR

KLR-NR

(a.1) Parkinson

0.2 0.25 0.3 0.35 0.4
-20

-15

-10

-5

0

5

10

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

2
.5

x
1
0y

)

NTR-KLR

 (a.2) Glass7 (a.3) ImgSegment1

1 2 3 4 5 6 7
-20

-15

-10

-5

0

5

10

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

2
.5

x
1
0y

)

NTR-KLR

 (a.4) Balance2 (a.5) Car3

Figure 4.1: Comparison of algorithm performance between NTR-KLR and KLR-NR

20 40 60 80 100 120 140 160 180 200 220 -20

-15

-10

-5

0

5

10

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.
 F

u
n
c
.

V
a
lu

e
 (

2
.5

x
1
0

(2
.5

x
1
0

y)

 NTR-KLR

0 50 100 150 200 250 300 350 -20

-15

-10

-5

0

5

10

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.
 F

u
n
c
.

V
a
lu

e
 (

2
.5

x
1
0

(2
.5

x
1
0

y)

 NTR-KLR
KLR-NR

 89

NTR-LR

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
-30

-25

-20

-15

-10

-5

0

5

10

15

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

1
0y

)

NTR-LR

RLR-NR

3 4 5 6 7 8 9
-30

-25

-20

-15

-10

-5

0

5

10

15

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

1
0y

)

NTR-LR

RLR-NR

 (b.1) GammaImg (b.2) Shuttle2to7

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
-30

-25

-20

-15

-10

-5

0

5

10

15

Training time (second)

D
if
fe

re
n
c
e
 t

o
 O

p
t.

 F
u
n
c
.

V
a
lu

e
 (

1
0y

)

NTR-LR

RLR-NR

 (b.3) LetterImg26

Figure 4.2: Comparison of algorithm performance between NTR-LR and RLR-NR

4.2.3 Performances Comparison of proposed NTR-KLR and proposed NTR-LR

to RBFSVM

 Furthermore, the summary of performance comparison between proposed

classifiers with their related work (RBFSVM) is given in Table 4.3. The performances

comparison was conducted based on criteria: g-means value and Area Under Receiver

Operating Curve (AUC) (Fawcett, 2004).

 90

Table 4.3: Summary of comparison: proposed NTR-KLR vs RBFSVM and NTR-LR vs

RBFSVM

Data Set

g-means AUC

Proposed

NTR-KLR

RBFSVM

(Li et al., 2008)

Proposed

NTR-KLR

RBFSVM

(Li et al., 2008)

Glass7 0.9257* 0.867 0.9723* 0.943

ImgSegment1 0.9937 0.995* 0.9999* 0.998

Car3 0.9073* 0 1* 0.631

Proposed

NTR-LR

SVM

(Li et al., 2008)

Proposed

NTR-LR

SVM

(Li et al., 2008)

LetterImg26 0.8199* 0.818 0.990439* 0.933

It is found that NTR-KLR and RBFSVM have comparable value of g-means and

AUC on Glass7 and ImgSegment1 data set. Hence, although NTR-KLR performs much

better than RBFSVSVM on classifying Car3 data set, both classifiers have comparable

performance in general.

Meanwhile, NTR-LR and RBFSVM have comparable performance on

LetterImg26 data set. In addition, NTR-LR has simple solution with the use of

unconstrained optimization problem and without the use of Kernel function.

4.3 PROPOSED AB-WKLR and AB-WLR: NUMERICAL RESULTS and

DISCUSSION

This section presents and discusses several numerical results on the performance

evaluation of AB-WKLR and AB-WLR classifier on imbalanced data sets with varying

degrees of imbalance. Three sub sections are included in this section: 4.3.1 Accuracy,

stability and numerical convergence of proposed algorithms; 4.3.2 The effectiveness of

adapted Modified AdaBoost methods in proposed algorithms; 4.3.3 Performances

comparison of proposed algorithms to AdaBoostSVM.

4.3.1 Accuracy, stability and numerical convergence of AB-WKLR and AB-WLR

Table 4.4 displays the summary of AB-WKLR performance respectively on five

imbalanced data sets. In detail, it contains  adjusting strategies, optimal value of ,

accuracy values (sensitivity, specificity, g-means) and stability indicator (standard

 91

deviation of g-means, Sg-means) with 5-Fold SCV. It can be observed in Table 4.4 that

AB-WKLR classifier demonstrates best generalization performance on ImgSegment1

data set. It performs best accuracy performance (highest g-means value) and best

stability performance (lowest Sg-means).

Meanwhile, the summary of AB-WLR performances on three imbalanced data

sets is displayed in Table 4.5. It consists of  adjusting strategies, accuracy values

(sensitivity, specificity, g-means) and stability indicator (standard deviation of g-means,

Sg-means) with 5-Fold SCV. AB-WLR classifier performs best accuracy performance on

LetterImg26 data set, while best stability performance of AB-WLR classifier was

shown on Shuttle2to7 data set as indicated in Table 4.5.

It can be observed also in Table 4.4, AB-WKLR classifier has higher sensitivity

value than specificity value on Balance2 and Car3 data set, while on other three data

sets, AB-WKLR classifier performs higher on specificity values. On the other hand,

AB-WLR classifier has higher sensitivity value than specificity value on GammaImg

and LetterImg26 data set, while AB-WKLR classifier performs higher specificity value

on Shuttle2to7 data set, as indicated in Table 4.5. Hence, g-means is the proper

evaluation metric in accommodating the non-standard and imbalanced situations like

these.

 92

Table 4.4: Summary of AB-WKLR performance

by maximizing g-means value with 5-Fold SCV

No.
Name of

Data set

Optimal

Parameter
Class Accuracy

g-means

(Sg-means)
opt

Minority (+)

Sensitivity

Majority (-)

Specificity

1 Parkinson

 min =exp(1) Exp(-5.5) 0.9246 0.94 0.9320

 max =exp(1.5) (0.0433)

 du = 0.5; step = -0.5

2 Glass7

 min =exp(1) Exp(-6) 0.9622 1 0.9808

 max =exp(5.5) (0.0157)

 du = 4.5; step = -0.5

3 ImgSegment1

 min =exp(0) Exp(-3) 0.9980 1 0.9990

 max =exp(1) (0.0006)

 du = 1; step = -0.5

4 Balance2

 min =exp(1) Exp(-3.5) 0.9045 0.8356 0.8655

 max =exp(7) (0.0752)

 du =6; step = -0.5

5 Car3

 min =exp(0) Exp(-3) 0.9940 0.9714 0.9822

 max =exp(6) (0.0323)

 du = 6; step = -0.5

Table 4.5: Summary of AB-WLR performance

by maximizing g-means value with 5-Fold SCV

No.
Name of

Data set

Class Accuracy
g-means

(Sg-means)
Minority (+)

Sensitivity

Majority (-)

Specificity

1 GammaImg

 min =exp(-0.5) 0.8123 0.7087 0.7587

 max =exp(21.5) (0.0061)

 du = 22; step = -1

2 Shuttle2to7

 min =exp(-3) 0.9665 0.9799 0.9732

 max =exp(22) (0.0025)

 du = 25; step = -1

3 LetterImg26

 min =exp(-3)

 max =exp(17) 0.9417 0.9414 0.9415

 du = 20;step = -1 (0.0093)

 93

Detail g-means values during 5-Fold SCV along with Sg-means of AB-WKLR are

summarized in Table 4.6. This table also presents the number of  which is set and the

number of iterations which was reached by AB-WKLR to converge.

Table 4.6: Number of , number of iterations and g-means value of AB-WKLR

classifier by maximizing g-means value with 5-Fold SCV

Fold No. n

Number

of

iterations

g-means

Park Glass7 ImgS1 Blc2 Car3

1

1 Parkinson 2 2 0.9649

2 Glass7 10 152 1

3 ImgSegment1 3 3 0.9987

4 Balance2 13 172 0.9278

5 Car3 13 165 0.9955

2

1 Parkinson 2 2 0.8808

2 Glass7 10 140 0.9726

3 ImgSegment1 3 3 0.9987

4 Balance2 13 186 0.7472

5 Car3 13 193 0.9955

3

1 Parkinson 2 2 0.8983

2 Glass7 10 129 0.9864

3 ImgSegment1 3 5 1

4 Balance2 13 165 0.9151

5 Car3 13 206 0.9244

4

1 Parkinson 2 2 0.9322

2 Glass7 10 112 0.9586

3 ImgSegment1 3 5 1

4 Balance2 13 151 0.9022

5 Car3 13 147 0.9985

5

1 Parkinson 2 3 0.9837

2 Glass7 10 132 0.9864

3 ImgSegment1 3 4 1

4 Balance2 13 158 0.8351

5 Car3 13 145 0.9970

Average of g-means

(Sg-means)

0.9320

(0.0433)

0.9808

(0.0157)

0.9990

(0.0006)

0. 8655

(0.0752)

0.9822

(0.0323)

As explained in Chapter 3, the maximum number of iterations for AB-WKLR is

set to 30 x n. It can be observed in Table 4.6 that this number has never been reached

by AB-WKLR. The maximum number of iterations was reached by AB-WKLR during

5-Fold SCV with 206 iterations. It was reached on Car3 data set. It means that AB-

WKLR classifier takes 206 iterations to converge therefore it consists of 206 NTR-

WKLR component classifiers on final iteration.

 94

Table 4.7 provides detail g-means values during 5-Fold SCV along with Sg-means

of AB-WLR classifier. The number of  which is set and the number of iterations which

was required by AB-WLR to converge are displayed also in Table 4.7.

Table 4.7: Number of , number of iteration and g-means value of AB-WLR classifier

by maximizing g-means value with 5-Fold SCV

Fold No.
Name of

Data Set
n

No. of

Iterations

g-means

GmImg Shuttle LetImg

 1 GammaImg 23 151 0.7506

1 2 Shuttle2to7 26 289 0.9734

 3 LetterImg26 21 253 0.9557

 1 GammaImg 23 147 0.7673

2 2 Shuttle2to7 26 289 0.9759

 3 LetterImg26 21 284 0.9326

 1 GammaImg 23 145 0.7578

3 2 Shuttle2to7 26 253 0.9745

 3 LetterImg26 21 250 0.9420

 1 GammaImg 23 194 0.7569

4 2 Shuttle2to7 26 224 0.9691

 3 LetterImg26 21 238 0.9433

 1 GammaImg 23 213 0.7609

5 2 Shuttle2to7 26 122 0.9731

 3 LetterImg26 21 256 0.9337

Average of g-means

(S-gmeans)

0.7587

(0.0061)

0.9732

(0.0025)

0.9415

(0.0093)

It can be observed in Table 4.7 that the maximum number of iterations for AB-

WLR which is set to 30 x nhasnever been reached by AB-WLR. The maximum

number of iterations was reached by AB-WLR during 5-Fold SCV with 289 iterations.

It was reached on Shuttle2to7 data set. It means that, AB-WLR classifier contains 289

NTR-WLR component classifiers on final iteration.

Fig. 4.3 – Fig 4.7 show the error curves during AB-WKLR iterations, while the

curves of error during AB-WLR iterations are displayed in Fig. 4.8 – Fig 4.10. In order

to give better idea on the proper use of g-means metric, error curves by g-means and

error curves by total accuracy are displayed separately.

 95

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of NTR-WKLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of NTR-WKLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy

Figure 4.3: Error curve for AB-WKLR on first fold of Parkinson data set

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WKLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of NTR-WKLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy

Figure 4.4: Error curve for AB-WKLR on first fold of Glass7 data set

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.005

0.01

0.015

0.02

0.025

Number of NTR-WKLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

1

2

3

4

5

6

7
x 10

-3

Number of NTR-WKLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy

Figure 4.5: Error curve for AB-WKLR on first fold of ImgSegment1 data set

 96

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WKLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 20 40 60 80 100 120 140 160 180

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of NTR-WKLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy



Figure 4.6: Error curve for AB-WKLR on first fold of Balance2 data set




0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WKLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 20 40 60 80 100 120 140 160 180

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of NTR-WKLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy



Figure 4.7: Error curve for AB-WKLR on first fold of Car3 data set

0 20 40 60 80 100 120 140 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 20 40 60 80 100 120 140 160

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Number of NTR-WLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy



Figure 4.8: Error curve for AB-WLR on first fold of GammaImg data set

 97

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 50 100 150 200 250 300
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of NTR-WLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy



Figure 4.9: Error curve for AB-WLR on first fold of Shuttle2to7 data set

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of NTR-WLR component classifier

E
g
m

 =
 1

 -
 g

m
e
a
n
s

Training Error

Testing Error

0 50 100 150 200 250 300
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of NTR-WLR component classifier

E
ta

 =
 1

 -
 t

o
t.

 a
c
c
u
ra

c
y

Training Error

Testing Error

 (a) Error by g-means (b) Error by total accuracy



Figure 4.10: Error curve for AB-WLR on first fold of LetterImg26 data set

It can be seen in Fig. 4.3 – Fig. 4.10 that training error by g-means metric

decreases rapidly as NTR-WKLR or NTR-WLR component classifier was added. It

means that training error by g-means metric drops fast to converge until final iteration

of AB-WKLR and AB-WLR. This indicates the consistency with basic theoretical

property of AdaBoost algorithm which uses error by total accuracy metric. Testing

error follows the behaviour of training error similarly.

4.3.2 The effectiveness of adapted Modified AdaBoost in AB-WKLR and AB-

WLR

The comparison results between AB-WKLR and NTR-KLR are summarized in

Table 4.8 and Fig. 4.11. It can be seen that the accuracy and stability of AB-WKLR are

 98

better than NTR-KLR on all five data sets, since AB-WKLR has better g-means and

standard deviations of g-means (Sg-means).

Table 4.8: Summary of comparison results between AB-WKLR and NTR-KLR

by maximizing g-means value with 5-Fold SCV

No.
Name of

Data set

Sensitivity Specificity
g-means

(Sg-means)

NTR-

KLR
AB-WKLR

NTR-

KLR

AB-

WKLR

NTR-

KLR
AB-WKLR

1 Parkinson 0.8800

0.9246

0.9655 0.94

0.9195

(0.0716)
0.9320

(0.0433)

2 Glass7 0.8667

0.9622

0.9946 1

0.9257

(0.0732)
0.9808

(0.0157)

3 ImgSegment1 0.9879

0.9990

0.9995 1

0.9937

(0.0065)
0.9990

(0.0006)

4 Balance2 0.02

0.9045

1 0.8356

0.0632

(0.1414)
0. 8655

(0.0752)

5 Car3 0.8275 0.9940 0.9976 0.9714

0.9073

(0.0509)
0.9822

(0.0323)

Figure 4.11: Comparison of g-means and Sg-means between AB-WKLR and NTR-KLR

Table 4.9 and Fig. 4.12 provide the summary of comparison results between

AB-WLR and NTR-LR. It can be observed that AB-WLR produces better g-means and

Parkinson Glass7 ImgSegment1 Balance2 Car3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g
-m

e
a
n

s

NTR-KLR

AB-WKLR

S=0.0716

S=0.0433

S=0.0732

S=0.0157

S=0.0065

S=0.0006

S=0.0752

S=0.1414

S=0.0323

S=0.0509

 99

standard deviations of g-means (Sg-means), such that the accuracy and stability of AB-

WLR is better than NTR-LR on all of three data sets.

Table 4.9: Summary of comparison results between AB-WLR and NTR-LR

by maximizing g-means value with 5-Fold SCV

No.
Name of

Data set

Sensitivity Specificity
g-means

(Sg-means)

NTR-LR AB-WLR NTR-LR AB-WLR NTR-LR AB-WLR

1 GammaImg 0.5908 0.8123 0.8999

0.7087

0.7291

(0.0071)
0.7587

(0.0061)

2 Shuttle2to7 0.9186 0.9665 0.9862

0.9799

0.9518

(0.0048)
0.9732

(0.0025)

3 LetterImg26 0.6757 0.9417 0.9951

0.9414

0.8199

(0.0115)
0.9415

(0.0093)

Figure 4.12: Comparison of g-means and Sg-means between AB-WLR and NTR-LR

It can be observed also in Table 4.8 and Fig. 4.11 that AB-WKLR has better

sensitivity value than NTR-KLR on all five imbalanced data sets, while AB-WLR

performs better sensitivity value than NTR-LR on all three imbalanced data sets as

indicated in Table 4.9 and Fig. 4.12. These results indicate the effectiveness of AB-

WKLR and AB-WLR in solving the problem of minority class on imbalanced data sets,

on which NTR-KLR and NTR-LR performed worse respectively. However, AB-WKLR

GammaImg Shuttle2to7 LetterImg26
0

0.2

0.4

0.6

0.8

1

g
-m

e
a
n

s

NTR-LR

AB-WLR

S=0.0071

S=0.0061

S=0.0048

S=0.0025 S=0.0093

S=0.0115

 100

inevitably has worse specificity value on three of five imbalanced data sets, while AB-

WLR produces worse specificity value on all three imbalanced data sets.

Table 4.10, Fig. 4.13 and Fig. 4.14 give the summary of AB-WKLR

improvements to NTR-KLR. It can be observed that improvements on both error by g-

means and standard deviation of g-means with 5-Fold SCV could be as high as more

than 90%. Hence, AB-WKLR is more accurate and more stable classifier than NTR-

KLR in classifying on small-to-medium size of imbalanced data sets. Furthermore, AB-

WKLR is useful specifically for data sets which have degrees of imbalance within 6 to

24, as indicated in Table 4.10.

Table 4.10: Summary of AB-WKLR improvements to NTR-KLR

in reducing error by g-means and standard deviation of g-means

Name

Of

Data Set

Degree of

Imbalanced

Average 5-Fold

SCV Error

(1 - gmeans)

Improvement

on Reducing

Error

by g-means

(%)

Standard

Deviation of

g-means (Sg-means)

Improvement

on reducing

Sg-means

(%)

NTR-

KLR

AB-

WKLR

NTR-

KLR

AB-

WKLR

Parkinson 3.06 0.0805 0.068 15.5280 0.0716 0.0433 39.5251

Glass7 6.38 0.0743 0.0192 74.1588 0.0732 0.0157 78.5519

ImgSegment1 6 0.0063 0.001 84.127 0.0065 0.0006 90.7692

Balance2 12.52 0.9368 0.1345 85.6426 0.1414 0.0752 46.8175

Car3 24.04 0.0927 0.0178 80.7983 0.0509 0.0323 36.5422

Largest contribution of AB-WKLR in improving the accuracy of NTR-KLR was

shown on Balanced2 data set, while largest contribution of AB-WKLR in improving the

stability was shown on ImgSegment1 data set as observed in Table 4.10, Fig. 4.13 and

Fig. 4.14.

 101

Figure 4.13: Improvements of AB-WKLR to NTR-KLR

in reducing error by g-means

Figure 4.14: Improvements of AB-WKLR to NTR-KLR

in reducing standard deviation of g-means

Parkinson Glass7 ImgSegment1 Balance2 Car3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
g

m
e

a
n

s

AB-WKLR

Improvement to NTR-KLR

39.53%

78.55%

90.77%

46.82%

36.54%

Parkinson Glass7 ImgSegment1 Balance2 Car3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
g

m
=

1
-g

m
e
a

n
s

g
m

e
a
n

s

AB-WKLR

Improvement to NTR-KLR

15.53%

74.16% 84.13%

85.64%

80.8%

 102

The summary of AB-WLR improvements to NTR-LR is provided in Table 4.11,

Fig. 4.15 and Fig. 4.16. As compared to NTR-LR, it can be seen that AB-WLR is more

accurate and more stable classifier in classifying on large size of imbalanced data sets,

because its improvements on both error by g-means and standard deviation of g-means

with 5-Fold SCV could be achieved more than 60%. Similar to AB-WKLR, AB-WLR

is useful specifically for data sets which have high degrees of imbalance i.e. 3.6 and 26

in this research, as shown in Table 4.11.

Table 4.11: Summary of AB-WLR improvements to NTR-LR

in reducing error by g-means and standard deviation of g-means

Name

Of

Data Set

Degree of

Imbalanced

Average Error

With 5-fold SCV

 (1 – gmeans)

Improvement

on Reducing

Error

by g-means

(%)

Standard

Deviation of g-

means (Sg-means)

Improvement

on reducing

Sg-means

(%)

NTR-

LR

AB-

WLR

NTR-

LR

AB-

WLR

GammaImg 1.84 0.2709 0.2413 10.9265 0.0071 0.0061 14.0845

Shuttle2to7 3.67 0.0482 0.0268 44.3983 0.0048 0.0025 47.9167

LetterImg26 26.25 0.1801 0.0585 67.5180 0.0115 0.0093 19.1304

Table 4.10, Fig. 4.13 and Fig. 4.14 indicate that AB-WLR has largest contribution in

improving the accuracy of NTR-LR on LetterImg26 data set, while largest contribution

of AB-WKLR in improving the stability was showed in Shutte2to7 data set.

Figure 4.15: Improvement of AB-WLR to NTR-LR

in reducing error by g-means

GammaImg Shuttle2to7 LetterImg26
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
g

m
=

1
-g

m
e
a

n
s

g
m

e
a
n

s

AB-WLR

Improvement to NTR-LR

10.93%

44.4%

67.52%

 103

Figure 4.16: Improvement of AB-WLR to NTR-LR

in reducing standard deviation of g-means

In general, the effectiveness of adapted Modified Adaboot methods in AB-

WKLR and AB-WLR algorithm respectively has been tested statistically, as presented

in Table 4.12. Statistical significance was conducted by comparing the accuracy

performance of AB-WKLR to NTR-KLR and AB-WLR to NTR-LR using Paired-

Samples t-test (=0.05) (Montgomery, 1991).

Table 4.12: Summary of statistical significances: AB-WKLR vs NTR-KLR and AB-

WLR vs NTR-LR

Data Set

Average of g-means

With 5-fold SCV

(Sg-means)

Paired-Samples t-test

(=0.05)

NTR-KLR AB-WKLR p-value
Statistical

Significance

Parkinson

0.9195

(0.0716)
0.9320

(0.0433)

.599 No

Glass7

0.9257

(0.0732)
0.9808

(0.0157)

.223 No

ImgSegment1

0.9937

 (0.0065)
0.9990

 (0.0006)

.124 No

Balance2

0.0632

(0.1414)
0. 8655

(0.0752)

0 Yes

Car3

0.9073

(0.0509)
0.9822

(0.0323)

.035 Yes

GammaImg Shuttle2to7 LetterImg26
0

0.002

0.004

0.006

0.008

0.01

0.012

S
-g

m
e

a
n

s

AB-WLR
Improvement to NTR-LR

14.08%

47.92%

19.13%

 104

Table 4.12: Continued

Data Set

Average of g-means

With 5-fold SCV

(Sg-means)

Paired-Samples t-test

(=0.05)

NTR-

KLR
AB-WKLR p-value

Statistical

Significance

GammaImg 0.7291 0.7587 0.01 Yes

Shuttle2to7 0.9518 0.9732 0 Yes

LetterImg26 0.8199 0.9415 0 Yes

TOTAL (5 Yes, 3 No)

The results of statistical tests in Table 4.12 describe that the use of Modified AdaBoost

methods in AB-WKLR and AB-WLR algorithm respectively is effective significantly

on 5 data sets out of total 8 data sets, since their p-value < 0.05 (

4.3.3 Performances Comparison of proposed AB-WKLR and proposed AB-WLR

to AdaBoostSVM

Table 4.13 displays the summary of performances comparison between the

proposed algorithms with their related work i.e. AdaBoostSVM. It can be observed that

AB-WKLR and AdaBoostSVM have comparable value of g-means and AUC on three

imbalanced data sets. AB-WLR and AdaBoostSVM also performs similarly on

LetterImg26 data set.

 Although AB-WKLR performs slightly better than AdaBoostSVM in

classifying three imbalanced data sets, both classifiers have comparable performance in

general. In addition, NTR-KLR component classifier used in AB-WKLR has simple

solution of unconstrained optimization problem. On the other hand, with the use of

unconstrained optimization problem and without the use of Kernel function, AB-WLR

has simpler solution than AdaBoostSVM in performing comparable performance on

LetterImg26 data set.

 105

Table 4.13: Summary of comparison: between proposed algorithms and AdaBoostSVM

Data Set

g-means AUC

Proposed

AB-WKLR

AdaBoostSVM

(Li et al., 2008)

Proposed

AB-WKLR

AdaBoostSVM

(Li et al., 2008)

Glass7 0.9808* 0.885 1* 0.963

ImgSegment1 0.9990* 0.965 1* 0.991

Car3 0.9822* 0.975 1* 0.997

Proposed

AB-WLR

AdaBoostSVM

(Li et al., 2008)

Proposed

AB-WLR

AdaBoostSVM

(Li et al., 2008)

LetterImg26 0.9415  0.9968* 0.985

4.4 SUMMARY

This chapter has reported and analyzed the performances of proposed

classification algorithms i.e. general classification algorithms (NTR-KLR and NTR-LR)

and imbalanced classification algorithms (AB-WKLR and AB-WLR) based on several

numerical experiments. The effectiveness of the proposed classification algorithms and

the method used was evaluated. The numerical convergence, accuracy and stability of

proposed classification algorithms were provided previously. Furthermore, the

limitation of proposed general classification algorithms was also determined, in relation

to the development of proposed imbalanced classification algorithms.

106

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 INTRODUCTION

The conclusion which related to Research Objective of the thesis is given in this

chapter, based on numerical results and discussion in Chapter 4. The recommendations

for further work are described then in this chapter.

5.2 CONCLUSIONS

In general, this thesis has developed proposed general and imbalanced

classification algorithm. The numerical converge of the proposed classification

algorithms have been provided also respectively, along with their accuracy and stability.

Proposed general classification algorithms respectively are NTR-KLR and NTR-LR,

while proposed imbalanced classification algorithms respectively are AB-WKLR and

AB-WLR.

5.2.1 NTR-KLR and NTR-LR

Numerical results have shown that the use of Truncated Newton method in

NTR-KLR and NTR-LR algorithm is effective in handling the numerical problem of

KLR-NR and RLR-NR respectively on the huge matrix of linear system of Newton-

Raphson update rule i.e. the training time and the singularity problem. These results can

be seen as further explanation on the success of Truncated Newton method in TR-KLR

(Maalouf et al., 2010) and TR Iteratively Re-weighted Least Square (TR-IRLS)

(Komarek and Moore, 2005) algorithm respectively, because of the equivalence of

107

iterative method used by these algorithms. Moreover, only with the use of

unconstrained optimization problem which has simple solution, NTR-KLR and NTR-

LR respectively have comparable performance with SVM which is determined as state-

of-the-art classifier in Kernel methodology and Data Mining community. However,

numerical results have confirmed that the performances accuracy of both proposed

general classifiers is limited when applied on imbalanced data sets, specifically in

classifying the minority class.

5.2.2 AB-WKLR and AB-WLR

Numerical results have demonstrated that the use of adapted Modified AdaBoost

methods in AB-WKLR and AB-WLR algorithm respectively has performed

significantly effective performance in improving the accuracy and stability

performances of general classifiers i.e. NTR-KLR and NTR-LR respectively, on

imbalanced data sets. The improvements on both error by g-means and standard

deviation of g-means with 5-Fold SCV could be achieved as high as more than 60 to

90%.

Furthermore, numerical results have shown that AB-WKLR and AB-WLR

respectively have comparable performances with AdaBoostSVM in classifying

imbalanced data sets. In addition, both proposed imbalanced classification algorithms

employ the weighted version of NTR-KLR (NTR-WKLR) and the weighted version of

NTR-LR (NTR-WLR) component classifier respectively which have simple solution of

unconstrained weighted optimization problem.

5.3 RECOMMENDATIONS

A number of recommendations for future works may enhance the promising results

which have been demonstrated in this thesis. Those are outlined as follows:

a. Combine or replace the Newton-Raphson method with other method, as the outer

algorithm of Truncated Newton method in approximating the solution of Newton-

Raphson update rule to search the MLE for KLR and RLR respectively.

b. Extend the algorithm of NTR-KLR, NTR-LR, AB-WKLR and AB-WLR

respectively for multi-class data sets problem.

108

c. Instead of Grid Search with k-Fold SCV, explore the use of other model selection

methods, in order to obtain shorter time in process of model selection.

109

REFERENCES

Akbani, R., Kwek, S. and Japkowicz, N. 2004. Applying support vector machines to

imbalanced datasets. Lecture Notes in Computer Science. 3201: 39–50.

Bai, S.B., Wang, J., Zhang, F.Y., Pozdnoukhov, A. and Kanevski, M., 2008. Prediction

of landslide susceptibility using logistic regression: a case study in Bailongjiang

river basin, China. Proceedings of The Fourth International Conference on Fuzzy

Systems and Knowledge Discovery, 4, pp. 647-651.

Batista, G., Prati, R. C. and Monard, M. C. 2004. A study of the behavior of several

methods for balancing machine learning training data. Proceedings of the Tenth

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining-SIGKDD Explorations, 6(1), 20–29.

Bauer, E. and Kohavi, R. An Empirical comparison of voting classification algorithms:

Bagging, boosting and variants. Machine Learning.

Boyd S.and Vandenberghe, L. 2004. Convex Optimization. Cambridge: University

Press.

Breiman, L. 1996. Bagging Predictor. Machine Learning. 24: 123–140.

Busser, B., Daelemans, W. and Bosch, A., 1999. Machine learning of word

pronunciation: the case against abstraction. Proceedings of the Sixth European

Conference on Speech Communication and Technology, Eurospeech99, pp. 2123-

2126.

Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W. 2002. SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence Research. 16:

 321-357.

Chawla, N. V., Japkowicz, N. and Kolcz, A. 2004. Editorial: special issue on learning

from imbalanced data sets. Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining-SIGKDD Explorations, 6(1),

1–6.

Cristianini, N., Kandola, J., Elisseeff, A. and Shawe-Taylor, J. 2006. On kernel target

 alignment. Studies on Fuzziness and Soft Computing. 194: 205-256.

Christmann, A., Luebke, K., Marcos, M.G. and Ruping, S. 2005. Determination of

hyper-parameters for kernel based classification and regression. Technical Reports-

38, SFB 475, University of Dortmund.

Cawley G.C. and Talbot N.L.C. 2005. The evidence framework applied to sparse kernel

logistic regression. Neurocomputing. 64:119-135.

110

Cawley G.C. and Talbot N.L.C. 2008. Efficient Approximate Leave-One-Out Cross-

Validation for Kernel Logistic Regression. Machine Learning. 71: 243–264.

Chan, P.K. and Stolfo, S.J., 1998. Toward scalable learning with non-uniform class and

cost distributions: a case study in credit card fraud detection. Proceedings of the

Fourth International Conference on Knowledge Discovery and Data Mining. AAAI

Press, pp. 164_168.

Del Castillo, M.D. and Serrano, J.I., 2004. A multistrategy approach for digital text

categorization from imbalanced documents. Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining-

ACMSIGKDD Explorations: Special Issue on Learning from Imbalanced Datasets,

pp. 39–70.

Diamantidis, N.A., Karlis, D. and Giakoumakis, E.A. 2000. Unsupervised stratification

of cross-validation for accuracy estimation. Artificial Intelligence. 116: 1–16.

Dietterich, T.G., 2000. An experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting, and randomization. Machine

Learning. 40 (2): 139–157.

Dreitsel, S and Machado, L.O. 2002. Logistic regression and artificial neural network

classification models: a methodology review. Journal of Biomedical Informatics.

35: 352-359.

Eeckhaut, M.V.D., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G. and

Vandekerckhove, L., 2006. Prediction of landslide susceptibility using rare events

logistic regression: a case-study in the Flemish Ardennes (Belgium).

Geomorphology. 76(3-4): 392-410.

Fawcett, T. 2004. ROC graphs : Notes and practical considerations for researchers.

Technical report, HP Laboratories, MS 1143, 1501 Page Mill Road, Palo Alto CA

94304, USA.

Fawcett, T. and Provost, F., 1997. Adaptive fraud detection. Data Mining and

Knowledge Discovery. 1 (3): 291–316.

Frank, A. and Asucion, A. 2010. UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

http://archive.ics.uci.edu/ml/datasets.html?format=&task=cla&att=&area=&numAtt

=&numIns=&type=&sort=nameUp&view=table (2008)

Freund, Y. 1993. Data filtering and distribution modelling algorithms for machine

learning. PhD thesis. University of California, Santa Cruz.

Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and

Computation. 121(2): 256-285.

111

Freund, Y. and Schapire, R. 1997. A Decision Theoritic Generalization of On-Line

Learning and a application to Boosting. Journal of Computer and System Sciences.

55(1): 119-139

Friedman, J., Hastie, T. and Tibshirani, R. 2000. Additive Logistic Regression: a

Statistical view of Boosting. Annals of Statistics. 28: 337-407.

Garthwaite, P., Jolliffe, I. and Byron, J. 2002. Statistical Inference. Oxford: University

Press.

Geman, S., Bienenstock, E. and Doursat, R. 1992. Neural networks and the

bias/variance dilemma. Neural Computation. 4(1): 1–58.

Gilbert, J. R. (2006) http://www.cs.ucsb.edu/~gilbert/cs140Win2009/cgproject (2010).

Guo, H. and Viktor, H.L., 2004. Learning from imbalanced data sets with boosting and

data generation: the databoost-im approach. Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Minin-g

ACMSIGKDD Explorations: Special Issue on Learning from Imbalanced Datasets,

pp. 30–39.

Han, J. and Kamber, M. 2006. Data Mining: Concepts and Techniques. 2
nd

 ed. Morgan

Kaufmann Publishers.

Hand, D.J. 1998. Statistics and More. The American Statistician. 5(2): 112-118.

Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Element of Statistical Learning.

Canada: Springer-Verlag.

Hoerl, A. and Kennard, R. 1970. Ridge Regression: Biased Estimation for

nonorthogonal problems. Technometrics. 12: 55 – 67.

Hogg, Robert V.and Craig, A. T.1994. Introduction to Mathematical Statistics. 5th

Edition. Prentice-Hall.

Hosmer, D.W. and Lemeshow, S., 2000. Applied Logistic Regression. Second edition.

Wiley.

Hsu, C.W., Chang, C.C., and Lin, C.J. 2003 (Last updated: April 15, 2010). A practical

guide to support vector classification. Technical report. Department of Computer

Science, National Taiwan University.

www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (2008)

Huang, C.L., Chen, M.C., Wang, C.J. 2007. Credit Scoring with a Data Mining

Approach based on Support Vector Machines. Expert System with Applications. 33:

847-856.

112

Huang, Y., Erdogmus, D, Santosh, M. and Pavel, M. 2005. Boosting Linear Logistic

Regression for Single Trial ERP Detection in Rapid Serial Visual Presentation

Tasks. Proceedings of the 28th IEEE EMBS Annual International Conference.

Iyer, R.D. 1999. An Efficient Boosting Algorithm for Combining Preferences. Master

thesis, Carnegie Mellon University.

Japkowicz. N. 2000. Learning from imbalanced data sets: A comparison of various

strategies, Learning from imbalanced data sets. The AAAI Workshop 10-15. Menlo

Park, CA: AAAI Press. Technical Report WS-00-05.

Joshi, M.V., Kumar, V. and Agarwal, R.C. 2001. Evaluating boosting algorithms to

classify rare classes: Comparison and improvements. Proceedings of the IEEE

International Conference on Data Mining. pp. 257–264.

Joshi, M.V., Agarwal, R.C. and Kumar, V. 2002: Predicting rare classes: can boosting

make any weak learner strong? Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining. pp. 297–306.

Karsmaker, P., Pelckmans, K. and Suykens, J.A.K. 2007. Multi-class Kernel Logistic

Regression : a fixed sized implementation. Proceedings of International Joint

Conference on Neural Networks.

Katz, M., Krüger, S.E., Schafföner, M., Andeli´c, E., Wendemuth, A. 2006. Speaker

identification and verification using support vector machines and sparse Kernel

logistic regression. Lecture Notes in Computer Science, 4153: 176-184.

Keerthi, S.S., Duan, K.B., Shevade, S.K. and Poo, A.N. 2005. A fast dual algorithm for

kernel logistic regression. Machine Learning. 61(1-3): 151–165.

King, G. and Zeng, L. 2001a. Explaining rare events in international relations.

International Organization. 55(3): 693-715.

King, G. and Zeng, L. 2001b. Improving forecast of state failure. World Politics. 53(4):

623-658.

King, G., Zeng, L., 2001c. Logistic regression in rare events data. Political Analysis. 9:

137-163.

Komarek, P. 2004. Logistic regression for data mining and high-dimensional

classification. Ph.D. thesis, Carnegie Mellon University.

Komarek P. and Moore A. 2005. Making logistic regression a core data mining tool: A

practical investigation of accuracy, speed, and simplicity. Tech. report, TR-05-27,

Robotics Institute, Carnegie Mellon University.

Kubat, M. and Matwin, S. 1997. Addressing the curse of imbalanced training sets: one-

sided selection. Proceedings of the Fourteenth International Conference on

Machine Learning. pp. 179–186.

113

Kubat, M., Holte, R.C. and Matwin, S., 1998. Machine learning for the detection of oil

spills in satellite radar images. Machine Learning, pp. 195-215.

Lai, K.K., Yu, L., Zhou, L.G. and Wang. S.Y. 2006. Credit risk evaluation with least

square support vector machine, Lecture Notes in Artificial Intelligence. 4062: 490-

495.

Lewis, J.M., Lakshmivarahan, S. and Dhall, S. 2006. Dynamic Data Assimilation: A

Least Squares Approach. Cambridge: University Press.

Lee, A. & Silvapulle, M. 1988. Ridge estimation in logistic regression, Communications

in Statistics, Simulation and Computation. 17: 1231-1257.

Le Cessie, S. & Van Houwelingen, J. 1992. Ridge estimators in logistic regression,

Applied Statistic. 41: 191-201.

Li, X., Wang, L. and Sung, E. 2005. A study of AdaBoost with SVM based weak

learners. International Joint Conference on Neural Networks, pp.196-201.

Li, X., Wang, L. and Sung, E. 2008. AdaBoost with SVM-based component classifiers.

Engineering Applications of Artificial Intelligence. 21: 785–795

Lin, C., Weng, R.C. and Keerthi, S.S. 2008. Trust Region Newton Method for Large-

scale Logistic Regression. Journal of Machine Learning Research. 9: 627-650.

Maalouf, M., 2009. Robust weighted kernel logistic regression in imbalanced data and

rare event. Ph. D Thesis. Oklahoma University.

Maloof, M.A. 2003. Learning when data sets are imbalanced and when costs are

unequal and unknown. Proceedings of the International of Conference on Machine

Learning (ICML’2003).

Maalouf, M. and Trafalis, T.B. 2011. Robust weighted kernel logistic regression in

imbalanced and rare events data. Computational Statistics & Data Analysis. 55(1):

168-183.

Maalouf, M., Trafalis, T.B., and Adrianto, A. 2010. Kernel logistic regression using

truncated Newton method. Computational Management Science. 28: 1-14.

Malouf, R. 2002. A comparison of algorithms for maximum etropy parameter

estimation. Proceedings of Conference on Natural Language Learning, pp. 1-7.

McCullagh, P., Nelder, J.A. 1989. Generalized Linear Models, vol. 37: Monographs on

Statistics and Applied Probability. second ed.. London: Chapman & Hall.

Meir, R. and Ratch, G. 2003. An Introduction to Boosting and Leveraging. Advanced

Lectures on Machine Learning-Lecture Note in Artificial Intelegence. 2600: 118-

183.

114

Mercer, J. 1909. Functions of positive and negative type and their connection with the

theory of integral equations. Philos. Trans. Roy. Soc. London A. 209: 415–446.

Minka, T.P. 2003 (revised 2007). A comparison of numerical optimizers for logistic

regression. Tech.Report, Depaartment of Statistics, Carnegie Mellon University.

http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-

logreg.pdf (2010)

Montgomery, D.C. (1991) Design and analysis of experiment. 3
rd

 ed. Singapore: John

Wiley & Sons.

Nabney, I.T. 1999. Efficient training of RBF networks for classification. Proceedings of

the Nineth International Conference on Artificial Neural Networks, 1: 210–215.

Nash, S. G. 2000. A survey of truncated-Newton methods. Journal of Computational

and Applied Mathematics. 124(1-2):45-59.

Nash, S. G. and Sofer, A. 1996. Linear and non-Linear Programming. Mc-Graw-Hill.

Nishida, K. and Kurita, T. 2006. Kernel Feature Selection to Improve Generalization

Performance of Boosting Classifiers. Proceedings of The 2006 International

Conference on Image Processing, Computer Vision, & Pattern Recognition.

Nocedal, J. and Wright, S. 1999. Numerical Optimization. New York: Springer.

Nugroho, A.S., Witarto, A.B. and Handoko, D. 2003. Application of Support Vector

Machine in Bioinformatic. Proceeding of Indonesian Scientific Meeting in Central

Japan.

Opitz, D., Maclin, R., 1999. Popular ensemble methods: an empirical study. Journal of

Artificial Intelligence Research. 11: 169–198.

Owen, A. 2007. Infinitely imbalanced logistic regression. Journal of Machine Learning

Research. 8: 761–773.

Oza, N. C. 2001. Online ensemble learning. Ph.D.thesis. Department of Electrical

Engineering and Computer Science. University of California, Berkeley.

Oza, N. C. and Russell, S. 2001. Online bagging and boosting. Artificial Intelligence

and Statistics. pp. 105-112.

Park, C.Y., Koo, J.Y., Kim, P.T. and Lee, J.W. 2008. Stepwise feature selection using

generalized logistic loss. Computational Statistics and Data Analysis. 52: 3709–

3718.

Park, M.Y. and Hastie, T., 2008. Penalized logistic regression for detecting gene

interactions. Biostatistics 9(1): 30–50.

115

Patra, S., Shanker, K. and Kundu, D. 2008. Sparse maximum margin logistic regression

for credit scoring. Eighth IEEE International Conference on Data Mining.

Pearson, R., Goney, G. and Shwaber, J. 2003. Imbalanced clustering for microarray

time-series. Proceedings of the International of Conference on Machine Learning

(ICML’2003).

Polat, K. and Gunes, S. 2007. Breast Cancer Diagnosis using Least Square Support

Vector Machine. Digital Signal Processing. 17: 694-701.

Quigley, J., Bedford, T. and Walls, L., 2007. Estimating rate of occurrence of rare

events with empirical Bayes: a railway application. Reliability Engineering &

System Safety. 92(5): 619-627.

Rahimi, Ali. 2006. The similarity between the logit loss and the SVM loss.

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.3097

Rennie, J.D.M. 2003. Newton's method.

http://people.csail.mit.edu/jrennie/writing/newton.pdf (2010)

Rennie, J.D.M. 2005. Maximum margin logistic regression.

http://people.csail.mit.edu/jrennie/writing/mmlr.pdf (2010)

Ridgeway, G.D., Madigan, D., Richardson, T. and O’Kane, J. 1998. Interpretable

Boosted Naïve Bayes Classification. Proceedings of the Fourth International

Conference on Knowledge Discovery and Data Mining (KDD-98), pp. 101-104.

Roth, V. 2001. Pobabilistic Discriminative Kernel Classifiers for Multi-Class Problems.

Lecture Notes in Computer Science, 2191: 246 – 253.

Schapire, R.E. 1990. The strength of weak learnability. Machine Learning. 5(2): 197-

227.

Schapire, R.E. 1992. The design and analysis of efficient learning algorithms. MIT

Press.

Schapire, R.E., Freund, Y., Batlett, P. and Lee, W.S., 1998. Boosting the margin: A new

explanation for the effectiveness of voting methods. Annals of Statistics. 26 (5):

1651-1686.

Schapire, R.E. and Singer, Y., 1999. Improved boosting algorithms using confidence-

rated predictions. Machine Learning. 37 (3): 297–336.

Shawe-Taylor, J. and Cristianini, N. 2004. Kernel Methods for Pattern Analysis.

Cambridge: University Press.

Scholkopf, B. and Smola, A.J. 2002. Learning With Kernel—Support Vector Machines

Regularization Optimization and Beyond. Cambridge: MIT Press.

116

Scholkopf, B., Herbrich, R. and Smola, A.J. 2002. A Generalized Representer Theorem.

Lecture Note in Computer Scince . 2375:416-426.

Shin, H.W. and Sohn, S.Y. 2005. Selected tree classifier combination based on both

accuracy and error diversity. Pattern Recognition. 38: 191–197.

Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the

Agonizing Pain. Technical Report CS-94-125, Carnegie Mellon University,

Pittsburgh.

Suykens, J. A. K. and Vandewalle. J. 1999. Least squares support vector machine

classifiers. Neural Processing Letters. 9(3):293-300.

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vanderwalle, J.

2002. Least Squares Support Vector Machines, World Scientific Publishing.

Swartout, W. 1983. XPLAIN: A system for creating and explaining expert consulting

programs. Artificial Intelligence. 21: 285-325.

Tan, P. N, Steinbach, M. and Kumar, V. 2005. Introduction to Data Mining. USA:

Addison-Wesley.

Tang, Y., Zhang, Y.Q., Chawla, N.V. and Krasser, S. 2009. SVMs modeling for highly

imbalanced classification. IEEE Transactions on Systems, Man, and Cybernectics.

Part B. 39(1): 281–288.

Tang, Y., Jin, B. and Zhang, Y.Q. 2005. Granular support vector machines with

association rules mining for protein homology prediction. Artificial Intelligence in

Medicine. 35(1-2): 121–134

Tenenhaus A., Giron A., Viennetc, E., Bérab, M., Saportad, G. and Fertil, B. .2007.

Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and

binary classification. Computational Statistics & Data Analysis. 51:4083 – 4100

Trafalis, T.B., Ince, H. and Richman, M.B., 2003. Tornado detection with support

vector machines. International Conference on Computational Science. pp. 289-298.

Tsoucas, P., 1992. Rare events in series of queues. Journal of Applied Probability. 29:

168-175.

Valentini G. and Dietterich,T.G. 2004. Bias-variance analysis of support vector

machines for the development of SVM-based ensemble methods. Journal of

Machine Learning Research. 5: 725–775.

Van-Hulse, J., Khosghoftaar, M.T. and Napolitano, A. 2007. Experimental perspectives

on learning from imbalanced data. Proceedings of the 24
th

 International Conference

on Machine Learning (ICML 2007), pp. 935–942.

Vapnik, V. 1998. Statistical Learning Theory. New York: Wiley.

117

Vapnik V. 2000. The nature of statistical learning theory. 2nd ed. NewYork: Springer.

Veropoulos, K., Campbell, C. and Cristianini, N., 1999. Controlling the sensitivity of

support vector machines. Proceedings of the International Joint Conference on

Artificial Intelligent, pp. 55–60.

Wang, S., Jiang, W., and Tsui, K.L. 2008. Adjusted support vector machines based on a

new loss function. Ann Oper Res. 174(1): 83-101.

Wang, Y. and Lin, C.D. 2007. Learning by Bagging and Adaboost based on Support

Vector Machine. Proceedings of the 5th IEEE International Conference on

Industrial Informatics. pp. 663-668

Weiss, G. M. 2004. Mining with rarity: a unifying framework. Proceedings of the Tenth

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining-SIGKDD Explorations, 6(1): 7–19.

Weiss, G.M. and Hirsh, H., 2000. Learning to predict extremely rare events.

Proceedings of the AAAI'2000, pp. 64-68.

Wickramaratna, J., Holden, S.B. and Buxton, B.F. 2001. Performance degradation in

boosting. Proceedings of the Second International Workshop on Multiple Classifier

Systems. pp. 11–21.

West, D. 2000. Neural network credit scoring models. Computer and Operations

Research. 27: 1131-1152.

Wu, G. and Chang, E.Y. 2005. Kba: kernel boundary alignment considering imbalanced

data distribution. IEEE Transactions on Knowledge and Data Engineering. 17 (6):

786–795.

Yan, R., Liu, Y., Jin, R., Hauptmann, A. 2003. On predicting rare classes with svm

ensembles in scene classification. Proceedings of the IEEE International

Conference on Acoustic, Speech and Signal Processing, pp. 21–24.

Yu, L., Lai, K.K. and Wang, S.Y.2006. Credit risk assesment with least square fuzzy

support vector machine. Proceedings of the Sixth IEEE International Conference on

Data Mining - Workshop (ICDMW'06).

Zhang, J.. Iterative methods for optimization.

http://learning.stat.purdue.edu/wiki/_media/courses/sp2011/598g/minimization.pdf

(2010)

Zhang, J., Jin, R., Yang, Y. and Hauptmann, A.G., 2003. Modified logistic regression:

An approximation to SVM and its applications in large-scale text categorization.

Proceedings of the Twentieth International Conference on Machine Learning,

ICML-2003.

118

Zhang, J. and Yang, Y. 2003. Robustness of Regularized Linear Classification Methods

in Text Categorization. Proceedings of SIGIR 2003: The Twenty-Sixth Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval.

Zhang, T. and Oles, F.J. 2001. Text categorization based on regularized linear

classification methods. Information Retrieval. 4:5-31.

Zhou, M. and Wei, H. 2009. Constructing Weak Learner and Performance Evaluation

in AdaBoost. Proceeding of the International Conference on Computational

Intelligence and Software Engineering (CiSE), pp. 1-4.

Zhu, J.2003. Flexible Statistical Modelling. PhD Thesis, Stanford University.

Zhu, J. and Hastie, T. 2004. Classification of Gene microarrays by Penalized Logistic

Regression. Biostatistics 5(3): 427-443.

 Zhu J. and Hastie T. 2005. Kernel logistic regression and the import vector machine.

Journal of Computational and Graphical Statistics. 14(1):185-205.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500

119

APPENDIX A

LIST OF PUBLICATIONS

A.1. Journal

1. Rahayu, S. P., Purnami, S.W., Embong, A., Jasni Mohamad Zain. Kernel

Logistic Regression-Linear for Leukemia Classification using High Dimensional

Data. Jurnal Ilmiah Teknologi Informasi (JUTI), Terakreditasi B. 7(3): 143-148.

2009

2. Rahayu, S. P., Jasni Mohamad Zain, Embong, A., Purnami, S.W. Logistic

Regression Methods with Truncated Newton method. Applied Mathematics and

Computation, Elsevier. (submitted)

3. Rahayu, S. P., Jasni Mohamad Zain, Embong, A., Logistic Regression Methods

for Classification of Imbalanced Data Sets, Journal of Computational Statistics

and Data Analysis, Elsevier. (submitted)

A.2 International Conference

1. Rahayu, S. P., Purnami, S.W., Embong, A. Applying Kernel Logistic Regression

in Data Mining to Classify Credit Risk, Proceeding of 3
rd

 International

Symposium on Information Technology (ITSIM), Kuala Lumpur, August 2008.

2. Rahayu, S. P., Embong, A. Purnami, S.W. Credit Risk Classification using

Kernel Logistic Regression with optimal parameter. 10
th

 International

Conference on Information Science, Signal Processing and Their Application

(ISSPA), Kuala Lumpur, May 2010.

3. Rahayu, S. P., Jasni Mohamad Zain, Embong, A., Juwari, Purnami, S.W.,

Logistic regression methods with truncated newton method. International

Conference on Advances Science and Contemporary Engineering 2012.

(accepted)

.

A.3 National Conference

1. Rahayu, S. P. , Embong, A. Overview of Random Forest : Effective Ensemble

Method in Modern Data Mining. Proceedings of the National Conference on

Software Engineering and Computer Systems (NaCSES2007), August 2007,

Kuantan, Malaysia.

APPENDIX B

THE INFLUENCE OF PARAMETER

TO CLASSIFICATION PERFORMANCE OF NTR-KLR

1. Parkinson

a.1 G-means values on training data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.08 0.16

 0 0 0 0 0 0 0 0 0 0 0 0.14 0.55 0.64 0.67 0.68 0.68 0.69 0.69

 0 0 0 0 0 0 0 0 0 0.16 0.55 0.64 0.67 0.68 0.69 0.7 0.69 0.69 0.7

 0 0 0 0 0 0 0 0.17 0.56 0.64 0.67 0.68 0.7 0.7 0.7 0.7 0.71 0.71 0.71

 0 0 0 0 0 0.14 0.59 0.65 0.66 0.69 0.7 0.72 0.72 0.73 0.73 0.75 0.75 0.76 0.76

 0 0 0 0.09 0.54 0.65 0.68 0.7 0.72 0.73 0.74 0.75 0.77 0.77 0.76 0.76 0.76 0.77 0.77

 0 0 0.35 0.65 0.67 0.69 0.71 0.73 0.75 0.77 0.78 0.78 0.78 0.82 0.84 0.85 0.86 0.88 0.87

 0 0.26 0.65 0.68 0.69 0.73 0.76 0.78 0.8 0.84 0.88 0.92 0.94 0.95 0.97 0.98 0.98 0.99 0.99

 0 0.31 0.62 0.68 0.71 0.78 0.84 0.91 0.95 0.97 0.99 0.99 0.99 0.99 1 1 1 1 1

 0 0 0.38 0.58 0.76 0.88 0.97 0.99 0.99 1 1 1 1 1 1 1 1 1 1

 0 0 0 0.38 0.63 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0.05 0.36 0.55 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0.16 0.41 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
0

a.2 Total accuracy values on training data

Exp.   1                

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.85 0.85 0.85 0.85

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.83 0.85 0.85 0.86 0.85 0.86 0.86 0.86 0.86 0.86 0.86

 0.75 0.75 0.75 0.75 0.75 0.76 0.84 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88

 0.75 0.75 0.75 0.76 0.83 0.85 0.86 0.86 0.87 0.87 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

 0.75 0.75 0.79 0.86 0.86 0.86 0.87 0.87 0.88 0.89 0.89 0.89 0.89 0.91 0.92 0.92 0.93 0.94 0.93

 0.75 0.78 0.86 0.86 0.86 0.87 0.89 0.9 0.91 0.93 0.94 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99

 0.75 0.79 0.85 0.87 0.88 0.91 0.93 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1

 0.75 0.75 0.79 0.84 0.9 0.95 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.79 0.85 0.94 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.76 0.79 0.83 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.75 0.76 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.75 0.75 0.77 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

 1
2
1

b.1 G-means values on testing data (Parkinson)

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.09 0.09

 0 0 0 0 0 0 0 0 0 0 0 0.06 0.51 0.66 0.66 0.69 0.68 0.68 0.68

 0 0 0 0 0 0 0 0 0 0.06 0.51 0.66 0.68 0.68 0.68 0.68 0.69 0.69 0.69

 0 0 0 0 0 0 0 0.06 0.51 0.66 0.66 0.68 0.68 0.68 0.69 0.69 0.71 0.71 0.71

 0 0 0 0 0 0 0.53 0.66 0.68 0.69 0.7 0.7 0.7 0.71 0.71 0.74 0.74 0.74 0.75

 0 0 0 0 0.53 0.66 0.67 0.7 0.7 0.7 0.72 0.74 0.75 0.74 0.74 0.74 0.75 0.75 0.75

 0 0 0.29 0.65 0.68 0.7 0.7 0.73 0.74 0.74 0.76 0.78 0.79 0.76 0.76 0.77 0.77 0.78 0.76

 0 0.06 0.63 0.68 0.69 0.7 0.73 0.76 0.77 0.77 0.77 0.79 0.8 0.84 0.83 0.88 0.83 0.85 0.87

 0 0.22 0.55 0.66 0.68 0.75 0.78 0.8 0.79 0.81 0.84 0.86 0.87 0.91 0.91 0.91 0.91 0.92 0.92

 0 0 0.24 0.47 0.6 0.68 0.78 0.84 0.89 0.89 0.89 0.88 0.9 0.9 0.9 0.9 0.9 0.9 0.9

 0 0 0 0.13 0.25 0.47 0.58 0.67 0.7 0.73 0.71 0.73 0.76 0.76 0.77 0.77 0.8 0.8 0.8

 0 0 0 0 0.07 0.13 0.31 0.31 0.33 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36

 0 0 0 0 0 0 0.07 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2 0.26 0.26 0.26 0.26 0.26 0.26

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1
2
2

b.2 Total accuracy values on testing data (Parkinson)

Exp.   1                

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.86 0.84 0.84 0.84

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.85 0.84 0.84 0.84 0.84 0.84

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.82 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.85 0.85 0.85

 0.75 0.75 0.75 0.75 0.75 0.75 0.83 0.86 0.86 0.86 0.87 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87

 0.75 0.75 0.75 0.75 0.83 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86

 0.75 0.75 0.78 0.86 0.86 0.86 0.85 0.86 0.87 0.87 0.88 0.89 0.89 0.88 0.88 0.88 0.87 0.86 0.86

 0.75 0.76 0.85 0.86 0.87 0.86 0.87 0.88 0.89 0.89 0.88 0.89 0.89 0.91 0.9 0.92 0.88 0.89 0.89

 0.75 0.77 0.83 0.86 0.87 0.89 0.9 0.9 0.89 0.89 0.9 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.94

 0.75 0.75 0.78 0.81 0.85 0.87 0.9 0.92 0.94 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94

 0.75 0.75 0.75 0.76 0.78 0.81 0.84 0.87 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.9 0.9 0.9

 0.75 0.75 0.75 0.75 0.76 0.76 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79

 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.77 0.75 0.77 0.77 0.77 0.77 0.77 0.77 0.77

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

 1
2
3

2. Glass7

a.1 G-means values on training data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.31 0.8 0.88 0.89 0.91 0.92

 0 0 0 0 0 0 0 0 0 0 0.08 0.48 0.85 0.88 0.89 0.9 0.9 0.9 0.9

 0 0 0 0 0 0 0 0 0.08 0.56 0.86 0.88 0.89 0.89 0.89 0.9 0.9 0.9 0.9

 0 0 0 0 0 0 0.08 0.56 0.83 0.9 0.9 0.91 0.9 0.92 0.93 0.93 0.94 0.94 0.94

 0 0 0 0 0.08 0.55 0.83 0.9 0.91 0.91 0.91 0.92 0.93 0.94 0.94 0.95 0.94 0.95 0.95

 0 0 0 0.42 0.82 0.89 0.91 0.91 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0 0 0.73 0.88 0.9 0.92 0.93 0.93 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0.24 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0.61 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0.08 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0.14 0.66 0.8 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0.39 0.8 0.85 0.87 0.98 0.98 0.99 1 1 1 1 1 1 1 1 1 1

 0 0.54 0.85 0.85 0.87 0.91 0.96 0.98 0.98 0.98 0.99 1 1 1 1 1 1 1 1

 0 0.73 0.85 0.88 0.9 0.94 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1
2
4

a.2 Total accuracy values on training data

Exp.   1                

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.95 0.96 0.96 0.97 0.96

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.89 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98

 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98

 0.86 0.86 0.86 0.89 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.86 0.86 0.94 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.86 0.94 0.96 0.97 0.97 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.91 0.96 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.89 0.95 0.96 0.97 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.87 0.92 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.87 0.89 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.86 0.91 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 1 1 1

 1
2
5

b.1 G-means values on testing data (Glass7)

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0.78 0.87 0.88 0.88 0.9

 0 0 0 0 0 0 0 0 0 0 0 0.21 0.83 0.87 0.88 0.9 0.9 0.9 0.9

 0 0 0 0 0 0 0 0 0 0.44 0.82 0.86 0.88 0.88 0.9 0.92 0.92 0.92 0.92

 0 0 0 0 0 0 0 0.44 0.8 0.84 0.9 0.9 0.9 0.9 0.92 0.92 0.92 0.92 0.92

 0 0 0 0 0 0.44 0.8 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.91 0.91

 0 0 0 0.29 0.8 0.86 0.88 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91

 0 0 0.6 0.85 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

 0 0.6 0.83 0.85 0.85 0.87 0.87 0.89 0.91 0.91 0.91 0.91 0.91 0.91 0.93 0.93 0.93 0.93 0.93

 0 0.32 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.87 0.87 0.87 0.85 0.87 0.85 0.85 0.85 0.85 0.85

 0 0 0 0.7 0.78 0.8 0.83 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

 0 0 0 0 0.09 0.63 0.74 0.76 0.74 0.76 0.78 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

 0 0 0 0 0 0 0 0.17 0.29 0.25 0.29 0.45 0.45 0.45 0.45 0.49 0.52 0.52 0.55

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1
2
6

b.2 Total accuracy values on testing data (Glass7)

Exp.   1                

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.94 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.95 0.96 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.95 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.89 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97

 0.86 0.86 0.86 0.88 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

 0.86 0.86 0.93 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

 0.86 0.93 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98

 0.86 0.89 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.93 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.87 0.92 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.9 0.9 0.9 0.91

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 1
2
7

3. ImgSegment1

a.1 G-means values on training data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.08 0.19 0.23 0.4

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.21 0.51 0.72 0.82 0.9

 0 0 0 0 0 0 0 0 0 0 0 0.06 0.25 0.55 0.74 0.84 0.92 0.94 0.96

 0 0 0 0 0 0 0 0 0 0.08 0.26 0.56 0.74 0.84 0.91 0.94 0.96 0.96 0.96

 0 0 0 0 0 0 0 0.06 0.26 0.56 0.75 0.85 0.91 0.95 0.96 0.97 0.97 0.97 0.97

 0 0 0 0 0 0.06 0.29 0.59 0.77 0.88 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99

 0 0 0 0 0.32 0.64 0.81 0.92 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0 0 0.37 0.71 0.87 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.42 0.77 0.9 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.89 0.93 0.96 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.93 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1

 0.89 0.95 0.96 0.96 0.97 0.98 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1

 0.75 0.86 0.93 0.95 0.95 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1

 0.23 0.57 0.75 0.85 0.91 0.95 0.96 0.99 1 1 1 1 1 1 1 1 1 1 1

 0 0.06 0.37 0.55 0.72 0.84 0.95 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0.1 0.37 0.61 0.83 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0.41 0.63 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0.4 0.45 1 1 1 1 1 1 1 1 1 1 1 1

 1
2
8

a.2 Total accuracy values on training data

Exp.   1                

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.93 0.95 0.97

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.98 0.99 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.91 0.94 0.97 0.98 0.99 0.99 0.99 0.99 1 1 1 1

 0.86 0.86 0.86 0.86 0.87 0.92 0.95 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.88 0.93 0.96 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.88 0.94 0.97 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.97 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.97 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.94 0.96 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.9 0.94 0.96 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.88 0.9 0.93 0.96 0.98 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.88 0.91 0.96 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.88 0.91 1 1 1 1 1 1 1 1 1 1 1 1

 0.86 0.86 0.86 0.86 0.86 0.88 0.89 1 1 1 1 1 1 1 1 1 1 1 1

 1
2
9

b.1 G-means values on testing data (ImgSegment1)

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.05 0.18 0.22 0.38

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.19 0.51 0.71 0.83 0.9

 0 0 0 0 0 0 0 0 0 0 0 0.05 0.24 0.52 0.74 0.83 0.91 0.95 0.96

 0 0 0 0 0 0 0 0 0 0.05 0.24 0.54 0.74 0.83 0.91 0.95 0.96 0.96 0.96

 0 0 0 0 0 0 0 0.05 0.24 0.55 0.74 0.84 0.91 0.95 0.96 0.97 0.96 0.97 0.97

 0 0 0 0 0 0.02 0.27 0.57 0.77 0.88 0.94 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99

 0 0 0 0 0.31 0.62 0.81 0.92 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0 0 0.35 0.7 0.87 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.42 0.77 0.9 0.95 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.9 0.93 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.93 0.96 0.96 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.88 0.94 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.72 0.84 0.91 0.93 0.93 0.95 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.21 0.52 0.69 0.81 0.85 0.89 0.89 0.92 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97

 0 0 0.27 0.45 0.59 0.69 0.75 0.79 0.78 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.86 0.86

 0 0 0 0 0.15 0.31 0.48 0.55 0.6 0.57 0.61 0.62 0.63 0.64 0.64 0.64 0.64 0.64 0.64

 0 0 0 0 0 0 0.26 0.41 0.41 0.42 0.41 0.42 0.43 0.43 0.43 0.43 0.44 0.44 0.44

 0 0 0 0 0 0 0.06 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

 1
3
0

b.2 Total accuracy values on testing data (ImgSegment1)

Exp.   1                

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.89 0.93 0.95 0.97

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.97 0.98 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.98 0.98 0.99 0.99 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.96 0.97 0.99 0.99 0.99 0.99 0.99 0.99

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.9 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99 1 1 1

 0.86 0.86 0.86 0.86 0.87 0.91 0.95 0.98 0.99 0.99 0.99 1 1 1 1 1 1 1 1

 0.86 0.86 0.87 0.93 0.96 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.88 0.94 0.97 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.97 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.98 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1

 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1

 0.93 0.96 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1

 0.86 0.9 0.93 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.86 0.86 0.87 0.89 0.91 0.93 0.94 0.95 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.86 0.86 0.86 0.86 0.86 0.87 0.89 0.9 0.91 0.9 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92

 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

 1
3
1

4. Balance2

a.1 G-means values on training data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.03 0.06 0.1 0.21 0.25

 0 0 0 0 0 0 0 0 0 0.03 0.06 0.1 0.16 0.24 0.28 0.27 0.28 0.32 0.32

 0 0 0 0 0 0 0.03 0.03 0.08 0.24 0.3 0.41 0.47 0.52 0.59 0.64 0.65 0.67 0.68

 0 0 0 0 0 0 0.03 0.2 0.59 0.87 0.99 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 1
3
2

a.2 Total accuracy values on training data

Exp.   1                

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.96

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.95 0.98 1 1 1 1 1 1 1 1 1

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1 1 1 1 1 1 1 1 1 1 1 1

 1
3

3

b.1 G-means values on testing data (Balance2)

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.06 0.06

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1
3
4

b.2 Total accuracy values on testing data (Balance2)

Exp.   1                

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.89 0.89 0.89 0.88 0.88 0.88

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.9 0.88 0.86 0.84 0.82 0.8 0.79 0.78 0.78 0.78

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

 1
3
5

5. Car3

a.1 G-means values on training data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0.23 0.23 0.23

 0 0 0 0 0 0 0 0 0 0 0 0.07 0.21 0.25 0.26 0.28 0.34 0.36 0.37

 0 0 0 0 0 0 0 0 0.19 0.25 0.31 0.41 0.45 0.48 0.51 0.53 0.55 0.56 0.57

 0 0 0 0 0 0.14 0.28 0.43 0.49 0.54 0.58 0.6 0.68 0.74 0.8 0.85 0.88 0.89 0.9

 0 0 0 0.09 0.33 0.51 0.59 0.72 0.81 0.88 0.93 0.96 0.98 0.98 0.99 1 1 1 1

 0 0 0 0.14 0.42 0.71 0.87 0.97 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0.2 0.69 0.99 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0.03 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

 1
3

6

a.2 Total accuracy values on training data

Exp.   1                

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99

 0.96 0.96 1 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.97 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.98 1 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1 1 1

 1
3
7

b.1 G-means values on testing data

Exp.   1                

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.13 0.15 0.15

 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0.13 0.2 0.25 0.25 0.28 0.28

 0 0 0 0 0 0 0 0 0.11 0.18 0.24 0.31 0.37 0.43 0.49 0.49 0.5 0.51 0.51

 0 0 0 0 0 0.05 0.24 0.34 0.42 0.48 0.5 0.51 0.58 0.62 0.65 0.72 0.73 0.73 0.74

 0 0 0 0.06 0.31 0.43 0.49 0.59 0.67 0.68 0.75 0.79 0.83 0.86 0.89 0.9 0.91 0.91 0.91

 0 0 0 0.06 0.33 0.5 0.66 0.71 0.75 0.82 0.85 0.87 0.88 0.91 0.91 0.91 0.91 0.91 0.91

 0 0 0 0 0 0 0.22 0.33 0.51 0.6 0.65 0.67 0.73 0.78 0.78 0.81 0.81 0.82 0.85

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1
3
8

b.2 Total accuracy values on testing data

Exp.   1                

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98

 0.96 0.96 1 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99

 0.96 0.96 1 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

 0.96 0.96 1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

1
3
9

140

APPENDIX C

THE INFLUENCE OF PARAMETER

TO CLASSIFICATION PERFORMANCE OF NTR-LR

1. Magic data set



Exp.

Total Accuracy G-means

Training

Data

Testing

Data

Training

Data

Testing

Data

7 0.778128 0.778181 0.683088 0.683148

6.5 0.781165 0.780915 0.696242 0.696057

6 0.783636 0.783386 0.705629 0.705017

5.5 0.787605 0.787224 0.717168 0.716377

5 0.788775 0.789064 0.721262 0.721346

4.5 0.789235 0.789274 0.723532 0.723742

4 0.790142 0.790221 0.725728 0.72608

3.5 0.790457 0.790431 0.726872 0.726935

3 0.790786 0.790641 0.727796 0.727605

2.5 0.790786 0.791009 0.728064 0.728435

2 0.79097 0.791009 0.728417 0.728614

1.5 0.791115 0.791062 0.728745 0.728765

1 0.791246 0.791115 0.729006 0.7288

0.5 0.791207 0.79122 0.729011 0.729046

0 0.79122 0.791167 0.729064 0.729013

-0.5 0.79122 0.79122 0.729094 0.729106

-1 0.791259 0.79122 0.729148 0.729106

-1.5 0.791246 0.79122 0.72914 0.729106

-2 0.791233 0.79122 0.729131 0.729106

-2.5 0.79122 0.79122 0.729123 0.729106

-3 0.791246 0.79122 0.729155 0.729106

-3.5 0.791246 0.79122 0.729155 0.729106

-4 0.791259 0.79122 0.729178 0.729106

-4.5 0.791259 0.79122 0.729178 0.729106

-5 0.791259 0.79122 0.729178 0.729106

-5.5 0.791259 0.79122 0.729178 0.729106

-6 0.791259 0.79122 0.729178 0.729106

-6.5 0.791259 0.79122 0.729178 0.729106

-7 0.791259 0.79122 0.729178 0.729106

 141

2. Shuttle2to7 data set



Exp.

Total Accuracy G-means

Training

Data

Testing

Data

Training

Data

Testing

Data

7 0.924302 0.924224 0.819632 0.819522

6.5 0.932444 0.932414 0.845438 0.845388

6 0.943004 0.942966 0.87624 0.876314

5.5 0.947651 0.947586 0.889765 0.889662

5 0.952522 0.952638 0.902796 0.903074

4.5 0.955289 0.955379 0.911054 0.911491

4 0.95806 0.957897 0.918668 0.918326

3.5 0.960185 0.960259 0.924243 0.924524

3 0.961539 0.961534 0.927925 0.928053

2.5 0.963099 0.962948 0.931796 0.931552

2 0.964491 0.964397 0.935255 0.935153

1.5 0.965582 0.96531 0.937831 0.937177

1 0.966784 0.966793 0.940485 0.9404

0.5 0.967974 0.967948 0.942975 0.943

0 0.968513 0.968466 0.943998 0.943979

-0.5 0.968629 0.968569 0.944574 0.944674

-1 0.96919 0.969293 0.945959 0.946406

-1.5 0.969534 0.969483 0.946579 0.946525

-2 0.970892 0.970707 0.949637 0.949344

-2.5 0.971526 0.971414 0.951174 0.951057

-3 0.971966 0.971741 0.952169 0.951819

-3.5 0.971996 0.971724 0.952234 0.951742

-4 0.971767 0.971586 0.951665 0.951347

-4.5 0.971578 0.971483 0.951112 0.951033

-5 0.971526 0.971431 0.950893 0.95075

-5.5 0.971466 0.971379 0.950723 0.950625

-6 0.971392 0.971397 0.95053 0.950667

-6.5 0.971362 0.971362 0.950449 0.950583

-7 0.971332 0.97131 0.950376 0.950458

 142

3. LetterImg26 data set



Exp.

Total Accuracy G-means

Training

Data

Testing

Data

Training

Data

Testing

Data

7 0.9633 0.9633 0 0

6.5 0.96735 0.9673 0.331837 0.32834

6 0.96955 0.96955 0.412628 0.411954

5.5 0.970913 0.9709 0.45944 0.456928

5 0.9731 0.97295 0.53021 0.525145

4.5 0.975375 0.9751 0.596795 0.590972

4 0.97795 0.9777 0.666579 0.661034

3.5 0.9808 0.98055 0.736323 0.731471

3 0.982038 0.9818 0.769248 0.765828

2.5 0.982625 0.98235 0.784859 0.77972

2 0.982963 0.98255 0.795065 0.79078

1.5 0.983125 0.9828 0.802176 0.799254

1 0.983213 0.983 0.806941 0.805982

0.5 0.98325 0.983 0.810639 0.809256

0 0.983363 0.98315 0.813738 0.813368

-0.5 0.9834 0.98315 0.815576 0.814996

-1 0.983425 0.9831 0.816394 0.815786

-1.5 0.983425 0.9831 0.817205 0.815786

-2 0.98345 0.9833 0.817618 0.819102

-2.5 0.98345 0.9833 0.817618 0.819102

-3 0.983463 0.98335 0.817825 0.819922

-3.5 0.983463 0.98335 0.817825 0.819922

-4 0.983463 0.98335 0.817825 0.819922

-4.5 0.983488 0.98335 0.818241 0.819922

-5 0.983488 0.98335 0.818241 0.819922

-5.5 0.983488 0.98335 0.818241 0.819922

-6 0.983488 0.98335 0.818241 0.819922

-6.5 0.983488 0.98335 0.818241 0.819922

-7 0.983488 0.98335 0.818241 0.819922

 143

APPENDIX D

MATLAB CODE OF PROPOSED NTR-KLR ALGORITHM

x=xtr;
n=size(x,1);

y=ytr;

xval=xts;
n1=size(xval,1);

yval=yts;

%rbf
sigma2=sigma*sigma;
gamma=(1/(2*sigma2));
XXh = sum(x.^2,2)*ones(1,n);
ktr = XXh+XXh'-2*x*x';
ktr = exp(-gamma*ktr);

% kernel matrix testing
%rbf
XXh1 = sum(x.^2,2)*ones(1,n1);
 XXh2 = sum(xval.^2,2)*ones(1,n);
 kts = exp(-gamma*kts);
 kts = kts';

% adding bias term
% training
[n,n]=size(ktr);
ktr=[ktr ones(n,1)];
[n,m]=size(ktr);
ktrp=[ktr' zeros(m,1)];
[m,m]=size(ktrp);

[n1,n]=size(kts);
kts=[kts ones(n1,1)];
[n1,m]=size(kts);

ktry=zeros(n,m);
for j=1:m;
 for i=1:n;
 ktry(i,j)=ktr(i,j)*y(i);
 end;
end;

Id=eye(m);Id(m,m)=0;
alpha=zeros(m,1);

h=ones(1,n)*log(1+exp(-ktry*alpha))+(lambda/2))*alpha;

for iterKLR = 1:30
 old_alpha = alpha;
 old_h = h;

 144

 % s1 is n by 1
 % s1 = 1-sigma;
 s1 = 1./(1+exp(ktry*alpha));
 v = s1.*(1-s1);

 ktryv=zeros(n,m);
for j=1:m;
 for i=1:n;
 ktryv(i,j)=ktry(i,j)*v(i);
 end;
end;
 g = -ktry'*s1+ lambda*(Id*ktrp)*alpha;
 H = ktryv'*ktry + lambda*(Id*ktrp);

 [s,itercg,rtr] = cg_klr(H, g);
 alpha = alpha + s;

 if nargout > 1
 run.alpha(:,iterKLR) = alpha;
 end

 etr=abs(h - old_h)/abs(h);

 if etr < 2.5
 break
 end
end

function [s,itercg,rtr] = cg_klr(H, g)

b = -g;
m = length(b);
maxiter = 1000;
errtol = 0.005;
s = zeros(m,1);
r = b;
rtr = r'*r;
d = r;

itercg = 0;
while rtr > errtol && itercg < maxiter
 itercg = itercg+1;

 Hd = H*d;
 a = rtr / (d'*Hd);
 s = s + a * d;

 old_rtr = rtr;
 r = r - a * Hd;
 bta = rtr / old_rtr;
 d = r + bta * d;

end;

 145

APPENDIX E

MATLAB CODE OF PROPOSED NTR-LR ALGORITHM

x=xtr;
y=ytr;
xval=xts;
yval=yts;

% adding bias term
[n,d]=size(x);
x=[x ones(n,1)];
[n,p]=size(x);

[n1,d]=size(xval);
xval=[xval ones(n1,1)];
[n1,p]=size(xval);

xy=zeros(n,p);
for j=1:p;
 for i=1:n;
 xy(i,j)=x(i,j)*y(i);
 end;
end;

Id=eye(p);Id(p,p)=0;
beta=zeros(p,1);
h=ones(1,n)*log(1+exp(-xy*beta;

for iterRLR = 1:30
 old_beta = beta;
 old_h = h;
 % s1 = 1-sigma
 % s1 is n by 1
 s1 = 1./(1+exp(xy*beta));
 v = s1.*(1-s1);

 xyv=zeros(n,p);
for j=1:p;
 for i=1:n;
 xyv(i,j)=xy(i,j)*v(i);
 end;
end;

 g = -xy'*s1+ lambda*Id*beta;
 H = (xyv'*xy) + lambda*Id;
 [s,itercg,rtr] = cg_reglr(H, g);
 beta = beta + s;

h=ones(1,n)*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta;
 if nargout > 1
 run.beta(:,iterRLR) = beta;
 end
 etr=abs(h - old_h)/abs(h);
if etr < 1e-2
 break

 146

 end
end
% prediction with training data
p1tr=1./(1+exp(-x*beta));

% labelling of training data

class=sign(p1tr-(1/2));

% prediction with testing data
p1val=1./(1+exp(-xval*beta));

% labelling of testing data
classval=sign(p1val-(1/2));

function [s,itercg,rtr] = cg_reglr(H,g)

b = -g;
p = length(b);
maxiter = 200;
errtol = 0.005;
r = b;
rtr = r'*r;
d = r;

itercg = 0;
while rtr > errtol && itercg < maxiter
 itercg = itercg+1;

 Hd = H*d;
 s = s + a * d;

 old_rtr = rtr;
 r = r - a * Hd;
 rtr = r'*r;
 bta = rtr / old_rtr;
 d = r + bta * d;

end;

 147

APPENDIX F

MATLAB CODE OF PROPOSED AB-WKLR ALGORITHM

x=xtr;
n=size(x,1);

y=ytr;

Smin=lnsigma;
Smax=lnsigma+du;

%parameter
sigmap=exp(Smax:step:Smin);
nS=size(sigmap,2);

%initialization
we = zeros(n,1);
we(1:n) = 1/n; % weight initialization
PSI = [];
Alpha =[];
H = [];
SIGMA=[];

iterRBF=0;
 for S=1:nS;
 sigma=sigmap(S);

%rbf train
sigma2=sigma*sigma;
gamma=(1/(2*sigma2));
XXh = sum(x.^2,2)*ones(1,n);
ktr = exp(-gamma*sqe);
[n,n]=size(ktr);

% adding bias term
% training
ktr=[ktr ones(n,1)];
[n,m]=size(ktr);

 for t=1:30;
 %fprintf('new training data...\n');
 [alpha,iterKLR,iterCG] = adaweight_trklr(ktr,y,lambda,we);
 f = ktr*alpha;
 p1tr=1./(1+exp(-f));
 ht=sign(p1tr-0.5);

 n_ierr = sum(i_err);
 E = (we'*i_err);%weighted error of ht
 if E == 0
 %E = 1e-20;
 break
 end
 if E > 0.5

 148

 break
 end

 iterRBF=iterRBF+1;

 psi = 0.5*log((1-E)/E);

 Alpha = [Alpha alpha];
 SIGMA=[SIGMA sigma];
 H = [H ht];
 PSI = [PSI psi];

 for i = 1:n
 %we(i) = we(i)*exp(-PSI(:,t)*(y(i).*h(i)));

 m(i)=y(i).*f(i);

 if m(i) <= 0
 g(i)=exp(PSI(:,t))+ 1*(1-exp(PSI(:,t)))*(1-exp(y(i).*f(i)));
 else
 g(i)=exp(-PSI(:,t))+ 1*(1-exp(-PSI(:,t)))*exp(-(y(i).*f(i)));
 end
 we(i) = we(i)*g(i);

 end

 we = (we/sum(we));%A.*i_err;
 end
 end

iterSi=iterRBF/nS;
Ftr = zeros(n,1);
for t=1:T
ftr= PSI(:,t)*H(:,t);
Ftr=Ftr+ftr;
class=sign(Ftr);
end

%validation
%data test

xval=xts;
n1=size(xval,1);

yval=yts;

HTS=[];
Fts=zeros(n1,1);

for t = 1:T
 %rbf test
 sigma2=SIGMA(:,t)*SIGMA(:,t);
 gamma=(1/(2*sigma2));
 XXh1 = sum(x.^2,2)*ones(1,n1);
 XXh2 = sum(xval.^2,2)*ones(1,n);

 149

 kts = exp(-gamma*sqe1);
 kts = kts';
 [n1,n]=size(kts);

 % adding bias term
 % testing
 kts=[kts ones(n1,1)];
 [n1,m]=size(kts);

 f1 = kts*Alpha(:,t);
 p1ts=1./(1+exp(-f1));
 hts=sign(p1ts-0.5);
 HTS=[HTS hts];
 fts= PSI(:,t)*HTS(:,t);
 Fts=Fts+fts;
 classval = sign(Fts);
end

function [alpha,iterKLR,itercg] = adaweight_trklr(ktr,y,lambda,we)

[n,m]=size(ktr);
ktrp=[ktr' zeros(m,1)];
[m,m]=size(ktrp);

ktry=zeros(n,m);
for j=1:m;
 for i=1:n;
 ktry(i,j)=ktr(i,j)*y(i);
 end;
end;

we=we/mean(we);
ktryw=zeros(n,m);
for j=1:m;
 for i=1:n;
 ktryw(i,j)=ktry(i,j)*we(i);
 end;
end;

Id=eye(m);Id(m,m)=0;
alpha=zeros(m,1);

h=(we'.*ones(1,n))*log(1+exp(ktry*alpha))+(lambda/2)*alpha'*(Id*ktrp)*

alpha;

for iterKLR = 1:30
 old_alpha = alpha;
 % s1 is n by 1
 % s1 = 1-sigma;
 s1 = 1./(1+exp(ktry*alpha));
 v = s1.*(1-s1);

ktrywv=zeros(n,m);
for j=1:m;
 for i=1:n;
 ktrywv(i,j)=ktryw(i,j)*v(i);
 end;
end;

 150

 g = -ktryw'*s1+ lambda*(Id*ktrp)*alpha;
 H = ktrywv'*ktry + lambda*(Id*ktrp);

 [s,itercg,rtr] = cg_klr(H, g);

h=(we'.*ones(1,n))*log(1+exp(ktry*alpha))+(lambda/2)*alpha'*(Id*ktrp)*

alpha;

 if nargout > 1
 run.alpha(:,iterKLR) = alpha;
 end

 etr=abs(h - old_h)/abs(h);

 if etr < 2.5
 break
 end
end

 151

APPENDIX G

MATLAB CODE OF PROPOSED AB-WLR ALGORITHM

x=xtr;

% adding bias term
[n,d]=size(x);
x=[x ones(n,1)];
[n,p]=size(x);

y=ytr;

Lmin=lnlambda;
Lmax=lnlambda+du;

%parameter
lambdap=exp(Lmax:step:Lmin);
nL=size(lambdap,2);

%initialization
we = zeros(n,1);
we(1:n) = 1/n; % weight initialization
PSI = [];
BETA =[];
H = [];
LAMBDA=[];

iterWB=0;
for l=1:nL;
 lambda=lambdap(l);

 for t=1:30;
 %fprintf('new training data...\n');
 [beta,iterRLR,itercg,rtr] = adaweight_trreglr(x,y,lambda,we);

 f = x*beta;
 ht=sign(p1tr-0.5);
 i_err = (ht~=y);
 n_ierr = sum(i_err);

 E = (we'*i_err);%weighted error of ht
 if E == 0
 % E = 1e-20;
 break
 end

 if E > 0.5
 break
 end

 152

 iterWB=iterWB+1;

 psi = 0.5*log((1-E)/E);

 BETA = [BETA beta];
 H = [H ht];
 PSI = [PSI psi];
 LAMBDA=[LAMBDA lambda];

 for i = 1:n
 %we(i) = we(i)*exp(-PSI(:,t)*(y(i).*h(i)));

 m(i)=y(i).*f(i);

 if m(i) <= 0
 g(i)=exp(PSI(:,t))+ 1*(1-exp(PSI(:,t)))*(1-exp(y(i).*f(i)));
 else
 g(i)=exp(-PSI(:,t))+ 1*(1-exp(-PSI(:,t)))*exp(-(y(i).*f(i)));
 end

 we(i) = we(i)*g(i);
 end

 we = we/sum(we);

 end
end

iterLi=iterWB/nL;
T = size(PSI,2);

for t=1:T
ftr= PSI(:,t)*H(:,t);
Ftr=Ftr+ftr;
class=sign(Ftr);
end

%validation
%data test
xval=xts;

% adding bias term
[n1,d]=size(xval);
xval=[xval ones(n1,1)];
[n1,p]=size(xval);

yval=yts;

HTS=[];
Fts=zeros(n1,1);

for t = 1:T
 f1 = xval*BETA(:,t);
 p1ts=1./(1+exp(-f1));
 hts=sign(p1ts-0.5);
 HTS=[HTS hts];
 fts= PSI(:,t)*HTS(:,t);

 153

 Fts=Fts+fts;
 classval = sign(Fts);
end

function [beta,iterRLR,itercg,rtr]=adaweight_trreglr(x,y,lambda,we)

[n,p]=size(x);

xy=zeros(n,p);
for j=1:p;
 for i=1:n;
 xy(i,j)=x(i,j)*y(i);
 end;
end;

we=we/mean(we);
for j=1:p;
 for i=1:n;
 xyw(i,j)=xy(i,j)*we(i);
 end;
end;

Id=eye(p);Id(p,p)=0;
h=(we'.*ones(1,n))*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta;

for iterRLR = 1:30
 old_beta = beta;
 old_h = h;
 % s1 = 1-sigma
 % s1 is n by 1
 s1 = 1./(1+exp(xy*beta));
 v = s1.*(1-s1);

 xywv=zeros(n,p);
for j=1:p;
 for i=1:n;
 xywv(i,j)=xyw(i,j)*v(i);
 end;
end;

 g = -xyw'*s1+ lambda*Id*beta;
 H = (xywv'*xy) + lambda*Id;

 [s,itercg,rtr]=cg_reglr(H, g);
 beta = beta + s;

h=(we'.*ones(1,n))*log(1+exp(-xy*beta))+ lambda*beta'*Id*beta;

 if nargout > 1
 run.beta(:,iterRLR) = beta;
 end

 etr=abs(h - old_h)/abs(h);

 if etr < 1e-2

 154

 break
 end
end

