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CHAPTER 1

INTRODUCTION

1.1  Background of Study

AC Squirrel cage induction motors are the most important alternating current (ac)
machine in industries due to their advantages of reliability, rugged construction, easy
maintenance, and cost-effective pricing. More than 90% of all motors used in industry
worldwide are ac induction motors (M.Peltola, 2002). Based on studies, the most
common fault occurrences of induction motor are relate on bearing faults (Albrecht,
Appiarius, McCoy, Owen, & Sharma, 1986; "IEEE Recommended Practice for the
Design of Reliable Industrial and Commercial Power Systems,” 1988; Thomson &
Fenger, 2001). Yet, (Hashemian, 2011; Nandi, Toliyat, & Li, 2005; Schoen, Habetler,
Kamran, & Bartfield, 1995) have identified that, up to 40%-50% of machinery defects
are related to bearing faults. This has reveals that bearings are the primary cause and

most severe and common fault in the motor system.

Bearing is an important component and are used extensively in most rotating
machines including electrical and mechanical system to support static and dynamic
loads. Their performance is of the utmost importance in automotive industries,
aerospace turbo machinery, chemical plants, power stations, and process industries that
require precise and efficient performance. Any bearing in operation will unavoidably
fail at some point. If one of the bearings fails, not only the machine, but also the
assembly line stops and the deriving casts may be extremely high. In machinery system,
they are many root causes that can lead to bearing failure such as improper lubricant,
high temperatures, contamination, misalignment, corrosion, overheating, excessive
load, thermal overload, fatigue and improper mounting (Austin H Bonnett, 1992; A. H.
Bonnett, 1993; "Chapter 3 - Machinery Component Failure Analysis,” 1999; Huang,
Yang, Zhou, & Litak, 2019; Vencl & Rac, 2014).



This research is focuses on thermal overload as a root cause that lead to bearing
failure. Thermal overload situation is occurred when high load torque values is
produced in the motor, then it generates current on the motor beyond the nameplate
rated value (draw more current) causes an abnormal temperature (Karmakar, 2016; M
& Ushakumari, 2011; Rowlett, 2019 ; Schatz, 1971; Siddique, Yadava, & Singh, 2005)
and subsequently produces excessive heating on induction motor (Gonzalez-Cordoba,
Osornio-Rios, Granados-Lieberman, Romero-Troncoso, & Valtierra-Rodriguez, 2018).
In addition, this excessive heating also will accelerate the process of bearing failure
(Russell Wanhill, 2019; Schoen, Habetler, Kamran, & Bartheld, 1994; Siddiqui, Sahay,
& Giri, 2015). According to the standards on Squirrel-Cage induction motor provided
by the norms National Electrical Manufacturers Association (NEMA) Guide [MG 1-
2011] , variation from nameplate amperes for alternating-current motors is operated at
rated voltage, rated frequency, and rated horsepower output, the input in amperes shall
not vary from the nameplate value by more than 10 percent [MG 1-12.47]
("Information Guide for General Purpose Industrial AC SmallandMedium Squirrel-
Cage Induction Motor Standards,” 2014). In other work, over current flowing will
potentially generate negative effects such as thermal stress (Sengupta, 2016), where it
consequences cause the failure of motor parts such as stator, locked rotor, shaft frame
and bearing part (Banerjee, Tiwari, Vico, & Wester, 2008; Ojaghi, Sabouri, & Faiz,
2014) and may lead to induction motors failure (Gonzalez-Cordoba, Osornio-Rios,
Granados-Lieberman, Romero-Troncoso, & Valtierra-Rodriguez, 2017; Gonzalez-
Cordoba et al., 2018; Mike Eby, 2011). Therefore, if these potential problems are not
identified and analysed promptly, sooner or later it will lead to a bearing problem that
can affect the motor performance such as fatal breakdown of motor to freeze up and
burn out. Thus, predicting the degradation process of bearings before they reach the
failure is extremely important. To prevent potential problem occurred, early condition
monitoring detection of such incipient faults is required as prevention for bearing
component and many unexpected mechanical machinery performance degradation and
malfunctions, to avoid sudden breakdown, minimize down-time, reduce maintenance
cost, and extend the lifetime of machines. Thus, by monitoring the condition or health
of the bearing component, failure can be predicted at an early stage and the appropriate
maintenance can be scheduled or other actions can be taken to avoid the failure occurs.



Nowadays, there are a few current conditions monitoring technologies that been
used in industry as a preventive maintenance including vibration, sound, lumped
parameter based thermal and acoustic emission monitoring analysis but all these
monitoring methods require specialized expertise to identify the health of the bearing
condition. The use of these sensor-based methods become difficult and led to long time
consumption in determining the exact bearing failure due to data acquisition from the
bearing through vibration signal induces a large amount of signal noise during machine
operation, this make difficult to identify the signal obtained that usually drowned out in
other noise emanating from the machine which will challenge the later fault diagnosis.
Additionally, sensor-based method also sometimes invasive since it is often requires the
installation of additional sensors and probes to obtain the vibration data. Besides, by
using lumped parameter thermal monitoring, its function is to tune the parameters of a
thermal model for overload protection, however, when the temperature rises in the
region of the fault, this sensor is too slow to detect the incipient fault before it
progresses into a more severe faults (Mehala, October 2010). Therefore, infrared
thermal imaging-based monitoring approaches has been successfully proposed and
utilized recently as an interesting complementary technique for several condition
monitoring applications as one of the method to detect fault at the earlier stage
including in rotating machinery application (Glowacz & Glowacz, 2017; Olivier
Janssens et al., 2015; Osornio-Rios, Antonino-Daviu, & Romero-Troncoso, 2019;
Resendiz-Ochoa, Osornio-Rios, Benitez-Rangel, Romero-Troncoso, & Morales-
Hernandez, 2018; Singh, Anil Kumar, & Naikan, 2016). This infrared thermography
also has been established as an effective tool in many different applications (Bortoni,
Siniscalchi, & Jardini, 2010; Cetingul & Herman, 2008; Duberstein et al., 2012; Jadin,
Ghazali, & Taib, 2014; Jadin, Ghazali, Taib, & Huda, 2012; Kamaruddin, Sunard,
Ghazali, & Hamid; Zin, Hawari, & Khamisan, 2016). It is a non-destructive testing
(NDT) method that measures the temperature and can discern the thermal profiles of a
body remotely and provides the thermal image of the entire component or machinery
that allows quick detection of potential problem/ defects before failure. Other than that,
this tool also very quick monitoring system and non-contact technique which can
monitor the induction motor without any interference physical contacts to the whole
system. Due to all of these advantages, it makes this technique a very interesting option
to at least complement the diagnosis provided by other well-known techniques, such as

acoustic emission signal, motor current analysis or vibration analysis. This has been

3



motivated to use this infrared thermograph monitoring tool in this study. By capture the
infrared (IR) energy transfer (thermal radiation pattern) from bearing motor component
to its environment, it records the surface temperature distribution in the form of
thermogram and produces a real-time image in a colour palette where hotter objects
appear brighter and cooler objects appear darker. Discoloration observed from the
infrared image is one of the failure pattern which should be considered as a key
indicator in order to diagnose the failure of motor bearing (Austin H Bonnett, 1992).
According to (Rolf Hopple, 2007), it has described that early indications for potential
bearing problems are an increased temperature (discoloration), higher vibration levels
or higher noise levels of the motor. Thus, predicting the degradation process of bearings
before they reach the failure is extremely important. To be accurately, an image
processing approach using computer vision technology Is required to process the
thermogram obtained could be analysed and predicted the failure of the infrared image

bearing machine at earlier stage with more easily.

Over the last decades, the arrival of computer assisted data acquisition by video
cameras has made it easy for further image processing and analysis. Currently, an
increasing number of research works are concentrating on the use of image processing
and computational intelligence techniques. There are a few researchers have taken their
interest in image processing technique incorporated with an IRT system for diagnosing
the condition of induction machine due to different mechanical faulty (misalignment
faulty, mass-unbalance faulty, bearing faulty, fan faulty, cooling system faulty, inter
turn- faulty, outer-raceway faulty, broken rotor bar faulty) by evaluating the Infrared
image (O. Janssens, Loccufier, & Hoecke, 2019; Olivier Janssens et al., 2015; Jia, Liu,
Vong, & Pecht, 2019; Karvelis et al., 2014; Resendiz-Ochoa, Osornio-Rios, Benitez-
Rangel, Hernandez, & Romero-Troncoso, 2017; Resendiz-Ochoa et al., 2018). In their
work, various image processing techniques are employed in the segmentation and
feature extraction process to diagnose the condition of induction motor based on
thermal image investigation of the failure mode inside the motor. However, this study is
focuses on thermal image bearings component. From the literature review, there is no
further studies have been found to determine early detection of thermal overloading for
bearing failure prediction based on thermal image processing techniques. This has been
motivated to focus this research. Therefore, development the new algorithm of an early

detection of thermal overloading for bearing failure prediction based thermal image



processing technique has been done. The focus on the developed algorithm is to solve
the problem of feature extraction methods which is to retrieve the significant features of
the bearing thermal image in order to detect the early bearing failure state due to
thermal overloading effect. All extracting the hottest or coldest regions in the bearing

thermal images was investigated in this thesis.
1.2 Problem Statement (buat semula)

Early detection of thermal overloading for bearing failure prediction based on
thermal image processing techniques is the focuses In this research. Thermal
overloading is one of the root causes that can lead to bearing failure which is focuses of
this research. It is occurred when high load torque values is produced in the motor and
generates current on the motor beyond the nameplate rated value (draw more current).
This situation will causes an abnormal temperature and produces excessive heating that
will accelerate the process of bearing failure. Subsequently, thermal overload also will
potentially generate negative effects such as thermal stress, where it consequences
cause the failure of motor parts such as bearing part and can affect the motor
performance such as fatal breakdown of motor to freeze up and burn out. In machinery
system, bearing is an important component and are used extensively in most rotating
machines including electrical and mechanical system. Any bearing in operation will
unavoidably fail at some point. If one of the bearings fails, not only the machine, but
also the assembly line stops and the deriving costs may be extremely high. Thus,
predicting the degradation process of bearings before they reach the failure is extremely
important. To prevent potential problem occurred, early condition monitoring detection
of such incipient faults is required for solving and as prevention for bearing component
and many unexpected 'mechanical machinery performance degradation and
malfunctions, to avoid sudden breakdown, minimize down-time, reduce maintenance
cost, and extend the lifetime of machines. Thus, by monitoring the condition or health

of the bearing component, failure can be predicted at an early stage.

Nowadays, there are a few current conditions monitoring technologies that been
used in industry as a preventive maintenance including lumped parameter based
thermal, vibration, sound and acoustic emission monitoring analysis but all these
monitoring methods require specialized expertise to identify the health of the motor
bearing condition. The use of these sensor-based methods become difficult and led to



long time consumption in determining the exact motor bearing failure due to data
acquisition from the bearing through vibration signal induces a large amount of signal
noise during machine operation, this make difficult to identify the signal obtained that
usually drowned out in other noise emanating from the machine which will challenge
the later fault diagnosis. Additionally, sensor-based method also sometimes invasive
since it is often requires the installation of additional sensors and probes to obtain the
vibration data. Besides, by using lumped parameter thermal monitoring, its function is
to tune the parameters of a thermal model for overload protection, however, when the
temperature rises in the region of the fault, this sensor is too slow to detect the incipient
fault before it progresses into more severe faults. To address these issues, infrared
thermal imaging-based monitoring approaches has been successfully proposed and
utilized as an interesting complementary technique for condition monitoring of the
bearing in this research due to its quick detection of potential problems or defects that
will reduce troubleshooting time and preventative maintenance. This approach doesn’t
require human expert to interpret the thermal images and offer non-contact inspections
that are extremely safe, reducing the need for predictive maintenance teams to put
themselves in harm’s way when performing an inspection. Subsequently, by combining
this infrared thermal imaging system with an image processing approach; early
detection of motor bearing failure conditions based on thermal imaging techniques are
investigated. This thermal image processing approach will be processed by using
MATLAB software.

Since there is no previous research focusing on the detection of thermal overload for
bearing failure predictions at early stage, this research was motivated to look further for
the suitable and efficient feature extraction methods to retrieve the significant features
that can distinguish the condition of thermal bearing image failure prediction which
further provides a more accurate solution to image processing system performance.
From the previous literature, the ability of the Gabor Wavelet Transform (GWT)
method for solving the feature extraction method to identify the presence of abnormal
tissues in breast thermal images at early stages (Suganthi, 2014), motivated this study to
develop the GWT method for extracting features of thermal overload to differentiate the
condition of thermal bearing image. However from the experimental that has carried
out, the result shows the accuracy performance for this GWT based feature extraction

method and classification process is not fulfilled to distinguish the condition of thermal



bearing images in this study. This might be caused by the environmental condition at
the time of capture the image which causes the features detected on thermal images is
instable which contains noise and less contrast. Consequently, to address this issue,
some modification image enhancement for thermal image features in image processing
technique along with GWT-based extraction features is needed. From the previous
review, the ability of the histogram equalization method for solving image enhancement
method in thermal images for object detection and matching (Akcay & Avsar, 2017),
motivated this study to employed this histogram equalization and GWT method
respectively for solving feature extraction issues. Image enhancement method will
adjust the low quality digital thermal images to produce more suitable image for
extraction and classification by enhance the contract and remove the image noise
involved. This process is carried out to improve the feature extraction and classification
performance of thermal image processing system Therefore; this has led to the
development of a new algorithm based feature extraction process, named as Enhanced
Gabor Features (EGF). All the processing of bearing thermal images condition
including data acquisition, feature extraction and classification processing were
investigated in this thesis. Generally, the problem statements of this research can be

summarized as follow:
(a) Weakness of conventional sensor-based methods such as:

-Lumped parameter based thermal too slow to detect the incipient fault before it

progresses into more severe faults.

Vibration, sound and acoustic emission sensor-based difficult and led to long time
consumption in determining the signal obtained that usually drowned out in other noise

emanating from the machine which will challenge the later fault diagnosis.

(b) The implementation of feature extraction based on GWT algorithm in thermal
images bearing has led to inaccurate solution in term of output learning performance for
classification due to instability features and generates low quality to thermal images

bearing.



(c) The accuracy performance for classification according to utilizing GWT based

feature extraction algorithm produce inaccurate solution in order to distinguish the

condition of thermal images bearing.

(d) The execution of GWT-based feature extraction algorithm for solving feature

extraction

in image processing system performance in order to differentiate thermal

image bearing conditions is not efficient.

Therefore, the main research questions were set up as follows:

(i)

(ii)

(iii)

(iv)

How thermal overload for a bearing failure prediction database be developed

by using infrared thermography (IRT) monitoring technique?

How can an Enhanced Gabor features (EGF) method be developed for
solving thermal overloading for bearing thermal images failure conditions at

early detection?

What is the algorithm method based thermal image processing technique to
classify the condition of thermal overloading for bearing thermal images

failure conditions in early detection?

Will the developed algorithm method be the efficient thermal imaging
technique to solve image processing system performance for early detection
of thermal overloading for bearing failure prediction based thermal image

processing technique?

1.3 Objectives of the Study

Based on the research questions, this study embarked on the following research

objectives:

(i)

(ii)

To develop a new thermal imaging algorithm for three phase induction
motor bearing failure detection based on the Gabor Wavelet Transform
(GWT)-based Feature Extraction method.

To identify the performance of a new thermal imaging algorithm by

classifying the conditions of thermal induction motor bearing image by



using Multilayer Artificial Neural Networks (MLANNSs) and Linear
Thresholding (LT) techniques.

(i) To validate the performance of a new thermal imaging algorithm as a
solution of feature extraction in image processing system performance
by comparing the simulated accuracy results with the Gabor Wavelet
Transform (GWT) technique. as well as comparing it with two other
methods which are feature extraction based on HSV color method and

I*a*b color method.
1.4 Scopes of the study (perbaiki)

Firstly, the database is collected in the morning in indoor area Power laboratory in
Faculty of Electrical &Electronic Engineering, University Malaysia Pahang (UMP). In
this work, the monitoring systems were carried out by using thermography camera
FLIR A615 that has IR resolution 640 x 480 pixels at a distance of 0.5m. The sensor
used in the experiments for this study is a long-wave IR camera. The details main

specification of thermal camera used as indicated in Table 1.1.

Table 1.1 Specification of thermal camera

Thermal Camera Rated Value

FLIR A615 -IR resolution: 640 x 480 pixels
-80°(H) x 64.4°(V) FoV
-20°C to +2000°C Object Temp
Range
-8 Lens Options
-16-bit 640 x 480 pixel images at
50 Hz, signal, temperature linear,
and radiometric
-Thermal sensitivity/NETD: <
0.05°C @ +30°C (+86°F) / 50 mK
-Ethernet type: Gigabit Ethernet

Afterwards, the specification of induction motor used in this research is a 1-hp,
three phase asynchronous squirrel cage machine industrial version (SE2663-1K). The

details main specification of induction motor operated as denoted in Table 1.2.



Table 1.2 Specification of Squirrel cage Induction Motor (SE2663-1K)

Induction Motor Rated Value
Rated Voltage 400/230 V, 50Hz
Rated Current 1.8 Ampere

Rated Speed 1360 rpm
Cos phi 0.8

Dimension 340x210x210
Weight 9 kg

In this experiment, to obtain a dataset of thermal images for bearing conditions,
the thermal load torque effect is applied to the motor. Load torque is proportional to
stator current value which is motor current varies in relation to the amount of load
torque applied. With increased load, the current also will increases as well. In this
study, there are three conditions of thermal image bearing obtained the effect of load
torque and stator current imposed on motor; normal, warning and abnormal condition.
To obtain the normal state of the thermal bearing image, the need current output
generated Is under rated current motor which is below 1.8 Ampere. For warning state,
thermal overload condition is created manually by increase load torque value cause the
stator current also increase beyond the rated current value. However, the value of
current in this region is still allowed by NEMA which is an additional 10% after rated
value current [MG 1-12.47]. Meanwhile for abnormal condition, it is observed when the
stator current generated in the motor beyond the 10% condition allowed by the NEMA.
All the experiment data acquired is specified in the Table 1.3 as well as the entire
thermal image produced is stored directly to the PC to be processed by MATLAB

software.

Table 1.3Load torque , stator current acquired and thermal image bearing conditions

Load Torque value  Current value Thermal
(N-m) (Ampere) images Bearing
0 0 Normal
0-0.2 0-0.55 Normal
0.2-04 0.55-0.8 Normal
0.4-0.8 0.8-1.8 Normal
0.8-2.0 1.8-1.98 Warning
0.8-2.0 1.98-2.0 Abnormal

Secondly, this research was aimed on developing an Enhanced Gabor Features (EGF)

algorithm method based on thermal color for early detection of thermal overloading for

10



bearing thermal images failure conditions. An algorithm was developed to retrieve the
significant features in order to prove that the presence of abnormal in the failure bearing

thermal image due to thermal overloading effects could be identified in early detection.

Thirdly, the classification approaches was proposed by using Artificial Neural Network
(ANN) method and Linear Thresholding (LT) method to classify and distinguish the
selected features of bearing thermal images conditions which further provides a more
accurate solution to image processing system performance in this research as well as a
quantitative verification in this research. The ratio that is used in the classification

process is 70% for training, 15% for testing and 15% for validation process.

Lastly, the validation process is done by compare the performance of Enhanced
Gabor Features (EGF) algorithm method as a solution in image processing system
performance by comparing the simulated accuracy results with the comparative studies

with LaB colour method, HSV colour method and Gabor Wavelet Transform method
1.5 Research Significance (Perbaiki)

Based on the Gabor Wavelet Transform's method findings in this study, the
presence of noise in an thermal image has reduce thermal image quality and has
influence the accuracy performance in digital image processing system. In this work, a
successful image feature extraction is essential to provide thermal image processing
process accurately. Hence, the proposed Enhanced Gabor features (EGF) based feature
extraction method in this work, it was managed to successfully address the low quality
digital thermal images in order to produce more suitable images for extraction and
classification process. This EGF method have performed to retrieve the significant
Gabor features at different scales and orientations in order to identify the presence of
normal, warning and abnormal for bearing thermal image due to thermal overloading
effects at early stage. The ability the image enhancement process by adjusting the
intensities of thermal image pixels in Enhanced Gabor features (EGF) method has
enhanced the contrast and removes the image noises which subsequently enhance better
features of an image. This result also will help improve the extraction performance of in

thermal image processing system.
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Second, this research also aims to improve the accuracy of classification
performance of thermal image processing technique which is a quantitative verification
system by classifying the features of bearing thermal images conditions using the
Acrtificial Neural Network (ANN) and Linear Thresholding (LT) methods. The best

classifier is selected which give a better accuracy solutions.
1.6 Thesis Organization (Perbaiki)

This thesis is divided into five main chapters. Below is a brief description of the
chapters contained in this thesis.

Chapter 1: This chapter presents an introduction to the whole thesis. It introduces
the background of this research and motivation of this study, the problem statements,

research objectives, scope of the research as well as its significance.

Chapter 2: This chapter describes the literature review of the related studies of this
research. All important aspects such as condition monitoring based infrared thermal
camera, bearing, and image processing method involved will briefly discussed. This
chapter also focuses particularly on feature extraction methods used in thermal
overloading for thermal bearing image failure predictions such as the HSV method,
LaB method, and Gabor Wavelet Transform (GWT), which ultimately are motivated to

develop a new feature extraction method namely Enhanced Gabor Features (EGF)

Chapter 3: This chapter discusses the methodology of thermal image processing in
development of early detection of thermal overloading for bearing failure prediction
using the Enhanced Gabor Features (EGF) feature extraction method. In this section the
description of the related hardware and software to carry out the experiment are
presented. Other method's methodologies (HSV, LaB and GWT approaches) as a
comparison also will be presented in this chapter. All the thermal image processing

involved will be thoroughly explained in separate sections in this chapter.

Chapter 4: This chapter presents the findings of thermal image processing of
thermal overload for bearing failure prediction using the Enhanced Gabor Features
(EGF) feature extraction method. The comparison with findings of other methods is
also denoted in this chapter to prove that the performance accuracy obtained for the

EGF-based feature extraction method provides a good solution in this thesis. Other
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methods involved are HSV, LaB and GWT approaches. All the thermal image

processing involved will be thoroughly explained in separate sections in this chapter.

Chapter 5 provides conclusions for the objectives of this research based on the
attained findings. This is followed by few suggestions that can be implemented to

further improve the developed method to be more effective in future applications.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

kegagalan pada bearing motor boleh terjadi dari banyak faktor. salah satu darinya
adalah kesan dari overloading dan selalui dijumpai dalam application. daripada
literatures yang sedia ada, tiada lagi kajian yang fokus pada kerosakan bearing kesan
daripada overloading ini keatas image processing dengan menggunakan thermal

camera. ini menyebabkan termotivasi untuk membuat kajian ini.

failure on motor bearing can occur from many factors. one of them is the effect of
overloading and being found in the application. of the existing literatures, there is no
study focused on bearing damage resulting from this overloading on image processing

using a thermal camera. This led to motivation to make this study.

One of it is the effect of overloading and being found in the machinery application.
From the existing literatures, there is no research that focused on bearing faulty due to
overloading on image processing by using a thermal camera. This led to motivation to

make this study.

Bearing is an important component and are used extensively in most rotating
machines including electrical and mechanical system to support static and dynamic
loads. Their performance is of the utmost importance in automotive industries,
aerospace turbo machinery, chemical plants, power stations, and process industries that
require precise and efficient performance. Any bearing in operation will unavoidably
fail at some point. Based on studies, the most common fault occurrences of induction

motor are relate on bearing faults (Albrecht, Appiarius, McCoy, Owen, & Sharma,
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1986; "IEEE Recommended Practice for the Design of Reliable Industrial and
Commercial Power Systems,” 1988; Thomson & Fenger, 2001). Yet, (Hashemian,
2011; Nandi, Toliyat, & Li, 2005; Schoen, Habetler, Kamran, & Bartfield, 1995) have
identified that, up to 40%-50% of machinery defects are related to bearing faults. This
has reveals that bearings are the primary cause and most severe and common fault in
the motor system. In machinery system, they are many root causes that can lead to
bearing failure such as lubricant failure, contamination, misalignment, corrosion,
overheating, excessive load, fatigue and improper storage (Austin H Bonnett, 1992; A.
H. Bonnett, 1993; "Chapter 3 - Machinery Component Failure Analysis,” 1999; Huang,
Yang, Zhou, & Litak, 2019; Vencl & Rac, 2014). If these potential problems are not
identified and analysed promptly, sooner or later it will lead to a bearing problem that
can cause the fatal breakdown of motor to freeze up and burn out. Therefore, to prevent

these faults occurred, early monitoring detection of such incipient faults is required.

Since the beginning of 1990s, the development of reliable monitoring systems has
become one of the most important tasks in a wide array of industries involving rotary
machinery. It has become challenging and important task for the identification of
different machine condition which can effect productivity, quality and cost for the
industry. This condition monitoring is important as a way to avert many unexpected
mechanical machinery performance degradation and malfunctions including bearing
failure, to avoid sudden breakdown, minimize down-time, reduce maintenance cost, and
extend the lifetime of machines. Thus, by monitoring the condition or health of the
bearing component, faults can be predicted at an early stage and the appropriate

maintenance can be scheduled or other actions can be taken to avoid the failure occurs.
2.1.1 Machinery system

Electrical motor torque is proportional to the product of magnetic flux and the
armature current. Mechanical or load torque is proportional to the product of force and
distance. Motor current varies in relation to the amount of load torque applied. When a
motor is running in steady state, the armature current is constant, and the electrical
torque is equal and opposite of the mechanical torque. When a motor is decelerating,
the motor torque is less than the load torque. Conversely, when a motor is accelerating,

the motor torque is higher than the load torque.
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2.4 MOTOR STANDARDS

Worldwide, various standards exist which specify various operating and
constructional parameters of a motor. The two most widely used standards are the
National Electrical Manufacturers Association (NEMA) and the International Electro-

technical Commission (IEC).
2.4.1 NEMA

NEMA sets standards for a wide range of electrical products, including motors.
NEMA is primarily associated with motors used in North America. The standards
developed represent the general industry practices and are supported by manufacturers

of electrical equipment.
2.4.2 Classification ofNEMA Standard

The NEMA standards mainly specify four design types for AC induction motors-
Design A, B, C and D. Their typical torque-speed curves are shown in Fig. 2.2.

* Design A has normal starting torque (typically 150-170% ofrated) and relatively
high starting current. The breakdown torque is the highest of all the NEMA types. It can
handle heavy overloads for a short duration. The slip is < 5%. A typical application is

the powering ofinjection molding machines.

* Design B is the most common type of AC induction motor sold. It has a
normalstarting torque, similar to Design A, but offers low starting current. The locked
rotor torque is good enough to start many loads encountered in the industrial
applications The slip is < 5%. The motor efficiency and full-load power factor are
comparativelyhigh, contributing to the popularity of the design. The typical applications

include pumps, fans and machine tools.
* Design C has high starting torque (greater than the previous two designs, say

200%), useful for driving heavy breakaway loads like conveyors, crushers, stirring

machines, agitators, reciprocating pumps, compressors, etc. These motors are intended
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for operation near full speed without great overloads. The starting current is low. The

slip is < 5%.

* Design D has high starting torque (higher than all the NEMA motor types). The
starting current and full-load speed are low. The high slip values (5-13%) make this
motor suitable for applications with changing loads and subsequent sharp changes in the
motor speed, such as in machinery with energy storage flywheels, punch presses,shears,
elevators, extractors, winches, hoists, oil-well pumping, wire-drawing machines, etc.
The speed regulation is poor, making the design suitable only for punch presses, cranes,
elevators and oil well pumps. This motor type is usuallyconsidered a “special order”
item. Recently, NEMA has added another design -D in its standard for induction motor.
It is similar to design B, but has a higher efficiency.

Design A
A
g
§
i
k]
2
8
§
[
Speed {%)
Fip. 2.7 Torque Speed Curve for different NEMA standard
243 IEC

IEC is a European-based organization that publishes and promotes worldwide, the
mechanical and electrical standards for motors, among other things. In simple terms,it
can be said that the EEC is the international counterpart of the NEMA. The IEC
standards are associated with motors used in many countries. The EEC torque-speed
design ratings are the same as those of NEMA those used in industries. Only the EEC
duty cycle ratings are different from those NEMA.. This duty cycle is given below. With

respect to design criteria, all other things except the duty cycle are same as NEMA.
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Locked rotor current (https://kebblog.com/nema-b-three-phase-squirrel-cage-

motors-locked-rotor-current/)

For NEMA B motors, here i a lstng of the maxmum allowed kocked-rolor current al 230V, as defined by MG 1 12.35.1. For values
outside 230V, NEMA, states “The locked-Toler cument of malors designed for voltages oiher (Nan 230 Yoits SNas bemvens
proportional to the voltages™. Which ieads us to cakulate the other values.
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2.1.1.2 Bearing

2.2.1 Mechanical Failure Mode
An energy research consortium study gives that 53 percent of motors fail due to mechanical

reasons [35], The failure distribution is as follows:

Other stator
related faults 10%

Bearing related
faults 41%

Stator Insulation
related faults
i

FRotor related faults 10% Oither faults 12%

Fig. 2.3 Different failure mode of induction metor

Numerous factors have a profound effect on the actual life ofbearing. These factors
are as follows [48]

2.2.1.1 Bearing Fallure

Bearing problems are the primary canse of motor failure. Almost 40-50% of all motor
failure is bearing related. Numerous factors have a profound effect on the actual life
of bearing, These factors are as follows [48]

*  Contamination =45%to 55%
= Lubrication =11%t0 17%
= Improper assembly =11% to 13%
= Misalignment =10%to 13%
*  Overloading (application)= 8% to 10%
= Other =1% to 6%

Rolling element bearings generally consist of two rings, an inner and an outer,
between which a set of balls or rollers rotate in raceways. Under normal operating
conditions of balanced load and good alignment. the fatigue failure begins with
small value located between the surface of the raceway and the rolling elements will
gradually propagate to the surface generating detectable vibrations and increasing
noise levels. Continued stress causes fragments of the material to break loose,
producing localized fatigue phenomena known as flaking. Once started, the affected
area expands rapidly contaminating the lubricant and causing localized overloading
over the entire circumference of the raceway. Eventually, the failure results in rough
running of the bearing. While this is the normal mode of failure in rolling element
bearings, there are many other conditions, which reduce the time to bearing failure.
These external sources include contamination, corrosion, improper lubrication,

focussing on bearings of rotating machinery
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How Do Motors Fail?

Locked Rotor
Single Phasing
High Ambient
Vibration

Bearings.........60-70% Insulation......... 30-40%
e Over/Under Lubrication e Overload
: o Misalignment/Belt Tension s Excessive Number of Starts
+ Contaminants/Compatibility + Contaminants/Ventilation Failure
*  Vibration e Thenmal Aging
+ Thrust + Voltage spikes from VFD's
‘ « High Ambient e System Disturbances
* Bearing Currents *  Excessive Load Inertia
» Fatigue...L10 o Insufficient Torque
-
L]

2.1.1.3 Cause of Faults

2.1.2 Motor for industrial machine

2.1.3 Diagnosis and Monitoring System for Bearing
Acoustic emission monitoring
Current analysis

Many researchers have focused their attention on incipient fault detection and
preventive maintenance in recent years. There are invasive and noninvasive methods for
machine fault detection. The noninvasive methods are more preferable than the invasive
methods because they are based on easily accessible and inexpensive measurements to

diagnose the machine conditions without disintegrating the machine structure.

The mechanical fault detection is typically based on vibration signals, a

robust and effective technique, that is quite invasive and with high latency.

Early stage fault diagnosis of Induction Machines (IMs) is an important research

topic for cost and maintenance savings

It is preferable to find faults before complete motor failure. This is called “incipient
fault detection”.Often the motor can run with incipient faults, but eventually it will lead

to motor failure causing downtime and large losses
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Vibration signals are commonly adopted for mechanical faults detection in IMs

and/or related mechanical loads.

Mechanical faults as bearing faults, shaft-load connection faults, gear faults and
mechanical imbalances are usually monitored by vibration signals. The vibration
monitoring is wide spread and relies on common standards, such as ISO 10816.
Vibration signals are obtained by sensor placed on the external part of machine and they

are quite reliable and mature.

For this reason, early identification of failures is of great importance

The rotating machinery plays a vital role in industrial systems, in which unexpected
mechanical faults during operation can lead to severe consequences. For fault
prevention, many fault diagnostic methods based on vibration signals are available in
the literature. However, the vibration signals are obtained by using different types of
sensors, which can cause sensor installation issues and damage the rotating machinery.
In addition, this kind of data acquisition through vibration signal induces a large amount
of signal noise during machine operation, which will challenge the later fault diagnosis.
A recent fault detection method based on infrared thermography (IRT) for rotating
machinery avoids these issues. However, the corresponding literature is limited by the
fact that the characteristics of the manual design cannot characterize the fault
completely so that the diagnostic accuracy cannot exceed the diagnostic method based
on the vibration signals. This paper introduces a popular image feature extraction
method into the fault diagnosis of rotating machinery based on IRT for the first time.
First, capturing the IRT images of the rotating machinery in different states, and then
two popular feature extraction methods for IRT images, bag-of-visual-word, and
convolutional neural network, are tested in turn. Finally, the extracted features are
classified to implement the automatic fault diagnosis. The developed method is applied
to analyze the experimental IRT images collected from bearings, and the results
demonstrate that the developed method is more effective than the traditional methods

based on vibration signals.
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2.1.3.1 Ultrasound Emission Monitoring

Vibration techniques are suitable for higher rotating speeds whilst acoustic emission

techniques for low rotating speeds

2.1.3.2 Vibration Monitoring

.

vas The large peak of 124 V4B at LK ranning
speed Is caused by the imbalance
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This type of imbalance involves a rotating part where the center of mass does not lie on the axis of rotation. In other words, there is
a "heavy spot” somewhere on the rotor.
You can never completely eliminate motor imbalance, but you can identif en it's out of normal range. Imbalance can be caused

by numerous facters, including

« Dirt accumulation

« Missing balance weights

» Manufacturing variations

« Uneven mass in motor windings

on the one hand the vibratory defect engendered within the rolling bearing leads to a
quantifiable heating of the surface (Mazioud, Ibos, Khlaifi, & Durastanti, 2008)

2.1.3.3 Thermal Imaging Monitoring

Thermal intensity is a function of the temperature radiated from an object and the

contrast of the object with the background (Duberstein et al., 2012)
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2.2 State of Arts method for the Feature Extraction Process in Thermal Motor
Bearing Image

2.2.1 Color-based feature extraction methods

2.2.1.1 HSV based-method

2.2.1.2 L*a*b based-method

The color based image feature extraction using L*a*b is proposed in this work as a
way to compute and extract a set of features from thermal images. This L*a*b* colour
space method includes all perceivable colours which means that its gamut exceeds those
of the RGB and CMYK colour models. This method is proposed due to it is one of the
most important attributes of the L*a*b* model is the device independency. It means
that the colours are defined independent, thus the different colors in image could be

analysed.
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2.2.2 Transformation-based feature extraction method

Generally, the set of scale channels is configured to capture a specific scale of
frequency components from an image. Meanwhile, the set of the orientation channels is

utilized to extract the directional of features.

2.2.2.1 Original GWT based feature extraction

The beginning of GWT was invented by a Hungarian-born British physicist, Dennis
Gabor Dennis Gabor in 1946. This technique is a good characteristic of space-
frequency localization, effective to all images at different scale's level, and widely
worked in various applications for extracting features such as in object detection,
content based image retrieval (CBIR), recognition and tracking. This Gabor Wavelet
based algorithm such Gabor filter with appropriate scale and orientation angle is
proposed in this work as an essential task to compute and extract a set of visual features
from the response of the thermal image bearing based on different illumination of the
database. Features based on Gabor filters have been used in image processing due to
their powerful properties. Gabor kernels are characterized as localized, orientation
selective, and frequency selective. A family of Gabor kernel is the product of a
Gaussian envelope and a plane wave. A 2D Gabor filter is expressed as a Gaussian
modulated sinusoid in the spatial domain and as shifted Gaussian in the frequency
domain. The Gabor wavelet representation of images allows description of spatial
frequency structure in the image while preserving information about spatial relations.

The Equation of Gabor is customized as

2.2.2.2 Proposed an Enhanced Gabor Features (EGF) -based Feature Extraction

Method

The purpose of this implementation is to improve the classification performance of
the image processing system in this study. From the literature, several studies have
shown that a resolution-enhanced image gives better classification performance in
image processing systems (Ji, Wang, Su, Song, & Xing, 2013; Thangaswamy,
Kadarkarai, & Thangaswamy, 2013). Through their studies,
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This section discusses the feature enhancements from the original feature extraction
method based on GWT as in section 3.5.1. The purpose of this implementation is to
improve the classification performance of the image processing system in this study.
From the literature, several studies have shown that a resolution-enhanced image gives
better classification performance in image processing systems (Ji, Wang, Su, Song, &

Xing, 2013; Thangaswamy, Kadarkarai, & Thangaswamy, 2013). Through their studies,

process using the image’s histogram in order to enhance the features proposed in
this work due to it is simple and ease of use than other conventional methods, a higher
performance and output with almost all kind of image. This histogram equalization
approach is a spatial domain technique and generates uniform distribution of pixel
intensity on the output image. Therefore, by applying this HE method with the
manipulation the level of gray based on the distribution probability on the input image
(Abdullah-Al-Wadud, Kabir, Dewan, & Chae, 2007), the new grayscale levels
intensities from output histogram’s image is generated and an image can be improved
of the output image. The histogram equalization (HE) method is proposed in this work

as a contrast enhancement

Therefore, it has been motivated to use enhancement methods in this study for the

purpose of improving the features based on the feature extraction method.

The histogram equalization (HE) method is proposed in this work as a contrast
enhancement process using the image’s histogram in order to enhance the features
images by improving the interpretation of information contained in it. It is also
proposed in this work due to it is simple and ease of use than other conventional

methods, a higher performance and output with almost all kind of image.

To overcome the problems of variations in brightness and contrast, as well as, the

different lighting conditions, histogram equalization [25] was used.

Histogram equalization is a technique for adjusting image intensities to enhance contrast.

It is very important because as in HE process, the image variance is increased and
pixel intensity range is stretched to available range of pixel intensity. By this
pretreatment, features can be easily segmented and classified
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It is very important because as in HE process, the image variance is increased and
pixel intensity range is stretched to available range of pixel intensity. By this

pretreatment, features can be easily segmented and classified.

No, it only affects the image brightness and improve it.

In general, HE increases the contrast of the image.

(R. C. Gonzalez a& R. E. Woods,(2008) "Digital Image Processing” , Prentice-Hall, 3rd
Edition.)

This histogram equalization approach is a spatial domain technique and generates
uniform distribution of pixel intensity on the output image. Therefore, by applying this
HE method with the manipulation the level of gray based on the distribution probability
on the input image (Abdullah-Al-Wadud, Kabir, Dewan, & Chae, 2007), the new
grayscale levels intensities from the output histogram’s image is generated and an

image can be improved of the output image.

2.2.2.3 Proposed an Enhanced GWSMH -based Feature Extraction Method

As in Section 3.5.2, this study proposes an image enhancement process for GWT-
based feature extraction methods to improve the visual quality of the original proposed
method as in section 3.5.1. According to (da Silva & Mendonga, 2005), by improving
the visual quality of the image, it will improve classification performance in the image

processing system. Therefore, the studies in this section have been proposed.

2.2.2.4 Proposed an Enhanced GWCLAHE -based Feature Extraction Method

2.3 Feature Selection

From the previous studies, a multi-scale and multi-orientation features at each
image points from the feature extraction based on GWT technique will produced

[cited]. This high dimensional of the resultant Gabor feature vector that occurs will
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cause the computational and memory required for recognition are prohibitively large.
To address this problem, feature reduction method will be employed to reduce the
dimensionality of the data in order to simplify the calculation analysis and improve
learning performances in term of higher learning accuracy for classification in this
work. Feature selection is one of the most popular methods due to the preservation of
the original meaning of features and it is an important part of machine learning. This
feature selection is an approach to seek to capture the most useful subset of the original
variables or features for use in the implementation of the machine learning model in
order to speed up the training time, enhance the learning interpretability, lowering
computational cost and complexity. Furthermore, the current subset generated from

these predictive features will improve the robustness of the classification models.

From the previous studies, there are various feature selection techniques that have
been implemented in the field of machine learning. According to (Abhishree, Latha,
Manikantan, & Ramachandran, 2015), they were proposed a feature selection approach
by using binary particle swarm optimization (BPSQO) to solve a high dimensional data
that occurred from the Gabor filter extraction into face recognition application. It is to
find a feature space for the optimal feature subset. However, this BPSO approach is
much more computationally intensive and it’s reducing the number of features to
approximately half only. In (Shen & Bai, 2006), they proposed a feature selection based
AdaBoost Algorithm in order to eliminate redundancy among Gabor features. This
technique is not ideal as redundancy among AdaBoost selected features. As a result,
many classifiers selected by the AdaBoost algorithm might be similar and redundant.
They improved their selection technique by developing a mutualBoost algorithm,
however this algorithm technique is complex, requires longer training time and much

more computational.

Moreover, as explained in (Alelyani, Tang, & Liu, 2018; Panda Suchishree, 2018;
Rodriguez-Galiano, Luque-Espinar, Chica-Olmo, & Mendes, 2018; Stanczyk, 2015),
feature selection can also categorized into two standard approaches which are filter
models and wrapper models which are briefly described as follows. The filter model
relies on a proxy measure to select some features in the original variables without any
additional learning model on the training dataset. However, the wrapper model requires
a specified predictive model for each new subset and uses the error rate of the model to
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score, and the subset with best performance is selected out. Since each subset is used to
build the predictive model, it is much more computationally intensive, particularly for
large feature spaces because each feature set must be evaluated, computation cost and

slow down the feature selection process.

In this study, filter-based feature selection model is employed due to this filter
method are much simpler to build and faster in process, scalable with high dimensional
datasets and also computationally simple compared to wrapper approach. This filter
algorithm consists of two steps. First step, features are selected and ranked, evaluated
independently of feature space in the univariate scheme and in a batch in multivariate
scheme. Second step, the best performance subset are chosen based on highest rankings
and selected out in order to induce classification models. Some common filter-based
feature selection methods are fisher score (FS), chi-square (CS) and information gain
(IG) (Bhattacharya & Goswami, 2017; Sanchez et al., 2018; Sharma, Krishna, & Sahay,
2019; Vora & Yang, 2017; Y. Zhang, Zhou, Zhang, & Song, 2019). These feature
selection methods is ranked by ranking, compute and return a score for each feature
individually. Previous studies have demonstrated that the fisher score has good general
performance in feature selection (Ahmad, Javed, & Hayat, 2017; Ahmed & Nandi,
2017; Aksu, Ustebay, Aydin, & Atmaca, 2018; Cherrington, Thabtah, Lu, & Xu, 2019;
Gu, Li, & Han, 2012a; Saqglain et al., 2019; Sharma et al., 2019; Sun et al., 2019).

Over the year, fisher score method have been implemented extensively in various
application in image processing field for solving high dimensionality data resulting
from feature extraction process(Ahmad et al., 2017; Ahmed & Nandi, 2017; Aksu et al.,
2018; Bhasin, Bedi, & Singhal, 2014; Cherrington et al., 2019; Gu et al., 2012a; Roffo
& Melzi, 2016; Saqglain et al., 2019; Sharma et al., 2019; Song, Jiang, & Liu, 2017; Sun
et al., 2019; Zbikowski, 2015). Yet, there are a few studies regarding implementation of
feature selection based fisher score in order to eliminate the irrelevant Gabor features
extraction (Li, Mao, Zhang, & Chai, 2010; Ma, Zhu, Wang, Liu, & Jing, 2019;
Vamsidhar, PhaniKumar, & Gunna Kishore, 2016). The experimental results of the
studies have shown better performance in classification result. In this way a significant
reduction in computation and memory cost has been achieved. Hence, it has been
motivated to propose a fisher score selection methods to be employed in this study for

feature selection purposes.
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Fisher score is one of the most widely and commonly used supervised feature
selection technique and adopted to eliminate irrelevant features in order to choose the
most useful features information. This approach provides a measure of features’ ability
to distinguish between different classes. The selected features were then fed as an input
to the classification model. In this feature selection process, it computes a subset of
features with a large distance between data points in different classes and small distance
between data points in the same class, and the final feature selection occurs by the top
ranked ones (Gu, Li, & Han, 2012b; Islam, Jeong, Bari, Lim, & Jeon, 2015; Ma et al.,
2019; T. Zhang & Lu, 2010). This method are simple, reduce computational cost, fast
and effective filtering method (Gu et al., 2012a). Given the input data matrix Y € R™

reduces to F e R™. Then, the index of a feature score f, is computed as equation 3.32

follows:

c i , 3.1
Zni (ﬂj _,Uj)
=

3 ni(o})?

f =

8

Where u; is the mean of all data sample values on the j-th feature, n;is the number of

data samples in the i-th class, and ,u} and aij are the mean and variance in the i-th class

corresponding to the j-th feature. By utilizing this formula, the experimental study will

show that the size of high dimensional features and the computations involved in
feature extraction process can be significantly reduced where features with top scores
which is produce features with most discriminative power is selected by the fisher

Score.

. From the literature, the large size of the input data features will cause problems in

the classification process.
2.3.1 ANOVA

The Df column displays the degrees of freedom for the independent variable
(calculated by taking the number of levels within the variable and subtracting 1), and

the degrees of freedom for the residuals (calculated by taking the total number of
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observations minus 1, then subtracting the number of levels in each of the independent

variables).

The Sum Sqg column displays the sum of squares (a.k.a. the total variation) between
the group means and the overall mean explained by that variable.

The Mean Sq column is the mean of the sum of squares, which is calculated by

dividing the sum of squares by the degrees of freedom.

The F-value column is the test statistic from the F test: the mean square of each
independent variable divided by the mean square of the residuals.

2.4 Classification

2.4.1 K-Fold Cross Validation in Multi-layer Artificial Neural Networks
(MLANNS)

. ANN model is a faster, robust, more accurate technique and it is composed of
numerous types. There is single layer ANNs as well as multiple layers of neurons. The
Multilayer feed-forward network or called the Multi-layer Perceptron (MLP) is one of
the architecture of ANN contains multiple layers of neurons that is formed by the
interconnection of several layers. It is the best ANN model that can solve complex
problems as it has many hidden layers to overcome the weakness of a single layer
perceptron. Over the year, MLANN is one of the extensively used techniques for
classification of class of objects in image processing fields. It is also applicable in
various applications such are pattern recognition (Gaja & Liou, 2018), medical (Aruna
Devi B., 2019; Mohammed et al., 2018), dental (Raith et al., 2017), electrical system
(Bighnaraj Panda, 2018; Taheri-Garavand et al., 2015), mechanical system (B. Hizarci,
2019; Jain, Meenu, & Sardana, 2019) and so on.

There are several types of training functions used in ANN models and their
selection is one of the behaviors for successful ANN modeling (Kamble, Pangavhane,
& Singh, 2015; Karim, Niakan, & Safdari, 2018; Lassoued & Ketata, 2018). From some
studies, comparative learning algorithm between ‘trainlm’ and ‘trainbr’ has been
performed. As a result, ‘trainbr’ showed better performance classification in term of

accuracy compared to ‘trainlm’ (Garg & Bansal, 2015; Kamble et al., 2015). Thus, in
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this work, feed forward MLANNs with Lavenberg-Marquardt backpropagation
(‘trainlm’), Bayesian regularization backpropagation (‘trainbr’) and Scaled conjugate
gradient backpropagation (‘trainscg’) training algorithms will be employed to fit the
ANN model purpose. As well as evaluate the impact of all these three learning
algorithms to the classification performance of the proposed MLANNSs. A brief
description of the differences training algorithms between ‘trainlm’, ‘trainbr’ and

‘trainscg’ types are shown in Table 3.3.

Table 3.1 Description of ‘trainlm” and ‘trainbr’ training algorithms
Training
Function Algorithm Description
name
Trainlm Levenberg  (a) ‘trainlm’ is a network training function that

Marquardt  updates weight and bias values according to
Levenherg-Marquardt optimization.
(b) ‘trainlm’ is an iterative technique which it
performance function will always be reduced in
each iteration of the algorithm. This feature
makes trainlm is the fastest training algorithm for
networks of moderate size.
(c) It has memory reduction feature for use when
the training set is large

(d) To minimizes mean square error

Trainbr Bayesian () The ‘trainbr’ training algorithm is a
regularization modification of the Lavenberg-Marquardt
training algorithm approach. It is developed for
reducing the memory employed by the ‘trainlm’
optimization algorithm to gain the most excellent
generalization of the network.
(b) To minimizes a weighted sum of squared

errors and squared weights

Trainscg Scaled
Conjugated
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Gradient
Backpropag

ation

Based on literature reports, there are many approaches used for data splitting. These
methods include leave-one-out (LOO) CV, k-fold CV (Jiang & Wang, 2017; Jung &
Hu, 2015; Kohavi, 2016) and bootstrapping (Hjorth, 2017). Among all the stated
techniques, the K-Fold method is chosen because it compatibles with the application
used in this work which is all observation are used for training and validation and each
observation is used for validation exactly once. Yet, this method is cheaper because of
less computation time processing. The variance of the resulting estimate also is reduced

as K increases.

A multi-layer feed-forward neural network has been used in training a data set on
input patterns. A three layer network was used: the input layer, a hidden layer and the
output layer. For the input layer, the input feature vectors comes from the Gabor filter
feature extraction stage and consists of 100 neurons applied to the neural network. A
single pattern p to be tested or fed to the neural network can be considered as a vertical
vector of elements (features). Then t is called the target for this pattern and you have to
know t in advance and to use it along with its conjugate pattern for the purpose of
network training. For many features in an image set, the set P of vertical vectors
represents the set of patterns(features) for which you know their desired target in
advance in the form of T as horizontal vector. Each element of the T vector corresponds
to a column in P matrix. These vectors are processed in the hidden layer using the
scaled conjugate gradient method as the training method and the mean square error with
regularization as the performance function to adjust the network output to be in the
range -1.0 to 1.0. The output layer'size depends on the obvious candidate features in
each landmark. The following figure shows a typical multi-layer feed-forward neural

network.

2.4.2 Linear Thresholding
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the thermal image processing that will be carried out to
achieve the objectives in this study. The focus of this present study is to solve the
problems that occur in the feature extraction method. The problem that occurred was
from the experiment of the original GWT-based feature extraction method on images
has been carried out in this study. There are limitations obtained from this experiments
which is the result of the classification performance on the thermal motor bearing image
group shows a poor performance. This is due to the thermal motor bearing images
groups cannot be well distinguished. As a consequence, some modifications to the
features of thermal motor bearing images based on the original GWT method will be
executed to improve the visual quality of images in this study. This has contributed to
the development of a proposed new feature extraction method in order to overcome the

limitation found in the original GWT-based method.

Therefore, to achieve the objectives of this study, the entire image processing will
be performed as illustrated in Figure 3.1. The image processing involved in this study is
data acquisition, segmentation, feature extraction, feature selection and also the
classification process. From the figure shown, it can be observed that there are three
new feature extraction methods that will be developed based on the original GWT
method. They are Enhanced Gabor Features (EGF), Enhanced GWSMH and also
Enhanced GWCLAHE. These methods are the main focus of this study which is to
improve the visual quality of the images. This feature extraction process will be
explained further as in section 3.4. Next, the selection of the optimal features will be

explained in detail in section 3.5. The classification performance is also the main focus
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in this study. By modifying the pixel value (intensities) of the image, the classification

performance will also be improved accurately. Furthermore, the features of thermal

motor bearing images could also be distinguished well in this study. This classification

process will be explained more clearly in section 3.7.

Segmentation

Feature
Extraction

Feature
Selection

Classification

Figure 3.1

Video recording is
converted into thermal

images
N
Data Acquisition

. \%
. Active contour

i} N7

\ v v v
~ GWT EGF Enhanced Enhanced
GWSMH CLAHE
\ v

i \
7] Fisher Score

i N2

r \ \
7 MLANNS Linear Thresholding

) N v

N
Decision
v v
Normal Warning Abnormal

Block diagram of overall image processing in thermal motor
bearing images

3.2  Data Acquisition

The experiment for test and observe the abnormality of the bearing machine
conditions was performed on single phase 0.5hp, 0.37KW, 230/400V, 50Hz motor. The
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monitoring system is implemented as illustrated in Figure 3.2 executed by using FLIR
A615 thermal camera at a distance of 0.5m. The thermal camera’s sensor used in this
work is a long-wave IR camera. Motor current rated for this induction motor is
1.8Ampere. In the beginning, the speed motor value 1280rpm was executed for five

minutes in this experiment in order to allow the machine to generate initial heat.

Power Panel Board

Figure 3.2 Experiment setup using thermal camera.

According to Figure 3.3, it denotes an experimental of single phase induction
motor condition that shows bearing part that been analysed where it is placed on shaft
induction machine part. At the beginning, the infrared thermal images of the normal
bearing motor are acquired first. During the acquisition process, the load torque is
increase slowly from 0.2 N-m until reach 0.8N-m in order to observe the thermal
pattern of the normal condition of bearing machine. After that, to acquire the infrared
thermal image of the abnormality of the bearing, excessive load condition is created
manually by increase the value of torque until reach 2.0N-m. At this moment a large
current is observed and drawn more than rated current at full load in the rotor windings
as well as stator current also is increase; cause extremely high temperatures to be
generated within the motor as well as in bearing machine part. This is made worse by
the fact that the speed of the rotor decreases to a very low value and motor is not
rotating completely, and hence no cooling process due to motor is unable to rotate.
According to motor current rating in NEMA Std. MG 1, 12.47, during the motor

operate at rated voltage, rated frequency, and rated horsepower output, the input in
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amperes could not vary from the nameplate value by more than 10%. Thus, from this
experiment, the higher current induced by the induction machine is 2.0Ampere and
it has exceeded the current rated value of the motor rating and this condition known as
an abnormal state. (TAMBAH LAGI)

Figure 3.3  Surface bearing part of induction motor

3.3 Pre-Processing and Segmentation

After the image acquisition procedure, image segmentation process will be
employed in order to obtain the region of interest (ROI) based on desired features.
Through this process, it will simplify the representation of an image into something that

is meaningful and easier to be analyzed.

To achieve this purpose, manual crop will be applied to the images according to the
coordinates to be set in order to separates the foreground from the background. This
process will be performed to retrieve the meaningful information from the bearing area.
Nonetheless, to improve the segmentation of the bearing area well, the active contour or
known as snake’s model will be utilized in this operation. It acts as a curve propagation
method that was first introduced by Kass et al (Kass, Witkin, & Terzopoulos, 1988). It
will be implemented to detect the curve of an image object where to select the area
(pixels) of interest required in an image (Kass et al., 1988). It’s also to define smooth

shape in the image and forms closed contour for the region.

From the previous studies, this active contour technique has successfully
implemented in computer vision and image processing applications like object tracking,
shape recognition, segmentation, edge detection and stereo matching (Blake & lIsard,
2012; Qiao, Bao, Zeng, Zou, & Li, 2017). This approach will be applied due to simple,
fast and accurate automatic segmenting (Eviatar & Somorjai, 1996; Fang, Wang, &
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Wang, 2020; Medeiros et al., 2019; Nithila & Kumar, 2019; Williams & Shah, 1992).
This method is also widely implemented in medical image processing for segmentation
of regions from different medical images such as brain CT images, MRI images,
cardiac images, liver vessel (Chung, Lee, Chung, & Shin, 2018; Eviatar & Somorjai,
1996; Fang et al., 2020; Han, Han, Gao, & Zhang, 2019; Hemalatha et al., 2018;
Medeiros et al., 2019; Nithila & Kumar, 2019). The active contour will be applied to
minimize the energy function from the different forces which are external and internal
force in order to form a desired contour point at the shape of image boundaries. The

energy forming this contour point can be written as equation 3.1 until equation 3.3:

Ec(s) = E, (c(s)) + E, (c(s)) 31
E,c(s) = 3.2
E, (c(s)) = 33

According to (Vinay, Vinay, & Narendra, 2014), the active contour method had
proven been successfully applied as medical image segmentation for partition a medical
image of Anterior Cruciate Ligament (ACL) accurately. This has motivated this active
contour method to be used in this study. Figure 3 illustrates a flow chart representation
of pseudocode 2 regarding the active contour-based segmentation process to improve

the segmentation of the bearing area in this study.

Pseudocode 1: Active Contour-based segmentation technique

Input: RGB image for all thermal bearing conditions;
Output: Segmented image based on active contour technique;

Steps:
1LA;

2. Read the RGB image, e for all thermal bearing conditions beginning with normal,
then warning and ending with abnormal image;

. . . I
3. Convert RGB input image, e to grayscale image, ~ 9rascale :

4. Perform binary mask function on input grayscale image ! grayscat to obtain the ROI and
discard the background;

5. Manually initiate the boundary location of ROI by using coordinated masks (59:
163,349:372);

6. Interchange the binary image to uint8, |ase :

7. Multiply the original image, les with |as in order to obtain the boundaries or ROI of
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thermal bearing image, Vintal_ror ;
8. Perform active contour energy function, E along the boundaries image to form a
particular contour;
9. Crop the segmented image,
CroppedIimage=imcrop(fullimage,[xLeft,yTop,width,height]);
10. Display the result of segmented RGB image, 1 (X, y);
11. END;
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Figure 3.4 Flowchart of Active Contour-based segmentation technique
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3.4 Feature Extraction

This section contains the main findings of this research. It is focused on the feature
extraction approach in order to retrieve the significant features in distinguishing the
features contained in the group of thermal motor bearing images.To achieve this stated
purpose, an experiment of GWT-based feature extraction method on images has been

carried out in this study.

Based on the previous image processing studies, GWT-based feature extraction
method have been successfully performed in various fields in distinguishing the normal
and abnormal groups images [cite]. The results of this good performance are measured
in terms of classification results. The success of this performance has motivated this
GWT-based method to be used in this study. One of the main advantages of this GWT-
based method to be used, it is due to a good characteristic of space-frequency
localization and effective to all images at different scale's level. With the benefits of this
GWT method, a wide selection of features could be extracted in each orientation and
each scale from the Gabor that will be deployed in this study. To construct this GWT-
based filter, there are 5 different scales values and 8 orientations values that will be

applied to extract the Gabor features. The values of the scale parameters that will be

involved are  {scale7x7,scale9x9, scalel1x11, scalel3x13, scalel5x15} , while the
orientation parameters is @ = 00,£,£,3£,1,51,31,71 . There are 2075 thermal
8 4 82 8 4 8

motor bearing images representing the normal, warning and abnormal groups that will

be tested in this study. Consequently, the total number of input data matrices that will

c R10375x8

)

be generated in the different orientations and scales conditions is Y € R

where ‘R’ is the feature vector, “n’ is the number of samples and “ j * is the number of

orientations. The processing for this method will be explained in detail in the section
3.5.1.

In spite of that, there are limitations obtained from the experiments that been
conducted based on this GWT-based feature extraction. From this GWT-based
experiment, the result of the classification performance on the thermal motor bearing
image group shows a poor performance. Where the classification between groups

cannot be well distinguished. As a consequence, some modifications to the features of
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thermal motor bearing images based on the original GWT method will be executed to
improve the visual quality of images in this study. This has contributed to the
development of a proposed new feature extraction method in order to overcome the
limitation found in the original GWT-based method.

There are 3 types of new feature extraction algorithms that will be develop in this
study based on the original GWT for comparison purposes. Comparison of these
methods will be tested in terms of features strength by using the ANOVA method, as
well as classification performances in distinguishing the features contained in the group
of thermal motor bearing images. Then, the best performance results will be an
indicator to the selection of the best method in this study. The processing for all these
methods will be explained in details in the section section 3.5.2, section 3.5.3 and
section 3.5.4.

Before the GWT-based method as explained before was applied, the experiments on
the color-based feature extraction were also tested in this study. The methods involved
are HSV and | * a * b based methods. The purpose is to perceive the difference in
performance results between which method is better to distinguish the group features
from thermal motor bearing images. From the experiments that been executed, the
result of classification performance for this color-based method has shown lower
performance. This has contributed to the use of another transformation-based method
namely the GWT method for further processing. Nonetheless, the methods of operation
of this color-based methods will also be explained briefly in sections 3.55 and 3.5.6.

3.4.1 Algorithm for the Original Gabor Wavelet Transform (GWT)-based
Feature Extraction Method

This study discusses in detail the process that will be executed to apply the feature
extraction process based on the original Gabor Wavelet Transform (GWT). The purpose
of this method is implemented in this study to observe the effectiveness of this method
to distinguish the optimal features in each group of thermal motor bearing image. Thus,
the following procedures is the detailed process in order to differentiate the features for
each group in the thermal motor bearing images based on the original GWT-based

feature extraction method.
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Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the input RGB bearing image into grayscale level image, 1(x,y);

Step 3: Create the Gabor wavelets to extract the Gabor features image by using the
equation 3.4. Insert a number of parameters (5 scales and 8 orientations) as denoted in
Table 3.2 into the Gabor function as in equation 3.5 and equation 3.6. The orientation
parameters are: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135° and 157.5°.

Table 3.1 Gabor filter parameters (number of scales)
Filter Size 2
(Scales) ©
7x7 2.8 35
9x9 3.6 4.6
11x11 45 5.6
13x13 5.4 6.8
15x15 6.3 7.9

Following are the equations that will be used to create the Gabor filter:

A complex Gabor filter as equation 3.4 is defined as the product of a Gaussian kernel

times a complex sinusoidal.
2 20 ' 3.4
G(x,y;4,0,,0,7) =exp —% exp i(2ﬂ£+wj
20 A

Based on the complex Gabor filter equation as denoted in equation 3.10, the real part

2D-Gabor filter is described in equation 3.5 while the imaginary parts as denoted in

equation 3.6.
2 2.,2 1 35
G(X,Y;1,0,w,0,7) = exp —# oS i(27z£+l//j
20 A
2 2,,2 ' 3.6
G(x,y;4,0,w,0,7) =exp —% sin i(Zﬂi+l//j
20 A
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X =X*cos@+ y*sind 3.7
y =—X*cos@+ y*sinéd

Step 4: Determine the Gabor features by convolved the input thermal motor bearing
images, 1(x,y) with the GWT-based filters that have been created in the different

scales and orientations values, g(x,y). Then, a response of real and imaginary part will

be produced and the equations are depicted in equation 3.8 and equation 3.9.

Real(G(x,y)) = 1(x,¥)*G(x,¥,4,0,w,0,7%) 3.8

IM(G(x,y)) = 1 (x, y)*Im(G(x, Y, 1,0,w,0,7)) 3.9

Step 5: Define the magnitude response by convolved the original image with the Gabor
filter. The complex convolution result will be generated. Then, decomposed it to the
magnitude response as denoted in equation 3.10 and phase response image as denoted
in equation 3.11 based on the real and imaginary part as in equation 3.8 and equation
3.9.

Magnitude _ response = abs(Re al(G(x, y))) 3.10

Phase _ response = abs(Re al(G(x, y))) 3.11

Step 6: Extract the feature vector based on the magnitude response obtained. There are
two types of feature vector that will be generated, which are Local Energy and Mean
Amplitude. Local energy will be obtained by calculating the sum of squared of the
magnitude response which is summing up the squared value of each matrix value from
a magnitude response matrix.  Meanwhile mean amplitude will be obtained by
calculating the sum of absolute values of each matrix value from a magnitude response

matrix. The equations are described in equation 3.12 and 3.13.

Local _energy = sumsqr(Magnitude _ response) 3.12

Mean _ Amplitud = sumabs(Magnitude _ response) 3.13
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Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the GWT-
based feature extraction process to extract the features from thermal motor bearing

image groups.

Pseudocode 2: Gabor Wavelet Transform (GWT) based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,
Output: Multiscale and multi orientation features, Y € R™ e MA®™8 ¢ | pA10975x8

Steps:

1. Start;

2. For each scale, lambda (4, — 4;) and sigma (o, — o) in the scale list;

3. For each number of images;

4. A;

5. Convert the segmented RGB image into grayscale image;

6. For each orientation, @ = 0‘3,1,5,35,5,55,35,7£ in the orientation list;
8 4 82 8 4 8

7. Construct a Gabor filter, g(é, 1, o) using Gabor real and Gabor imaginary

2 20,2 '
Gabor Real=G(x, y; 4,0,y ,0,7) = exp(— XJZr—yzy] cos(i(Zn% + ://D X

O

2 QW2 '
Gabor Img=G(X, y; 4,0,v,0,7) = exp(— X;—yzstin(i[Zn% + z//D ;
(o)

8. Convolve the original of the segmented thermal bearing images with Gabor function
g(@, 1, 0) to generate the magnitude response image, R ;

9. Extracting the Gabor features: Extract the orientation and scale information for Gabor
Feature vectors namely Local Energy and Mean Amplitude from the magnitude response, R
by employing a Gabor filter bank with 8 orientations and 5 scales.

Local energy (LE)= sumsgr(magnitude response);
Mean Amplitude (MA)= sumabs(magnitude response);
10. End
11, End

12. Output Multi-features: Y € R™ e MA'®™*® ¢ | E1097%x8
13. End
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Figure 3.5 Flowchart of Gabor Wavelet Transform based feature extraction
technique
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3.4.2 Algorithm for the Proposed an Enhanced Gabor Features (EGF) -based

Feature Extraction Method

This section contains the main findings in this study. It discusses in detail the
process that will be executed to develop the new feature extraction process that has
been proposed in this section based on the original GWT-based feature extraction

process as in section 3.5.1.

In this present study, a combination of an independent image enhancement approach
called Histogram Equalization method with the original GWT-based feature extraction
technique will be developed. The combinations of these methods have been executed to
modify the contrast and the distribution of the gray levels of pixels in the images. This
proposed method is called Enhanced Gabor Features (EGF)-based feature
extraction. The purpose of this EGF-based method utilized in this study is to overcome
the limitations obtained from the experiment that been conducted on the original GWT-
based method. As a consequence, by modifying the pixel value (intensities) of the
image, the visual quality of images in this study will be able to be improved.
Consequently, the features of thermal motor bearing images also will be distinguished
well in this study. Thus,the following procedure is a detailed process for the proposed
image quality improvement by using the Enhanced Gabor Feature (EGF)-based method:

Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the input RGB bearing image into grayscale level image, 1(x,y);
Step 3: Define the frequency of each pixel value in input image, P, (i) =n.;

Step 4: Calculate the probability of each frequency, P, (i)=n, /N, N = total number of

pixels in the image;

Step 5:Calculate the cumulative distribution function of each pixel i, cdf, (i) = Z P.())
j=0
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Step 6: Calculate the cumulative distribution probability of each pixel,

i P i

cdfx(i)=z;{),
= no.ofpixel

Step 7: Calculating final value of each pixel(histogram equalized) by multiplying

cdf, (i) with number of bins;
Step 8: New input intensities, k of i by the function T (k) ;

Step 9: Create the new Gabor wavelets to extract the new Gabor features image by
using the equation 3.14. Insert a number of parameters (5 scales and 8 orientations) as
denoted in Table 3.2 as presented in section 3.5.1 into the new Gabor function as in
equation 3.15 and equation 3.16. The orientation parameters are: 0°, 22.5°, 45°, 67.5°,
90°, 112.5°, 135° and 157.5°.

Following are the equations will be used to create the Gabor filter:

A complex Gabor filter as equation 3.14 is defined as the product of a Gaussian kernel

times a complex sinusoidal.
2 2,2 ! 3.14
G(X, Vs 4,0,0,0,7) e = [exp(— X;—yzyj exp(i(Zﬂ% + wn]new
(o

Based on the new complex Gabor filter equation as denoted in equation 3.14, the real
part 2D-Gabor filter 'is described in, equation 3.15 while the imaginary parts as

denoted in equation 3.16.

2 2.7 ' 3.15
G(X, Vi 1 0,1/, G 7)o = [EXP] — L | cOS i(zﬂiwj Lo
20 A
2 2,2 ' 3.16
G(X,Y;4,0,¥,0,7) ew = [eXp[— X;—ygyJSin(i[Zﬂ%+lenew
o
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X =X*Ccos@+ y*sind 3.17
y =—Xx*Ccos@+y*sing

Step 10: Determine the new Gabor features by convolved the input thermal motor

bearing images, 1(x,y) with the new EGF-based filters that have been created in the
different scales and orientations values, g, (X, y). Then, a new response of real and

imaginary part will be produced and the equations are depicted in equation 3.18 and

equation 3.19.

Real (G(X’ y))new . I (X’ y)*G(X’ y'ﬂ”ell/l’o-’y)new 3.18

IMG(X, Y))pew = 1 (X, Y)*IM(G(X, ¥, 2,0,/,6,7)) new 3.19

Step 11: Define the new magnitude response by convolved the original image with the
new EGF-based filters. Then, decomposed it to the new magnitude response as denoted
in equation 3.20 and new phase response image as denoted in equation 3.21 based on

the real and imaginary part in equation 3.18 and equation 3.19.

Magnitude _ response,,, = abs(Real(G(X, ¥) e ) 3.20

Phase _ response,,, = abs(Real(G(X, ) o)) 3.21

Step 12: Extract the new feature vector containing the new pixel value of the output

Image based on the new magnitude response obtained. There are new Local Energy and

new Mean Amplitude, Y € R™ € MA " € LE(e, . The new Local energy will

new) (new)
be obtained by calculating the sum of squared of the new magnitude response which is
summing up the squared value of ‘each matrix value from a new magnitude response
matrix. Meanwhile, the new mean amplitude will be obtained by calculating the sum of
absolute values of each matrix value from a new magnitude response matrix. The

equations are described in equation 3.22 and equation 3.23.

Local _energy.., = sumsqr(Magnitude _ response 3.22

new )
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Mean _ Amplitude,,, = sumabs(Magnitude _ response 3.23

new)

Figure 3 illustrates a flow chart representation of pseudocode 3 regarding the EGF-
based feature extraction process to extract the new features from thermal motor bearing

image groups.

Pseudocode 3: Enhanced Gabor Features (EGF) based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,
Output: Multiscale and multi orientation features,

i 10375x8 10375x8
YeRY™e MA, e LA

new) (new)

Steps:
1. Start;

2. For each scale, (4, — A;)and (o, — o) in the scale list;

3. For each number of images;

4. A,

5. Convert the segmented RGB image into grayscale image, 1 (X, Y);
6. Define the frequency of each pixel value in input image, P, (i) =n,

7. Calculate the probability of each frequency, P, (i) =n, /N, N = total number of
pixels in
the image

8. Calculate the cumulative distribution function of each pixel i, cdf, (i) = Z P.())
j=0
8. Calculate the cumulative distribution probability of each pixel,
B [Pl
cdf
()= z 5 no.ofpixel

9. Calculatlng final value of each pixel(histogram equalized) by multiplying cdf, (i) with
number of bins.
10. New input intensities, k of i by the function T (k)

11. For each orientation, @ = {0” o 31 z 5” 3Z 7 :}m the orientation list;

847828

12. Construct a new Gabor filter, g(X, ¥)..,, by using Gabor real and Gabor imaginary,

new

2 2.,'2 ’
Gabor Real (ewy=G(X, Y; 4,0,w,0,7) = exp(— X;—yZyJ cos[ (27; )/(1 ny
o |

2 2,,'2 ' N
Gabor Img (newy=G (X, y;4,0,w,0,y) = exp(— Xg—yzstin(i(Zn% +y
(o2

/

13. Convolve the original of the segmented thermal bearing images 1 (x, y)with Gabor
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function, g(X, ¥) .., to generate the new magnitude response image, R ;

new
14. Extracting the new Gabor features: Extract the orientation and scale information for
new Gabor Feature vectors namely Local Energy (ew) and Mean Amplitude (ew) from the
new magnitude response, R by employing a EGF filter with 8 orientations and 5 scales.

Local energy (LE) newy= sumsqgr(magnitude response new);
Mean Amplitude (MA) newy= sumabs(magnitude responsepew);
15. End
16, End
17. New output Multi-features; Y e R™ e MA,__.'*"™® e LE, 1%

(new) (new)
18. End
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Figure 3.6 Flowchart of Enhanced Gabor Features (EGF) based feature

extraction technique
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3.4.3 Algorithm for the Proposed an Enhanced GWSMH -based Feature
Extraction Method

This section discusses in detail the process that will be executed to develop the new
feature extraction process that has been proposed in this section based on the original

GWT-based feature extraction process as in section 3.5.1.

In this work, a combination of the pre-processing method with the new feature
extraction method will be implemented. The pre-processing method consists of a
combination of unsharp filters and median filters. The methods such as unsharp mask
filter is intended for sharpen the image followed by a median filter will be employed for
the removal of noise at the input thermal image. Meanwhile, the new feature extraction
method consists of a combination of an independent image enhancement approach
called Histogram Equalization method with the original GWT-based feature extraction
technique. All the combinations of these methods will be developed to modify the
contrast and the distribution of the gray levels of pixels in the images. This proposed
method is called Enhanced GWSMH-based feature extraction. The purpose of this
Enhanced GWSMH-based method utilized in this study is to overcome the limitations
obtained from the experiment that been conducted on the original GWT-based method.
As a consequence, by modifying the pixel value (intensities) of the image, the visual
quality of images in this study will be able to be improved. Consequently, the features
of thermal motor bearing images also will be distinguished well in this study. Thus,the
following procedure is a detailed process for the proposed image quality improvement
by using the Enhanced GWSMH-based method:

Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the input RGB bearing image into grayscale level image, 1(x,y);
Step 3: Define the frequency of each pixel value in input image, P, (i) =n.;

Step 4: Calculate the probability of each frequency, P, (i)=n. /N, N = total number of

pixels in the image;
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Step 5:Calculate the cumulative distribution function of each pixel i, cdf, (i) = Z P.(])
j=0

Step 6: Calculate the cumulative distribution probability of each pixel,

cdf_ (i
()= Jz;‘noofplxel
Step 7: Calculating final-value of each pixel(histogram equalized) by multiplying

cdf, (i) with number of bins;
Step 8: New input intensities, k of i by the function T(k);

Step 9: Create the new Gabor wavelets, G(x,Vy;4,0,w,0,%) .., 10 extract the new

Gabor features image by using the equation 3.14 as In section 3.5.2. Insert a number of
parameters (5 scales and 8 orientations) as denoted in Table 3.2 as presented in section
3.5.1 into the new Gabor function as in equation 3.15 and equation 3.16 as in section
3.5.2. The orientation parameters are: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135° and
157.5°.

Step 10: Determine the new Gabor features by convolved the input thermal motor

bearing images, 1(x,y) with the new GWSMH-based filters that have been created in
the different scales and orientations values, g,., (X, y). Then, a new response of real
component, Real(G(X,Y)).., and imaginary component, Im(G(X,Y))., Will be

produced and the equations are depicted in equation 3.18 and equation 3.19 as in

section 3.5.2.

Step 11: Define the new magnitude response, Magnitude _ response,, by convolved
the original image with the new GWSMH-based filters. Then, decomposed it to the new
magnitude response as denoted in equation 3.20 and new phase response image as
denoted in equation 3.21 based on the real and imaginary part in equation 3.18 and

equation 3.19 as in section 3.5.2.

Step 12: Extract the new feature vector containing the new pixel value of the output
image based on the new magnitude response obtained. There are new Local Energy and

new Mean Amplitude, Y € R™ e MA ,,,"" € LE ,,,," " . The new Local energy will

new) (new)
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be obtained by calculating the sum of squared of the new magnitude response which is
summing up the squared value of each matrix value from a new magnitude response
matrix. Meanwhile, the new mean amplitude will be obtained by calculating the sum of
absolute values of each matrix value from a new magnitude response matrix. The

equations are described in equation 3.24 and equation 3.25.

Local _energy,., = sumsqr(Magnitude _ response 3.24

new)

Mean _ Amplitude,,,, = sumabs(Magnitude _ response 3.25

new )

Figure 3 illustrates a flow chart representation of pseudocode 4 regarding the GWSMH-
based feature extraction process to extract the new features from thermal motor bearing

image groups.

Pseudocode 4: Enhanced GWSMH based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,

Output: Multiscale and multi orientation features, Y € R™ € MAp gy € LA ey

new)

Steps:

. Start;

. For each scale, (4, — A:;)and (o, — o) in the scale list;

. For each number of images;

A,

. Convert the segmented RGB image into grayscale image 1(x,Y);

©P®ND A ®N P

=
= o

12.

6. Define the frequency of each pixel value in input image, P, (i) =n,

7. Calculate the probability of each frequency, P, (i) =n, /N, N = total number of pixels in
the image

8. Calculate the cumulative distribution function of each pixel i, cdf, (i) = Z P.(])
j=0
o . . < P®)
8. Calculate the cumulative distribution probability of each pixel, cdf, (i) = Z—
i no.ofpixel
9. Calculating final value of each pixel(histogram equalized) by multiplying cdf, (i) with
number of bins.
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10. New input intensities, k of i by the function T (k)

11. For each orientation, @ =< 0° ,1,1,31,£,51,3£,7£ in the orientation list;
8 4 82 8 4 8

12. Construct a new Gabor filter, g(x, y) using Gabor real and Gabor imaginary

2 2,,2 1
Gabor Real 1eny=G(X,Y;4,0,w,0,7) = exp(— X;—yzyJ cos(i(Zn% + WD ;
(@2

2 2o 2 '
Gabor Img pewy=G(X, ¥;4,0,v,0,7) = exp(— X;—]/zyJSin[i(Zﬂ% + WD ;
(o2

13. Convolve the original of the segmented thermal bearing images 1 (x, y)with Gabor function
g(x, y) to generate the magnitude response image, R ;

14. Extracting the new Gabor features: Extract the orientation and scale information for new
Gabor Feature vectors namely Local Energy () and Mean Amplitude ¢y from the
magnitude response, R by employing a Gabor filter bank with 8 orientations and 5 scales.

Local energy (LE) newy= sumsqgr(magnitude response);
Mean Amplitude (MA) esy= sumabs(magnitude response);
15. End
16, End
17. Output Multi-features: Y e R™ € MA

18. End

10375x8 10375x8
LE

(new) (new)

56



=1 & o=1
:#
No. of images, i=1
>y
A: Seamentation Process
v

Convert cropped

RGB image into
grayscale image

v
0=1

>y
Construct Gabor filter

v

Convolution process for R

v

Extract Gabor feature vectors namely

Local Eneray and Mean Amplitude

v
0=0+1
i =i+l No. of Images, i
A=A+, /A
— —- — == —~

v

Define frequency of
each pixel

v

Calculate probability

v

Calculate cdf

v

Calculate cdp

v

Calculate new
intensity pixels

Output Multi-features,
Y e R™ & I:w/!m_;?h-.\‘ P !.’,_:m_:‘-i\.-x

/_’</ >

57



3.4.4 Algorithm for the Proposed an Enhanced GWCLAHE -based Feature
Extraction Method

This section discusses in detail the process that will be executed to develop the new
feature extraction process that has been proposed in this section based on the original

GWT-based feature extraction process as in section 3.5.1.

In this present study, a combination of an independent image enhancement approach
called Contrast Limited Adaptive Histogram Equalization (CLAHE) method with the
original GWT-based feature extraction technique will be developed. This proposed
method is called Enhanced GWCLAHE-based feature extraction. The purpose of this
Enhanced GWCLAHE-based method utilized in this study is to overcome the
limitations obtained from the experiment that been conducted on the original GWT-
based method. As a consequence, by modifying the pixel value (intensities) of the
image, the visual quality of images in this study will be able to be improved.
Consequently, the features of thermal motor bearing images also will be distinguished
well in this study. Thus,the following procedure is a detailed process for the proposed
image quality improvement by using the Enhanced GWCLAHE-based method:

Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the input RGB bearing image into grayscale level image, 1(x,y);
Step 3: Define the frequency of each pixel value in input image, P, (i) =n; ;

Step 4: Calculate the probability of each frequency, P, (i)=n, /N, N = total number of

pixels in the image;

Step 5:Calculate the cumulative distribution function of each pixel i, cdf, (i) = Z P.())
j=0

Step 6: Calculate the cumulative distribution probability of each pixel,

cdf, (i) = Z

=0 NO. ofplxel

58



Step 7: Calculating final value of each pixel(histogram equalized) by multiplying

cdf, (i) with number of bins;
Step 8: New input intensities, k of i by the function T (k) ;

Step 9: Create the new Gabor wavelets, G(x,Y;4,0,v,0,7).., {0 extract the new

Gabor features image by using the equation 3.14 as in section 3.5.2. Insert a number of
parameters (5 scales and 8 orientations) as denoted in Table 3.2 as presented in section
3.5.1 into the new Gabor function as in equation 3.15 and equation 3.16 as in section
3.5.2. The orientation parameters are: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135° and
157.5°.

Step 10: Determine the new Gabor features by convolved the input thermal motor

bearing images, 1(x,y) with the new GWCLAHE-based filters that have been created

in the different scales and orientations values, g ., (X, y) . Then, a new response of real

component, Real(G(x,Y)) and imaginary component, Im(G(X,Y))., Will be

produced and the equations are depicted in equation 3.18 and equation 3.19 as in
section 3.5.2.

Step 11: Define the new magnitude response, Magnitude_ response,,, by convolved

the original image with the new GWCLAHE-based filters. Then, decomposed it to the
new magnitude response as denoted in equation 3.20 and new phase response image as
denoted in equation 3.21 based on the real and imaginary part in equation 3.18 and
equation 3.19 as in section 3.5.2.

Step 12: Extract the new feature vector containing the new pixel value of the output

image based on the new magnitude response obtained. There are new Local Energy and

new Mean Amplitude, Y € R™ € MA o,y € LE ,," . The new Local energy will

new) (new)
be obtained by calculating the sum of squared of the new magnitude response which is
summing up the squared value of each matrix value from a new magnitude response
matrix. Meanwhile, the new mean amplitude will be obtained by calculating the sum of
absolute values of each matrix value from a new magnitude response matrix. The

equations are described in equation 3.24 and equation 3.25.
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Local _energy,., = sumsqr(Magnitude _ response 3.26

new )

Mean _ Amplitude,,, = sumabs(Magnitude _ response 3.27

I'IE‘W)

Figure 3 illustrates a flow chart representation of pseudocode 5 regarding the
GWCLAHE -based feature extraction process to extract the new features from thermal

motor bearing image groups.

Pseudocode 5: Enhanced GWCLAHE based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,

Output: Multiscale and multi orientation features, Y € R™ e MA'®™*8 g [ A10%7><®

Steps:

1. Start;

2. For each scale, (4, — A;)and (o, — o) in the scale list;

3. For each number of images;

4. A,

5. Convert the segmented RGB image into grayscale image 1(X, Y);

6. Define the frequency of each pixel value in input image, P, () = n

7. Calculate the probability of each frequency, P, (i) =n, /N, N = total number of pixels in

the image

i
8. Calculate the cumulative distribution function of each pixel i, cdf, (i) = z P.())
j=0
e . . & P
8. Calculate the cumulative distribution probability of each pixel, cdf, (i) = z_
=5 no.ofpixel
. Calculating final value of each pixel(histogram equalized) by multiplying cdf, (i) with

number of bins.
10. New input intensities, k of i by the function T (k)

(o]

11. For each orientation, 6 = {0" L Z,3£ e 5£ 3£,7g} in the orientation list;

'8'4°8'2" 8" 4
12. Construct a new Gabor filter, g(x, y) using Gabor real and Gabor imaginary

2 2.,'2 1
Gabor Real ewy=G (X, Y¥; 4,0,v,0,7) = exp[— x;—yzyj COS(i[Zﬂ'% + 1//)) ;
O

2 2,2 '
O

13. Convolve the original of the segmented thermal bearing images | (X, y)with Gabor function
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I (X, y) to generate the magnitude response image, R ;

14. Extracting the new Gabor features: Extract the orientation and scale information for new
Gabor Feature vectors namely Local Energy (.ew) and Mean Amplitude (ew) from the
magnitude response, R by employing a Gabor filter bank with 8 orientations and 5 scales.

Local energy (LE) newy= sumsgr(magnitude response);
Mean Amplitude (MA) ewy= sumabs(magnitude response);
15. End
16, End
17. Output Multi-features: Y € R™ e MA

18. End

10375x8 LE 10375x8

(new) (new)
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3.4.5 Algorithm for the HSV color-based Feature Extraction Method

This study discusses in detail the process that will be executed to apply the feature
extraction process based on the HSV color method. The purpose of this method is to
perceive the effectiveness of this method to distinguish the optimal features in each
group of thermal motor bearing image. Thus, the following procedures is the detailed

process:

Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the RGB of thermal motor bearing image input into HSV color space

image, 1., (X,Y);

Step 3: Separate the three channels of H*S*V color space individually as in equation
3.28.

H= 3.28

Step 4: Extract the features based on the HSV obtained. There are two types of features that
will be generated with statistical features which are mean and standard deviation. The
mean is the average value which gives some information about general brightness of the

image. Therefore, mean feature can be defined as equation 3.29 and equation 3.30:

L

g'=Z_]g*P(g)=ZZ|(|:/’IC)

g:

LN

3.29

P(g) = N(g)/M 3.30

Where P(g) is histogram probability, M is the number of pixel in the image HSV
(MxN), N(g) is the number of gray level g, L is a total number of gray level available

range from 0-255.

63



Meanwhile, the standard deviation is known as square root of the variance tells
something about the contrast. Thus, a high contrast image will have a high temperature

or intensities image. The equation as in equation 3.31.

3.31

-
LN

o, =.>.(9-9)°P(9)

«
Il
o

Figure 3 illustrates a flow chart representation of pseudocode 6 regarding the HSV
Color-based feature extraction process to extract the features from thermal motor

bearing image groups.

Pseudocode 6: HSV Color-based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,
Output: Output extracted features

Steps:

1. Start;

2. Convert the segmented RGB image into individual HSV color space image;
3. Extract the statistical features namely mean and standard deviation;

4. Output features: Y € R™ € MEAN 2" ¢ STD#"*

5. End
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Figure 3.7 Flowchart of HSV Color-based feature extraction technique
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3.4.6  Algorithm for the L*a*b color- based Feature Extraction Method

This study discusses in detail the process that will be executed to apply the
feature extraction process based on the HSV color method. The purpose of this method
IS to perceive the effectiveness of this method to distinguish the optimal features in each
group of thermal motor bearing image. Thus, the following procedures is the detailed

process:

Step 1: Read the cropped segmented bearing image with the dimensional size of m x n,

where m and n are the number of rows and column respectively.

Step 2: Convert the RGB of thermal motor bearing image input into I*a*b color space

image, ..., (X Y) ;

Step 3: Separate the three channels of L*a*b color space individually as in equation
3.32. ‘L’ defines a lightness, a* and b* for the colour opponent dimensions which ‘a*’
indicating where color falls along the red-green axis and ‘b*” indicating where the color

falls along the blue-yellow axis (Chen, 2003).

L*=116f (Y /Y,)-16 392
a* = 500[f (X / X, ) — f (Y /Y,)]
b* = 200[f (Y /Y,) - f(21Z,)]

X, Y, Z, Xn, Yn, and Zn are the coordinates of CIEXYZ colour space. The solution to
convert digital images from the RGB space to the CIEXYZ colour space is in equation
3.33.

X 0.608 0.174 0.201 | R 3.33

n

Y, |=10.299 0.587 0.114 || G

n

z 0.000 0.066 1.117 | B

n

Xn, Yn, and Zn are respectively corresponding to the white value of the parameter.

Step 4: Extract the features based on the I*a*b obtained. There are two types of features that

will be generated with statistical features which are mean and standard deviation. The
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mean is the average value which gives some information about general brightness of the

image. Therefore, mean can be defined as equation 3.34 and equation 3.35:

-
=

. 3.34
g9 =>.9*"P(@)=>> '(,:/’IC)

9

Il
o

P(g) =N(g)/M 3.35

Where P(g) is histogram probability, M is the number of pixel in the image L*a*b
(MxN), N(g) is the number of gray level g, L is a total number of gray level available

range from 0-255.

Meanwhile, the Standard deviation is known as square root of the variance tells
something about the contrast. Thus, a high contrast image will have a high temperature

or intensities image. The equation is as equation 3.36.

3.36

o = IS (g-g')Pa)

9=0

LN

Figure 3 illustrates a flow chart representation of pseudocode 7 regarding the I*a*b
Color-based feature extraction process to extract the features from thermal motor

bearing image groups.

Pseudocode 7: I*a*b Color-based feature extraction Algorithm

Input: RGB of segmented thermal motor bearing images,
Output: Output extracted features

Steps:

1. Start;

2. Convert the segmented RGB image into individual I*a*b color space image;
3. Extract the statistical features namely mean and standard deviation;

4. Output features: Y € R™ e MEAN ™ ¢ STD ™"

5. End
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Figure 3.8 Flowchart of L*a*b Color based feature extraction technique

3.5 Feature selection based-Fisher score technique

From the previous studies, a multi-scale and multi-orientation features at each
image points from the feature extraction based on GWT techniques will be generated
[cited]. This high dimensional of the resultant Gabor feature vector that occurs will
cause the computational and memory required for recognition are prohibitively large.
To address this problem, feature reduction method will be employed to reduce the
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dimensionality of the data in order to simplify the calculation analysis and improve the
learning performances in term of higher learning accuracy for classification in this
work. Feature selection is one of the most popular methods due to the preservation of
the original meaning of features and it is an important part of machine learning. This
feature selection is an approach to seek the most useful subset of the original variables
or features for use in the implementation of the machine learning model in order to
speed up the training time, enhance the learning interpretability, lowering
computational cost and complexity. Furthermore, the current subset generated from

these predictive features will improve the robustness of the classification models.

From the previous studies, there have demonstrated that the fisher score method
have been implemented extensively in various application in image processing field for
solving high dimensionality data resulting from feature extraction process (Ahmad et
al., 2017; Ahmed & Nandi, 2017; Aksu et al., 2018; Bhasin et al., 2014; Cherrington et
al., 2019; Gu et al., 2012a; Roffo & Melzi, 2016; Saglain et al., 2019; Sharma et al.,
2019; Song et al., 2017; Sun et al., 2019; Zbikowski, 2015). Yet, there are a few studies
regarding implementation of feature selection based fisher score in order to eliminate
the irrelevant Gabor features extraction (Li et al., 2010; Ma et al., 2019; VVamsidhar et
al., 2016). The experimental results of the studies have shown better performance in
classification result. In this way, a significant reduction in computation and memory
cost has been achieved. This method is much simpler to build and faster in process,
scalable with high dimensional datasets, reduce computational cost, computationally
simple and effective filtering method (Gu et al., 2012a). In consequence, this has been
motivated to use this proposed fisher score method in this study for feature selection

pUrposes.

This approach provides a measure of features' ability to distinguish between
different classes. The selected features were then fed as an input to the classification
model. In this feature selection process, it computes a subset of features with a large
distance between data points in different classes and small distance between data points
in the same class, and the final feature selection occurs by the top ranked ones (Gu et
al., 2012b; Islam et al., 2015; Ma et al., 2019; T. Zhang & Lu, 2010). Given the input
data matrix Y € R™, then it will be reduced to F € R™. Then, the index of a feature

score f_ will be computed as equation 3.32 follows:
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c : 5 3.37
Zni(ﬂj _,Uj)
-1

f —
Zni(a})z

S

By utilizing this formula, the experimental study will show that the size of high
dimensional features and the computations involved in feature extraction process will
be significantly reduced. Next, the top score feature which is the most discriminative

power will be selected as the top fisher score.

Hereby, this fisher score method will be applied to all the proposed of new feature
extraction methods as well as to the original GWT-based method. The purpose is to
seek the difference scores that will be obtained between the proposed methods. A
higher score readings from all proposed new feature extraction methods along with the
original score readings from GWT-based method became a priority in this section. The
highest score ratio to be obtained will indicate the best discriminant features for the
group of thermal motor bearing images in this study. The processing for these methods
will be presented in detail in section 3.6.1 to section 3.6.5. Meanwhile, this fisher score-
based feature selection will also be implemented on the color-based feature extraction
techniques. The purpose is to perceive the difference in score results that will be
obtained between the color-based methods compared to the original GWT-based
methods. The methods of operation of this process will be explained briefly in sections
3.55and 3.5.6.

3.5.1 Fisher Score Algorithm in the Original Gabor Wavelet Transform (GWT)-
based Feature Extraction Method

In this section, the focus is on selecting the optimal scale and orientation for Gabor
features used in the feature model. From the previous feature extraction process, a high
dimensional of the resultant Gabor features vector namely Local Energy (LE) and Mean

Amplitude (MA) will be generated. It consists the different scales parameters=

{scale7x7, scale9x9, scalel1x11, scalel3x13, scalel5x15} and orientations parameters,
0= O”,£,£,3£,£,5£,3—,7— . 40 filters Gabor channel will be organized at each
84 82 8 4 8
w

hich means 40 multi-scales and multi-orientations feature images will be
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constructed. Therefore, the computational time and memory required for recognition
will be large and lengthy, as well as will increases the computational cost. The proposed
fisher score-based feature selection method will address these issues. By applying this
fisher score method, the subset of the most relevant features will be determined. Thus,
the dimensionality of the data to simplify the calculation analysis will be reduced so
that running time of the algorithm will also be reduced. In addition, the learning
performances in term of higher learning accuracy will also be improved for

classification in this work.

Based on the studies in (Li et al., 2010; Ma et al., 2019), they have been stated that,
Gabor filters that produce features with large discrimination power should be retained
and those that produce features with less significant should be eliminated from the
filters that have constructed. This selected optimal feature will eventually be utilized as
input to the classification model. The purpose is to classify the differences in the group
of thermal motor bearing images well. The following is a detailed procedure for
generating the discrimination of orientations and scales that will be selected for both LE
and MA features:

Stepl: Read all the high dimensional extracted data input Gabor features which are

Local Energy (LE) and Mean Amplitude (MA), Y € R(™M ¢ | E1%758 \A10375%8

Step 2: Calculate the sample mean and variance of each class along all the features in

order to obtain the discriminability of the j—th scale in each feature group

(orientation).

Step 3: Obtain the average fisher ratio for each feature group on each scale parameter.

The features will be reduced toF e LE™ e MA™ .

Step 4: Rank the entire feature group based on their average fisher ratio in descending

order on each scale parameter.

Step 5: Identify the best parameter features from Local Energy’s and Mean Amplitude’s

scales and orientations by selecting the top fisher score from the entire fisher scores

data, f,
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Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features
of the high dimensions that will be generated from the GWT-based feature extraction

process

Algorithm: Fisher Score-based feature selection Algorithm for features in Gabor Wavelet
Transform (GWT)

Input: Y € R™ e LE'®™¢ ¢ MA@
Output:  The top Fisher Score, f,¢gua,

Steps:
1. Begin
2. Read all the high dimensional extracted data input Gabor features at different

orientations and scales, Y € R™ e LE®" ¢ MA@,
3. Calculate order values of all features using fisher ratio using equation:

ini(u} — 1)
f — i=1
Z‘ni(a})2

S
4. Obtain fisher ratio for each feature group, the features reduces to F € LE™ e MA™
5. IF 6 == 0, && Scale==Scales
THEN Rank feature group in descending order;

ELSE Read Y € R™ e LE'®™® ¢ MA™®™¢;
END IF;
6. Top Fisher Score, fs(LE&MA) ,
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Figure 3.9 Gabor filter selection based on Fisher Score technique
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3.5.2 Fisher Score Algorithm in the Proposed an Enhanced Gabor Features
(EGF) -based Feature Extraction Method

In this section, the focus is on selecting the new optimal scales and orientations
generated from the new Enhanced Gabor Features (EGF)-based feature extraction
process. To achieve this goal, fisher score technique will be implemented in this study
to produce a new score ratio value. A higher score readings from all proposed new
feature extraction methods along with the original score readings from GWT-based
method became a priority in this section. The highest score ratio to be obtained will
indicate the best discriminant features of thermal motor bearing images group in this

study.

From the previous new feature extraction process, a high dimensional of the
resultant EGF features vector namely new Local Energy (LE) and new Mean Amplitude
(MA) will be generated. It consists the different scales parameters=

{scale7x7, scale9x9, scalel1x11, scalel3x13, scalel5x15} and orientations parameters,

0|y

0= 00,1,1,3 ,1,51,35,7z . A new 40 EGF filter channel will be organized at
8 4 2 8 4 8

each image point which means 40 multi-scales and multi-orientations feature images
will be constructed. Therefore, the computational time and memory required for
recognition will be large and lengthy, as well as will increases the computational
cost. The proposed fisher score-based feature selection method will address these
issues. By applying this fisher score method, the new subset of the most relevant
features will be determined. Thus, the dimensionality of the data to simplify the
calculation analysis will be reduced so that running time of the algorithm will also be
reduced. In addition, the learning performances in term of higher learning accuracy will

also be improved for classification in this work.

Based on the studies in (Li et al., 2010; Ma et al., 2019), they have been stated that,
EGF filters that produce features with large discrimination power should be retained
and those that produce features with less significant should be eliminated from the
filters that have constructed. This selected optimal feature will eventually be utilized as
input to the classification model. The purpose is to classify the differences in the group

of thermal motor bearing images well. The following is a detailed procedure for
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generating the discrimination of orientations and scales that will be selected for both

new Local Energy (LE,,) and new Mean Amplitude (MA,, ) features:

Stepl: Read all the high dimensional extracted data input EGF features which are new

Local Energy ( LE ) and new Mean Amplitude ( MA., )

(new)

10375x8

Y c R(nx5)xj c LEnerO375X8, MA

new

Step 2: Calculate the new sample mean and variance of each class along all the features

in order to obtain the discriminability of the j—th scale in each feature group

(orientation).

Step 3: Obtain the new average fisher ratio for each feature group on each scale

parameter. The features will be reduced to F ¢ LE,,,™ € MA,,™.

Step 4: Rank the new entire feature group based on their new average fisher ratio in

descending order on each scale parameter.

Step 5: Identify the new best parameter features from new Local Energy’s and new
Mean Amplitude’s scales and orientations by selecting the new top fisher score from

the entire fisher scores data, f, ¢ )& fsmamen)

Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features
of the high dimensions that will be generated from the Enhanced Gabor Features

(EGF)-based feature extraction process.

Algorithm: Fisher Score-based feature selection Algorithm for new features in Enhanced
Gabor Features (EGF)

. nxj 10375x8 10375x8
Input: Y e R™ € LE_,, e MA..,

Output:  The top Fisher Score, f & f

s(LE (new)) s(MA(new))

Steps:
1. Begin
2. Read all the high dimensional extracted data input EGF features at different orientations

nxj 10375x8 10375x8 |
and scales, Y e R™ e LE_, e MA,, ;
3. Calculate order values of all features using fisher ratio using equation:
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ini(u}—u,-)z
S .
2 ni(@})’

S
4. Obtain fisher ratio for each feature group, the features reduces to
FelE,™ eMA, ™;
5. IF 8 == 6, && Scale==Scales
THEN Rank feature group in descending order;

ELSE Read Y e R™ e LE '™ e MA ¥

END IF;
6. A New top Fisher Score, f ¢ on)@nd fouamen)
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3.5.3 Fisher Score Algorithm in the Proposed an Enhanced GWSMH-based

Feature Extraction Method

Same as in section 3.6.2, the focus in this section is on selecting the new optimal
scales and orientations generated from the new Enhanced GWSMH-based feature
extraction process. To achieve this goal, fisher score technique will be implemented in
this study to produce a new score ratio value. A higher score readings from all proposed
new feature extraction methods along with the original score readings from GWT-based
method became a priority in this section. The highest score ratio to be obtained will
indicate the best discriminant features of thermal motor bearing images group in this

study.

From the previous new feature extraction process, a high dimensional of the
resultant GWSMH features vector namely new Local Energy (LE) and new Mean
Amplitude (MA) will be generated. It consists the different scales parameters=

{scale7x7, scale9x9, scalel1x11, scalel3x13, scalel5x15} and orientations parameters,

9=1002 Z3% L5 3% 771 A new 40 GWSMH filter channel will be
8478278 8

organized at each image point which means 40 multi-scales and multi-orientations
feature images will be constructed. By applying the fisher score method, the new subset
of the most relevant features will be determined. GWSMH filters that produce features
with large discrimination power should be retained and those that produce features with
less significant should be eliminated from the filters that have constructed. The
following is a detailed procedure for generating the discrimination of orientations and

scales that will be selected for both new Local Energy (LE,,) and new Mean

Amplitude (MA,,,, ) features:

Stepl: Read all the high dimensional extracted data input GWSMH features which are

new Local Energy ( LE ) and new Mean Amplitude ( MA.,, )

(new)

(nx5)xj 10375x8 10375x8
Y eR" ¢ LE ¢ MA,, "¢,

Step 2: Calculate the new sample mean and variance of each class along all the features

in order to obtain the discriminability of the scale in each feature group (orientation).
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Step 3: Obtain the new average fisher ratio for each feature group on each scale

parameter, the features will be reduced to F e LE,,,™ € MA_,™.

Step 4: Rank the new entire feature group based on their new average fisher ratio in
descending order on each scale parameter.

Step 5: Identify the new best parameter features from new Local Energy’s and new
Mean Amplitude’s scales and orientations by selecting the new top fisher score from

the entire fisher scores data, f, ¢ & fsmamon) -

Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features of
the high dimensions that will be generated from the Enhanced GWSMH-based feature

extraction process.

Algorithm: Fisher Score-based feature selection Algorithm for new features in Enhanced
GWSMH.

Input: Y e Rnxj c LEneW10375X8 c MAneW10375x8
Output:  The top Fisher Score, f ¢ o & fomagmen)

Steps:
1. Begin
2. Read all the high dimensional extracted data input EGF features at different orientations

nxj 10375x8 10375x8 |
and scales, Y e R™ € LE,, e MA.,, ;
3. Calculate order values of all features using fisher ratio using equation:

S} - 1)
f -zl .
S ni(o))?

s
4. Obtain fisher ratio for each feature group, the features reduces to
FelE,™ eMA,™;
5. IF @ = 0, && Scale==Scale;

THEN Rank feature group in descending order;

ELSERead Y e R™ e LE,'*™® e MA ¥

END IF;
6. A New top Fisher Score, f ¢ ewy@nd fomameny
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Figure 3.11  GWSMH filter selection based on Fisher Score technique
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3.5.4 Fisher Score Algorithm in the Proposed an Enhanced GWCLAHE -based

Feature Extraction Method

Same as in section 3.6.2 and secion 3.6.3, the focus in this section is on selecting the
new optimal scales and orientations generated from the new Enhanced GWCLAHE-
based feature extraction process. To achieve this goal, fisher score technique will be
implemented in this study to produce a new score ratio value. A higher score readings
from all proposed new feature extraction methods along with the original score readings
from GWT-based method became a priority in this section. The highest score ratio to
be obtained will indicate the best discriminant features of thermal motor bearing images

group in this study.

From the previous new feature extraction process, a high dimensional of the
resultant GWCLAHE features vector namely new Local Energy (LE) and new Mean
Amplitude (MA) will be generated. It consists the different scales parameters=

{scale7x7, scale9x9, scalel1x11, scalel3x13, scalel5x15} and orientations parameters,

9=1002 Z3% L5 3% 771 A new 40 GWCLAHE filter channel will be
8'47°8'278 4" 8

organized at each image point which means 40 multi-scales and multi-orientations
feature images will be constructed. By applying the fisher score method, the new subset
of the most relevant features will be determined. GWCLAHE filters that produce
features with large discrimination power should be retained and those that produce
features with less significant should be eliminated from the filters that have constructed.
The following is a detailed procedure for generating the discrimination of orientations

and scales that will be selected for both new Local Energy (LE,,,) and new Mean

Amplitude (MA,,,, ) features:

Stepl: Read all the high dimensional extracted data input GWSMH features which are
new Local Energy ( LE,,, ) and new Mean Amplitude ( MA.,, )

(nx5)xj 10375x8 10375x8
Y eR™ ¢ LE_ ¢ MA,, .

Step 2: Calculate the new sample mean and variance of each class along all the features

in order to obtain the discriminability of the scale in each feature group (orientation).
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Step 3: Obtain the new average fisher ratio for each feature group on each scale

parameter, the features will be reducedto F e LE,,,™ e MA ™.

Step 4: Rank the new entire feature group based on their new average fisher ratio in
descending order on each scale parameter.

Step 5: Identify the new best parameter features from new Local Energy’s and new
Mean Amplitude’s scales and orientations by selecting the new top fisher score from

the entire fisher scores data, f,  : .., & fomamen) -

Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features of
the high dimensions that will be generated from the Enhanced GWCLAHE-based

feature extraction process.

Algorithm: Fisher Score-based feature selection Algorithm for new features in Enhanced
GWCLAHE.

Input: Y e Rnxj c LEneW10375X8 c MAneW10375x8
Output:  The top Fisher Score, f ¢ o & fomagmen)

Steps:
1. Begin
2. Read all the high dimensional extracted data input EGF features at different orientations

nxj 10375x8 10375x8 |
and scales, Y e R™ € LE, e MA.,, ;
3. Calculate order values of all features using fisher ratio using equation:

S} - 1)
f -zl .
S ni(o))?

s
4. Obtain fisher ratio for each feature group, the features reduces to
FelE,™ eMA,™;
5. IF @ = 0, && Scale==Scale;

THEN Rank feature group in descending order;

ELSERead Y e R™ e LE,'*™® e MA ¥

END IF;
6. A New top Fisher Score, f ¢ ewy@nd fomameny
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Figure 3.12 GWCLAHE filter selection based on Fisher Score technique
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3.5.5 Fisher Score Algorithm for Color based Feature Extraction Method

In this section, the focus is on selecting the optimal features generated from
the color-based feature extraction process. The color methods involved are HSV and | *
a * b based methods. The purpose is to perceive the difference in score results that will
be obtained between the color-based methods compared to the original GWT-based
methods. To achieve this goal, fisher score technique will be implemented in this study

to produce a score ratio value.

Based on the color feature extraction process, there are six types of features that will
be generated namely mean and standard deviation for each HSV and I*a*b components.
By applying the fisher score method, the new subset of the most relevant features will
be determined. Thus, the detailed process of the proposed Fisher Score-based feature
selection algorithm for the HSV and | * a * b color methods is described as follows:

(@) HSV color-based feature extraction
Step 1: Read all the input extracted data HSV color features, Y € R™ e HSV 275*¢

Step 2: Calculate sample mean and variance of each class along all the features in order

to obtain the discriminability in each feature group.

Step 3: Obtain the average fisher ratio for each feature group, F € HSV ™

Step 4: Rank the entire feature group based on their average fisher ratio in descending
order.

Step 5: Identify the best parameter features by selecting the top fisher score from the

entire fisher scores data, f_ -

Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features

that will be generated from HSV Color-based feature extraction process.
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Algorithm: Fisher Score-based feature selection for HSV color

Input: Y € R™ e mean

2075x6 2075x6
*® e std

Output:  The top Fisher Score, f .,

Steps:
1. Begin

2. Read all the input extracted data HSV color features,

Y e R™ e mean

2075x6 2075x6 .
X e std <

3. Calculate order values of all features using fisher ratio using equation:

f,=-

chni(u‘,- —4;)°

S

ini(a})z

4. Obtain fisher ratio for each feature group, the features reduces to F € HSV ™ :

5. IF

f = f,

THEN Rank feature group in descending order;
ELSE Read Y € R™ e mean”"™ e std %,

END IF;

6. Top Fisher Score, f

s(mean&std) ’

e

Y

y

/

Read all the input HSV color features, ¥ € R"

v

Calculate:

an(,uf, -¥; )°
|

i
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@
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Figure 3.13

s HSV T ¢ | ! group,
2. 7i(@))’ F e Hsp
NO ™
_— fe f
\\ e >
\\
S ~_
/ YE l

Rank features group in
descending order

HSV color selection based on Fisher Score technique

85



(b) L*a*b color-based feature extraction
Step 1: Read all the input extracted data I*a*b color features, Y € R™ e | *a*b%"*¢

Step 2: Calculate sample mean and variance of each class along all the features in order

to obtain the discriminability in each feature group.
Step 3: Obtain the average fisher ratio for each feature group, F el *a*b™.

Step 4: Rank the entire feature group based on their average fisher ratio in descending
order.

Step 5: Identify the best parameter features by selecting the top fisher score from the

entire fisher scores data, f

s(mean&std )

Figure 3 illustrates a flow chart representation of pseudocode 2 regarding the fisher
score-based feature selection process. This process aims to select the optimal features

that will be generated from I*a*b Color-based feature extraction process.

Algorithm: Fisher Score-based feature selection for I*a*b color

Input: Y e R™ e|*a*p?"*®
Output: The top Fisher Score, f

s(mean&std )

Steps:

1. Begin

2. Read all the input extracted data I*a*b color features, Y € R™ el *a
3. Calculate order values of all features using fisher ratio using equation:

ini(ﬂ} — 1)’
f — i=1 .
Zni(O'})2

S
4. Obtain feature ratio for each feature group, the features reducesto F e | *a*b™ ;
f =1,

THEN Rank feature group in descending order;

ELSE Read Y € R™ | *gq*p27™¢:
END IF;
6. Top Fisher Score, f

* [ 2075%6 .

’

’

5. IF

s(mean&std) ?
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Figure 3.14  I*a*b color selection based on Fisher Score technique
3.6  Aone-way ANOVA test

A one-way ANOVA test method will be employed in this work since there are more
than 2 groups that need to be evaluated in this work (El-Farrash, El Shimy, EI-Sakka,
Ahmed, & Abdel-Moez, 2019; Gertheiss, 2014; Marzook, Razek, Yousef, & Attia,
2020; Verma, 2013). This statistical method of ANOVA will be applied in this work to
determine the extent of feature sensitivity to differentiate the three classes produced
from each feature extraction based method in this work (Desai, Patel, & Prajapati,
2016). It also aims to analyze whether they are any significant differences between the
mean of three independent groups features produced by the thermal motor bearing

images in this work.

ANOVA test will gives two important values which are F-value and P-value. The
F-value is the ratio of the mean squares. It will be applied to statistically test the
variability between group means is larger compared to the variability within group
variation. According to (Kazerouni, 2009), the larger F-value value is, the more
significant “between-group variation” would be. At this point, as between group

variability increase, sample means will show further apart from each other. It is also
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more probable to be belonging to totally different population. Yet, in (Desai et al.,
2016), the larger the value of F-statistic, the better the feature will be. After the value of
F-ratio is obtained, the level of significance for the samples will be determined by
comparing it to the F-Critical value. If the F- ratio is larger than F-Critical, then the

variation between the groups is statistically significant.

In addition to the F- ratio, P-value is the most important part in the ANOVA table .
If P-value is less than the level of significance at a=0.05, null hypothesis will be
rejected. Otherwise, null hypothesis will be accepted. It means, the lower the value
resulting from this P-value is, the more statistically significant the population parameter

is (Kazerouni, 2009). Null hypotesis denotes that the mean value between two or more

population groups are the same ie : H =z, = 1, = 1, This condition means there is no

significant different between the population group. While alternative hypothesis are the
opposite of null hypotheses. It shows that the mean values between two or more
population groups are not the same, H, = x, # u,. This condition means there is
significant different between the population group. Level of significance, « = 0.05 has
also been set (Alkhudhairy, Al-Johany, Naseem, Bin-Shuwaish, & Vohra, 2020;
Bahbishi, Mzain, Badeeb, & Nassar, 2020; Tian et al., 2020; Zimmermann, Valcanaia,
Neiva, Mehl, & Fasbinder, 2019). This one-way ANOVA test will be performed by
using IBM SPSS Statistics 20 software. The results of the measurements involved from

this one-way ANOVA software will be shown as in the table.

Table 3.2 A one-way ANOVA table
Sources of Sums of Degree of  Mean squares E statistic
variation  squares (SS) freedom (df) (MS)

Between SSB k-1 SSB MSB
Groups MSB = k-1 MSW
Within SSwW N-k
Groups MSW = SSW

N —k
Total SST N-1
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3.7 Classification

After the feature selection processing is explained, this section will discuss the
classifier model to be used and how it works in this classification process. This
classification process will be carried out to test the proposed classifier model to classify
the condition of thermal motor bearing images whether they are normal, warning or
abnormal images. There are two types of learning algorithm approaches that will be
utilized in this classification process for comparative purposes, namely the Multilayer
Artificial Neural Networks (MLANNS) and Linear thresholding (LT). The highest
performance result in terms of accuracy between these two proposed classifier methods

will be an indicator to the selection of the best classifier model in this study.

A general framework for classification process in this work is demonstrated in
Figure 3.29. Before this classification process is carried out, the process of eliminating
all the irrelevant features needs to be executed for the selection of the optimal feature.
This is to reduce the time spent during running the learning algorithm. Next, the optimal
features obtained will feed into the classifier model as a training data for processing in
this study. By using the machine learning stated, the results of the classification
performance in terms of precision (PRE), accuracy (ACC), specificity (SPEC),
sensitivity (SENS) and CER will be generated.

Learning
fncloptiine > Algorithms
features (a) MLANNS
(b) LT
\ 4
Decisions

Figure 3.15 A general framework for classification process

All these processes will be explained in more detail in the next section in sections 3.8.1

and section 3.8.2.
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3.7.1 Multi-Layer Artificial neural Networks (MLANNSs) Algorithm for solving

Classification Tasks

This study proposes a Multi-Layer Artificial Neural networks (MLANNS) with the
supervised machine learning as the technique to classify the different conditions of
thermal motor bearing images in this work. The input for this MLANNSs model is based

on the optimal features generated from the previous feature selection process.

This MLANNSs method was selected in this study due to it is faster, robust and more
accurate. Over the year, MLANN is one of the extensively used techniques for
classification of class of objects in image processing fields. It is also applicable in
various applications such are pattern recognition (Gaja & Liou, 2018), medical (Aruna
Devi B., 2019; Mohammed et al., 2018), dental (Raith et al., 2017), electrical system
(Bighnaraj Panda, 2018; Taheri-Garavand et al., 2015), mechanical system (B. Hizarci,
2019; Jain et al., 2019) and so on.

The architecture of MLANNSs can be set up in a variety of ways. In this work,
MLANNSs model will be constructed consisting of three layers of nodes: two input
layer, one hidden layer and three output layers feed forward network as denoted in
Figure 3.30. Five different hidden neurons at HN = 1, 2, 3, 4 and 5 will be evaluated on
each learning algorithm during the training process. This is to seek the impact on the
MLANNSs network model in terms of MSE performance and the accuracy value that

will be obtained.

Local
— |1 — Normal
Energy Y1
i Y2 = Warnin
Mean 12 \ g
—> Y3
Amplitude — Abnormal

Input Layer ~ Hidden Layer ~ Output Layer

Figure 3.16  Single hidden layer architecture Artificial Neural Network

In the input layer, it represents the feature vectors namely Local Energy and

Mean Amplitude. These input features come from the set of selected features along with
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the desired output target. They will be applied to the ANNSs in order to calculate the
actual output. Since there is a 3-class classification problem, the target setting values
that will be utilized are 000 010 and 001 representing the differences of group images.
Next, the weighted inputs will sent to a series of hidden layers by means of the input
features signal multiplied by the weight of the first connection. This weighted input will
cause ANN neurons to become active. Meanwhile, the activation signal passed by the
transfer function consisting of weighted inputs from the hidden layer will be received at
the output layer to produce a single neuron output. The tangent sigmoid function
(‘tansig’) will be the activation function, f in the hidden layer, while the linear transfer
function (“purelin’) for the output layer.These transfer functions will performed the

weighted of input and output neurons.

Subsequently, feed forward MLANNs with Lavenberg-Marquardt backpropagation
(‘trainlm”), Bayesian regularization backpropagation (‘trainbr’) and Scaled conjugate
gradient backpropagation (‘trainscg’) training algorithms will be employed to fit the
ANN model purpose. In addition, the impact of these three learning algorithms will be
assessed based on the classification performance obtained in the MLANNs model.
Furthermore, the training process will take place according to each parameter of the
training algorithm with its default value determination. The value of weights and biases
of the network will be randomized. At the output layer, the results of the classification
performance of the thermal motor image groups (normal, warning, abnormal) will be
generated according to the parameters set from the learning network. If the least errors
are produced from the training process, the better the classification performance value
will be obtained in this work. All the declared parameters will be utilized to process the

information that will affect the behavior of the ANN model.

3.7.1.1 K-Folds Cross Validation

For learning process, data sets will be divided into three sets such are training,
validation and testing dataset. Training set and validation set will be used iteratively for
optimizing the parameters of the MLANNS classifier. Meanwhile testing set will be
employed to validate the generalization performance of the final MLANNS classifier.
Out of 2593 thermal motor bearing images dataset (normal, warning, abnormal), 2334

thermal motor bearing images will be taken to train the algorithms and the remaining
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259 thermal images will be used to test a trained algorithms to check whether they
provides the correct output as desired. Hence, the method to estimate the generalization

capability of a learning model (MLANNS) is proposed.

In this work, the data training with the implementation of training algorithm namely
‘trainlm’, trainbr’ and trainscg’” will be validated by using K-Fold Cross Validation
technique for structure the network. It is a process to limit the problems like overfitting
in the ANN model by validates the training dataset via validating each subset of K-Fold
validation sets. It’s cross-validation error will be used as the performance indicator to
select the best training model. This process will begin with the training and validation
dataset is randomly sorted. Then, the data will be divided into subsets of K. K-1 folds
subset will be selected as the training set that corresponds to the model to fit the model,
and the remaining Kth fold will be selected as the validation set to validate the model's
effectiveness. This process will be repeated K times, where every data point gets to be
in validation set once and gets to be in a training set (k-1) times. After train the
classifier, the performance metric which is validation accuracy of K results of the
algorithm will be measured. It will be calculated by average the validation record score
over the K-rounds from the folds to produce single estimation as described in equation
3.38.

Final _ Accuracy = Average(Roundl, Round?2,....... , Round10) 3.38

Furthermore, the performance for all training functions will be discern from the
validation results of this cross-validation approach. The highest accuracy and the least
error of the validation results will indicates the effectiveness of learning algorithm used
in the classification process. Lastly, a testing process will be performed by using 259
thermal motor bearing images to test the performance of a trained model. In this study,
5-fold and 10-fold cross-validation will be used to evaluate the performance of the
MLANNSs model. Thus, Figure 3.31 demonstrates an example of the scenario of 10-fold

cross validation technique.
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Fold-1 | Fold- | Fold- | Fold- | ----=------:- Fold-10
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T
The data split into 10-folds
Validation }Evaluation Training | --------
=o' Validation }E\ﬂf?;')o” Training
Fit the A
Training | [ pogel Training
ST Validation }E‘,ﬁ,‘f?{gﬂ
Round 2 SECIETEPE

Round 1 Round 10

T
Error(i) = A\’cmge(z; :“ Error(i))

Accuracy = Average (Roundl..... Round10)

Figure 3.17  K-Fold Cross Validation procedure

Subsequently, five classification statistical performance metrics namely
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and Classification
Error Rate (CER) will be calculated on multi-class classification problem based on TP
(True Positive), FP (False Positive), TN (True Negative) and FN (False Negative) of
obtained confusion matrix (Tharwat, 2018). They are described in equations 3.39 to

equation 3.44.

. 3.39
Precision(Pre) = il
TP+ FP
i 3.40
Sensitivity(Se) = Sl
TP+FN
N TN 3.41
Specificity(Sp) = ——
P (Sp) FP+TN
3.42
Accuracy(Acc) = FP+ TN
TP+TN + FP + FN
CER = FP + FN 1 Acc 3.43
TP+TN + FP + FN
3.44

N
MSE = %Z (T arget, —Output,)?
i=0
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Where N is the total number of input vector, Target

Output,

is the actual target vector and

is the desired output vector by MLANNS.

For further explanation, the implementation of the MLANN-based classification
algorithm will be discussed in sections 3.8.1.2 to 3.8.1.5. Meanwhile, the process of the
MLANN classification algorithm from two feature extracts based on HSV color
technique and | * a * b color will also be included in this classification process study for

comparison purposes in terms of classification performance.

3.7.1.2 MLANNSs Algorithm for Original Gabor Wavelet Transform (GWT)

Method

This section will presents the whole procedures of the proposed MLANNs model
with the implementation of training algorithm namely “trainlm’, trainbr’ and ‘trainscg’
by using K-Fold Cross Validation for Gabor Wavelet Transform (GWT)-based feature
extraction method. In this study, 5-fold and 10-fold cross-validation will be employed
to evaluate the performance of the MLANNs model. Figure 3 illustrates a flow chart
representation of pseudocode 7 regarding the MLANNS Algorithm for Gabor Wavelet
Transform (GWT)-based feature extraction. This process will be executed to classify

the condition of thermal motor bearing image in this study.

Algorithm: MLANNS Algorithm for Gabor Wavelet Transform (GWT)-based feature
extraction

Input: Top Fisher Score dataset and validation dataset features;

Output: Five classification statistical performance which are Precision (Pre), Sensitivity
(Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate (CER) based
on output from the testing set;

Steps:

1. Begin

2. Read the training top fisher score dataset and validation dataset features of Local
Energy (LE) and Mean Amplitude (MA) for GWT-based feature extraction method ,

Y c Rnxj c LE 2334x1 c MA2334X1;
. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron) %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden

(G2l SNV
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layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For

8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;

9. END For

10. Stop training when error validation is minimal. This is to ensure net can generalise to
unseen data;

11. Obtaining the best MLANNS architecture. Then, discard the unnecessary models;

12. Save the net of MLANNSs models;

13. Call the testing datasets. Then, retrieve the save MLANNs model.

14. Perform the testing process by compare the MLANNS output to the target as
follows:

Confusion_matrix= confusionmat(testDataset,TargetTest);

15. Calculate five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False
Positive), TN (True Negative) and FN (False Negative) obtained of step 14;

16. Stop
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3.7.1.3 MLANNSs Algorithm for Proposed Enhanced Gabor Features (EGF)

Method

This section will presents the whole procedures of the proposed MLANNs model
with the implementation of training algorithm namely ‘trainlm’, trainbr’ and ‘trainscg’
by using K-Fold Cross Validation for Enhanced Gabor Features (EGF)-based feature
extraction method. In this study, 5-fold and 10-fold cross-validation will be employed
to evaluate the performance of the MLANNSs model. Figure 3 illustrates a flow chart
representation of pseudocode 7 regarding the MLANNS Algorithm for Gabor Wavelet
Transform (GWT)-based feature extraction. This process will be executed to classify
the condition of thermal motor bearing image in this study.

Algorithm: MLANNS algorithm for Enhanced Gabor Features (EGF)-based feature
extraction

Input: New top Fisher Score dataset and new validation dataset features;

Output: New five classification statistical performance which are Precision (Pre),
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate
(CER) based on output from the testing set;

Steps:

1. Begin

2. Read the new training top fisher score dataset and validation dataset features which are
new Local Energy (LE) and Mean Amplitude (MA) for EGF-based feature extraction

method, Y € R™ e new_ LE**" e new _ MA™**;

. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron)  %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %Folds, k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden
layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For
8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;
9. END For
10. Stop training when error validation is minimal. This is to ensure net can generalise to
unseen data;
11. Obtaining the best MLANNSs architecture. Then, discard the unnecessary models;
12. Save the net of MLANNS models;
13. Call the testing datasets. Then, retrieve the save MLANNs model.
14. Perform the testing process by compare the MLANNS output to the target as
follows:

(Ol N V)

97



New_Confusion_matrix= confusionmat(testDataset,TargetTest);

15. Calculate new five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False

Positive), TN (True Negative) and FN (False Negative) obtained of step 14;
16. Stop
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3.7.1.4 MLANNSs Algorithm for Proposed Enhanced GWSMH Method

This section will presents the whole procedures of the proposed MLANNs model
with the implementation of training algorithm namely ‘trainlm’, trainbr’ and ‘trainscg’
by using K-Fold Cross Validation for Enhanced GWHSM-based feature extraction
method. In this study, 5-fold and 10-fold cross-validation will be employed to evaluate
the performance of the MLANNSs model. Figure 3 illustrates a flow chart representation
of pseudocode 7 regarding the MLANNS Algorithm for Gabor Wavelet Transform
(GWT)-based feature extraction. This process will be executed to classify the condition

of thermal motor bearing image in this study.

Algorithm: MLANNS-based classification for Enhanced Enhanced GWHSM -based
feature extraction

Input: New top Fisher Score dataset and new validation dataset features;

Output: New five classification statistical performance which are Precision (Pre),
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate
(CER) based on output from the test dataset;

Steps:

1. Begin

2. Read the new training top fisher score dataset and validation dataset features which are
new Local Energy (LE) and new Mean Amplitude (MA) for Enhanced GWHSM-based

feature extraction method, Y € R™ e new LE?** e new_ MAZ**;

. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron) %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %~Folds, k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden
layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For
8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;
9. END For
10. Stop training when error validation is' minimal. This is to ensure net can generalise to
unseen data;
11. Obtaining the best MLANNSs architecture. Then, discard the unnecessary models;
12. Save the net of MLANNS models;
13. Call the testing datasets. Then, retrieve the save MLANNs model.
14. Perform the testing process by compare the MLANNS output to the target as
follows:

g~ w

New_Confusion_matrix= confusionmat(testDataset,TargetTest);
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15. Calculate new five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False

Positive), TN (True Negative) and FN (False Negative) obtained of step 14;
16. Stop
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Flowchart for the proposed MLANNSs for Enhanced GWHSM -

based feature extraction
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3.7.1.5 MLANNSs Algorithm for Proposed Enhanced GWCLAHE Method

This section will presents the whole procedures of the proposed MLANNs model
with the implementation of training algorithm namely ‘trainlm’, trainbr’ and ‘trainscg’
by using K-Fold Cross Validation for Enhanced GWCLAHE-based feature extraction
method. In this study, 5-fold and 10-fold cross-validation will be employed to evaluate
the performance of the MLANNSs model. Figure 3 illustrates a flow chart representation
of pseudocode 7 regarding the MLANNS Algorithm for Gabor Wavelet Transform
(GWT)-based feature extraction. This process will be executed to classify the condition
of thermal motor bearing image in this study.

Algorithm: MLANNS Algorithm for Enhanced Enhanced GWCLAHE -based feature
extraction

Input: New top Fisher Score dataset and new validation dataset features;

Output: New five classification statistical performance which are Precision (Pre),
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate
(CER) based on output from the test dataset;

Steps:

1. Begin

2. Read the new training top fisher score dataset and validation dataset features which are
new Local Energy (LE) and new Mean Amplitude (MA) for Enhanced GWCLAHE-

based feature extraction method, Y € R™ e new  LE**** e new_ MA*3*;

. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron) %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %~Folds, k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden
layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For
8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;
9. END For
10. Stop training when error validation is' minimal. This is to ensure net can generalise to
unseen data;
11. Obtaining the best MLANNSs architecture. Then, discard the unnecessary models;
12. Save the net of MLANNS models;
13. Call the testing datasets. Then, retrieve the save MLANNs model.
14. Perform the testing process by compare the MLANNS output to the target as
follows:

[ V)

New_Confusion_matrix= confusionmat(testDataset,TargetTest);
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15. Calculate new five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False

Positive), TN (True Negative) and FN (False Negative) obtained of step 14;
16. Stop
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Flowchart for the proposed MLANNSs for Enhanced GWCLAHE

- based feature extraction.
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3.7.1.6  MLANNSs Algorithm for HSV color Method

In this section, the MLANN classification process from HSV color-based feature
extraction techniques will be included for comparison purposes. This comparison will
be executed to seek the differences in MLANNS classification performances output
based on the color-based technique and the original GWT-based technique.

To fulfill the purpose of this study, the whole procedures of the proposed MLANNSs
model with the implementation of training algorithm namely ‘trainlm’, trainbr’ and
‘trainscg’ by using K-Fold Cross Validation for HSV Color-based feature extraction
method will be presented. In this study, 5-fold and 10-fold cross-validation will be
employed to evaluate the performance of the MLANNSs model. Figure 3 illustrates a
flow chart representation of pseudocode 7 regarding the MLANNS Algorithm for HSV
Color-based feature extraction. This process will be executed to classify the condition
of thermal motor bearing image in this study.

Algorithm: MLANNS Algorithm for HSV Color-based feature extraction methods.

Input: Top Fisher Score dataset and validation dataset features;

Output: Five classification statistical performance which are Precision (Pre), Sensitivity
(Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate (CER) based
on output from the testing set;

Steps:
1. Begin
2. Read the training top fisher score dataset and validation dataset features for HSV color-
based feature extraction method , Y € R™ e R***“;
. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron) %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden
layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For
8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;
9. END For
10. Stop training when error validation is minimal. This is to ensure net can generalise to
unseen data;
11. Obtaining the best MLANNS architecture. Then, discard the unnecessary models;
12. Save the net of MLANNSs models;

(G2l SN V)
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13. Call the testing datasets. Then, retrieve the save MLANNs model.
14. Perform the testing process by compare the MLANNS output to the target as
follows:

Confusion_matrix= confusionmat(testDataset,TargetTest);

15. Calculate five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False
Positive), TN (True Negative) and FN (False Negative) obtained of step 14;

16. Stop
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Figure 3.22  Flowchart MLANNS-based classification for HSV color-based
feature extraction methods.

3.7.1.7 MLANNSs Algorithm for I*a*b color Method
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In this section, the MLANN classification process from I*a*b color-based feature
extraction techniques will be included for comparison purposes. This comparison will
be executed to seek the differences in MLANNS classification performances output
based on the color-based technique and the original GWT-based technique.

To fulfill the purpose of this study, the whole procedures of the proposed MLANNSs
model with the implementation of training algorithm namely ‘trainlm’, trainbr’ and
‘trainscg’ by using K-Fold Cross Validation for I*a*b Color-based feature extraction
method will be presented. In this study, 5-fold and 10-fold cross-validation will be
employed to evaluate the performance of the MLANNSs model. Figure 3 illustrates a
flow chart representation of pseudocode 7 regarding the MLANNS Algorithm for I*a*b
Color-based feature extraction. This process will be executed to classify the condition
of thermal motor bearing image in this study.

Algorithm: MLANNS Algorithm for I*a*b color-based feature extraction methods.

Input: Top Fisher Score dataset and validation dataset features;

Output: Five classification statistical performance which are Precision (Pre), Sensitivity
(Se), Specificity (Sp), Accuracy (Acc) and Classification Error Rate (CER) based
on output from the testing set;

Steps:
1. Begin
2. Read the training top fisher score dataset and validation dataset features for I*a*b color-
based feature extraction method , Y € R™ e R%34%:
. Build the raw data patterns of input features for the ANN.
. For j=1:length(Hidden Neuron) %Hidden Neuron=1,2,3,4,5
. The dataset is randomly sorted and split dataset into ‘k” groups
equal-sized subsets;
6. Fori=1:k %k=5 & k=10
a) Take the group (k-1) folds for training dataset;
b) Take the remaining group fold as a validation dataset for evaluation learning;
c) Initialize the training parameters condition including number of nodes in hidden
layer, training algorithms, transfer functions, epochs, goal, show and etc.;
d) Fit a model by perform the training set and evaluate it on the validation set
performance;
7. END For
8. Compute the average validation classification performance based on confusion matrix
layout for k-folds;
9. END For
10. Stop training when error validation is minimal. This is to ensure net can generalise to
unseen data;
11. Obtaining the best MLANNSs architecture. Then, discard the unnecessary models;
12. Save the net of MLANNS models;
13. Call the testing datasets. Then, retrieve the save MLANNs model.
14. Perform the testing process by compare the MLANNS output to the target as
follows:

(G20 SN V)
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Confusion_matrix= confusionmat(testDataset,TargetTest);

15. Calculate five classification statistical performance’s output which are
Precision (Pre), Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and
Classification Error Rate (CER) based on TP (True Positive), FP (False

Positive), TN (True Negative) and FN (False Negative) obtained of step 14;
16. Stop
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Figure 3.23

Flowchart MLANNS-based classification for I*a*b color-based

feature extraction methods.
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3.7.2 Linear Thresholding (LT)

112



CHAPTER 4

RESULT & DISCUSSION

4.1 Introduction

4.2  Image Acquisition and Image segmentation

4.2.1 Image Acquisition

Figure 4.1Motor bearing image

By implement thermal camera monitoring, the differences thermal images
profile of bearing machine are clearly observed as illustrated in Figure 3.4. In this work,
there are three conditions of bearing machine that been captured automatically; there
are normal conditions, warning condition and abnormal condition that generates 2593
thermal images. All the acquired images are saved in computer and processed in Matlab
software by using image processing approach. The video recording is then converted

into thermal images and sorted in Joint Photographic Experts Group (JPEG) form.

Both pictures are represented as arrays of 512x512 pixels with 128 intensity levels.
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(a) Normal (b) Waming (c) Abnormal

Figure 3.4 The differences thermal images profile of bearing machine

4.2.2 Data analysis

For implementing and testing the algorithms described in the this chapter, a thermal
motor bearing images database are categorized Into 3 different thermal image
conditions which are normal, warning and abnormal. The total number of images for
these 3 categories is 2593. This image database have been used for implementing the
Enhanced Gabor Features (EGF) based feature extraction on each of the images and to
train the system by implementing Artificial Neural Network and Linear Thresholding
classification algorithms. When the training is done, 259 different full thermal motor
bearing images from the original database were selected to test the system whether it
can classify the condition of thermal motor bearing images properly. The distribution of
data ratios for training, validation and testing is 80: 10: 10 as depicted in the Table 2.1.

Table 4.1 Distribution of training, validation and testing
Thermal_ motor beig Training data Validation data Testing data
images
Normal 1621 180 180
Warning 259 40 40
Abnormal 195 39 39
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Figure 4.2 Cropped the segmented bearing image

4.3  Original Gabor Wavelet Transform (GWT)-based Feature Extraction
Method

This study discusses in details the results obtained from the development of the
original process of feature extraction based on Gabor Wavelet Transform (GWT). The
purpose of this method was adopted in this study to see the effectiveness of this GWT
based-extraction filter method in differentiating the significant features contained in the
group of thermal motor bearing images. This GWT-based Filter contains the set of scale
channels that can be configured to capture a specific band of frequency component
from images. Also, the set of orientation channels used to extract the directional

features from images.

Thermal image processing has begun with converting the segmented input RGB
thermal images as in figure in section 4.2.2 into grayscale intensity image, 1(x,y).
Next, the 2D-GWT feature extraction method is executed by transferring the input
image, I (x, y) into the Gabor function, g(x, y) . It means that, the Fourier Transform of
the image is computed first with the number of different scale and orientation in order
to extract out all those patterns. This 2D-Gabor based feature extraction will then

provide information on the frequency and orientation representations of an image

Before this process is executed, the Gabor filter is constructed first by applying 5
different frequencies and 8 orientations as specified in the table in section 3.5.2. The
purpose is to analyze whether there is any specific frequency content in a specific
direction in the image in a localized region. All of the coefficient results from this

conducted experiment are obtained according to the predetermined parameter values on
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the images. Next, the result of this Gabor function representing the pixel value
(intensities) of the output image has been depicted in the form of diagrams as in the
figure. The figure denotes a perspective view of filter representing orthogonal directions

that has a real (cosine) and a imaginary(sine) component in spatial domain.

. i
Gabor filer _.eal Gabor filter Imaginary

Amplitude Real psrt
Amplitude Imaginary part

Figure 4.3 Sample of the 2D-Gabor function in the spatial domain (new
Real (cosine) component and new Imaginary(sine) component) for normal
thermal image condition

Meanwhile, figure illustrates the real (cosine) component of the entire Gabor

filter in spatial domain with different 5 frequencies and 8 orientations. The row
corresponds to different scales containing bandwith (o, =28, 0, =3.6 ,0, =45,
o, =54,0, =6.3) and wavelength (4, =3.5,4,=4.6,4,=5.6,4, =6.8,1, =7.9),
while the column corresponds to different orientation (0 °, 22.5 °, 45 °, 67.5 °, 90 °,
112.5 °, 135 °and 157.5 °). By varying these parameter values (&,c,4) for Gabor
function, the filter pattern will also change. Hereby, 40 filters Gabor channel at each
image point i.e. 40 multi-scales and multi-orientations feature images have been
generated. Thus, the overall total number of the Gabor features that have been produced
in this present study is as much as 2075x40 equal to 83,000 including for normal,

warning and abnormal groups.
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Figure 4.4 A new real componnets of EGF filters in spatial domain rotates at
5 scales and 8 orientations in normal conditon image
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Afterwards, the process of convolving the two-dimensional Gabor filter, g(x, y)
with the input image, I(x,y) has been acquired in order to detect the Gabor filter

response from the input image itself. In this process, the complex convolution result
were decomposed to the magnitude response image as denoted in figure and the phase
response image based on the complex of Gabor real component and Gabor imaginary
component images. Nonetheless, for the phase response image, it was not taken into
account in this study. This is proven from the previous studies, they say the case of
magnitude is the most effective while the original Gabor phase are considered unstable
and are usually discarded (Hafez, Selim, & Zayed, 2015; Liu, Koga, & Fujisawa, 2005;
Struc & Pavesié, 2010a, 2010b).

From the figure, it can be seen, the different responses was shown according to the
parameters that have been determined. The higher the scale of parameter are employed,
the clearer the Gabor response stripes are observed. There are 40 different
representation of an image (oriented magnitude response matrices, R ) have been
extracted and contain the component of the corresponding feature vector. At this point,
when the input thermal bearing images passed through each orientation on the Gabor-
based filter, the output of the resulting oriented extract features is according to the
orientation of the filter at that time. Eventually, there are 2 feature vectors that have
been extracted from this process, namely Local Energy, and Mean Amplitude,
Y e R™M e MA®® ¢ LE®  Where Local Energy feature has obtained by equal to
summing up the squared value of each matrix value from a response matrix.
Meanwhile, for Mean Amplitude feature has acquired by equal to sum of absolute

values of each matrix value from a response matrix

117



HHE
HEH
HH
H
H

P

'.

:f"
rd
N
7]
e
-

Figure 4.5 The oriented output sample of response matrices (features) for
normal condition image when pass through individual Gabor filter with five
scales and eight orientations
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Figure illustrates the whole process performed with the feature extraction
method that has been proposed in this section. A sample image of each database group

with a parameter scale of 15x15 (o, = 6.3, 4, = 7.9) at orientation 90° has been shown

to differentiate the output of the magnitude response which will lead to the production
of the feature vectors. Image convolution process Is applied to achieve the goal of

generating features based on the filter used.

Table 4.2 Three conditions of thermal motor bearing images before and
after convolution of Gabor filter with scale 15x15 at orientation
90°

Thermal
bearing image
Conditions

Convolution Magnitude
(Input Image * Gabor filter) response

Normal

&,
i ™
¥
Warning r
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Abnormal E

Subsequently, the overall graph for the results of both feature vectors (Local
Energy and Mean Amplutude) is shown as in the figure and figure. These graphs
represent the pixel values (intensities) that have been generated based on the magnitude

response obtained for each group from thermal motor bearing images.

There are 40 Gabor channel filters that have been deployed at each image point for
each group of thermal images. The purpose is to extract the corresponding feature
values according to the respective image groups. Then, the features extracted from these
normal, warning and abnormal groups are arranged according to the same scale
parameters. it is intended to see the differences group generated according to their
respective orientation as shown in both figures. Herein, there are 40 multi-scales and
multi-orientations of Gabor-based feature images that have been generated. It
corresponds to the differences in the multi-scale and multi-orientation parameters

deployed in this work in which the production of different features will be obtained.

From a visual point of view, it can be seen from the graph that the feature vector
output from both Local Energy and Mean Amplitude have some insignificant variations
features to differentiate the group of thermal motor bearing images. this can be clearly
seen through the bar graph as in the figure. Inconsistent bar graph changes and overlaps
between normal, warning and bearing groups can be clearly seen. However, the feature
selection process will be executed to prove it and define the optimal features to
distinguish the group from these thermal bearing images. It will be discussed in details
in section 4.3.1. Only the most relevant features will be used for the next processing,

while the irrelevant features will be discarded.
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Table 4.3 Overall Local energy features for multi-scales and multi-
orientations in GWT based feature extraction method

Local Energy
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Table 4.4

Overall Mean Amplitude features for multi-scales and multi-
orientations in GWT based feature extraction method

Mean Amplitude
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Variation of Local Energy vector for thermal motor bearing
image conditions in scale 15x15 at teta 5
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Figure 4.6 Variation of non consistent local energy vector for thermal motor
bearing image groups in scale 15x15 at teta 5

4.3.1 Feature selection

The proposed fisher score based feature selection method has been implemented in
this study to select the optimal features of high-dimensional vector output features from
the GWT-based extraction process as in section 4.3. This proposed method also is
employed to simplify the calculation analysis and improve learning performances in
term of higher learning accuracy for classification in this work. It’s also to reduce the

computational time and memory required for feature recognition.

According to the feature extraction results as in section 4.3, 40 multi-scale and
multi-orientation feature images were generated at each image point. Therefore, the

total input data matrix generated in different orientations and scales for image data set
training are Y € R™99 ¢ LE'®™® MA'@™® where ‘n’ is the number of samples
which have 2075 images and * j is the number of orientations. After calculate their

scores by computes a subset of features with a large distance between data points in
different classes and small distance between data points in the same class under the
fisher criterion as in equation 3.32, the score for local energy and mean amplitude

features were generated as in the table and table.

According to (Gu et al., 2012b; Islam et al., 2015; Ma et al., 2019; T. Zhang &

Lu, 2010), the final feature selection is occurs by the top ranked ones as the optimal
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fisher score value. This selected score will represent the discrimination power of a
certain feature in order to evaluate the performance and importance of any feature. In
addition to this, the optimal fisher values of the orientation and scale respectively are
sorted in descending order. From the results obtained in the table, it can be seen that the
fisher score is compiled from the highest values for the combination of scale and
orientation to local energy features begin with F15 = 1517.18, followed by F13 =
1483.99, F11 = 1196.00, F9 = 867.78 and F7 = 484.61 . Therefore, the highest score
value produced is at F15 = 1517.18, which is on a scale 15x15 (o = 6.3, A = 7.9) and

orientation 05 = 90 °.

Table 4.6 Fisher scoring for each Gabor filter’s scale (Local Energy)

kg B O 6 6. 6 6 6 6
X7 18545 63.04 4844 4248 484.61 43.89 46.75 66.01
9x9 317.48 109.00 42.04 30.74 867.78 69.66 58.28 85.81

11x11 181.52 199.34 4446  36.86 1196.00 119.43 55.13 161.09
13x13 161.47 320.92 57.79  95.80 1483.99 257.25 60.26 390.39
15x15 132.01 350.13 67.79 21427 1517.18 418.79 122.26 464.75

As well as for mean amplitude features in table, the order of decreasing fisher score
values can be expressed starting with F15=507.38, followed by F13=492.24,
F11=465.21, F9=448.22 and F7=194.49. From this result, the highest fisher's score can
be read on a'scale 15x15 and orientations 68= 157.5° and the value is F15=507.38.

Table 4.7 Fisher scoring for each Gabor filter’s scale for Mean Amplitude

Filter Si
ESEL.eSe 0, 0, 0, 0, 0, 0, o, 0,

X7 179.03 46.69 3330 26.95 19449  30.17 32.84  51.18
9x9 448.22 10473 29.79 2841 357.12 4112  42.62  75.63
11x11 193.92 22189 30.81 27.96 465.21 68.92  40.80 181.94
13x13 131.46 358.86 40.18 53.70 49224 150.72 4442 417.68
15x15 126.76 430.83 50.45 103.74 437.00 268.83 105.26 507.38

Figure and figure demonstrates the distribution of fisher's scores obtained for the
scale and orientation variations in the tables and tables according to their respective
features. From the local energy diagram as in figure, it is clear that SCALE 15 (65)
gives the highest fisher score among the others. Meantime for the mean amplitude
graph as in figure, it is observed that SCALE 15 (08) gave the highest score among

others.
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Distribution of fisher score selection for all scales
(Local Energy)
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m Scale 15x15| 132.01 | 350.13 | 67.79 | 214.27 |1517.18| 418.79 | 122.26 | 464.75

Figure 4.7 Variation of Fisher score value for local energy between normal,
warning and abnormal thermal motor bearing images

Distribution of Fisher Score Selection for all scales
(Mean Amplitude)
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B Scale 7x7 |179.03| 46.69 | 33.30 | 26.95 |194.49| 30.17 | 32.84 | 51.18
B Scale 9x9 |448.22|104.73| 29.79 | 28.41 |357.12| 41.12 | 42.62 | 75.63

Scale 11x11(193.92(221.89| 30.81 | 27.96 (465.21| 68.92 | 40.80 |181.94
W Scale 13x13|131.46|358.86| 40.18 | 53.70 |492.24|150.72| 44.42 |417.68
i Scale 15x15|126.76|430.83| 50.45 |103.74|437.00(268.83|105.26|507.38

Fisher Score values

Figure 4.8 Variation of Fisher score value for Mean Amplitude between
normal, warning and abnormal thermal motor bearing images

Figure and figure presents the overall group of thermal motor bearing image of
local energy features and mean amplitude features for all eight orientations before any
score is obtained. Those diagrams shown are only in the SCALE 15x15 as the highest
score is contained in this scale. From those figures, the different variations of the graph
can be seen in the different orientations. Hence, the fisher score or the discriminative

power obtained will also vary according to the features produced by each orientation.
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Figure 4.9 Variation Local Energy feature of condition thermal motor
bearing images with 8 orientations for SCALE 15x15 in GWT
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Figure 4.10  Variation Mean Amplitude feature of thermal motor bearing
image conditions with 8 orientations for SCALE 15x15 in GWT

From the calculation of the fishery criteria, the highest reading was shown by
the orientation 65 = 90 ° representing for local energy features and the orientation
08=157.5° representing for mean amplitude features. Their illustrations are shown

individually as in the figure and figure. At this point, the dimensions for each of these
matrix features have been reduced toY e LE*™* MA?*™* From both graphs shown, it

can be recognized that the three groups for thermal motor bearing image state are not in
the desired result. Graph for normal group presents good results because it does not

overlap with other categories. Whereas graph for warning group and abnormal group
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indicate overlapping results. Therefore, from the visual view through graph results, it is
proven that the features of thermal motor bearing image by using GWT-based feature
extraction method cannot be well classified as the features of the group warning and
abnormal group cannot be clearly distinguished. Nonetheless, the final selected
features will be processed in the classification model in term of quantitative result in
order to obtain the classification performance in this work. Furthermore, the
performance evaluation for these features based was calculated and presented in section

4.3.1.1 by using analysis of variance (ANOVA) method.
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Figure 4.11  The optimal selection Local Energy feature for GWT is at
SCALE 15x15 (orientation 90°)
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Figure 4.12  The optimal selection Mean Amplitude feature for GWT is at
SCALE 15x15 (orientation 157.5°)

4.3.1.1 Evaluation Performance features by using ANOVA method

This section presents the results of the performance evaluation on the features of
Local Energy and Mean Amplitude obtained by using ANOVA technique. Table and
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table shows the descriptive statistics value generated by LE and MA features. The
purpose of the ANOVA method was implemented in this work to evaluate the LE and
MA features from thermal motor bearing images group whether there are significantly
different or not. A 95% Confidence Interval for Mean has been implemented in this
work which is basically a range of values for looking at parameters such as mean or
proportion. Thus, mean + 2SE is applied. From this formula, lower band and upper
band values for the true mean for each normal population group, warning and abnormal
were obtained. This value indicates that they have a 95% chance of being within the
range of the mean as shown in the table and the table. From these tables, the 95%
Confidence Interval for mean value of the normal group shows further apart from the
other group. Whereas group warnings and abnormal groups indicate small values
change between the two. Nonetheless, the descriptive statictic results for these LE and
MA features still show different confidence interval for mean values for each

population group.

Table 4.5 Descriptive statistics value for Local Energy feature
Thermal std 95% Confidence
Image N Mean Std Erril Interval for Mean
groups Deviation (SE) Lower Upper
Bound Bound

Normal 1621  90110.71  24333.714  604.389 88925.25 91296.18
Warning 259 14425501 8979.506  557.959  143156.27  145353.74
Abnormal 195  150579.63 9272.239  663.999  149270.05 151889.21
Total 2075 102551.59 32181.039 706.466  101166.13 103937.04

Figure 4.13 Descriptive statistics value for Mean Amplitude feature
Thermal Std std 95% Confidence Interval
N Mean . Error
Image Deviation (SE) for Mean
groups Lower Upper
Bound Bound
Normal 1621  8383.47 1798.550 44.672 8295.85 8471.09
Warning 259 1179545 1794.116 111481 11575.92 12014.98
Abnormal 195 12720.13  1968.814  140.990 12442.06 12998.20
Total 2075  9216.89 2411.799 52.946 9113.06 9320.72

Next, table and table presents the ANOVA readings generated using SPSS
statistical software to obtain the value of F and the value of P. From these tables, the

value of between group variability shows higher values than within group variability
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values. This will generate a high F-ratio value where the F-ratio value for local energy
feature is 1196.49 and the F-ratio value for mean amplitude feature indicates 795.843.
These values are derived from the ratio of the mean squares (MS). Subsequently, these
obtained F-ratio value then is used to define the level of significance for the samples by
comparing them with the F-critical value. If the F-ratio is larger than the F-Critical, then
the variation between the groups is statistically significant (Kazerouni, 2009). From the
table of probability values for the F distribution with (2,2072) degree of freedom (df) in
APPENDIX, a critical F value is found. The F-critical value for the local energy and

mean amplitude features is F,,,,,s =3.0 . Therefore, from the tables, it can be

observed that the F-ratio is greater than the appropriate critical F distribution at o = 0.05
(F-ratio > F-critical), thus the null hypothesis is rejected, and accept the alternative
hypotesis. This means the variance between the means of population group are
significantly different. Nonetheless, the most important parameter in ANOVA results is
the P-value (Simsek & Uslu, 2020).

The value of P is the probability of obtaining results from all groups are differ
significantly. Hence, from the statistical calculation using function ‘fdist', P-value is
obtained. From table, the P-value for the local energy feature is 0.000835. Meanwhile,
from table, the P-value obtained from the mean amplitude feature is 0.001256. Based on
the P-value obtained from the tables, it can be interpreted that the features of Local
Energy and Mean Amplitude from all group of thermal motor bearing images are
significantly different at P <0.05.

Table 4.6 ANOVA for local energy feature

Source of Mean E- F-

variations Sum of ST af Square (MS) Ratio  Critical
Between Groups  1151142340544.63 2 575571170272.31 1196.49 3.0 0.000835
Within Groups 996732001260.58 2072 481048263.157

P-Value

Total 2147874341805.221 2074
Figure 4.14 ANOVA for Mean Amplitude features
Source of Mean F- F-
variations Sum of Squares df Square Ratio  Critical P-Value
Between Groups 5241194897.522 2
Within Groups 6822800071.426 2072 2632209529875474813'77761 795.843 3.0 0.001256
Total 12063994968.947 2074 '
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4.3.2 Classification

There are two types of classifier used in this work, namely MLANNSs and Linear
Thresholding. Penggunaan classifier yang berbeza ini di apply untuk melihat
classifcation performance algorithm manakah yang lagi bagus untuk membezakan
group dari thermal motor bearing images ini. Section 4.4.2.1 and section 4.4.2.2 will

discuss their performance results in more details.

4.3.2.1 MLANNSs

In this section, the performance of the MLANNs model for selected features namely
local energy and mean amplitude as in section 4.3.1 is evaluated based on three types of
training algorithms. They are TRAINBR, TRAINLM and TRAINSCG. These three
types of training algorithm are applied to achieve the best MLANNs model from the
thermal images data obtained. Out of 2593 thermal motor bearing images dataset which
contains normal group, warning group and abnormal group, 2334 thermal motor
bearing images are taken to train the algorithms and the remaining 259 thermal images
are used to test a trained algorithms to check whether they provides the correct output
as desired. Besides, the results in this work are trained by using 5-fold and 10-fold
cross-validation approach in order to evaluate the performance of the trained model for
effective and stable model selection. The minimal error reflects better stability, and

higher error reflects worst stability.

In the training phase, the results of the data involved such as data processing for
each hidden neuron in the MLANNS network model, mean MSE training, mean MSE
validation and mean accuracy performance. To fulfill this results, five different hidden
neurons at HN =1, 2, 3, 4 and 5 were evaluated on each learning algorithm. If the mean
of MSE validation value does not display the minimum value, the data processing for
the next hidden neuron will continue. If the mean of MSE validation has reached the
minimum value, the training process is stopped before the MSE validation value is
overfitting. If the least error is occurred from the validation process, the better the
classification performance value obtained in this work due to net can generalize to

testing data. All these results have been presented in the table. Next, five classification
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statistical performance metrics namely Precision (Pre), Sensitivity (Se), Specificity
(Sp), Accuracy (Acc) and Classification Error Rate (CER) for both training and testing
were calculated based on multi-class classification problem through TP (True Positive),
FP (False Positive), TN (True Negative) and FN (False Negative) according to the

acquired confusion matrix (Tharwat, 2018).

Table 4.7 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5-fold and10-fold cross-
validations in MLANNSs model for LE and MA features

g;f]'cr;'lgg K-Fold HN MSE AC‘(:(%)E"CV
Training Validation
Trainbr 5 1 0.0437 0.0444
2 0.0368 0.0373
3 0.0348 0.0357 94.79
4 0.0344 0.0370
5 0.0345 0.0365
10 1 0.0438 0.0441
2 0.0351 0.0359 94.67
3 0.0349 0.0362
4 0.0347 0.0360
5 0.0347 0.0360
Trainlm 5 1 0.0438 0.0442
2 0.0386 0.0389
3 0.0367 0.0372
4 0.0346 0.0366 94.55
3] 0.0344 0.0367
10 1 0.0438 0.0443
2 0.0368 0.0374
3 0.0348 0.0363 94.66
4 0.0346 0.0367
5 0.0343 0.0366
Trainscg 5 1 0.0437 0.0445
2 0.0350 0.0359
3 0.0349 0.0363 94.67
4 0.0361 0.0361
5 0.0345 0.0363
10 1 0.0438 0.0442
2 0.0359 0.0370
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3 0.0358 0.0364 94.50
4 0.0348 0.0363
5 0.0346 0.0370

Observations of the learning curves graph for each training algorithm have been
performed so that the performance of the training and validation process based on table
4.6 can be clearly distinguished. Next, the best K-fold selection for each training
algorithm is performed. Figure shows graph validation performance for TRAINLM
algorithm based on Kfold-5 and Kfold-10. From this result, it is observed that, the
optimum mean MSE validation value can be read in Kfold-10 at hidden neuron 3 where

the lowest value is 0.0363.

Validation performance for TRAINLM

0.0500
(=
S 0.0300
<  0.0200
Ugi 0.0100
0.0000 1 i s 2 B
—o—Trainlm Kfold-5 | 0.0442 | 0.0389 | 0.0372 | 0.0366 | 0.0367
- Trainlm Kfold-10| 0.0443 | 0.0374 | 0.0363 | 0.0367 | 0.0366

Figure 4.15 Validation performance for TRAINLM based on Kfold-5 and
Kfold-10

Meanwhile, figure denotes a learning curves graph for the TRAINBR training
algorithm. From the graph, it can be seen that readings in the hidden neuron 3 at kfold-5
gave the optimum mean MSE readings compared to all values of kfold-10. Its MSE

lowest reading value is 0.0357.
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Validation perfromance for TRAINBR
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—@—Trainbr Kfold-10| 0.0441 | 0.0359 | 0.0362 | 0.0360 | 0.0360

Figure 4.16  Validation performance for TRAINBR based on Kfold-5 and
Kfold-10

Next, the third training algorithm is TRAINSCG. The optimum mean MSE
reading of the training algorithm can be observed in the hidden neuron 2 on kfold-5. Its
mean MSE value is 0.0359

Validation performance for TRAINSCG

i 0.0500

S 0.0300

S 0.0200

'-'é 0.0100
0.0000 1 5 3 2 5
=#—Trainscg Kfold-5 | 0.0445 | 0.0359 | 0.0363 | 0.0361 | 0.0363
== Trainscg Kfold-10| 0.0442 | 0.0370 | 0.0364 | 0.0363 | 0.0370

Figure 4.17  Validation performance for TRAINSCG based on Kfold-5 and
Kfold-10

From all of the learning curve graphs shown above, the differences in mean
MSE values between Kfold-5 and Kfold-10 did not differ significantly for each training
algorithm. However, the differences error in the mean MSE value between both folds
remains. Furthermore, the optimum mean MSE values for each training algorithm were
extracted and combined in one graph as in the figure. This graph is intended to
determine the best validation performance among all training algorithms. Hereby, as
can be seen from the graph, TRAINBR gave the optimum mean MSE readings
compared to TRAINLM and TRAINSCG for MLANNSs models in this section. The

minimum mean MSE value readings shown were 0.0357 at k-fold = 5, hidden neurons
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= 3 and the average accuracy validation = 94.79% as observed in the table.
Furthermore, once the mean error validation has been achieved to the minimum, the net

will generalize to unknown samples through testing process.

Best validation performance for all training

algorithms

c
S 0.0500
2 00400 | E—— N
2 . 0.0300 = — =
g  0.0200
w 00100

0.0000
p 1 2 3 4 5

e=p==Trainbr Kfold-5 | 0.0444 | 0.0373 | 0.0357 | 0.0370 | 0.0365
e@=Trainlm Kfold-10| 0.0443 | 0.0374 | 0.0363 | 0.0367 | 0.0366
esie=Trainscg Kfold-5 | 0.0445 | 0.0359 | 0.0363 | 0.0361 | 0.0363

Figure 4.18  Best validation performances among all training algorithm types

Table shows the readings obtained from MATLAB software for best validation
performance based on TRAINBR training algorithm in this section. Since K-fold =5 is
produced as the optimum mean cross validation errar, so that the mean value for MSE
validation and mean of accuracy validation value are measured 5 times according to the
equation 3.33 as stated in section 3.7.1.1. From the table, it is seen that the best
validation performance has been performed at various iterations at various times to

determine how many times the learning algorithm works through the entire training data

set.
Table 4.8 Best validation performance for TRAINBR in MLANNSs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE ACC.
Epoch (sec) Validation  Validation (%)

1 28 1s 0.0429 93.74

2 37 2s 0.0351 95.37

3 27 1s 0.0355 95.23

4 146 7s 0.0298 94.94

5 758 25s 0.0353 94.66

Total Mean: 0.0357 94.79

Subsequently, the overall results for training classification statistical
performance metrics generated by TRAINBR algorithm for MA and LE features in this

section are presented in table 4.7. Precision values = 78.4%, sensitivity = 79.49,
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specificity = 96.01%, CER = 0.0521 and accuracy = 94.79%. All of these values are
calculated based on the multi-class classification problem through TP, FP, TN and FN

according to the confusion matrix acquired during training data processing.

Table 4.9 Validation performance results using TRAINBR in MLANNS
model for Local Energy and Mean Amplitude features
Training Pre  Sens Spec CER ACC
Function HN (%) (TPR) (TNR) (%)
(%) (%)
TRAINBR 3 7840 79.49 96.01 0.0521  94.79
(K-fold=5)

In this work, 10% of dataset was employed in MLANNS model testing for
validation purposes. Thus, table indicates five classification statistical performance
metrics obtained by using TRAINBR algorithm for classifying the conditions of
thermal motor bearing images. The accuracy of neural networks for classifying all
thermal bearing images conditions was 95.11% (240 correctly classified of 259), the
sensitivity= 85.22%, the specificity =97.14%, precision=83.93% and Classification
Error Rate=0.0504. Meanwhile, the testing values of the classification performances
metrics for each state of thermal bearing images are denoted in the table. The results of
these values have been calculated on multi-class classification problem based on TP
(True Positive), FP (False Positive), TN (True Negative) and FN (False Negative)

according to the acquired TRAINBR confusion matrix.

Table 4.10 Testing performance results using TRAINBR in MLANNs model
for Local Energy and Mean Amplitude features
Training Pre Sens  Spec  CER ACC
. HN Class TP TN FP  FN
Function (%) (%) (%) (%)
N 180 77 0 2 1.0000 0.9890 1.0000 0.0077  .9923
TRAINBR 3 W 32 208 8 11  0.8000 0.7442 0.9630 0.0734 0.9266
(K-fold=5) A 28 214 11 6 0.7179  0.8235 0.9511 0.0700 0.9344
All 0.8393 0.8522 0.9714 0.0504 0.9507

Furthermore, the overall differences in the results performance of the MLANNS
classification models for the testing phase and training phase in this section are

graphically illustrated as in figure for easier observation.
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Comparison between training and testing performance of
TRAINBR
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 TRAIN 0.9479 0.0521 0.7949 0.9601 0.7840
mTEST 0.9507 0.0504 0.8522 0.9714 0.8393

Figure 4.19  Comparison bar graph between training and testing performance

using GWT based feature extraction algorithm

4.3.2.2 Linear Thresholding
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Table 4.11 Classification performances using Linear Thresholding model for
GWT based feature extraction’s features

. ACC TRAINING ACC TESTING
Condition of
Features thermal bearing Traini No. of . No. of
. raining e Testing .
images (%) Cl_assmed (%) Cl_assmed
image image
Local Energy Normal 86.5630 1559 100.0000 180
Warning 61.2040 183 67.5000 27
Abnormal 65.3846 153 13.6752 32
Average All 71.0505 Total: 1895 60.3917 Total: 239
Mean Amplitude Normal 85.8967 1547 98.8889 178
Warning 57.1906 171 57.5000 23
Abnormal 51.2821 120 38.4615 15
Average All 64.7898 1838 64.9501 Total: 216

Average All: 62.6709

4.4  Proposed an Enhanced Gabor Features (EGF) -based Feature Extraction
Method

This chapter contains the main findings in this study. It discusses in detail the
results obtained from the development of the new feature extraction process that has
been proposed in this section to improve the quality features based on the original
feature extraction process as in section 4.3. As explained in section 4.3, graph for
warning group and abnormal group indicate the overlapping results. This cause the
classification process did not work properly due to the graph between the two cannot be
clearly distinguished. In addition, based on the performance features obtained from
ANOVA method in section 4.3.1.1, it has also proven that the confidence interval for
mean reading between groups Is also unbalanced. The results of this ANOVA
correspond to the overlapping graph between the groups that have been shown in figure
in section 4.3.1. This has contributed to the proposed of development on the new
feature extraction methods in this section where feature enhancements on thermal

images based on the original GWT feature extraction method have been implemented.

In this present study, a combination of an independent image enhancement approach
called Histogram Equalization method with the original GWT-based feature extraction
technique has been developed. Combinations of these methods have been executed to

modify the contrast and the distribution of the gray levels of pixels in the images. As a

136



consequence, by modifying the pixel value (intensities) of the image, the problems that
have occurred in the section 4.3 could be overcome. When the quality of the thermal
images is improved, the classification performance could also be improved accurately.
Hence, the features of thermal motor bearing images could also be distinguished well in

this study. This proposed method is called Enhanced EGF-based feature extraction.

Thermal image processing has begun with converting the segmented input RGB

thermal images as in figure in section 4.2.2 into grayscale intensity image, 1(x,y).

Next, the new feature extraction proces has been performed by enhancing the features
of thermal images by utilizing the method proposed which is Enhanced Gabor Features
(EGF)-based feature extraction. From this proposed technique, the quality image
features and classification performances in this work can be improved. This 2D-EGF
extraction process begins by adjusting the contrast of the thermal input image first by
using an independent image enhancement approach called Histogram equalization.
Through this adjustment, the intensities can be better distributed on the histogram. This
can be seen from the equalized image histogram as in the figure (b), where image
contrast for all groups has been improved by changing the pixel value almost evenly to

the entire range of possible values (0 to 255), | (x,y). Thus, all the situation

Equalized Image

for before equalized image and after equalized image have been presented as in figure.
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Figure 4.20  (a)Original Image and Original Image Histogram for group
normal, warning and abnormal (b) Equalized Image and Equalized Image
Histogram for group normal, warning and abnormal

Next, the process of extracting features continues with transferring the enhanced

image, | (x,y) into the 2D-Gabor Wavelet Transform, g(x, y). It means that,

Equalized Image
the Fourier Transform of the enhanced image is computed first by applying 5 different
frequencies and 8 orientations as specified in the table in section 3.5.2 in order to

extract out all those new patterns, g..,(X,y). This 2D EGF-based feature extraction

will then provide the coefficient results on the specific frequency content in a specific
direction in the image in a localized region according to the predetermined parameter
values on the images. As a consequence, a new feature modification of the pixel value
(intensity) on the image has been produced in this section. Next, the new result of this
EGF function representing the new pixel value (intensities) of the output image has
been depicted in the form of diagrams as in the figure. The figure denotes a perspective
view of filter representing orthogonal directions that has a new real (cosine) and a new

imaginary(sine) component in spatial domain.

Figure 4.21  Sample of the 2D-EGF function in the spatial domain (new Real
(cosine) component and new Imaginary(sine) component) for normal thermal
image condition

Meanwhile, figure illustrates the new real (cosine) component of the entire EGF

filter in spatial domain with different 5 frequencies and 8 orientations. The row
corresponds to different scales containing bandwith (o, =28, 0,=3.6,0,=45,
o, =54,0,=6.3) and wavelength (4, =3.5,4,=4.6,1,=56,1,=6.8,1,=7.9),
while the column corresponds to different orientation (0 °, 22.5 °, 45 °, 67.5 °, 90 °,

112.5 °, 135 ° and 157.5 °). By varying these parameter values (8,o,4) for the new
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EGF function, the filter pattern will also change. Hereby, 40 filters EGF channel at each
image point i.e. 40 new multi-scales and new multi-orientations feature images have
been generated. Thus, the overall total number of new EGF features that have been
produced in this present study is as much as 2075x40 equal to 83,000 including for

normal, warning and abnormal groups.

53

HEa
HEEE
HAEENEN

Figure 4.22 A new real componnets of EGF filters in spatial domain rotates at
5 scales and 8 orientations in normal conditon image

Subsequently, the process of convolving the two-dimensional EGF filter,

.00 (X, ) With the input image, 1(x,y) has been acquired in order to detect the new

EGF filter response from the input image itself. In this process, the complex
convolution result is decomposed to the new EGF filter real response as denoted in
figure and also the EGF imaginary response image. From the figure, it can be seen the
different responses was shown according to the parameters that have been determined.
It can also be observed, the higher the scale of parameter are employed, the clearer the

new EGF response stripes are shown.
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Figure 4.23 A new EGF magnitude response of the convolution of normal
thermal motor bearing image with five scales and eight orientations

After implement the convolution operation, the convolution result were
decomposed to the new magnitude response image as denoted in figure and the new
phase response image based on the complex of EGF real component and EGF
imaginary component images. Nonetheless, for the phase response image, it was not
taken into account in this study. This is proven from the previous studies, they say the
case of magnitude is the most effective while the original Gabor phase are considered
unstable and are usually discarded (Hafez et al., 2015; Liu et al., 2005; Struc & Pavesic,
2010a, 2010b). From the figure, it can be seen, a set of 40 different representation

(oriented magnitude response matrices, R, ) of an image have been extracted and

new
contain the component of the corresponding new feature vector. At this point, when the
input thermal bearing images passed through each orientation on the EGF-based filter,
the output of the resulting oriented extract features is according to the orientation of the
filter at that time. Therefore, a new feature vector containing the new pixel value
(intensities) of the output image based on the original Local Energy and the original
Mean Amplitude in the section 4.3 has been generated in this work,

83000 83000
IS LE(new)

Y eR™ e MA, . Where new Local Energy feature has obtained by

new)

equal to summing up the squared value of each matrix value from a new response
matrix. Meanwhile, for new Mean Amplitude feature has acquired by equal to sum of

absolute values of each matrix value from a new response matrix
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Figure 4.24  The oriented output sample of response matrices (features) for
normal condition image when pass through individual EGF-based filter with
five scales and eight orientations

Figure illustrates the whole process performed with the feature extraction
method that has been proposed in this section. A sample image of each database group

with a parameter scale of 15x15 (o, = 6.3, 4, =7.9) at orientation 0° has been shown

to differentiate the output of the new magnitude response which will lead to the
production of the new feature vector. Image convolution process is applied to achieve

the goal of generating features based on the filter used.

Table 4.12 Feature Extraction based on proposed EGF filter for 1 sample
from 3 groups of thermal motor bearing images with scale 15x15
at orientation 0°

Thermal

bearing image Convolution Magnitude
*
Conditions (Input Image * EGF) response
y I - I
e :
Normal r
e
i 5
| * =
Warning ' |
[ . ;
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Abnormal

F

Subsequently, the overall graph for the new results from both feature vectors
(new Local Energy and new Mean Amplutude) is shown as in the figure and figure.
These graphs represent the modifies in the value of new pixels (intensities) that have
been generated based on the magnitude response obtained for each group from thermal

motor bearing images.

There are 40 EGF channel filters that have been deployed at each image point for
each group of thermal images. The purpose is to extract the corresponding of new
feature values according to the respective image groups. Then, the features extracted
from these normal, warning and abnormal groups are arranged according to the same
scale parameters. it is intended to see the differences group generated according to their
respective orientation as shown in both figures. Herein, there are 40 multi-scales and
multi-orientations of EGF-based feature images that have been generated. It
corresponds to the differences in the multi-scale and multi-orientation parameters

deployed in this work in which the production of different features will be obtained.

From a visual point of view, it can be seen from the graph that the new feature
vector output from both new Local Energy and new Mean Amplitude have some
significant variations features to differentiate the group of thermal motor bearing
images. Nevertheless, the feature selection process will be executed to define the
optimal features to distinguish the group from these thermal bearing images. It will be
discussed in details in section 4.4.1. Only the most relevant features will be used for the

next processing, while the irrelevant features will be discarded.

Local Energy

Scale 7x7 Scale 9x9
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Figure 4.24  Overall new Local Energy features for multi-scales and multi-
orientations in EGF based feature extraction method

Mean Amplitude

Scale 7x7 Scale 9x9
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Figure 4.24  Overall new Mean Amplitude features for multi-scales and
multi-orientations in EGF based feature extraction method

4.4.1 Feature Selection

In this section, a new optimum selection of scales and orientations for feature
extraction methods based on Enhanced Gabor Features (EGF) using the proposed fisher
score method is discussed. As in section 4.3.1, fisher score-based feature selection was
employed in this work to select the optimal features of high-dimensional vector output
features from the EGF-based feature extraction process as in section 4.4.
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According to the feature extraction results as in section 4.4, a new 40 multi-scale
and multi-orientation feature images have been generated at each image point. Thus, the

new total input data matrix generated for image data set training in different

orientations and scales is Y € R o™ € LE ™, MA ', Where “n” is the

(new) (new)

number of samples which have 2075 images and * j ° is the number of

orientations. After calculating their scores as in equation 3.32 according to the fishery
criterion, the score for new local energy and new mean amplitude features were
produced as in table and table. From the literatures, the final selection of features occurs
as the optimum fisher score by the top ranked ones and it is sorted in descending order.
(Guetal., 2012b; Islam et al., 2015; Ma et al., 2019; T. Zhang & Lu, 2010).

Based on the results of the new local energy generated in the table, the scores of
combination orientations and scales are arranged from the highest value starting with
F15 = 3536.94, followed by F13=3216.28, F11=1552.86, F7=730.12 and F9= 725.71.
Therefore, the highest score value produced is at F15 = 3536.94, which is on a scale
15x15 (o = 6.3, A = 7.9) and orientation 61=0 °. From these observations, the new
scores derived from this section have shown higher values compared to the scores for
the original GWT-based extraction method in section 4.3.1. This has proven that scores
from this section produce in higher discrimination power and better scores than GWT-

based scores.

Table 4.13 Fisher scoring for each Enhanced Gabor filter’s scale for Local
Energy

F('ggglige 0, = Mol 8o) pmo 0, 0, 6,
X7 34553 677.31 399.59 278.06 730.12 260.25 252.15 451.39
9x9 417.67 725.71 41255 141.21 553.98 397.84 355.24 629.88

11x11 1552.86 721.29 267.12 260.73 374.45 543.84 351.17 565.94
13x13 3216.28 785.88 230.26 617.78 32.95 1036.56 276.59 414.83
15x15 3536.94 64153 159.71 850.19 30.89 147496 354.15 418.69

Meanwhile, in the table, the sequence of decreasing fisher score values for new
mean amplitude features starts with F13=2779.01, followed by F15=2178.89,
F11=1368.53, F9=981.31 and F7=864.01. From this result, the highest fisher's score
can be read on a scale 13x13 and orientations 81= 0° and the value is F13=2779.01. In

this section, the new mean amplitude scores have also been shown to have higher
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discriminative power and better scores compared to GWT-based extraction scores as in

section 4.3.1. This is due to the scores generated in this work are higher.

Table 4.14 Fisher scoring for each Enhanced Gabor filter’s scale for Mean
Amplitude
Filter Si
('si;eSe 0, 0, 0, 0, 0, 0, 0, 0,

7 29153 864.01 502.65 293.99 731.06 279.89 363.42 611.02
9x9 34758 949.99 509.82 19490 512.01 596.06 457.32 981.31
11x11 1368.53 882.86 316.15 336.72 466.85 886.97 421.01 888.93
13x13 2779.01 1067.35 329.06 898.00 134.30 1473.78 309.20 777.93
15x15 2178.89 844.13 226.12 1246.16 3.82 1972.46 395.97 728.61

Figure and figure demonstrates the distribution of fisher's scores obtained for the
scale and orientation variations in the tables and tables according to their respective
features. As In figure, it is clear from the local energy graph that SCALE 15 (01) gives
the highest fisher score among the others. Meanwhile, for the mean amplitude graph as
shown in figure, it is observed that among others, SCALE 13 (81) has given the highest

Score.

Distribution of Fisher Score Selection Values for all scales
(Local Energy)

Fisher Score values

;1 T

ol W7}
tetal | teta2 | teta3 | teta 4 | teta5 | teta 6 | teta7 | teta8
m Scale 7x7  |345.53|677.31399.59|278.06|730.12|260.25|252.15|451.39

mScale 9x9 |417.67|725.71|412.55|141.21|553.98|397.84|355.24|629.88
Scale 11x11[1552.86/721.29 |267.12|260.73 | 374.45 | 543.84 | 351.17 | 565.94
m Scale 13x13 3216.28 785.88230.26 |617.78 | 32.95 [1036.56/276.59 414.83
Scale 15x15 3536.94 641.53(159.71850.19 | 30.89 [1474.96/354.15|418.69

Figure 4.25  Variation of Fisher score value for local energy between normal,
warning and abnormal thermal motor bearing images
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Distribution of fisher score selection for all scales
(Mean Amplitude)

g 3000.00

3 2500.00

c 2000.00

> 1500.00

o 1000.00

9 500.00

2 0.00 F

% tetal teta2 |teta3 |tetad |teta5 |teta6 | teta7 | teta8

W Scale 7x7  |291.53|864.01|502.65/293.99|731.06|279.89|363.42|611.02
B Scale 9x9  |347.58/949.99|509.82|194.90/512.01|596.06|457.32|/981.31
i Scale 11x11 1368.53882.86|316.15|336.72466.85|886.97|421.01888.93
B Scale 13x13 2779.011067.35329.06898.00|134.30(1473.78 309.20(777.93
B Scale 15x152178.89844.13|226.121246.16 3.82 [1972.46395.97(728.61

Ei

Figure 4.26  Variation of Fisher score value for Mean Amplitude between
normal, warning and abnormal thermal motor bearing images

Figure and figure displays the overall group of thermal motor bearing image of local
energy features and mean amplitude features for all eight orientations before any score
is obtained. Those diagrams shown are in the SCALE 15x15 and SCALE 13x13
respectively as this scale includes the highest score. The various variations of the graph
in the different orientations can be seen from those figures. Consequently, the fisher
score or the discriminative power obtained will also vary according to the features

produced by each orientation.
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Figure 4.27  Variation Local Energy feature of condition thermal motor
bearing images with 8 orientations for SCALE 15x15 in EGF
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Figure 4.28  Variation Mean Amplitude feature of condition thermal motor
bearing images with 8 orientations for SCALE 13x13

From the calculation of the fishery criteria, the highest reading was shown by
the orientation 61 = 0 ° representing for local energy features and the orientation 61=0°
representing for mean amplitude features. Their illustrations are shown individually as

in the figure and figure. At this stage, the dimensions for each of these matrix features

have been reduced toY e LE,q,,” """, MA,,,*". From both graphs shown, it can be

(new)
observed that the three groups for the state of thermal motor bearing image are in the
desired results. Graphs for all three groups which are normal, warning and abnormal
demonstrate good results since they do not overlap with other categories. Therefore,
from the visual view through graph results, it is proven that the enhancement features of
thermal motor bearing image by using EGF-based feature extraction method can be
classified well due to the features of the group with the other groups can be clearly
distinguished. Furthermore, the final selected features in this section will be processed
in the classification model in term of quantitative result in order to obtain the best

classification performance results in'this work.
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Figure 4.29  The optimal selection Local Energy feature for EGF is at SCALE
15x15 (teta 1)
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Figure 4.30 The optimal Mean Amplitude feature for EGF is at SCALE
13x13 (Orientation 0°)

4.4.1.1 Evaluation performance features by using ANOVA method

Same in section 4.3.1.1, this section presents the results of the performance
evaluation on the features of new Local Energy and new Mean Amplitude obtained by
using ANOVA technique. Table and table shows the descriptive statistics value
generated by new Local Energy and new Mean Amplitude features. The purpose of the
ANOVA method was implemented in this work to evaluate the new Local Energy and
new Mean Amplitude features from thermal motor bearing images group whether there
are significantly different or not. A 95% Confidence Interval for Mean has been
implemented in this work which is basically a range of values for looking at parameters

such as mean or proportion. Thus, mean £ 2SE is applied. From this formula, lower
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band and upper band values for the true mean for each normal population group,
warning and abnormal were obtained. These values indicates that they have a 95%
chance of being within the range of the mean as shown in the table and the table. From
these tables, the 95% Confidence Interval for the mean values for the normal, warning
and abnormal groups shows the balanced change values between the population groups.
This has shown that the results obtained from this proposed section are better compared

to the original results in section 4.3.1.1.

Table 4.15 Descriptive statistics value for new Local Energy feature
Thermal 95% Confidence
Image N Mean Std Std Interval for Mean
groups Deviation Error Lower Upper
Bound Bound

Normal 1621 5270263.09  596798.559  14823.005 5241188.81 5299337.36
Warning 259 297140251 497372563  30905.227 2910543.90 3032261.13
Abnormal 195  1898839.64  442987.505  31722.994 1836273.40 1961405.87
Total 2075 4666488.41 1300485.426 28549.364 4610500.01 4722476.81

Table 4.16 Descriptive statistics value for new Mean Amplitude feature
Thermal 95% Confidence
Image N Mean Std Std Interval for Mean
groups Deviation Error Lower Upper
Bound Bound

Normal 1621  83035.57 5101.139  126.700 82787.06 83284.08
Warning 259  64756.51 6390.292 =~ 397.073 63974.60 65538.43
Abnormal 195  49857.98 4444405  318.270 49230.27 50485.70
Total 2075 77636.10 11970.961  262.797 77120.73 78151.47

Next, table and table presents the ANOVA readings generated using SPSS
statistical software to obtain the value of F and the value of P. From these tables, the
value of between group variability produces higher values than within group variability
values. This will generate a high F-ratio value where the F-ratio value for new Local
Energy feature is 4316.812 and the F-ratio value for new Mean Amplitude feature
indicates 4411.581. These values are derived from the ratio of the mean squares (MS).
Subsequently, these obtained F-ratio value then is used to define the level of
significance for the samples by comparing them with the F-critical value. If the F-ratio
is larger than the F-Critical, then the variation between the groups is statistically

significant (Kazerouni, 2009). From the table of probability values for the F distribution
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with (2,2072) degree of freedom (df) in APPENDIX, a critical F value is found. The F-

critical value for the new local energy and new mean amplitude features is

F, 2072005 = 3.0 . Therefore, from the tables, it can be observed that the F-ratio is greater

than the appropriate critical F distribution at a = 0.05 (F- ratio > F-critical), thus the null
hypothesis is rejected, and accept the alternative hypotesis. This means the variance
between the means of population group are significantly different. Nonetheless, the

most important parameter in ANOVA results is the P-value (Simsek & Uslu, 2020).

The value of P is the probability of obtaining results from all groups are differ
significantly. Hence, from the statistical calculation using function ‘fdist', P-value is
obtained. From table, the P-value for the new local energy feature is 0.000232.
Meanwhile, from table, the P-value obtained from the new mean amplitude feature is
0.000227. According to (Kazerouni, 2009), the lower the value resulting from this P-
value is, the more statistically significant the population parameter is. Thus, both of the
P-value in this section has shown a better reading compared to the reading on the
original P-value in section 4.3.1.1. This is due to the P-value in this section is more

lower compared to the P-value in section 4.3.1.1.

Therefore, based on the P-value obtained from the tables, it can be interpreted that
the features of new Local Energy and new Mean Amplitude from all group of thermal
motor bearing images are significantly different at P <0.05.

Table 4.7 ANOVA for new Local Energy features

Source of Mean F- F-

variations Sum ol a Square (MS) Ratio  Critical P-Value
Between Groups ~ 2828791040329872.0 2
Within Groups 678887062098701.6 2072 ;g;éigi:gg;g?g%'oo 4316.812 3.0  0.000232

Total 3507678102428573.5 2074 '

Table 4.7 ANOVA for new Mean Amplitude features

Source of Mean F- F-

variations Sum of Squares df Square (MS) Ratio  Critical P-Value
Between Groups 240689604115.125 2

L 120344802057.563
Within Groups 56522693512.819 2072 27279292 236 4411.581 3.0 0.000227

Total

297212297627.944 2074
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Fig. 2. Boxplot representation of the distribution of the Fisher criterion values
obtained with different texture operators.

4.4.2 Classification

There are two types of classifier used in this work, namely MLANNs and Linear
Thresholding. Section 4.4.2.1 and section 4.4.2.2 will discuss their performance results

in more details.

4421 MLANNSs

In this section, the parameters and procedures of the MLANNSs model applied to this
work are same as those described in the previous sections in section 4.3.2.1. The
purpose is to obtain the best MLANNs model in order to identify and distinguish the
condition of thermal motor bearing images used in this study. The best measure for
MLANNs model can be observed through classification statistical performance metrics
obtained by looking at the highest accuracy value and the lowest MSE value. In order to
achieve these outputs, the selected features namely local energy and mean amplitude as

in section 4.5.1.1 were used. All these results have been presented in the table.

Table 4.17 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5-fold and10-fold cross-
validations in MLANNSs model for Local Energy and Mean
Amplitude features

- . Avg
Training Function K-Fold HN Avg MSE Acc (%)
Training Validation  Validation
Trainbr 5 1 0.0408 0.0412
2 0.0079 0.0096

152



10
Trainlm 5
10
Trainscg 5
10

o~ w

g Bs W0N g~ ownN P g~ ownN g~ wN P

g~ wN B

0.0073
0.0071
0.0071

0.0409
0.0080
0.0076
0.0073
0.0072

0.0408
0.0080
0.0073
0.0071
0.0070

0.0408
0.0113
0.0075
0.0073
0.0071

0.0408
0.0146
0.0077
0.0079
0.0780

0.0408
0.0114
0.0078
0.0080
0.0080

0.0098
0.0121
0.0095

0.0414
0.0094
0.0090
0.0094
0.0109

0.0417
0.0090
0.0100
0.0102
0.0122

0.0415
0.0125
0.0216
0.0155
0.0348

0.0415
0.0154
0.0116
0.0087
0.0104

0.0416
0.0118
0.0089
0.0093
0.0092

98.97

99.00

98.97

98.45

99.02

98.97

Observations of the learning curves graph for each training algorithm have been
performed so that the performance of the training and validation process based on table
4.6 can be clearly distinguished. Next, the best K-fold selection for each training
algorithm is performed. Figure shows graph validation performance for TRAINLM
algorithm based on Kfold-5 and Kfold-10. From this result, it is observed that, the

optimum mean MSE validation value can be read in Kfold-5 at hidden neuron 2 where

the lowest value is 0.0090
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Validation performance for TRAINLM

0.0500
0.0400 M
0.0300 A
0.0200 W
0.0100 —— —
0.0000

1 2 3 4 5

==¢-=Kfold-5 | 0.0417 | 0.0090 | 0.0100 | 0.0102 | 0.0122
== Kfold-10 | 0.0415 | 0.0125 | 0.0216 | 0.0155 | 0.0348

MSE validation

Figure 4.31  Validation performance for TRAINLM based on Kfold-5 and
Kfold-10

Meanwhile, figure denotes a learning curves graph for the TRAINBR training
algorithm. From the graph, it can be seen that readings in the hidden neuron 3 at kfold-
10 gave the optimum mean MSE readings compared to all values of kfold-5. Its MSE

lowest reading value is 0.0090.

Validation performance for TRAINBR
0.0450

0.0400 |— M
0.0350 \C
0.0300 \(
0.0250 \C
0.0200 \C
0.0150

0.0100 \ :.-s.:=——-—
0.0050
0.0000

MSE validation

1 2 3 4 5
—4—Kfold-5 0.0412 0.0096 0.0098 0.0121 0.0095
——Kfold-10| 0.0414 0.0094 0.0090 0.0094 0.0109

Figure 4.32  Validation performance for TRAINBR based on Kfold-5 and
Kfold-10

Next, the third training algorithm is TRAINSCG. The optimum mean MSE
reading of the training algorithm can be observed in the hidden neuron 4 on kfold-5. Its

mean MSE value is 0.0087.
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Validation performance for TRAINSCG
0.0500
0.0400 I
0.0300
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—o—Kfold-5 | 0.0415 | 0.0154 | 0.0116 | 0.0087 | 0.0104
- Kfold-10| 0.0416 | 0.0118 | 0.0089 | 0.0093 | 0.0092

MSE validation

Figure 4.33  Validation performance for TRAINSCG based on Kfold-5 and
Kfold-10

From all of the learning curve graphs shown above, the differences in mean
MSE values between Kfold-5 and Kfold-10 did not differ significantly for each training
algorithm. However, the differences error in the mean MSE value between both folds
remains. Furthermore, the optimum mean MSE values for each training algorithm were
extracted and combined in one graph as in the figure. This graph is intended to
determine the best validation performance among all training algorithms. Hereby, as
can be seen from the graph, TRAINSCG gave the optimum mean MSE readings
compared to TRAINLM and TRAINBR for MLANNs models in this section. The
minimum mean MSE value readings shown were 0.0087 at k-fold = 5, hidden neurons
= 4 and the average accuracy validation = 99.02% as observed in the table.
Furthermore, once the mean error validation has been achieved to the minimum, the net

will generalize to unknown samples through testing process.
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Best validation performance for training

algorithm

c
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S 00800 _m~
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> 0:0600 AN
& 0.0400 ;
S 0.0200
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trainbr Kfold-10| 0.0412 | 0.0096 | 0.0098 | 0.0121 | 0.0095
=i—trainlm Kfold-5 | 0.0417 | 0.0090 | 0.0100 | 0.0102 | 0.0122
=¢=trainscg Kfold-5| 0.0415 | 0.0154 | 0.0116 | 0.0087 | 0.0104

Figure 4.34  Best validation performances among all training algorithm types

Table shows the readings obtained from MATLAB software for best validation
performance based on TRAINSCG training algorithm in this section. Since K-fold =5
is produced as the optimum mean cross validation error, so that the mean value for
MSE validation and mean of accuracy validation value are measured 5 times according
to the equation 3.33 as stated in section 3.7.1.1. From the table, it is described that the
best validation performance has occurred at 1000 iterations in 4 and 5 seconds per fold
in order to define the number times that the learning algorithm works through the entire
training dataset. Herein, it is observed that the performances produced by the MLANNSs
model in this section are fast. Herein, it is noted that the performance produced by the
MLANN model in this section is not as fast as the MLANN model in section 4.4.2.1.

Table 4.18 Best validation performance for TRAINSCG in MLANNSs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE Acc
Epoch (sec) Validation ~ Validation (%)

1 1000 5s 0.0095 97.84

2 1000 4s 0.0081 99.43

3 1000 4s 0.0098 99.43

4 1000 4s 0.0079 99.43

5 1000 4s 0.0082 99.00

Total Mean: 0.0087 99.02

Subsequently, the overall results for training classification statistical
performance metrics generated by TRAINSCG algorithm for MA and LE features in
this section are presented in table 4.7. Precision values = 97.20%, sensitivity = 96.38,
specificity = 98.88, CER = 0.0095 and accuracy = 99.02%. All of these values are
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calculated based on the multi-class classification problem through TP, FP, TN and FN

according to the confusion matrix acquired during training data processing.

Table 4.19 Training performance results using TRAINSCG in MLANNS
model for Local Energy and Mean Amplitude features
Training Pre Sens Spec CER ACC
Function HN  (PPV) (TPR) (TNR) (%)

(%) (%) (%)
TRAINSCG - 4 9720 96.38 9888 00095  99.02
(K-fold=5)

In this work, 10% of dataset was-employed in MLANNS model testing for
validation purposes. Thus, table indicates five classification statistical performance
metrics obtained by using TRAINSCG algorithm for classifying the conditions of
thermal motor bearing images. The accuracy of neural networks for classifying all
thermal bearing images conditions was 99.47% (257 correctly classified of 259), the
sensitivity= 99.63%, the specificity =99.7%, precision=98.29% and Classification Error
Rate=0.0051. Meanwhile, the testing values of the classification performances metrics
for each state of thermal bearing images are denoted in the table. The results of these
values have been calculated on multi-class classification problem based on TP (True
Positive), FP (False Positive), TN (True Negative) and FN (False Negative) according
to the acquired TRAINSCG confusion matrix.

Table 4.20 Testing performance results using TRAINSCG in MLANNSs
model for Local Energy and Mean Amplitude features
Training Pre Sens Spec  CER ACC
. HN Class TP TN FP FN

Function (%) (%) (%) (%)
TRAINSCG 4 Normal 180 7 0 2 100 98.90 100 0.0077 99.22
(K-fold=5) Warning 40 219 0 0 100 100 100 O 100.00
Abnormal 8 220 2 0 94.87 100 99.10 0.0077 99.18
All 98.29 99.63 99.70 0.0051 99.47

Furthermore, the overall differences in the results performance of the MLANNS
classification models for the testing phase and training phase in this section are

graphically illustrated as in figure for easier observation.
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Comparison between Testing and Training performance of
TRAINSCG

o 12000
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# TRAIN 0.9902 0.0095 0.9638 0.9888 0.9720

Figure 4.35 Comparison bar graph between training and testing performance
using EGF based feature extraction algorithm

4.4.2.2 Linear Thresholding
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Table 4.21 Classification performances using Linear Thresholding model for
EGF based feature extraction’s features

. ACC TRAINING ACC TESTING
Condition of
Features thermal bearing Traini No. of . No. of
. raining i Testing .
images (%) Cl_assmed (%) Cl_assmed
image image
Local Energy Normal 97.2238 1751 100.0000 180
Warning 88.6288 265 95.0000 38
Abnormal 91.4530 214 94.8718 37
Average All 92.4352 Total: 2230 96.6239 Total: 255
Mean Amplitude Normal 95.9467 1728 98.8889 178
Warning 86.2876 258 100.0000 40
Abnormal 99.5726 233 100.0000 39
Average All 93.9357 Total: 2219 99.6296 Total: 257

Average All: 98.1268

4.5 Proposed Other Enhanced Methods based on GWT Feature Extraction

There are 3 new methods of enhanced feature extraction have been developed in
this study. It aims to compare in terms of which method gives the best performance
result after the image quality is improved. This method is constructed based on the
original GWT feature extraction method which has been discussed in section 4.3. The
EGF method is one of the new enhanced feature extraction methods that has given the
best feature performance results compared to the other 2 methods. This EGF method is
as the main findings in this study. However, 2 more methods based on GWMSH and
GWCLAHE have also been developed and will be discussed further in section 4.5.1 and
section 4.6.1. Briefly, these 2 methods provide less satisfactory on the evaluation
performance features and classification results compared to the EGF-based feature

extraction methods.
4.5.1 Propose an Enhanced GWSMH-based Feature Extraction Method

As in section 4.4, this section also discusses the results of the proposed new feature
extraction method that has been developed to improve the quality features of the GWT-
based feature extraction method as discussed in section 4.3. The problem that occurred
in section 4.3 has contributed to the proposed development on the new feature

enhancements method in this section.
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In this work, a combination of the pre-processing method with the new feature
extraction method has been implemented. The pre-processing method consists of a
combination of unsharp filters and median filters. These methods has been developed
where an unsharp mask filter intended to sharpen the image followed by a median filter
for the removal of noise at the input thermal image. Meanwhile, the new feature
extraction method consists of a combination of an independent image enhancement
approach called Histogram Equalization method with the original GWT-based feature
extraction technique. All the combinations of these methods have been developed to
modify the contrast and the distribution of the gray levels of pixels in the images. As a
consequence, by modifying the pixel value (intensities) of the image, the problems that
have occurred in the section 4.3 could be overcome. When the quality of the thermal
images is improved, the classification performance could also be improved
accurately. Hence, the features of thermal motor bearing images could also be
distinguished well in this study. This proposed method is called Enhanced GWSMH-

based feature extraction.

Thermal image processing has begun with converting the segmented input RGB
thermal images as in figure in section 4.2.2 into grayscale intensity image, 1(x,y).
Next, the method proposed in this section namely GWSMH which is the combination of
both pre-processing methods with the new feature extraction method has been
executed. This process has started by performing the pre processing first by enhancing
the features of input grayscale thermal images by utilizing the proposed method which
is a combination of median filter with the unsharp filter technique, respectively,

I ieres (X, Y) - The result of the image is illustrated in the figure.
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Figure 4.36  Noise removed in each input grayscale thermal images group by
using Unsharp filter and Median filter (a) Input grayscale thermal image (b)
Unsharp filter image (c) Median filter image

Furthermore, the process of extracting of the new features has been carried out
by utilizing the combination method from Histogram Equalization with the original
GWT-based extraction method. This process has begun by adjusting the contrast of the

filtered image, | ;..q (X, ¥) first by using an independent image enhancement approach

called Histogram equalization. Through this adjustment, the intensities can be better

distributed on the histogram, 1., cquaized 1mage (X2 ¥) -

Afterwards, the process of extracting features continues with transferring the

enhanced image, | (x,y) into the 2D-Gabor Wavelet Transform,

Filter _ Equalized _ Image
g(x,y). It means that, the Fourier Transform of the enhanced image is computed first
by applying 5 different frequencies and 8 orientations as specified in the table in section
3.5.2 in order to extract out all those new patterns, g, (X, y). This 2D GWSMH-based
method will then provide the coefficient results on the specific frequency content in a
specific direction in the image in a localized region according to the predetermined
parameter values on the images. All of these generated coefficient results also
represents an orthogonal direction that has a real component (cosine) and a new
imaginary (sinus) in the spatial domain. As a consequence, a new feature modification

of the pixel value (intensity) on the image has been produced in this section.

Figure(b) illustrates the new real (cosine) component of the entire GWSMH filter in

spatial domain with different 5 frequencies and 8 orientations. The row corresponds to

different scales containing bandwith (o, =2.8, 0,=3.6,0,=45,0,=54,0., =6.3)
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and wavelength (4, =3.5,1,=4.6,4,=56,4,=6.8,4, =7.9), while the column

corresponds to different orientation (0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 ° and
157.5 °). By varying these parameter values (0,c, 4) for the new GWSMH function,

the filter pattern will also change. Hereby, 40 filters GWSMH channel at each image
point i.e. 40 new multi-scales and new multi-orientations features images have been
generated. Thus, the overall total number of new GWSMH features that have been
produced in this present study is as much as 2075x40 equal to 83,000 including for

normal, warning and abnormal groups.

Subsequently, the process of convolving the two-dimensional GWSMH filter,

0.0 (X, y) with the input image, I(x,y) has been acquired in order to detect the new

GWSMH filter response from the input image itself. The convolution result were
decomposed to the new magnitude response image as denoted in figure(a) based on the
complex of GWSMH real component and GWSMH imaginary component images. As
in the section 4.3 and section 4.4, for the phase response image, it was not taken into
account in this study. This is due to the Gabor phase response are considered unstable
and are usually discarded. From the figure, it can be seen, the oriented magnitude
response matrices of image have been extracted and contain the component of the
corresponding new feature vector. At this point, when the input thermal bearing images
passed through each orientation on the GWSMH-based filter, the output of the resulting
oriented extract features is according to the orientation of the filter at that time.

Thus, a new feature vector containing the new pixel value (intensities) of the output

image based on the original Local Energy and Mean Amplitude in the section 4.3 has

83000 83000
L E (new)

been generated in this work, Y e R™ e MA, . Where the new Local

new)
Energy feature has obtained by equal to summing up the squared value of each matrix
value from a new response matrix. Meanwhile, for the new Mean Amplitude feature has
acquired by equal to sum of absolute values of each matrix value from a new response

matrix
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Figure 4.37  (a) A sample of Magnitude response for 5 scales at orientation 0°
(b) A Sample of Real GWSMH-based filter with five scales and eight
orientations

Figure illustrates the whole process performed with the feature extraction
method that has been proposed in this section. A sample image of each database group

with a parameter scale of 15x15 (A, =7.9, 0, = 6.3) at orientation 0° has been shown

to differentiate the output of the new magnitude response which will lead to the
production of the new feature vectors. Image convolution process is applied to achieve

the goal of generating features based on the filter used.

Table 4.22 Three conditions of thermal motor bearing images before and
after convolution of GWSMH-based filter with scale 15x15 at
orientation 0°

be;?r?;rm;ge Convolution Magnitude
*
Conditions (Input Image * GWSMH) response
v
{ X _ l
Normal : |m
R
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Next, the overall graph for the new results from both feature vectors (new Local
Energy and new Mean Amplutude) is shown as in the figure and figure. These graphs
represent the modifies in the value of new pixels (intensities) that have been generated
based on the magnitude response obtained for each group from thermal motor bearing

images.

There are 40 GWSMH channel filters that have been deployed at each image point
for each group of thermal images. The purpose is to extract the corresponding of new
feature values according to the respective image groups. Then, the features extracted
from these normal, warning and abnormal groups are arranged according to the same
scale parameters. it is intended to see the differences group generated according to their
respective orientation as shown in both figures. Herein, there are 40 multi-scales and
multi-orientations of GWSMH-based feature images that have been generated. It
corresponds to the differences in the multi-scale and multi-orientation parameters

deployed in this work in which the production of different features will be obtained.

From a visual point of view, it can be seen from the graph that the feature vector
output from both new Local Energy and new Mean Amplitude have some significant
variations features to differentiate the group of thermal motor bearing images.
Nevertheless, the feature selection process will be executed to define the optimal
features to distinguish the group from these thermal bearing images. It will be discussed
in details in section 4.4.1. Only the most relevant features will be used for the next

processing, while the irrelevant features will be discarded.
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Figure 4.39  Overall new Local Energy features for multi-scales and multi-
orientations in GWSMH based feature extraction method
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Figure 4.40

multiple orientations in GWSMH based feature extraction method

Overall new Mean Amplitude features for multiple scales and
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45.1.1 Feature Selection

In this section, a new optimum selection of scales and orientations for feature
extraction methods based on GWSMH using the proposed fisher score method is
explained. As in section 4.4.1, fisher score-based feature selection was employed in this
work to select new optimal features of high-dimensional vector output features from the

GWSMH-based feature extraction process as in section 4.5.1.

According to the feature extraction results as in section 4.5.1, a new 40 multi-scale
and multi-orientation feature images have been generated at each image point. Thus, the

new total input data matrix generated for image data set training in different

orientations and scales is Y € R,y ™" € LE "0 MAy , Where “n” is the

(new) (new)

number of samples which have 2075 images and © j* is the number of orientations.

After calculating each score for new local energy and new mean amplitude features
according to the fishery criterion as in equation 3.32, their score was generated as in
table and table.

Based on the results of the new local energy generated in the table, the scores of
combination orientations and scales are arranged from the highest value starting with
F15 = 1824.66, followed by F13=1137.42, F11=558.74, F9=513.64and F7= 355.38.
Therefore, the highest score value produced is at F15 = 1824.66, which is on a scale
15x15 (o = 6.3, A = 7.9) and orientation 61=0 °. From this result, it can be seen that the
new score obtained from this section shows lower reading compared to the new score
from feature extraction based on EGF in section 4.4.1. Nonetheless, the new scores in
this section have also shown higher value than the scores from the original GWT-based
extraction method as in section 4.3.1. This has proven that new scores from this section
have lower discriminatory power than EGF-based scores as well as higher

discriminative power than GWT-based original scores

Table 4.23 Fisher scoring for each Enhanced Gabor filter’s scale for Local
Energy

Filter Size
( Sc a|es) 61 92 03 94 95 96 97 08
X7 188.38 216.21 244.04 271.88 299.71 32754 355.38 227.32
9x9 86.50 363.45 280.24 236.51 482.09 406.65 284.88 513.64
11x11 309.24 407.99 238.92 300.60 466.73 558.74 303.81 486.20
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13x13 1137.42 589.70 208.01 558.23 138.62 758.95 338.87 421.25
15x15 1824.66 564.05 124.14 722.03 1.04 862.91 511.05 425.64

Meanwhile, in the table, the sequence of decreasing fisher score values for new mean
amplitude features starts with F15=1380.14, followed by F13=1110.96, F11=747.10,
F9=649.78 and F7=495.20. From this result, the highest fisher's score can be read on a
scale 15x15 and orientations 01= 0° and the value is F15=1380.14. It can be seen from
this result that the mean amplitude score has a lower discriminatory power compared to
the EGF-based extraction score as in section 4.4.1 as well as a higher discriminatory

power compared to the original GWT-based score

Table 4.24 Fisher scoring for each Enhanced Gabor filter’s scale for Mean
Amplitude

S o 0, 6 o 6 6 0 o
7 199.72 276.04 257.97 396.37 495.20 333.37 314.12 343.08
9x9 135.82 402.38 328.85 266.09 510.41 542.72 352.82 649.78

11x11 459.32 468.73 286.39 370.51 533.78 747.10 373.77 648.91
13x13 1063.77 782.38 29587 766.60 255.28 1110.96 411.66 641.14
15x15 1380.14 76258 190.26 101549 36.08 1266.71 64156 671.09

Figure and figure demonstrates the distribution of fisher's scores obtained for the scale
and orientation variations in the tables and tables according to their respective
features. As in figure, it is clear from the local energy graph that SCALE 15 (061) gives
the highest fisher score among the others. Meanwhile, for the mean amplitude graph as
shown in figure, it is observed that among others, SCALE 15 (01) has given the highest

Score.

Distribution of fisher score selection values for all
scales (Local Energy)
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Figure 4.38  Variation of Fisher score value for local energy between normal,
warning and abnormal thermal motor bearing images

Distribution of fisher score values for all scales
(Mean Amplitude)

1
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Fisher Score value

Figure 4.39  Variation of Fisher score value for Mean Amplitude between
normal, warning and abnormal thermal motor bearing images

Figure and figure displays the overall group of thermal motor bearing image of local
energy features and mean amplitude features for all eight orientations before any score
is obtained. Those diagrams shown are in the SCALE 15x15 only as this scale includes
the highest score. The various variations of the graph in the different orientations can be
seen from those figures. Consequently, the fisher score or the discriminative power

obtained will also vary according to the features produced by each orientation.
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Figure 4.40  Variation Local Energy feature of condition thermal motor
bearing images with 8 orientations for SCALE 15x15
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Figure 4.41  Variation Mean Amplitude feature of condition thermal motor
bearing images with 8 orientations for SCALE 15x15

From the calculation of the fishery criteria, the highest reading was shown by
the orientation 01 = 0 ° representing for local energy features and the orientation 61=0°
representing for mean amplitude features. Their illustrations are shown individually as
in the figure and figure. At this point, the dimensions for each of these matrix features

have been reduced toY e LE """, MA,,,,*"***. From both graphs shown, it can be

observed that the three groups for thermal motor bearing image state are not in the
desired result. Graph for normal group presents good results because it does not overlap
with other categories. Whereas graph for warning group and abnormal group indicate
overlapping results. Therefore, from the visual view through graph results, it is evident
that the enhancement features of thermal motor bearing image by using GWSMH-based
feature extraction method cannot be well classified as the features of the group warning
and abnormal group cannot be clearly distinguished. Nonetheless, the final selected
features will be processed in the classification model in term of quantitative result in

order to obtain the classification performance in this work.
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Figure 4.42  The optimal selection Local Energy feature for GWSMH is at
SCALE 15x15 (orientation 0°)
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Figure 4.43  The optimal selection Mean Amplitude feature for GWSMH is at
SCALE 15x15 (orientation 0°)

a. Evaluation Performance features by using ANOVA method
Same in section 4.3.1.1 and 4.4.1.1, this section presents the results of the

performance evaluation on the features of new Local Energy and new Mean Amplitude
obtained by using ANOVA technique. Table and table shows the descriptive statistics
value generated by new Local Energy and new Mean Amplitude features. The purpose
of the ANOVA method was implemented in this work to evaluate the new Local
Energy and new Mean Amplitude features from thermal motor bearing images group
whether there are significantly different or not. A 95% Confidence Interval for Mean
has been implemented in this work which is basically a range of values for looking at
parameters such as mean or proportion. Thus, mean+2SE is applied. From this

formula, lower band and upper band values for the true mean for each normal
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population group, warning and abnormal were obtained. These values indicates that
they have a 95% chance of being within the range of the mean as shown in the table and
the table. From these tables, the 95% Confidence Interval for the mean values for the
normal, warning and abnormal groups shows the balanced change values between the
population groups. This has shown that the results obtained from this proposed section
are also as good as in section 4.4.1.1, even better than the original results in section
4.3.1.1. Nevertheless, the P-value in the next process is calculated to determine the

results from all groups are actually significantly different.

Table 4.25 Descriptive statistics value for new Local Energy feature
Thermal 95% Confidence Interval
Image N Mean Std Std for Mean
groups Deviation Error Lower Upper
Bound Bound

Normal 1621 5375046.17  601825.854  14947.871 5345726.97 5404365.36
Warning 259  3299974.95  727811.372  45223.998 3210919.79 3389030.11
Abnormal 195  2246129.09 646321599  46284.051 215484456  2337413.62
Total 2075 4821994.47 1240993.536 27243.347 4768567.31 4875421.63

Table 4.26 Descriptive statistics value for new Mean Amplitude feature
Thermal 95% Confidence
Image N Mean Std Std Error Interval for Mean
groups Deviation Lower Upper
Bound Bound

Normal 1621  147128.45 8592.418 213.414 146709.85 147547.05
Warning 259 119729.86 13734.992 853.451 118049.24 121410.47
Abnormal 195 93996.56 13070.762 936.017 92150.48 95842.63
Total 2075  138715.46 19633.404 431.009 137870.20 139560.72

Next, table and table presents the ANOVA readings generated using SPSS
statistical software to obtain the value of F and the value of P. From these tables, the
value of between group variability produces higher values than within group variability
values. This will generate a high F-ratio value where the F-ratio value for new Local
Energy feature is 3077.421 and the F-ratio value for new Mean Amplitude feature
indicates 3076.046. These values are derived from the ratio of the mean squares (MS).
Subsequently, these obtained F-ratio value then is used to define the level of
significance for the samples by comparing them with the F-critical value. From the

table of probability values for the F distribution with (2,2072) degree of freedom (df) in

172



APPENDIX, a critical F value is found. The F-critical value for the new local energy

and new mean amplitude features is F, ,q;, 00 = 3.0 . Therefore, from the tables, it can

be observed that the F-ratio is greater than the appropriate critical F distribution at a =
0.05 (F-ratio > F-critical), thus the null hypothesis is rejected, and accept the alternative
hypotesis. This means the variance between the means of population group are

significantly different.

The value of P is the probability of obtaining results from all groups are differ
significantly. Hence, from the statistical calculation using function ‘fdist', P-value is
obtained. From table, the P-value for the new local energy feature is 0.000325.
Meanwhile, from table, the P-value obtained from the new mean amplitude feature is
0.000325. This explains that both of P-Value from the tables has given a higher
readings compared to the P-values in section 4.4.1.1. Its also shows a better reading
compared to the original P-value in section 4.3.1.1. This indicates that the results of P-
value in the previous section 4.4.1.1 has given a better reading compared to this section.

Nonetheless, based on the P-value obtained from the tables, it can be interpreted
that the features of new Local Energy and new Mean Amplitude from all group of
thermal motor bearing images are still shows significantly different at P <0.05.

Table 4.27 ANOVA for Local Energy features
Sou_rc_e of Sum of Squares df S F P-value
variations Square
Between Groups  2389634901809379.500 2
Within Groups 804459816159081.800 2072 112;2;22838‘2128598200 3077.421 0.000325
Total 3194094717968461.000 2074 '
Table 4.7 ANOVA for Mean Amplitude features
Sogrc_e of Sum of Squares df Mean F P-value
variations Square
Between Groups 598046275102.431 2
Within Groups 201419615815.038 2072 2923;?32;3521;15 3076.046 0.000325
Total 799465890917.469 2074 '
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45.1.2 Classification

There are two types of classifier used in this work, namely MLANNSs and Linear
Thresholding. Section a and section b will discuss their performance results in more

details.

a. MLANNS
In this section, the parameters and procedures of the MLANNSs model applied to this

work are same as those described in the previous sections in section 4.4.2.1 and section
4.3.2.1. The purpose is to obtain the best MLANNSs model in order to identify and
distinguish the condition of thermal motor bearing images used in this study. The best
measure for MLANNs model can be observed through classification statistical
performance metrics obtained by looking at the highest accuracy value and the lowest
MSE value. In order to achieve these outputs, the selected features namely local energy
and mean amplitude as in section 4.5.1.1 were used. All these results have been

presented in the table.

Table 4.28 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5- fold and10-fold cross-
validations in MLANNs model for Local Energy and Mean
Amplitude feature

TG ol HN MSE it
Training Validation

Trainbr 5 1 0.0462 0.0465
2 0.0235 0.0239

3 0.0228 0.0224 97.08
4 0.0211 0.0233
5 0.0208 0.0226
10 1 0.0462 0.0470
2 0.0232 0.0239
3 0.0216 0.0227
4 0.0209 0.0225

5 0.0204 0.0217 97.23
6 0.0181 0.0219
Trainlm 5 1 0.0461 0.0471
2 0.0231 0.0240

0.0215 0.0219 97.17
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4 0.0203

0.0201

10 0.0462
0.0232
0.0219
0.0204
0.0199
0.0195

D 01 W N P

Trainscg 5 0.0462

0.0231
0.0227
0.0221
0.0218
0.0209
0.0208
0.0206

0 N oo oA W NP

10 0.0462
0.0232
0.0229
0.0218
0.0182

0.0211

o O A W N

0.0227
0.0220

0.0467
0.0240
0.0228
0.0221
0.0219
0.0228

0.0465
0.0247
0.0236
0.0234
0.0233
0.0230
0.0230
0.0231

0.0468
0.0239
0.0239
0.0231
0.0221
0.0226

97.02

97.16

97.17

In this section, due to the mean value of MSE validation from training has not reached
the minimum value until hidden neuron = 5, processing of data on hidden neuron are
then continued. Upon completion of data processing, the highest value of hidden
neurons used in this work'is 8. Next, the best fold selection for each training algorithm
is performed. Figure shows graph validation performance for TRAINLM algorithm
based on Kfold-5 and Kfold-10. From this result, it is observed that, the optimum mean

MSE validation value can be read in Kfold-5 at hidden neuron 3 where the lowest value

15 0.0219.
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Validation performance for TRAINLM
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Figure 4.44  Validation performance for TRAINLM based on Kfold-5 and
Kfold-10

Meanwhile, figure denotes a learning curves graph for the TRAINBR training
algorithm. From the graph, it can be seen that readings in the hidden neuron 5 at kfold-
10 gave the optimum mean MSE readings compared to all values of kfold-5. Its MSE

lowest reading value is 0.0217.

Validation performance for TRAINBR
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S T T e | o

=¢=Trainbr Kfold-5 | 0.0465 | 0.0239 | 0.0224 | 0.0233 | 0.0226
== Trainbr Kfold-10| 0.0470 | 0.0239 | 0.0227 | 0.0225 | 0.0217 | 0.0219

Figure 4.45 Validation performance for TRAINBR based on Kfold-5 and
Kfold-10

Next, the third training algorithm is TRAINSCG. The optimum mean MSE reading of
the training algorithm can be observed in the hidden neuron 5 on kfold-10. Its mean

MSE value is 0.0221.
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Validation performance for TRAINSCG
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Figure 4.46  Validation performance for TRAINSCG based on Kfold-5 and
Kfold-10

From all of the learning curve graphs shown above, the differences in mean MSE
values between Kfold-5 and Kfold-10 did not differ significantly for each training
algorithm. However, the differences error in the mean MSE value between both folds
remains. Furthermore, the optimum mean MSE values for each training algorithm were
extracted and combined in one graph as in the figure. This graph is intended to
determine the best validation performance among all training algorithms. Hereby, as
can be seen from the graph, TRAINBR gave the optimum mean MSE readings
compared to TRAINLM and TRAINSCG for MLANNSs models in this section. The
minimum mean MSE value readings shown were 0.0217 at k-fold = 10, hidden neurons
= 5 and the average accuracy validation = 97.23% as observed in the table.
Furthermore, once the mean error validation has been achieved to the minimum, the net

will generalize to unknown samples through testing process.
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Best validation performance for all training
algorithms

c
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== Trainbr Kfold-10 | 0.0470 | 0.0239 | 0.0227 | 0.0225 | 0.0217 | 0.0219

== Trainlm Kfold-5 | 0.0471 | 0.0240 | 0.0219 | 0.0227 | 0.0220
Trainscg Kfold-10| 0.0468 | 0.0239 | 0.0239 | 0.0231 | 0.0221 | 0.0226

Figure 4.47  Best validation performances among all training algorithm types

Table shows the readings obtained from MATLAB software for best validation
performance based on TRAINBR training algorithm in this section. Since K-fold = 10
is produced as the optimum mean cross validation error, so that the mean value for
MSE validation and mean of accuracy validation value are measured 10 times
according to the equation 3.33 as stated in section 3.7.1.1. From the table, it is seen that
the best validation performance has been performed at various iterations at various
times to determine how many times the learning algorithm works through the entire
training data set. Herein, it is noted that the performance produced by the MLANN
model in this section is not as fast as the MLANN model in section 4.4.2.1.

Table 4.29 Best validation performance for TRAINBR in MLANNs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE Acc
Epoch (sec) Validation ~ Validation (%)

1 355 15 0.0147 98.28
2 207 9 0.0264 95.92
3 159 8 0.0155 98.00
4 83 2 0.0289 96.22
5 127 5 0.0298 96.24
6 237 10 0.0191 97.69
7 97 3 0.0134 98.56
8 1000 42 0.0272 96.82
9 118 4 0.0215 97.41
10 150 6 0.0206 97.12

Mean: 0.0217 97.23

Subsequently, the overall results for training classification statistical performance
metrics generated by TRAINBR algorithm for MA and LE features in this section are

presented in table 4.7. Precision values = 90.24%, sensitivity = 90.26, specificity =
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97.39, CER = 0.0278 and accuracy = 97.23%. All of these values are calculated based
on the multi-class classification problem through TP, FP, TN and FN according to the

confusion matrix acquired during training data processing.

Table 4.30 Validation performance results using TRAINBR in MLANNS
model for Local Energy and Mean Amplitude features
Training oy Pre ?‘;”Ff ?pNe; CER  ACC
Function (%) ((%)) ((%)) (%)
TRAINBR 5
(K-fold=10) 90.24 90.26 97.39 0.0278  97.23

Just like the previous section, 10% of dataset was employed in MLANNS model testing
for validation purposes. Thus, table indicates five classification statistical performance
metrics obtained by using TRAINBR algorithm for classifying the conditions of
thermal motor bearing images. The accuracy of neural networks for classifying all
thermal bearing images conditions was 98.71% (254 correctly classified of 259), the
specificity =99.26%, precision=95.83% and Classification Error
Rate=0.0127. Meanwhile, the testing values of the classification performances metrics
for each state of thermal bearing images are denoted in the table. The results of these
values have been calculated on multi-class classification problem based on TP (True
Positive), FP (False Positive), TN (True Negative) and FN (False Negative) according
to the acquired TRAINBR confusion matrix.

Table 4.31 Testing performance results using TRAINBR in MLANNs model
for Local Energy and Mean Amplitude features

Training re Sp CER ACC
. HN Class TP TN FP FN Se (%)

Function (%) (%) (%)
TRAINBR 5 N 180 7 0 2 1.0000 0.9890 1.0000 0.0077 0.9923
(K-fold=10) w 35 219 5 0 0.8750  1.0000 0.9777 0.0193 0.9807

A 39 217 0 3 1.0000 0.9286 1.0000 0.0112 0.9884
All 0.9583 0.9725 0.9926 0.0127 0.9871

Furthermore, the overall differences in the results performance of the MLANNSs
classification models for the testing phase and training phase in this section are

graphically illustrated as in figure for easier observation.
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Comparison between training and testing performance of
TRAINBR
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Figure 4.48  Comparison bar graph between training and testing performance

b.

using GWSMH based feature extraction algorithm
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Table 4.32 Classification performances using Linear Thresholding model for
GWSMH based feature extraction’s features

. ACC TRAINING ACC TESTING
Condition of
Features thermal bearing Traini No. of . No. of
. raining e Testing .
images (%) Cl_assmed (%) Cl_assmed
image image
Local Energy Normal 95.6135 1722 100.0000 180
Warning 70.5686 211 72.5000 29
Abnormal 80.3419 188 16.2393 38
Average All 82.1747 2121 62.9131 247
Mean Amplitude Normal 94.6696 1705 100.0000 180
Warning 69.2308 207 80.0000 32
Abnormal 84.6154 198 97.4359 38
Average All 82.8386 2110 92.4786 250

Average All: 77.6959

4.5.2 Propose an Enhanced GWCLAHE-based Feature Extraction Method

As in section 4.4 and section 4.5.1, this section also discusses the results of the
proposed new feature extraction method that has been developed to improve the quality
features based on the GWT-based feature extraction method as discussed in section 4.3.
The problem that occurred in section 4.3 has contributed to the proposed development

on the new feature enhancements method in this section.

In this present study, a combination of an independent image enhancement approach
called Contrast Limited Adaptive Histogram Equalization (CLAHE) method with the
original GWT-based feature extraction technique has been developed. Combinations of
these methods have been executed to modify the contrast and the distribution of the
gray levels of pixels in the images. As a consequence, by modifying the pixel value
(intensities) of the image, the problems that have occurred in the section 4.3 could be
overcome. When the quality of the thermal images is improved, the classification
performance could also be improved accurately. Hence, the features of thermal motor
bearing images could also be distinguished well in this study. This proposed method is
called Enhanced GWCLAHE-based feature extraction.

Thermal image processing has begun with converting the segmented input RGB

thermal images as in figure in section 4.2.2 into grayscale intensity image, I(x,Y).
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Next, the new feature extraction proces is performed by enhancing the features of
thermal images by utilizing the proposed method which is Enhanced GWCLAHE-based
feature extraction. From this proposed technique, the quality image features and
classification performances in this work can be improved. This 2D-Enhanced
GWCLAHE extraction process has started by adjusting the contrast of the thermal input
image first by using an independent image enhancement approach called CLAHE.
Through this adjustment, the intensities can be better distributed on the histogram,

I (x,y) . The results can be illustrated in the figure.

Equalized _ Image

Normal Warning Abnormal

Tk

(a)(b) (a)(®)

-
4
]

oy

Figure 4.49  Image enhancement method using CLAHE (a) Input grayscale
thermal image (b) Enhanced CLAHE image

Afterwards, the process of extracting features continues with transferring the

enhanced image, | (x,y)into the 2D-Gabor Wavelet Transform, g(x,y). It

Equalized _ Image
means that, the Fourier Transform of the enhanced image is computed first by applying
5 different frequencies and 8 orientations as specified in the table in section 3.5.2 in

order to extract out all those new patterns, g,.,(x,y). This 2D GWCLAHE-based

feature extraction will then provide the coefficient results on the specific frequency
content in a specific direction in the image in a localized region according to the
predetermined parameter values on the images. All of these generated coefficient results
also represents an orthogonal direction that has a real component (cosine) and a new
imaginary (sinus) in the spatial domain. As a consequence, a new feature modification

of the pixel value (intensity) on the image has been produced in this section.

Figure(b) illustrates the new real (cosine) component of the entire GWCLAHE filter

in spatial domain with different 5 frequencies and 8 orientations. The row corresponds

to different scales containing bandwith (o, =28, 0,=36,0,=45,0,=54,
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o, =6.3) and wavelength (4, =3.5,4, =4.6,4,=5.6,4, =6.8,1, =7.9), while the

column corresponds to different orientation (0 °, 22.5°,45°,67.5° 90 °, 112.5°,135°
and 157.5 °). By varying these parameter values (8,o,4) for the new GWCLAHE

function, the filter pattern will also change. Hereby, 40 filters GWCLAHE channel at
each image point i.e. 40 new multi-scales and new multi-orientations features images
have been generated. Thus, the overall total number of new GWCLAHE features that
have been produced in this present study is as much as 2075x40 equal to 83,000

including for normal, warning and abnormal groups.

Subsequently, the process of convolving the two-dimensional GWCLAHE filter,

0.0 (X, y) with the input image, I(x,y) has been acquired in order to detect the new

GWCLAHE filter response from the input image itself. The convolution result were
decomposed to the new magnitude response image as denoted in figure(a) based on the
complex of GWCLAHE real component and GWCLAHE imaginary component
images. As in the section 4.3, section 4.4, and section 4.5, for the phase response image,
it was not taken into account in this study. This is due to the Gabor phase response are
considered unstable and are usually discarded. From the figure, it can be seen, the
oriented magnitude response matrices of image have been extracted and contain the
component of the corresponding new feature vector. At this point, when the input
thermal bearing images passed through each orientation on the GWCLAHE -based
filter, the output of the resulting oriented extract features is according to the orientation
of the filter at that time.

Thus, a new feature vector containing the new pixel value (intensities) of the output

image based on the original Local Energy and Mean Amplitude in the section 4.3 has

83000 83000
L E (new)

been generated in this work, Y e R™ e MA, . Where the new Local

new)
Energy feature has obtained by equal to summing up the squared value of each matrix
value from a new response matrix. Meanwhile, for the new Mean Amplitude feature has
acquired by equal to sum of absolute values of each matrix value from a new response

matrix.
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Figure 450 (a) A Sample of Real GWCLAHE-based filter with five scales
and eight orientations (b) A sample of Magnitude response for 5 scales at
orientation 0°

Table illustrates the whole process performed with the feature extraction method
that has been proposed in this section. A sample image of each database group with a
parameter scale of 9x9 (o, =3.6 , 4, =4.6) at orientation 90° has been shown to
differentiate the output of the new magnitude response which will lead to the

production of the new feature vectors. Image convolution process is applied to achieve

the goal of generating features based on the filter used.

Table 4.33 Three conditions of thermal motor bearing images before and
after convolution of Gabor filter with scale 9x9 at orientation 90°

Thermal

bearing image Convolution Magnitude
*
Conditions (fnput Image * GWCLAHE) response
E *
Normal ﬁti
o
o
Warning o
|




W

W, _
Abnormal 'f—

i

Next, the overall graph for the new results from both feature vectors (new Local

Energy and new Mean Amplutude) is shown as in the figure and figure. These graphs
represent the modifies in the value of new pixels (intensities) that have been generated
based on the magnitude response obtained-for each group from thermal motor bearing

images.

There are 40 GWCLAHE channel filters that have been deployed at each image
point for each group of thermal images. The purpose is to extract the corresponding of
new feature values according to the respective image groups. Then, the features
extracted from these normal, warning and abnormal groups are arranged according to
the same scale parameters. it is intended to see the differences group generated
according to their respective orientation as shown in both figures. Herein, there are 40
multi-scales and multi-orientations of GWCLAHE-based feature images that have been
generated. It corresponds to the differences in the multi-scale and multi-orientation
parameters deployed in this work in which the production of different features will be

obtained.

From a visual point of view, it can be seen from the graph that the feature vector
output from both Local Energy and Mean Amplitude have some insignificant variations
features to differentiate the group of thermal motor bearing images. Nevertheless, the
feature selection process will be executed to define the optimal features to distinguish
the group from these thermal bearing images. It will be discussed in details in section
4.5.2.1. Only the most relevant features will be used for the next processing, while the

irrelevant features will be discarded
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Figure 4.54

Overall new Local Energy features for multi-scales and multi

orientations in GWCLAHE based feature extraction method
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Figure 4.55  Overall new Mean Amplitude features for multiple scales and
multiple orientations in GWCLAHE based feature extraction method
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45.2.1 Feature Selection

In this section, a new optimum selection of scales and orientations for feature
extraction methods based on GWCLAHE using the proposed fisher score method is
explained. As in section 4.4.1 and section 4.5.1, fisher score-based feature selection was
employed in this work to select new optimal features of high-dimensional vector output

features from the GWCLAHE-based feature extraction process as in section 4.5.2.

According to the feature extraction results as in section 4.5.1, a new 40 multi-scale
and multi-orientation feature images have been generated at each image point. Thus, the

new total input data matrix generated for image data set training in different

orientations and scales is Y € R,y ™" € LE "0 MAy , Where “n” is the

(new) (new)

number of samples which have 2075 images and © j* is the number of orientations.

After calculating each score for new local energy and new mean amplitude features
according to the fishery criterion as in equation 3.32, their score was generated as in
table and table.

Based on the results of the new local energy generated in the table, the scores of
combination orientations and scales are arranged from the highest value starting with F9
= 887.82, followed by F7=787.96, F15=755.10, F13=702.59, F11= 591.91. Therefore,
the highest score value produced is at F9= 887.82, which is on a scale 9x9 (c = 3.6, A =
4.6) and orientation 85=90 °. From this result, it can be seen that the new score obtained
from this section shows lower reading compared to the new score from feature
extraction based on EGF in section 4.4.1 and GWSMH in section 4.5.1. This has proven
that new scores from this section have lower discriminatory power compared to EGF-

based scores and GWSMH-based scores

Table 4.34 Fisher scoring for each Enhanced Gabor filter’s scale for Local
Energy

Filter Si
Gty O % 0 0 O 0 0 6

7 22177 2163 11615 166.71 78796 13513 9158 10.75
9x9 102.14 3464 9945 166.17 887.82 70.00 29.25 6.50
11x11 33.15 18183 102.17 111.15 59191 2196 1436 118.20
13x13 470.12 50395 9397 1449 3182 40.33 343  702.59
15x15 202.13 690.06 88.28 18.19  33.46 84.40 511 755.10
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Meanwhile, in the table, the sequence of decreasing fisher score values for new mean
amplitude features starts with F15=987.59, followed by F13=846.74, F7=195.82,
F9=190.79 and F11=138.04. From this result, the highest fisher's score can be read on a
scale 15x15 at orientations 68= 157.5° and the value is F15=987.59. It can be seen from
this result that the mean amplitude score has a lower discriminatory power compared to
EGF-based scores and GWSMH-based scores.

Table 4.35 Fisher scoring for each Enhanced Gabor filter’s scale for Mean
Amplitude
Filter Size
(Scales) 61 02 03 04 95 96 97 08

7x7 139.64 47.06 144.78 221.84 6504 19582 120.85 32.71
9x9 57.63 21.05 130.85 190.79 59.83 127.03 4514 14.95
11x11 53.67 127.28 138.04 13451 1276 5228 20.81 94.01
13x13 24184 420.12 10495 2319 4751 4762 503 846.74
15x15 15402 757.90 9227 16.62 171.72 89.10  8.64  987.59

Figure and figure demonstrates the distribution of fisher's scores obtained for the scale
and orientation variations in the tables and tables according to their respective
features. As in figure, it is clear from the local energy graph that SCALE 9 (65) gives
the highest fisher score among the others. Meanwhile, for the mean amplitude graph as
shown in figure, it is observed that among others, SCALE 15 (88) has given the highest

Score.

Distribution of fisher score selection values for all
scales (Local Energy)
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Figure 4.51

warning and abnormal thermal motor bearing images
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scales (Mean Amplitude)
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Figure 4.52

Variation of Fisher score value for Mean Amplitude between

normal, warning and abnormal thermal motor bearing images

Figure and figure displays the overall group of thermal motor bearing image of local
energy features and mean amplitude features for all eight orientations before any score
is obtained. Those diagrams shown are in the SCALE 9x9 and SCALE 15x15
respectively as this scale includes the highest score. The various variations of the graph
in the different orientations can be seen from those figures. Consequently, the fisher

score or the discriminative power obtained will also vary according to the features

produced by each orientation.
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Figure 4.53  Variation Local Energy feature of condition thermal motor
bearing images with 8 orientations for SCALE 9x9
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Figure 4.54 Variation Mean Amplitude feature of condition thermal motor
bearing images with 8 orientations for SCALE 15x15

From the calculation of fishery criteria, the highest readings for local energy feature
were shown at orientation 05 = 90 °. While the highest values for the mean amplitude
feature are shown in the orientation 68=157.5°. Their illustrations are shown

individually as in the figure and figure. At this point, the dimensions for each of these
matrix features have been reduced toY e LE,,*",MA ,,*""*. From both graphs

shown, it can be observed that the three groups for thermal motor bearing image state
are not in the desired result. From figure, graph for normal group presents better
performance due to it does not overlap with other categories. While graph for warning

group and abnormal group indicate overlapping results. Meanwhile in figure, it can be
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seen that graphs for all three groups which are normal, warning and abnormal
demonstrates overlapping with each other’s. Therefore, from the visual view through
graph results, it is evident that the enhancement features of thermal motor bearing
image by using GWCLAHE-based feature extraction method cannot be well classified
as the features of all groups cannot be clearly distinguished. Nevertheless, the final
selected features will be processed in the classification model in term of quantitative

result in order to obtain the classification performance in this work.
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Figure 4.55 The optimal selection Local Energy feature for GWCLAHE is at
SCALE 9x9 (orientation 90°)
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Figure 4.56  The optimal selection Mean Amplitude feature for GWCLAHE is
at SCALE 15x15 (orientation 157.5°)

a. Evaluation Performance feature using ANOVA method
Same in section 4.3.1.1, 4.4.1.1, and 4.5.1.1.a, this section presents the results of the

performance evaluation on the features of new Local Energy and new Mean Amplitude
obtained by using ANOVA technique. Table and table shows the descriptive statistics
value generated by new Local Energy and new Mean Amplitude features. The purpose
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of the ANOVA method was implemented in this work to evaluate the new Local
Energy and new Mean Amplitude features from thermal motor bearing images group
whether there are significantly different or not. A 95% Confidence Interval for Mean
has been implemented in this work which is basically a range of values for looking at
parameters such as mean or proportion. Thus, mean+ 2SE is applied. From this
formula, lower band and upper band values for the true mean for each normal
population group, warning and abnormal were obtained. These values indicates that
they have a 95% chance of being within the range of the mean as shown in the table and
the table. From these tables, the 95% Confidence Interval for the mean values for the
normal, warning and abnormal groups shows the balanced change values between the
population groups. However, the distance of value change between all groups is close to
each other. Next, the process of generating P values is calculated to determine the

results from all groups are significantly different.

Table 4.36 Descriptive statistics value for new Local Energy feature
Thermal Std 95% Confidence Interval
Image N Mean Std for Mean
groups Deviation Error Lower Upper
Bound Bound
Normal 1621 7397.85 1899.800 47.186 7305.29 7490.40

Warning 259 10695.03 1360.475 84.536 10528.56 10861.50
Abnormal 195 13164.82 1700.321 121.763 12924.67 13404.96

Total 2075  8351.35 2625.795 57.644 8238.31 8464.40
Table 4.37 Descriptive statistics value for new Mean Amplitude feature
Thermal 95% Confidence
Std Std
IP:)?JQZ N Mean S ation Error Interval for Mean
group Lower Upper
Bound Bound

Normal 1621  14471.87 2110.085 52.409 14369.07 14574.67
Warning 259  20039.92 2663.340 165.492 19714.04 20365.81
Abnormal 195  23145.71 2578.521 184.652 22781.53 23509.89

Total 2075 15982.00 3694.039 81.095 15822.97 16141.04

Next, table and table presents the ANOVA readings generated using SPSS
statistical software to obtain the value of F and the value of P. From these tables, the
value of between group variability produces higher values than within group variability

values. This will generate a high F-ratio value where the F-ratio value for new Local
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Energy feature is 1115.608 and the F-ratio value for new Mean Amplitude feature
indicates 1801.578. These values are derived from the ratio of the mean squares (MS).
Subsequently, these obtained F-ratio value then is used to define the level of
significance for the samples by comparing them with the F-critical value. From the
table of probability values for the F distribution with (2,2072) degree of freedom (df) in

APPENDIX, a critical F value is found. The F-critical value for the new local energy

and new mean amplitude features is F, ,;, 05 =3.0 . Therefore, from the tables, it can

be observed that the F-ratio is greater than the appropriate critical F distribution at o =
0.05 (F-ratio > F-critical), thus the null hypothesis is rejected, and accept the alternative
hypotesis. This means the variance between the means of population group are

significantly different.

The value of P is the probability of obtaining results from all groups are differ
significantly. Hence, from the statistical calculation using function ‘fdist’, P-value is
obtained. From table, the P-value for the new local energy feature is 0.000896.
Meanwhile, from table, the P-value obtained from the new mean amplitude feature is
0.000555. This explains that both P-Values from the tables have given higher readings
compared to the P-values in section 4.4.1.1 and section 4.5.1.1.a. It also presents a
reading that is almost identical to the original P-value in section 4.3.1.1. This has
proven that the enhancement based feature extraction method proposed in this section
has given the worst reading among the other proposed methods in this study.

Nonetheless, based on the P-value obtained from the tables, it can be interpreted
that the features of new Local Energy and new Mean Amplitude from all group of

thermal motor bearing images are still shows significantly different at P <0.05.

Table 4.38 ANOVA for new Local Energy feature
Source of Mean F- F-
variations Sum of Squares df Square Ratio  Critical P-value
Between Groups 7414450433.766 2
Within Groups 6885368804.299 2072 37303722320552412;18283 1115.608 3.0 0.000896
Total 14299819238.066 2074 )
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Table 4.7 ANOVA for new Mean Amplitude features

Source of Sum of Squares df Mean F - 1 P-value
variations q Square Ratio  Critical
Between Groups 17968709325.399 2
Within Groups 10332932569.589 2072 8%18948365:3666;67800 1801.578 3.0 0.000555
Total 28301641894.988 2074 )

45.2.2 Classification

There are two types of classifier used in this work, namely MLANNs and Linear
Thresholding. Section a and section b will discuss their performance results in more

details.

a. MLANNS
In this section, the parameters and procedures of the MLANNSs model applied to this

work are same as those described in the previous sections in section 4.3.2.1, section
4.4.2.1 and section 4.5.2.1(a). The purpose is to obtain the best MLANNs model in
order to identify and distinguish the condition of thermal motor bearing images used in
this study. The best measure for MLANNs model can be observed through accuracy
value and the lowest MSE value. In order to achieve these outputs, the selected features
namely local energy and mean amplitude as in section 4.5.2.1 were used. All these

results have been presented in the table.

Table 4.39 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5- fold and10-fold cross-
validations in MLANNSs model for Local Energy and Mean
Amplitude feature

Training

Function K-Fold HN MSE Accuracy (%)
Training Validation
Trainbr 5 1 0.0550 0.0555
2 0.0390 0.0402
3 0.0390 0.0401 94.46
4 0.0383 0.0395
5 0.0377 0.0396
6 0.0376 0.0400
10 1 0.0551 0.0556
2 0.0390 0.0398
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3 0.0386

4 0.0383

0.0379

Trainlm 5 0.0550
0.0390
0.0386
0.0382
0.0377
0.0373

D OB W N

10 0.0551
0.0407
0.0386
0.0384
0.0379

0.0366

o OB W N

Trainscg 5 0.0550
0.0390
0.0385
0.0383
0.0381

0.0373

o OB~ W N P

10 0.0551
0.0392
0.0387
0.0385
0.0381

0.0376

D o~ W N

0.0400
0.0404
0.0407

0.0555
0.0401
0.0402
0.0397
0.0405
0.0404

0.0557
0.0413
0.0400
0.0399
0.0399
0.1280

0.0556
0.0397
0.0400
0.0403
0.0405
0.0414

0.0555
0.0401
0.0397
0.0400
0.0400
0.0405

94.37

94.27

94.18

94.25

94.28

Upon completion of data processing, the highest value of hidden neurons used in this
work is 6. Next, the best fold selection for each training algorithm is performed. Figure
shows graph validation performance for TRAINLM algorithm based on Kfold-5 and

Kfold-10. From this result, it is observed that, the optimum mean MSE validation value

can be read in Kfold-5 at hidden neuron 4 where the lowest value is 0.0397.
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Validation performance for TRAINLM
0.1500

MSE Validation

0.1000 2
0.0500 | g —— l/ >
0.0000 — 2 3 4 5 6
—o—Trainlm Kfold-5 | 0.0555 | 0.0401 | 0.0402 | 0.0397 | 0.0405 | 0.0404

== Trainlm Kfold-10 | 0.0557 | 0.0413 | 0.0400 | 0.0399 | 0.0399 | 0.1280

Figure 457  Validation performance for TRAINLM based on Kfold-5 and
Kfold-10

Meanwhile, figure denotes a learning curves graph for the TRAINBR training
algorithm. From the graph, it can be seen that readings in the hidden neuron 4 at kfold-5
gave the optimum mean MSE readings compared to all values of kfold-10. Its MSE

lowest reading value is 0.0395.
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Validation performance for TRAINBR
0.0600

S 0.0500 |

3 0.0400 g—an B —
= 0.0300

i 0.0200

‘§ 0.0100

SREE 1 2 3 4 5 6

== Trainbr Kfold-5 |0.0555|0.04020.0401/0.0395|0.0396/0.0400
—f- Trainbr Kfold-10|0.0556/0.0398/0.0400/0.0404|0.0407

Figure 4.58 Validation performance for TRAINBR based on Kfold-5 and
Kfold-10

Next, the third training algorithm is TRAINSCG. The optimum mean MSE reading of
the training algorithm can be observed in the hidden neuron 2 on kfold-5. Its mean MSE

value is 0.0397.

Validation performance for TRAINSCG

0.0600
0.0500 |

0.0400 N
0.0300
0.0200
0.0100
0.0000

MSE Validation

1 2 3 4 5 6
=#=Trainscg Kfold-5 |0.0556|0.0397|0.0400(0.0403|0.0405|0.0414
=l-Trainscg Kfold-100.0555|0.0401(0.0397(0.0400|0.0400|0.0405

Figure 4.59  Validation performance for TRAINSCG based on Kfold-5 and
Kfold-10

From all of the learning curve graphs shown above, the differences in mean MSE
values between Kfold-5 and Kfold-10 did not differ significantly for each training
algorithm. However, the differences error in the mean MSE value between both folds
remains. Furthermore, the optimum mean MSE values for each training algorithm were
extracted and combined in one graph as in the figure. This graph is intended to
determine the best validation performance among all training algorithms. Hereby, as

can be seen from the graph, TRAINBR gave the optimum mean MSE readings
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compared to TRAINLM and TRAINSCG for MLANNSs models in this section. The
minimum mean MSE value readings shown were 0.0395 at k-fold = 5, hidden neurons
= 4 and the average accuracy validation = 94.46% as observed in the table.
Furthermore, once the mean error validation has been achieved to the minimum, the net

will generalize to unknown samples through testing process.

Best validation performance for all training
algorithms

0.0600
0.0500

0.0400 il —
0.0300
0.0200
0.0100
0.0000

MSE Validation

=—Trainbr Kfold-5 | 0.0555 | 0.0402 | 0.0401 | 0.0395 | 0.0396 | 0.0400
== Trainlm Kfold-5 | 0.0555 | 0.0401 | 0.0402 | 0.0397 | 0.0405 | 0.0404
====Trainscg Kfold-10 | 0.0555 | 0.0401 | 0.0397 | 0.0400 | 0.0400 | 0.0405

Figure 4.60  Best validation performances among all training algorithm types

Table shows the readings obtained from MATLAB software for best validation
performance based on TRAINBR training algorithm in this section. Since K-fold =5 is
produced as the optimum mean cross validation error, so that the mean value for MSE
validation and mean of accuracy validation value are measured 5 times according to the
equation 3.33 as stated in section 3.7.1.1. From the table, it is seen that the best
validation performance has been performed at various iterations at various times to
determine how many times the learning algorithm works through the entire training data
set. Herein, it is noted that the performance produced by the MLANN model in this

section is not as fast as the MLANN model in section 4.4.2.1.

Table 4.40 Best validation performance for TRAINBR in MLANNs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE Acc
Epoch (sec) Validation ~ Validation (%)
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1 171 7 0.0385 94.46
2 118 4 0.0376 94.74
3 76 3 0.0408 94.31
4 61 2 0.0396 94.16
5 132 5 0.0411 94.61

Total Mean: 0.0395 94.46

Subsequently, the overall results for training-classification statistical performance
metrics generated by TRAINBR algorithm for MA and LE features in this section are
presented in table 4.7. Precision values = 82.04%, sensitivity = 82.24, specificity =
93.88, CER = 0.0554 and accuracy = 94.46%. All of these values are calculated based
on the multi-class classification problem through TP, FP, TN and FN according to the

confusion matrix acquired during training data processing.

Table 4.41 Validation performance results using TRAINBR in MLANNS
model for Local Energy and Mean Amplitude features
Training Pre  Sens Spec CER ACC
Function HN (%) (TPR) (TNR) (%)
(%) (%)
TRAINBR 4 82.04 8224 93.88 0.0554  94.46
(K-fold=5)

Just like the previous section, 10% of dataset was employed in MLANNS model testing
for validation purposes. Thus, table indicates five classification statistical performance
metrics obtained by using TRAINBR algorithm for classifying the conditions of
thermal motor bearing images. The accuracy of neural networks for classifying all
thermal bearing images conditions was 94.08% (236 correctly classified of 259), the
specificity =95.89%, precision=81.98% and Classification Error
Rate=0.0595. Meanwhile, the testing values of the classification performances metrics
for each state of thermal bearing images are denoted in the table. The results of these
values have been calculated on multi-class classification problem based on TP (True
Positive), FP (False Positive), TN (True Negative) and FN (False Negative) according
to the acquired TRAINBR confusion matrix.

Table 4.42 Testing performance results using TRAINBR in MLANNs model
for Local Energy and Mean Amplitude features
Training Pre Sens Spec CER ACC
HN Class TP TN FP FN

Function (%) (%) (%) (%)
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TRAINBR 4 N 178 64 2 15 09889 0.9223 0.9697 0.0656 0.9344
(K-fold=5) w 26 212 14 7 0.6500 0.7879 0.9381 0.0811 0.9189
A 32 219 7 1 0.8205 0.9697 0.9690 0.0319 0.9691
All 0.8198  0.8933  0.9589 0.0595 0.9408

Furthermore, the overall differences in the results performance of the MLANNSs
classification models for the testing phase and training phase in this section are

graphically illustrated as'in figure for easier observation.

Comparison between training and testing performances
of TRAINBR
o 1:2000
2 1.0000
£ 0.8000
€ 0.6000
& 0.4000
ﬁ' 0.2000
T 0.0000 —— —
ACC CER SENS (TPR) | SPEC(TNR) PREC
W TEST 0.9408 0.0595 0.8933 0.9589 0.8198
ETRAIN| 0.9446 0.0554 0.8224 0.9388 0.8204

Figure 4.61  Comparison bar graph between training and testing performance
using GWCLAHE based feature extraction algorithm

b. Linear Thresholding

Threshold value for Local Energy in GWCLAHE

° 40000 Y
> 35000
S / \
2 25000 7/ \
& 20000 .
c / \ A
w 15000
IS 10000 N
S 5000 j-/ —9

0 -

min | Max_ /mean_| min_ | max_|mean_| . | max_|mean_
- N N W W W - A A

== Seriesl|3422.4| 37642 |7568.7(7013.9| 14698 | 10572 |8772.7| 18693 | 13253
== Series2| 0 9070.2 11913 18693
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Threshold value for Mean Amplitude in GWCLAHE
,, 40000
35000
>
S 30000 /A\ /‘»\ n_
o 25000 a3
2 20000 AN / \o<=,/ >
'T;l 15000 / N\ J’
< 10000 / —
S 5000 — —
S 0 | — = . —
min_ | max_ |mean_| min_ | max_ mean_ m|n_—|_max_ mean_
N N | N W | W | W A A A
—o—Series1 (9281.8| 25227 14463 14334 | 33824 | 19960 17037 | 31303 | 23190
——-Series2| 0 17211 21575 31303
Table 4.43 Classification performances using Linear Thresholding model for
GWCLAHE based feature extraction’s features
" ACC TRAINING ACC TESTING
Condition of
Features thermal bearing - No. of . No. of
images Training Classified Testing Classified
(%) ] (%) )
image image
Local Energy Normal 78.4564 1413 61.1111 110
Warning 68.8963 206 55.0000 22
Abnormal 79.0598 185 15.3846 36
Average All 75.4709 1804 43.8319 168
Mean Amplitude Normal 91.8379 1654 98.8889 178
Warning 63.5452 190 80.0000 32
Abnormal 70.9402 166 53.8462 21
Average All 75.4411 2010 77.5783 231

Average All: 60.7051

4.6  Color based feature extraction for comparison purpose

In this work, a study to differentiate the features of the thermal motor bearing

images group has been executed. Two types of color-based feature extraction methods,

namely HSV-based and | * a * b-based have been employed to accomplish this

objective.

4.6.1 HSV color-based feature extraction algorithm
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4.6.1.1 Feature selection

Table 4.2 represents the selection for HSV features which are mean, standard
deviation and entropy.

Table 4.44 Data selection for HSV color fetaures
Color Hue Saturation Value(V)
Extraction (H) (S)
Mean Std Mean Std Mean Std

HSV 1758.0161 33.1593 780.8380  478.5082  3570.7435 652.7770

Fisher score for HSV
4000.0000
3500.0000
5 3000.0000
= 2500.0000
§ 2000.0000
§ 1500.0000
£ 1000.0000
500.0000 | |
0.0000 . ke | n:
mean | std mean | std mean | std
H S Y,
| FS Value 1758.0161| 33.1593 | 780.8380 | 478.5082 |3570.7435| 652.7770

Figure 4.62  Variation of Fisher score value for HSV color method between
normal, warning and abnormal thermal motor bearing images
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HSV color based feature extraction
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Figure 4.63
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Table 4.45 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5- fold and10-fold cross-
validations in MLANNs model for Local Energy and Mean
Amplitude feature

TGy polg mse  Accuracy
Training  Validation
Trainbr 5 1 0.1057 0.1066
2 0.0434 0.0439
3 0.0427 0.0437 92.87
4 0.0427 0.0430
5 0.0428 0.0437
10 1 0.1142 0.1152
2 0.0434 0.0438
3 0.0430 0.0430 92.87
4 0.0427 0.0432
S 0.0426 0.0436
Trainlm 5 1 0.1060 0.1052
2 0.0433 0.0446
3 00430  0.044c [0
4 0.0426 0.0435
5 0.0423 0.0445
10 1 0.1142 0.1149
0.0434 0.0439
3 0.0433 0.0440 92.67
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4 0.0426  0.0435
5 0.0425  0.0440
Trainscg 5 1 0.0969 0.0999
2 0.0434  0.0441
3 0.0434  0.0439 92.49
4 0.0433  0.0436
5 0.0431  0.0438
10 1 0.0933  0.0937
2 0.0451  0.0464
3 0.0462  0.0468 92.41
4 0.0431 = 0.0436
5 0.0435  0.0436
Best validation performance for all training algorithms
0.1200
0.1000 ‘\
0.0800 h \
S 0.0600
© \._ .
2 0.0400 L L ==
>
t0.0200
=
0.0000 1 5 i 5
—o—trainim Kfold-5 |  0.1052 0.0446 0.0446 0.0435 0.0445
~@—trainbr Kfold-5 | 0.1066 0.0439 0.0437 0.0430 0.0437
trainscg Kfold-5| 0.0999 0.0441 0.0439 0.0436 0.0438
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Accuracy performance for all training algorithms
45
4
35
3
e
S 25
2 2
S 1.5
S 1
I 05
0
92.9 92.87 92.49
Kfold-5 Kfold-5 Kfold-5
trainlm trainbr trainscg
| mHidden Nodes 4 4 4
Table 4.46 Validation performance results using TRAINLM in MLANNS
model for Local Energy and Mean Amplitude features
Training Pre  Sens Spec CER ACC
Function HN (%) (TPR) (TNR) (%)
(%) (%)
TRAINLM
(K-fold=5) 4 69 7091 9519 0.1906 92.90
Table 4.47 Best validation performance for TRAINLM in MLANNSs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE Acc
Epoch (sec) Validation ~ Validation (%)
1 745 29 0.0496 91.14
2 487 15 0.0401 94.49
3 1000 38 0.0395 93.22
4 297 11 0.0470 92.01
5 460 18 0.0411 93.63
Mean: 0.0435 92,90
Table 4.48 Testing performance results using TRAINLM in MLANNSs
model for Local Energy and Mean Amplitude features
Training Pre Sp CER ACC
. HN Class TP TN FP FN Se (%)

Function (%) (%) (%)
TRAINLM 4 N 180 36 0 4 100.00 97.83 100.00 0.0182 98.18
(K-fold=5) w 29 187 11 30 72.50 49.15 94.44  0.1595 84.05

A 7 209 32 9 17.95 43.75 86.72  0.1595 84.05
All 63.48 63.58 93.72 0.1124 88.76
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b.

Linear Thr

esholding

Thresholding value for HSV color

(5] S
>
=
g I
> I
(9p]
I
0 = = il
min N Max_ jmean_| min_ | max_|mean_| . - | max_|mean_
= N | N | W | W W - A A
== Series1(0.1813|0.4932/0.2769|0.1796/0.2191|0.2021/0.1655|0.1976(0.1832
== Series2 0.4932 0.2395 0.1927 0
Table 4.49 Classification performances using Linear Thresholding model for
HSV color features
- ACC TRAINING ACC TESTING
Condition of
Features thermal bearing - No. of . No. of
images Tr?;; ;ng Classified Tii/t(:)n g Classified
image image
Mean Normal 81.2882 1464 3.3333 6
Warning 81.2709 243 65.0000 26
Abnormal 92.7350 217 100.0000 39
Average All 85.0980 1924 56.1111 71
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4.6.2 Lab color

Features to be extracted image is color and texture,

- -@-- NORMAL
---+-- WARNING
---0-- ABNORMAL

™
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4.6.2.1 Feature selection

Table 4.50 Sample table
Color Extraction  Lightness* a* b*
Mean Std Mean Std Mean Std
L*a*b* 3926.5122 17.1731 1714.5057 439.2835 1168.8136 145.6867

Fisher score for L*a*b*

4500.0000
4000.0000
 3500.0000
'S 3000.0000
2500.0000
2000.0000
1500.0000
1000.0000
500.0000

0.0000 - =

mean | std mean | std mean | std
| a b
|nFS Value 3926.5122| 17.1731 1714.5057| 439.2835 1168.8136| 145.6867

score va

Fisher

Figure 4.64  Variation of Fisher score value for I*a*b color method between
normal, warning and abnormal thermal motor bearing images
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I*a*b™ color based feature extraction
205 T T T T T T
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ABNORMAL
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Lightness (L)

175+ E
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Figure 4.65  The optimal selection for I*a*b*

4.6.2.2 Classification
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Table 4.51 Training and validation performance results using TRAINLM,
TRAINBR, TRAINSCG using 5- fold and10-fold cross-
validations in MLANNSs model for L*a*b based feature

extraction algorithm

Training Function K-Fold HN MSE Accuracy (%)

Training Validation

Trainscg 5 1 0.1152 0.1156
2 0.0972 0.0959
g 0.0706 0.0715
4 0.0651 0.0658
5 0.0650 0.0659
6 0.0612 0.0624
7 0.0611 0.0620 88.860
8 0.0609 0.0629
10 1 0.0651 0.0655

2 0.0620 0.0630
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Trainlm

Trainbr

10

10

g B~ W DN - g B~ W DN - [op I &2 IS S O]

g B~ W DN -

N -

0.0618

0.0618

0.0612
0.06014

0.1152
0.0697
0.0607
0.0606
0.0614

0.0651
0.0618
0.0617
0.0613
0.0604

0.1152
0.0711
0.0607
0.0605
0.0602

0.0651
0.0619
0.0614

0.0608
0.0605

0.0604

0.0625
0.0622
0.0620
0.0624

0.1157
0.0701
0.0624
0.0620
0.0629

0.0654
0.0623
0.0624
0.0619
0.0623

0.1154
0.0712
0.0622
0.0619
0.0623

0.0656
0.0623
0.0621

0.0620
0.0619

0.0620

88.800

89.00

88.860

88.840

88.450
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Best validation performance for all training algorithms
0.1400

0.1200
0.1000 \

0.0800 \\\

0.0600 —‘\Is(_ —— : -
0.0400

0.0200
0.0000

MSE Validation

1 2 3 4 5 6 7 8
=¢—trainlm Kfold-5 |0.1157/0.0701(0.0624|0.0629
=@—trainbr Kfold-5 |0.1154(0.0712/0.0622/0.0621/0.0623
—=—trainscg Kfold-5|0.1156/0.0959/0.0715/0.0658|0.0659(0.0624(0.0623|0.0629

Accuracy performance for all training algorithms
8
7
6
=
S 5
>
2 4
s 3
S 2
2
=
0
89 88.690 88.860
Kfold-5 Kfold-5 Kfold-5
trainlm trainbr trainscg
| Hidden Nodes 4 4 7
Table 4.52 Validation performance results using TRAINLM in MLANNS
model for Local Energy and Mean Amplitude features
Training Pre  Sens Spec CER ACC
Function HN (%) (TPR) (TNR) (%)
(%) (%)
TRAINLM
(K-fold=5) 4 61.96 61.47 88.86 0.1100 89.0
Table 4.53 Best validation performance for TRAINLM in MLANNSs model
for Local Energy and Mean Amplitude features
K-fold Best Time MSE Acc
Epoch (sec) Validation  Validation (%)
1 349 14 0.0586 0.89.20
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2 48 2 0.0623 89.65
3 902 37 0.0626 88.14
4 460 19 0.0611 89.27
5 1000 41 0.0654 88.73
Mean: 0.8900 89.00
Table 4.54 Testing performance results using TRAINLM in MLANNSs
model for Local Energy and Mean Amplitude features
Training Pre Sp CER ACC
. HN Class TP TN FP FN Se (%)

Function (%) (%) (%)
TRAINLM 4 N 145 37 3% 13 80.56 91.77 51.39  0.2087 79.13
(K-fold=5) W 2 180 38 16 5.00 11.11 82,57 0.2288 77.12

A 1o 147 4 48 89.74 42.17 97.35 0.2222 77.78
All 58.43 48.35 77.10 0.2199 78.01

b. Linear Thresholding

Thresholding value for L*a*b color
250
[<5]
c_i 150 & .
>
£ 100 —
b
- 50 —
0
i N‘ max_ |mean_| min_ | max_ mean_'mIn A max_mean_
N l _W_ Vl/ __W A A
=—¢—Seriesl 138 51/205.38|177.08/193.02,200.26/196.91/195.66/200.42| 197.8
=l Series2 187 197.36 200.42

215



Table 4.55 Classification performances using Linear Thresholding model for
I*a*b color features

. ACC TRAINING ACC TESTING
Condition of
Features therr_nal bearing Training No._qf Testing No..o.f
images %) CI_aSS|f|ed %) Cl.aSSIerd
image image
Mean Normal 78.6230 1416 3.3333 6
Warning 59.5318 178 42.5000 17
Abnormal 64.9573 152 74.3590 29
Average All 67.7040 1746 40.0633 52

47  Summary

Nilai P-value untuk semua teknik enhancement based feature extraction method. P-

value paling rendah adalah yang terbaik (cited). Ini dibuktikan dari figure 1 dimana

nilai dari kaedah EGF telah memberikan nilai P-value paling rendah.ini dapat

disimpulkan fetures dari group thermal motor bearing image telah menunjukkan

significntly diferent antara semua group.

. P-Value

=

=)

§ 0.0015 —

LL

E 0.001

[<3]

(_?S 0.0005

z b w =

GWT EGF GWSMH

® P-Value Local Energy 0.000835 0.000232 0.000325
& P-Value Mean Amplitude| 0.001256 0.000227 0.000325

GWCLAHE
0.000896
0.000555

EGF- Therefore, the performance evaluations for the features in this section is

higher compared to the features generated based on GWT method. (LE)

(MA)
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GWSMH-Therefore, this has proven that the evaluation feature performances in this
section have shown lower discriminant power value compared to the feature
performance based on the EGF extraction method. As well, the evaluation feature
performances in this section have denoted higher discriminant power value compared to

the feature performance based on GWT extraction method. (LE)
(MA)

GWCLAHE- Therefore, this has proven that the evaluation feature performances in
this section have shown lower discriminant power value compared to the feature
performance based on the EGF extraction method. As well, the evaluation feature
performances in this section have denoted lower discriminant power value compared to

the feature performance based on GWT extraction method. (LE)
(MA)
4.7.1 Testing and Validation

The experiment result confirms the robust of this algorithm.

Table 4.56 Comparison performance results in MLANNSs model for all
enhancement based feature extraction methods

ACC Sens Spec CER PREC
Method Name of TEST (%) (TPR) (TNR) (%)
Method (%) (%)
Original
Feature GWT 95.07 85.22 97.14 0.0504 83.93
. TEST
Extraction
Enhanced EGF TEST 9947  99.63 99.70 0.0051 98.29
Feature GWSMH TEST 98.71 97.25 99.26 0.0127 95.83
Extraction GWCLAHE TEST 94.08 89.33 95.89 0.0595 81.98
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Comparison Enhancement Methods with
the Original GWT

[y
N
o

[y
[=]
o

(o]
o

N b
o O

Class Performance
D
o

o

SENS | SPEC(T
(TPR) NR)
wEGF 99.47 99.63 99.7 0.0051 | 98.29
# GWSMH 98.71 97.25 99.26 | 00127 | 9583

ACC CER PREC

MGWCLAHE| 94.08 89.33 95.89 0.0595 81.98
EGWT 95.07 85.22 97.14 0.0504 83.93

Figure 4.66  Distribution of comparison classification performance
enhancement method with the original GWT based feature extraction method
using MLANNS

This study have shown, the newly developed method which is  feature
extraction based on Enhanced Gabor Features (EGF) provided the efficient solution for
solving feature extraction problem performance. It's classification performances reading

is much better compared to the original GWT.

The CER of the new method shows the lowest reading. This indicates that the

misclassification rate or number of misclassified samples is low.

Table 4.57 Comparison performance results in MLANNSs model for all
methods
ACC Sens Spec CER PREC
Type of Methods TEST (%) (TPR) (TNR) (%)
Methods (%) (%)
EGF TEST 99.49 9963 99.70 0.0051  98.29

Transformation GWSMH TEST 98.71 97.25 99.26 0.0129 95.83
Methods GWCLAHE  TEST 93.94 89.33  95.70 0.0606 81.98

GWT TEST 94.79 79.49  96.01 0.0521 78.40
Color HSV TEST 88.75 63.57 93.72 0.1124 63.48
Methods L*a*b TEST 78.00 48.35 77.10 0.2199 58.43
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Comparison Enhancement Methods with the Original GWT &
Color methods

120

3

c 100

[so

£ 80

£ 60

&I 40

g 20

) 0

ACC SENS (TPR) | SPEC(TNR) CER PREC

wEGF 99.49 99.63 99.7 0.0051 98.2906
® GWSMH 98.71 97.25 99.26 0.0129 95.83
& GWCLAHE 93.94 89.33 95.7 0.0606 81.98
"GWT 94.79 79.49 96.01 0.0521 78.4
kd
uHSV 88.7584 63.5762 93.7221 0.1124 63.4829
u I*a*b 78.0090 48.3506 77.1029 0.2199 58.4330

Figure 4.67  Distribution of comparison classification performance using MLANNSs
for all methods

Table 4.58 Comparison classification performance results in Linear
Thresholding model for all enhancement based feature extraction
methods
ACC
Methods s (%)
EGF TEST  98.1268

GWSMH TEST  77.6959
GWCLAHE  TEST 60.7051
GWT TEST  62.6709
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Classification Performance using Linear Thresholding for all
methods

120

100
80

60
40
20 (=

ACCURACY VALUR (%)

9 GWT EGF GWSMH GWCLAHE

TEST TEST TEST TEST
| ® ACCURACY 62.6709 I 98.1268 77.6959 60.7051

Figure 4.68  Distribution of comparison classification performance using
Linear Thresholding for all methods

Table 4.59 Comparison classification performance results in Linear
Thresholding model for all enhancement based feature extraction
methods

Methods TEST ACC
(%)

EGF TEST  98.1268
GWSMH TEST  77.6959
GWCLAHE  TEST 60.7051

GWT TEST  62.6709
HSV TEST  56.1111
L*a*b TEST  40.0633
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The results indicate that the proposed method can recognize/identify/differentiate the....
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