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ABSTRAK 

Kajian ini adalah mengenai kesan kajian kelengkungan untuk model struktur foil dalam 

penyelesaian serentak bearing lengkungan udara (FAB) rotor masalah dinamik. 

Kebanyakan kajian baru-baru ini di bearing lengkungan udara (FAB) rotor analisis 

dinamik telah terhad kepada model foil yang mudah di mana lengkungan  individu telah 

dimodelkan sebagai bebas spring-peredam (ISD) subsistem. Dalam kajian ini, dinamik 

struktur foil lengkungan dikaji menggunakan teknik unsur (FE) dan teknik serentak 

mengira hasil daripada data. A model modal struktur foil penuh (FFSMM) dicipta dan 

kemudian diadaptasi ke dalam skim penyelesaian masalah FAB yang rotordynamic, 

bukan model ISD. Modal ini terhad kepada lima mod. Model pemutar-bearing juga 

disahkan terhadap keputusan eksperimen dan teori dalam kesusasteraan. Dari kajian ini, 

ia menunjukkan tidak ada kesan kelengkungan untuk model struktur foil benjolan. Ini 

kerana keputusan akhir sama dengan bukan kelengkungan atau linear model struktur foil 

benjolan. Tambahan pula, trajektori jurnal adalah sama dengan bentuk linear. 
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ABSTRACT 

This research is about study effect of curvature for modeling the bump foil structure in 

the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems. Most recent 

research in foil-air bearing (FAB) rotor dynamic analysis has been limited to a simple 

bump foil model in which the individual bumps were modeled as independent spring-

damper (ISD) subsystems. In these studies, the dynamics of the corrugated bump foil 

structure are studied using the finite element (FE) technique and simultaneous technique 

to calculate the result of the data. A full foil structure modal model (FFSMM) is created 

and then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD 

model. A modal model is being limited into five modes. The rotor-bearing model is also 

validated against experimental and theoretical results in the literature. From this study, it 

showed there is no effect of curvature for modeling the bump foil structure. This is 

because the final result identical with the non-curvature or linear modeling the bump foil 

structure. Furthermore, the transient trajectory of the journal is identical with the linear 

form.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

The purpose of this chapter is to provide a review of this study. This chapter will 

described about the project background, problem statements, objectives and the overview 

about the study. 

1.2 Project Background 

Foil air bearings have made significant progress during the last 25 years. 

Reliability of many high speed turbomachines with foil bearings has increased over 

tenfold compared to those with rolling element bearings. Most recent research in foil-air 

bearing (FAB) rotor dynamic analysis has been limited to a simple bump foil model in 

which the individual bumps were modelled as independent spring-damper (ISD) 

subsystems. In these studies, the dynamics of the corrugated bump foil structure are 

studied using the finite element (FE) technique. A full foil structure modal model 

(FFSMM) is created and then adapted into the rotordynamic FAB problem solution 

scheme, instead of the ISD model. In this study, it will be shown that the fundamental 

frequency of corrugated structure with 26 bumps. The results using FFSMM foil model 

will be cross correlating for computing the deflection of the full foil structure.   
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Figure 1.1:  Independent Spring-Damper (ISD) Subsystems 

Figure 1.2: Zoomed photo of Foil Air Bearing (FAB) 
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1.3 Problem Statement 

Recent, FAB analysis has been limited to a simple bump foil model, independent 

spring damper (ISD).The study of ISD has only shown rotor dynamic analysis for a 

simple bump structure. Therefore, the effect of curvature for the modelling is going to 

discussed. The modal analysis of the bump foil structure into the simultaneous solution 

scheme is modelled or known as full foil structure modal model (FFSMM). The effect 

and the dynamic problems of the structure by performing finite element modal analysis 

were investigated. 

1.4 Objectives of Study 

In this study there are two main objectives. There are: 

i. To investigate the effect of curvature to the dynamic behaviour (natural 

frequencies and mode shapes) of bump foil structure – 2D FE modal 

analysis. 

ii. To apply the results in (1) to rotordynamic problem and discuss the 

significant of the curvature’s effect. 

1.5 Study Scopes 

There are 4 main study scopes. There are: 

i. Study and understand the concept of FAB. 

ii. Design and perform the finite element analysis (FEA) of FAB using 

ANSYS® software. 

iii. Analysis the data in MATLAB® based on formula.  

iv. Inclusion of foil modal model into rotor-bearing problem. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to provide a review of past research efforts related 

to foil air bearing, generations and analyses methods and model of foil structure. A review 

of other relevant research studies is provided.  

2.2 Foil Air Bearing (FAB)  

Foil air bearings are compliant, self-acting hydrodynamic fluid film bearings 

which use air as their working fluid or lubricant[1]. A FAB supports the shaft by means 

of a cushion of air bounded by flexible foil structure. The introduction of the foil structure 

resolves the problems associated with the very tight radial clearance required by a plain 

air bearing. With a FAB, the hydrodynamic air film pressure generated as the shaft turns 

pushes the foil boundary away, allowing the shaft to become completely airborne [2]. As 

seen in the Figure 2.2, foil gas bearings consist of two parts, the smooth top foil and the 

corrugated bump foil [3]. As the shaft rotates, the pressure generated pushes the foil 

boundary away, allowing the shaft to become completely airborne [4]. Recent advances 

in foil air bearing design, finite element based rotor-dynamic analyses and high 

temperature solid lubrication provide the opportunity for new applications such as 

advanced oil-free turbomachinery [5]. The dynamics of FAB turbomachinery are 

governed by the interaction between the rotor, air films and the foil structures, and exhibit 

nonlinear effects [2]. Recent developments in foil bearing technology have heightened 

the need for a reliable and comprehensive compliant structure model to predict the 

behaviour of these bearings at a wide range of operating conditions [3].   
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2.3 Advantages and Applications 

There a lots of advantages of FAB in turbomachinery that were discussed in others 

journal and researched. Firstly, FAB has higher reliability [6]. Foil bearing machines are 

more reliable because there are fewer parts necessary to support the rotative assembly 

and there is no lubrication needed to feed the system. When the machine is in operation, 

Figure 2.1: Photo of Foil Bearing 

Figure 2.2: Foil Air Bearing (Bump Types) 
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the air film between the bearing and the shaft protects the bearing foils from wear. The 

bearing surface is in contact with the shaft only when the machine starts and stops. During 

this time, a coating on the foils limits the wear [7]. 

Secondly, FAB doesn’t have scheduled for maintenance. There is no oil 

lubrication system in machines that use foil bearings, there is never a need to check and 

replace the lubricant. This results in lower operating costs [8]. 

Third, FAB is soft failure. This is because of the low clearances and tolerances 

inherent in foil bearing design and assembly, if a bearing failure does occur, the bearing 

foils restrain the shaft assembly from excessive movement. As a result, the damage is 

most often confined to the bearings and shaft surfaces. The shaft may be used as is or can 

be repaired. Damage to the other hardware, if any, is minimal and repairable during 

overhaul [9]. 

Besides that, FAB is environmental durability. Foil bearings can handle severe 

environmental conditions such as sand and dust ingestion. Large particles do not enter 

into the bearing flow path because of a reversed pitot design at the cooling flow inlet and 

smaller particles are continually flushed out of the bearings by the cooling flow. This 

ability to withstand contamination eliminates the need for filters in the airflow [10]. 

Furthermore, FAB can be operates in high speed machine. Compressor and 

turbine rotors have better aerodynamic efficiency at higher speeds. Foil bearings allow 

these machines to operate at the higher speeds without any limitation as with ball 

bearings. In fact, due to the hydrodynamic action, they have a higher load capacity as the 

speed increases [11]. 

FAB also capabilities operate in high and lower temperature. Many oil lubricants 

cannot operate at very high temperatures without breaking down. At low temperature, oil 

lubricants can become too viscous to operate effectively. Foil bearings, however, operate 

efficiently at severely high temperatures, as well as at cryogenic temperatures [6], [12]. 

Lastly, FAB also can involve in liquid operations. Foil bearings have been 

operated in process fluids other than air such as helium, xenon, refrigerants, liquid oxygen 

and liquid nitrogen. For applications in vapour cycles, the refrigerant can be used to cool 
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and support the foil bearings without the need for oil lubricants that can contaminate the 

system and reduce efficiency [7]. 

2.4 Concept and Generations of Foil Air Bearing (FAB) 

There were three generation of foil air bearing. Generation I, Generation II and 

Generation III [13]. Generation I bearing is one in which the bump foil is axially and 

circumferentially symmetric. Generation II bump-type foil bearings take advantage of 

customizing the bump foil in either the axial or circumferential direction to alter the 

bearing’s stiffness characteristics. Generation III bearings can be varied in the axial, 

radial, and circumferential directions to optimize performance [14]. Generation I was 

designs are characterized by having a uniform simple elastic foundation with uniform 

stiffness properties. The foil bearings exhibit load capacities approximately equal to rigid 

gas bearings of similar size [11]. Generation II foil bearings have a more complex elastic 

foundation in which the stiffness is tailored in one direction, for example, axially, to 

accommodate some environmental phenomena such as shaft misalignment or leakage of 

hydrodynamic fluid from the foil edges. These Generation II foil bearings exhibit load 

capacities approximately twice that of Generation I bearings [15]. Generation III foil 

bearings, with very complex elastic foundations, have stiffness that is tailored in two 

directions, often axial and radial. This level of design flexibility enables accommodation 

of edge effects and the ability to optimize bearing stiffness for varying loads. Generation 

III foil bearings have been shown to have load capacities three to four times greater than 

primitive Generation I bearings [16].     
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Source Kim 2014 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Source Howard 2002 

 

 

Figure 2.3: Schematic of “second generation” bump type foil bearing 

Figure 2.4: Schematic of “third generation” bump type foil bearing 
 



RDU1703192 

9 

 

 

The first-generation (Generation I) air foil bearing is analysed in this study [17].  

Analyses of foil bearings require the simultaneous solution of structural deflection 

equations for the foil structure; usually the Reynolds equation for the gas film; and 

geometric equations relating the film thickness, the foil deflection, and the journal 

position [18]. Several different approaches have been used to solve this coupled system. 

The principle of an air or gas bearing is simple. As shown in Figure 2.5, when two 

surfaces form a wedge, and one surface moves relative to the other surface, pressure is 

generated between the 

surfaces due to the 

hydrodynamic action of the fluid 

which carries load [19], [20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Agrawal 1997 

In a journal bearing, the shaft deflects and a wedge is formed due to the 

eccentricity between the shaft center and the bearing center. The resulting hydrodynamic 

pressure generation is shown in Figure 2.6. Even though, the principle of an air bearing 

is simple, application is complex [7].  

PRESSURE 

RISE 

VELOCITY 

DISTRUBITION 

Figure 2.5: Principle of an Air Bearing 
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Source Agrawal 1997 

According to some researches, when the shaft is running at 3600 rpm the radial 

clearance between the shaft and the bearing is less than 0.005 inch for a 2 inch diameter 

shaft. We can conclude that, damping is required to suppress any instability when work 

at various speed and temperatures. There also could be misalignment between the rotating 

parts and stationary parts. Foil bearing is the solved. When the shaft turns, a 

hydrodynamic pressure is generated which caused the shaft becomes completely 

airborne. The combination of hydrodynamic pressure with hydrostatic lift to circumvent 

the bearing wear issues during start/stops [21]. So, when the shaft is airborne, friction 

loss due to shaft rotation is small. As the shaft grows, the foils get pushed further away 

keeping the film clearance relatively constant. In addition, foils provide coulomb 

damping due to relative sliding, which is essential for stability of the machine. Various 

concepts of foil bearings have been tested. 

2.5 Theoretical Analysis of FAB Rotor System  

Several methods or solution have been presented to calculate the steady state 

characteristics of foil air rotor system. There are (i) Finite Element Method (ii) Finite 

Figure 2.6: Hydrodynamic Pressure 

Generation 
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Volume Method and (iii) Finite Difference Method. These three methods can be used to 

solve Reynolds equation with arbitrary condition and numerical scheme[22]. 

2.5.1 Finite Element Method 

Finite element method (FEM) will be focus in this study. FEM is numerical 

method for solving problem of engineering and mathematical physics. It is referred to as 

finite element analysis (FEA). In [23], an efficient finite element scheme for solving the 

non-linear Reynolds equation for compressible fluid coupled to compliant structures is 

presented. The method is general and fast and can be used in the analysis of air foil 

bearings with simplified or complex foil structure models. Simple elastic foundation 

model is applied to the analysis of a compliant foil air bearing to illustrate the 

computational performance. In this paper the scheme is faster and it state that it is not 

only for steady-state analysis but also for non-linear time domain analysis of rotor 

supported by air foil bearings. In this paper the FEM is divided into two parts. The first 

part is focused on dealing with the zero-order non-linear parabolic partial differential 

equations for the static pressure p0 which need to solve iteratively while the second part 

deals with the first-order linear complex differential equations for the dynamic pressure, 

p. 

In [24], a finite element model is used to describe the foil elasticity. It is performed 

between the Reynolds equation, the foil elastic deflection equation and the energy 

equation until it archived convergence. In paper [25], the analysis of gas foil air bearings 

is integrating FE top foil models. The paper introduces two finite element models for the 

top foil elastic structure. The simplest FE model assumes the top foil as a 1D thin beam-

like structure with negligible deflections along the axial coordinate and acted upon by a 

uniformly distributed pressure field. The second FE model, 2D, takes the top foil as a flat 

shell. 

2.5.2 Finite Volume Method 

Finite volume method (FVM) is a method for representing and evaluating partial 

differential equations in the form of algebraic equations. The method is similar with finite 

difference method or finite element method, the values are calculated at discrete places 

on a meshed geometry. Arghir et al. paper’s [26] presented a finite volume solution where 

the pressure was implicitly integrated for a prescribed gap perturbation to calculate linear 
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stiffness and damping coefficients dependent on the perturbation amplitude. The 

numerical solution was developed for the general case when the film thickness can have 

discontinuities and was formulated in the frame of the finite-volume method applied on 

unstructured grids. In [27], finite-volume method based on the finite difference method 

was applied for the numerical simulation which uses no orthogonal coordinates. 

2.5.3 Finite Difference Method 

Finite difference method (FDM) are numerical methods for solving differential 

equations by approximating them with difference equations which finite differences 

approximate the derives. FDM is discretization methods. In [22] , the paper develop the 

use of Chebyshev polynomial fits to identify the FD solution of the incompressible 

Reynolds equation. It manipulates the Reynolds equation to allow efficient and accurate 

identification in the presence of cavitation, the feed-groove, feed-ports, end-plate seals 

and supply pressure. It is the first FD models were developed. Chebyshev identified 

bearing models are shown to mimic accurately and consistently the simulations obtained 

from the FD models[28].  

Among others researched, Wang and Chen’s paper [29] used finite difference for 

the spatial and temporal dimensions when solving the Reynolds equation. They simulated 

the steady-state response of a perfectly balanced rigid rotor supported by two identical 

bearings. The spatial discretisation was performed with a central-difference scheme, 

while the temporal discretisation was performed with an implicit-backward-difference 

scheme. 

 

2.6 Model of Foil Structure 

The structure of the FAB is simple and easy. The leading edge of the top foil is 

free, whereas the trailing edge is typically welded to the bearing sleeve [30]. In 

Abdelrasoul M. Gad and Shigehiko Kaneko papers [31], they were adopted several 

assumptions in their analysis. There are the displacement of the bumps is from the fixed 

end towards the free end, the top foil is a thin deformable plate that follows the bump foil 

deflection and does not deflect relative to bumps,  all deformations are elastic and no 

permanent deformation occurs, the bump ends do not separate from the rigid bearing 

surface, however the flat segment between bumps may deflect laterally and since the 
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bump ends are rigidly attached to the flat segment between bumps, the boundary 

condition at both bump ends is assumed initially to be rigid support. 

Source Hassan 2016 

In Figure 2.7, we can see that the left hand edge is fully welded and right hand 

edge constrained only in the y and z direction. The structure in Figure 2.7 has the same 

geometry in most of paper or studies [4], [10], [32]. The width B of the bump (along z 

axis) is equal to the bearing length L. The 𝑥f𝑧f-plane, which corresponds to the bearing 

housing surface, is taken to be a flat plane. The curvature of the bearing shell is 

neglected). This assumption is reasonable because the ratio between the heights of the 

bump strip layer to the radius of the bearing is very small. Hence, the longitudinal (𝑥f) 

direction corresponds to the circumferential direction of the bearing and the transverse 

(𝑦f) direction corresponds to the radial direction of the bearing.   

 

 

 

 

 

fixed in 𝑦f and 𝑧f directions 

fully 

fixed 

𝑙b =3.209mm 

𝑆p =4.572 mm 

0.508 mm 

𝑦f 

𝑥f 

first bump 
last bump 

A B C M N 

flat segment 

P 

bearing housing surface 

𝑧f 

NB:       and       are the locations of the nodes of interest 

Figure 2.7: Bump foil dimensions 



RDU1703192 

14 

Table 2.1: Geometry and materials of the bump-type foil bearing 

Number of bumps 26 

Thickness, 𝒕𝒃 0.102 mm 

Bearing radius, 𝑹 19.05 mm 

Bearing length, 𝑳 38.1 mm 

Measured radial clearance, 𝑪𝒎
𝒂  31.8 µm 

Bump pitch, 𝒔𝟎 4.572 mm 

Bump height, 𝒉𝒃 0.508 mm 

Young’s modulus, E 214 GPa 

Bump foil Poisson’s ratio, v 0.29 

Density, p 7850 𝒌𝒈/𝒎𝟑 

Source: Feng 2010 

2.7 Solution Techniques 

For solution technique of FAB, there are two types. There are non-simultaneous 

solution technique and simultaneous solution technique. Both of the technique had been 

done by many researched. But for this study, the focus is on simultaneous solution 

technique. 

2.7.1 Simultaneous Solution Technique 

In  [33], it show on how to solve the three main equations simultaneous in the 

time domain. There are two methods used which are Finite Difference (FD) and Galerkin 

Reduction (GR). For FD method, the RE is discretized on a grid of Nz x N0 points. These 

are the three main equations. 
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These three main equations Eq. 2.1, Eq. 2.2 and Eq. 2.3 are then transformed into system 

of ordinary differential equation with the state variables.  

But for second method, Galerkin Reduction (GR) method is a mesh-free 

transformation (i.e. it involves no physical spatial discretisation) and therefore has the 

potential of considerably reducing the number of state variables[4]. GR was detail briefly 

in [34] which show to calculate the stability of static equilibrium solution of a rotor 

system with air bearings. However, most of researched doesn’t not use this method cause 

the prohibitive workload involved in evaluating the huge number of analytical integrals 

in the GR residual functions. In GR the Resynolds Equation is expressed as: 

 += h


 2.4 

 

where is a approximated by a truncated Fourier series in the two partial coordinates.  The 

Galerkin’s method then is applied to minimize the approximation error, with the base 

functions being used as the weighting factor. 

2.8 Development of Foil Air Bearing (FAB)  

Ku and Heshmat presented an analytical mathematical bump foil model [35]. 

Hesmat originally included the flexibility of the foil structure in the Reynolds equation 

by introducing a linear elastic displacement as function of the fluid film pressure, ℎ𝑐 =

𝐾(𝑝 − 𝑝𝑎) based on the work of Walowit and Anno [36]. Walowit and Anno were first 

introduced a theoretical model for a single bump to determine its deflection under load. 

This model assumed that bumps do not interact with each other, thus neglecting local 

interactive forces between bumps as well as friction forces between the top foil and the 

bumps. It was a 2D model in which the bending and tensile stiffness of a bump were 

considered. According to this model, when the top foil is loaded, each bump has identical 

stiffness  and deflection [37]. This work was a first step toward understanding the 

frictional forces between compliant element contact surfaces and local interacting forces 

in bump foil strips and, more importantly, their effects on both local and overall stiffness 

and damping characteristics of the foil bearings [38].  

 In 1992, Ku and Heshmat developed a theoretical model for determining the 

deformation of the bump foil under a given load distribution [14]. A theoretical model of 
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the foil structure with the consideration of the friction forces and the local interaction 

forces of bumps was presented to predict the coulomb stiffness and damping. The 

curvature effect of journal bearings was also appended in the following published 

research work [39]. Hesmat was using the 2D model to the hydrodynamic lubrication 

theory to evaluate thrust and journal gas bearing performance [38]. According to [40], a 

comprehensive computer program was developed to determine deflections, stiffness, 

displacement, and reacting and friction forces for each bump in a bump foil strip. In 

addition to variable geometric parameters, the program enables the computation of 

equivalent friction coefficients and overall stiffness of a bump foil strip under various 

load distributions. The main result of this investigation was that the bumps near the fixed 

end exhibit much higher stiffness than those near the free end. Higher friction coefficients 

tend to increase stiffness and may pin down bumps near the fixed end. In addition, the 

load distribution profile and bump configuration greatly influence bump foil stiffness. 

This body of work is now available to be used as a design guide for improving the 

performance of compliant foil bearings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Rani 2013 

  

Figure 2.8:  Bump foil strip with and without applied load 
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DellaCorte and Valco developed a simple empirical based method for 

approximating bearing loads for various types of foil bearings over a range of speeds. 

The bearing load capacity is related to the bearing diameter, axial length of the bearing 

and rotor speed by the empirical design dependent load capacity coefficient [14].  

DellaCorte presented a rule of thumb (ROT) based analytical formula predicting 

comparative load capacities of various air foil bearings and provided design guidelines 

for the air foil bearings [41]. The ROT is developed as an aid in feasibility assessments 

for foil bearing supported rotordynamic systems [42]. ROT enables simplified load 

capacity estimation for foil air journal bearings and can guide development of new oil 

free turbomachinery systems. DellaCorte introduced simple equations, derived from 

previously published empirical data, to estimate the stiffness and damping coefficients of 

foil bearings for early design stage use. The stiffness and damping equations are functions 

of stiffness and damping coefficients and the bearing projected area, with a range of 

suggested coefficients. Simple calculations such as these are incredibly useful during the 

early bearing design stages [14].  

 Peng and Carpino also present an analytical method of calculating bearing 

stiffness and damping coefficient using a linear perturbation method as a function of the 

bump compliance parameter [43]. They are the first introduced the concept of an 

equivalent viscous damping of the foil structure. They treated the foil structure as spring 

damper systems as shown in Figure 2.9 [44]. They calculated the damping coefficient of 

the bump foil using the equivalent viscous damping derived from the energy dissipation 

principles. And they calculated the dynamic characteristics using these damping 

components. In that study, the equivalent viscous damping for the Coulomb damping was 

calculated by equating the energies dissipated in a cycle of journal excitation. They 

verified that this equivalent viscous damping component makes the overall stiffness and 

damping of the bump foil bearing increase [45]. They said in the study the stiffness and 

the damping coefficients of the bearing increase as the Coulomb friction increases [46].  
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Source Peng 1994 

 

 

From Figure 2.9(a) above, when the top of the bump is pushed further down from 

the equilibrium position, the direction of 𝐻𝑖 will be toward the centre of the bump to 

resists the deflection. When the force is released 𝐻𝑖 will be in the direction away from 

the bump centre. The calculation can be seen in [46]. Each bump is analogous to a spring-

damper system as shown in Figure 2.9(b), where k is the spring constant and 𝐹𝑐  is the 

Coulomb damping force per unit area.  

Carpino and Talmage presented a fully coupled finite-element formulation, taking 

into consideration the membrane and bending effect of the top foil and the radial and 

circumferential deflections of the bump foil with the effect of Coulomb friction between 

the top foil, the bumps, and the housing[10]. A single four noded finite element that 

incorporates the elastically supported shell structure of the foil and the gas film modelled 

by a compressible Reynolds equation is developed. The resulting system of nonlinear 

finite element is solved by the Newton Raphson method [18]. From this system, we 

(a) 

(b) 

Figure 2.9: Individual bump and its equivalent spring-damper system  

(a)An individual bump (b) The equivalent spring-damper system 
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predict pressure and film thickness distributions, load capacity, and torque for a typical 

foil bearing. 

 

In Le Lez et al. paper [47] an analytical model of the whole corrugated sheet has 

been presented. In these study Le Lez et al. presented a model using three elementary 

springs to replace each bump as shown in Figure 2.9. Therefore, the friction forces 

between foils could be considered as loads at the top point of each bump. Then, Le Lez 

et al. modified this method to take into account the dry friction within foils and presented 

a nonlinear numerical model to predict the stability and unbalanced response [14], [47]. 

However, the resonance computed by Le Lez et al in [48] was based on a single 

independent bump, rather than the whole foil structure.  

 

 

Source Le Lez 2007 

In the present paper, it will be shown that the fundamental frequency of a 

corrugated structure with 26 bumps similar to that in [49] is typically almost five times 

less (1.9 kHz). Another work has incorporated an FE model of the bump foil structure, 

including its inertia, into the rotor-bearing problem [50], but ignored bump curvature, and 

is computationally cumbersome for simultaneous solution of the rotor-air-foil domains 

since it does not involve any modal reduction.  

 

Figure 2.10: A model using three elementary springs to replace each bump 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

The purpose of this chapter is to provide a review of this study’s methodology. 

This chapter will described about the finite analysis in ANSYS® software, execute 

program in MATLAB® software and inclusion of foil modal model into rotor bearing 

problem.  

3.2 Finite Analysis in ANSYS Software 

Finite analysis is performed using ANSYS® Mechanical. The analysis is 

performed using 2-dimensional (2D) elements (beam). In ANSYS®, BEAM188 is being 

selected which is a linear (2-node) beam element. After consider the parameters in 

ANSYS®, keypoint is generated with the assists of MATLAB®. There are 304 keypoints 

were generated from the MATLAB® to form a complete 26 bumps. Figure 3.1 showed 

the complete design of the FAB. 
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In Figure 3.1, at the first (first keypoints) which in the left-hand it constraints to 

all directions, xf, yf and zf direction since the points is welded to the bearing sleeve while 

on the end of the bearing, the right-hand edge constrained only in the yf and zf direction. 

For the flat segment, there were 10 keypoints to join to form a straight line which equal 

to 3.209 mm. The length of the bump and the flat surface is same as shown in Figure 2.7. 

The flat segments was fixed in yf and and zf directions as the flat segment is corresponds 

to the bearing housing surface. There were only 3 keypoints on the flat segments were 

constraints because the distance to each other is small and it does no effect the result and 

the design as shown in Figure 3.3. The constraints of the complete FAB showed in Figure 

3.2. 

 

 

 

Figure 3.1: A complete 26 bumps of FAB in ANSYS® 
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Figure 3.3: The FAB was constrain 

Figure 3.2: The flat segments were constraints to yf and zf direction while 

the bump is constraints to zf direction only 
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The system is analyzed for two case, free vibration (modal analysis) and forced 

vibration (harmonic response). Modal analysis is the study of the dynamic properties of 

structures under vibrational excitation while harmonic analysis is used to predict the 

steady state dynamic response of a structure subjected to sinusoidal varying loads. In 

ANSYS®, modal analysis is used to determine a structure’s vibration characteristics, 

natural frequencies and mode shapes. In this study, the number of mode to extract is set 

to 300 to make the frequency more accurate. Table 3.1 showed some of the mode and the 

frequency that was run on ANSYS® for modal analysis.   

Table 3.1:  Some of modes were extracted by ANSYS from 300 modes 

SET TIME/FREQ LOAD STEP SUBSTEP 

1 2227.2 1 1 1 

2 5395.7 1 2 2 

3 6147.7 1 3 3 

4 6148.3 1 4 4 

5 6149.2 1 5 5 

6 6150.5 1 6 6 

7 6152.1 1 7 7 

8 6154 1 8 8 

9 6156.3 1 9 9 

10 6158.8 1 10 10 

11 6161.5 1 11 11 

12 6164.5 1 12 12 

13 6167.6 1 13 13 

14 6170.8 1 14 14 

15 6174.1 1 15 15 

16 6177.4 1 16 16 

17 6180.7 1 17 17 

18 6183.9 1 18 18 

19 6187.1 1 19 19 

20 6190.0 1 20 20 

 

From the complete data of the 300 number modes, it showed that the value of 

frequency almost similar to each other. For this study, five natural frequencies were being 
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selected by using harmonic analysis. In ANSYS®, harmonic analysis is used to determine 

the response of the structure under a steady-state sinusoidal (harmonic) loading at a given 

frequency. Harmonic analysis can verify which one of the natural frequencies can 

overcome resonance, fatigue and other harmful effects of forced vibrations. Figure 3.4 

below showed one of the natural frequency that being select based on amplitude graph in 

harmonic analysis. Table 3.2 showed the five natural frequencies that being selected after 

the harmonic analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Five natural frequencies of foil structure computed by FE in 2760 

elements after harmonic analysis 

Modeshape Set Natural frequencies in Hz 

1 1 2227.2 

2 28 6620.2 

3 81 10836 

4 183 14780 

5 211 18384 

These five natural frequencies (eigenvalues) can produce different animation of 

the bumps and modeshape (eigenvectors). Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8 

Figure 3.4: Highest value of natural frequency in amplitude graph in 

range of 1125 Hz to 2376 Hz which is 2227.2 Hz for the first modeshape. 
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and Figure 3.9 showed the animation of the bump based on different natural frequency. 

Different natural frequency produced different modeshape.   

 

 

 

 

Figure 3.5:  The animation in ANSYS® for the first natural 

frequency, 2227 Hz 

Figure 3.6: The animation in ANSYS® for the second natural 

frequency, 6620.2 Hz 
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Figure 3.7: The animation in ANSYS® for the third natural 

frequency, 10836 Hz 

Figure 3.8: The animation in ANSYS® for the fourth natural 

frequency, 14780.4 Hz 
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3.3 Execute Program In MATLAB® Software 

From the Figure 3.5 to Figure 3.9 before in Section 3.2, each of the natural 

frequency generated 2761 nodes of modeshape for x and y axis. For this study, there are 

about 26 bumps and not all nodes were study for some reason. For x axis, the focus is 

modeshape on the centre of the flat segments while for the y axis is modeshape on the 

centre of the bump as seen in Figure 3.10 below. As seen in Figure 2.10 in Chapter 2, the 

crosses refer to the apex points (centre of the bumps) and the circles refer to the midpoints 

of flat segments between the bumps, and the fixed and free edges (centre of the flat 

segments). So a coding had been made in MATLAB® programming to calculate the 

modeshape and generate the required 26 modeshape. Then generate  graphs according to 

the modeshape as shown in Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.14, and Figure 

3.15. There are two graphs that were generated by the MATLAB®. Transverse vibration 

graph is for the modeshape on 𝑦𝑓while longitudinal vibration on 𝑥𝑓. 

 

Figure 3.9: The animation in ANSYS® for the fifth natural 

frequency, 18384.2 Hz 
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fully 

fixed 

first bump last bump 

A B C M N P 

𝑦f  

Figure 3.10:  The points of modeshape that were study and been calculated in 

MATLAB® coding 

 

Sourced Hassan 2016 

Figure 3.11:  First mode shape of the bump foil structure, computed 

using 2D FE (beam elements) 
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Figure 3.12: Second mode shape of the bump foil structure, computed 

using 2D FE (beam elements) 
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Figure 3.13: Third mode shape of the bump foil structure, computed 

using 2D FE (beam elements) 
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Figure 3.14: Third mode shape of the bump foil structure, computed 

using 2D FE (beam elements) 
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Figure 3.15: Fifth mode shape of the bump foil structure, computed 

using 2D FE (beam elements) 
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Figure 3.16 showed the 26 values of apex points, 𝐇𝐲𝐟
 (modeshape) for all five 

natural frequencies. These values of the modeshape will be used to calculate radial 

displacement, 𝒘. The equation to calculate it will be discussed in Chapter 4. Besides that, 

to calculate the final result simultaneous solution was been used and will be discussed 

details in Chapter 4. 

 

Figure 3.16: Modeshape values (Hyf
) for all 5 natural frequencies 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

The purpose of this chapter is to provide a review of this study’s result. This 

chapter will described about the inclusion of foil modal model into rotor bearing problem, 

the results of FAB simultaneous rotor solution and validation of rotor-bearing model 

against published results.  

4.2 Inclusion of Foil Modal Model into Rotor Bearing Problem 

 

 

Figure 4.1: FAB and symmetric rigid rotor FAB system 

Source Hassan 2016 

From Figure 4.1, equations governing the translational motion of the symmetric 

rigid rotor-FAB system [5], [51] with rotor of mass 𝑚r per bearing rotating with angular 

velocity 𝛺  and subjected to a static load S in the y direction can be written as: 

top 

foil 
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𝑥J, 𝑦J 

𝜃
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𝜋
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𝑍 

foil air film 

FAB 



RDU1703192 

35 

𝜀𝑥
′′ =

4

𝑚r𝑐𝛺2
(𝐹𝑥 + 𝑚r𝑢𝛺2 cos 2𝜏),   𝜀𝑦

′′ =
4

𝑚r𝑐𝛺2
(𝐹𝑦 + 𝑆 + 𝑚r𝑢𝛺2 sin 2𝜏) 4.1 

where: 𝜏 = 𝛺𝑡 2⁄   is the non-dimensional time and ( )′ denotes 𝜕( ) 𝜕𝜏⁄ , 𝜀𝑥 =

𝑥J 𝑐⁄ , 𝜀𝑦 = 𝑦J 𝑐⁄  are the displacements of the journal J in the x, y directions (relative to 

the bearing centre B, which is assumed to be fixed) normalized by the radial clearance c 

(which is the air gap when the journal is centralized in the bearing with no foil deflection), 

𝑆 is the static load in the 𝑦 direction per bearing (= −𝑚r𝑔, in this work), and 𝑢 the 

unbalance eccentricity. 𝐹𝑥 and 𝐹𝑦 are the air-film reaction forces on the journal, obtained 

by integrating the air film pressure distribution over the bearing area.  

In [4], [5], a pressure function is governed by the isothermal Reynolds Equation 

(RE) in equation  4.2 below. For a FAB of radius 𝑅  and length 𝐿  (Figure 4.1), let 

𝑝(𝜉, 𝜃, 𝜏) denote the air film pressure (absolute) where 𝜉 =
𝑧f

𝑅
.  

𝜓′ =
1

𝛬
{

𝜕

𝜕𝜃
[𝜓 (ℎ̃

𝜕𝜓

𝜕𝜃
− 𝜓

𝜕ℎ̃

𝜕𝜃
)] +

𝜕

𝜕𝜉
[𝜓 (ℎ̃

𝜕𝜓

𝜕𝜉
− 𝜓

𝜕ℎ̃

𝜕𝜉
)]} −

𝜕𝜓

𝜕𝜃
 

 

4.2 

where: 𝛬  is the bearing number,  𝜓 = 𝑝ℎ̃ , 𝑝 =
𝑝

𝑝a
 , 𝑝a  being the atmospheric 

pressure and ℎ̃ the non-dimensional air-film gap at a position (𝜉, 𝜃) [2, 3]: 

ℎ̃ = 1 − 𝜀𝑥 cos 𝜃 − 𝜀𝑦 sin 𝜃 + �̃�   

4.3 

�̃� =
𝑤

𝑐
 being the non-dimensional foil deflection in the radial direction at a 

position (𝜉, 𝜃).  As in [49], [52], [53], and as justified by the agreement between the 2D 

and 3D FE mode shapes in Figure 2.7, it shall be assumed that the variation of the foil 

deflection in the axial (𝑧f ) direction is negligible, meaning that �̃� is a function of 𝜃 only.  

For given 𝜃, �̃� is obtained by interpolation from the 𝑛bumps × 1 vector 𝐰 containing the 

radial displacements at the apexes of the bumps. It is proposed that 𝐰 can in principle be 

expressed as a superposition of 𝑛f bump foil structure modes: 
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𝐰 = −𝐇𝐲𝐟
𝐪𝐟(𝜏), 𝐇𝐲𝐟

= [𝛟𝐲𝐟

(1)
⋯ 𝛟𝐲𝐟

(𝑛f)
]   

4.4 

where 𝐪𝐟 is the 𝑛f × 1 vector of modal coordinates, 𝐇𝐲𝐟
 is the value of apex points that 

get in Chapter 3.  It is noted that the elements in 𝛟𝐲𝐟

(𝑟)
 are positive in the +𝑦f direction 

(see Figure 2.7), whereas the elements in 𝐰  are positive when radially outward 

(corresponding to the −𝑦f direction).  𝐪𝐟 is governed by the modal equations of the bump 

foil structure (expressed in terms of the non-dimensional time 𝜏): 

(𝛺2 4⁄ )𝐪𝐟
′′

+ (𝛺 2⁄ )𝐃𝐪𝐟
′

+ 𝚫𝐪𝐟 = −𝐇𝐲𝐟
𝐓 𝐟𝐩  

4.5 

where 𝐟𝐩  is the 𝑛bumps × 1  vector of air pressure forces on the bumps, obtained by 

averaging 𝑝(𝜉, 𝜃, 𝜏)  over a bump projected area of 𝑆p × 𝐿 . 𝐃 and 𝚫  are the diagonal 

matrices: 

𝐃 = 𝐝𝐢𝐚𝐠[⋯ 2𝜁f𝑟
𝜔f𝑟

⋯], 𝚫 = 𝐝𝐢𝐚𝐠[⋯ 𝜔f𝑟

2 ⋯]  

4.6 

It is noted that, in this preliminary work, friction forces in the circumferential (𝑥f) 

direction (see Figure 2.7) are not considered, but their equivalent damping effect is 

accounted as equivalent viscous damping in the matrix 𝐃 , where 𝜻𝐟𝒓
 is the viscous 

damping ratio of mode no. r (as done in the case of spring-damper foil models, which 

used a loss factor e.g.[46].  

MATLAB® coding had been done to calculate the full foil structure modal model 

(FFSMM) in the simultaneous solution for five modes. It was calculated using 3 main 

equations. There are original modal superposition equation for the foil deflection, Eq. 

4.3, pressure function, Eq. 4.2 and radial displacement, Eq.4.4. In the coding, the mass of 

the bearing, 𝑚r = 3.061  kg, bearing radius 𝑅 = 19.05  mm, bearing length 𝐿 =

38.1 mm, 𝑝a = 101325 Pa, air viscosity 𝜇 = 1.95 × 10−5 N/m2 , loss factor value of 

𝜂 = 0.25 and the undeformed foil clearance 𝑐 = 32 × 10−6 m were being constant. The 

static load per bearing in the y-direction 𝑆 = −𝑚𝑟𝑔. The values of 𝑁z  and 𝑁𝜃  in the 
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solution are 7 and 72 respectively. 𝑁z and 𝑁𝜃 are number of points of FD grid along 𝜉, 𝜃 

directions. 

Figure 4.2 showed the result of transient trajectory of journal over constant shaft 

revolution and constant value of mass balance, 𝑚𝑟𝑢 = 0 but in different value of rpm. 

FFSMM solution also had been run in different value of mass balance, 𝑚𝑟𝑢 as shown in 

Figure 4.3 and Figure 4.4. The solution showed from initial conditions corresponding to 

zero journal centre displacements and velocity, air film at atmospheric pressure and 

undeformed foil.  

 

 

(a) (b) 

(c) (d) 

Figure 4.2: Transient journal trajectory over 12 revs with mru = 0 g.mm at (a) 10,000 rpm; 

(b) 12,000 rpm; (c) 13,000 rpm; (d)14,000 rpm.  
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(a) (b) 

(c) (d) 

Figure 4.3: Transient journal trajectory over 12 revs with mru = 5 g.mm at (a) 10,000 rpm; 

(b) 11,000 rpm; (c) 12,000 rpm; (d)13,000 rpm.  
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The coding had been run four speeds in the range 10,000 to 13,000 rpm with 

different value of 𝑚𝑟𝑢 in FFSMM solution. From the Figure above, it showed that the 

trajectory converges to a stable static equilibrium position in 10,000 to 12,000 rpm. 

However, at 13,000 rpm the static equilibrium becomes unstable even though different 

value of mru. It is because this speed is quite close to instability speed range which is 

13,587 rpm. This has been observed experimentally in[53]. In the Figure above also show 

the clearance deformation (due to the foil deflection) at the instant of maximum shaft 

eccentricity. The last point of the trajectory is the last position of the centre of the shaft 

after rotate at the certain rpm speed. 

(a) (b) 

(c) (d) 

Figure 4.4: Transient journal trajectory over 12 revs with mru = 10 g.mm at (a) 10,000 rpm; 

(b) 11,000 rpm; (c) 12,000 rpm; (d)13,000 rpm.  
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4.3 Verification and Validation of Rotor-Bearing Model against Published 

Results 

Ruscitto et al. [54] published experimental data for the standard first-generation 

bearing used in this paper. This paper had been used until now for researched to validate 

their bearing models. Ruscitto et al measured the altitude angle under steady-state static 

loading condition over a certain range of static loads. The test was obtained utilizing the 

oscilloscope trace of the film thickness profile. Angular orientation of the oscilloscope 

trace is the bearing was made by referencing the discontinuity in the trace of the gap in 

the smooth foil which was located 180o from the point where the load was being applied. 

The altitude angle is defined as the angle between the load line and the line between the 

bearing and journal centres. The altitude angle was scaled as the angle between the lead 

line and the midpoint of the region where the minimum film thickness occurs in paper 

[54]. Table 4.1 below showed the Ruscitto et al’s data. 

Table 4.1: Experimental data in Ruscitto et at’s paper 

Speed (rpm) Bearing Load (N) Altitude Angle (o) 

30,000 

4.4 25 

41.1 20 

63.4 18 

90.1 15 

116.8 13 

142.3 12 

45,000 

18.9 25 

63.4 22 

98.3 18 

135.4 15 

163.0 14 

55,000 

18.9 28 

63.4 25 

107.0 22 

142.3 17 

169.0 15 

Source: Ruscitto et al. 

To compare and validate our FFSMM to Ruscitto et al’s data, a new MATLAB® 

coding had been made to generate the altitude angle.  The locus of static equilibrium 

journal position had been calculated in the coding. The speed of the locus is followed the 
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Ruscitto et al’s data which are at 30,000, 45,000 and 55,000 rpm.  Figure 4.5 showed the 

locus of journal static equilibrium positions the range 10N to 210N in non-dimension 

while Figure 4.6 in dimension for 30,000 rpm. 

 

 

 

Figure 4.5: Predicted locus of journal static equilibrium positions at 30,000 rpm 

for static loads in the range 10N to 210N in dimensionless figure (a) before zoom 

(b) after zoom  
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Figure 4.6: Predicted locus of journal static equilibrium positions at 30,000 rpm for 

static loads in the range 10N to 210N in non-dimensionless figure 

 

 

Figure 4.7: Predicted locus of journal static equilibrium positions at 30,000 rpm, 45,000 

rpm and 55,000 rpm for static loads in the range 10N to 210N in non-dimensionless figure 
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From the Figure above, an altitude angle can be calculate manually. The altitude 

angle that we get from the locus can be compared with Ruscitto et al’s data. Figure 4.8 

below showed the results of the comparisons.  

 

Figure 4.8: Comparison between the FFSMM solution for altitude angle with 

Ruscitto et al’s altitude angle 

 

Figure 4.8 shows that the results only a slight difference between the theoretical 

(FFSMM) and Ruscitto. The theoretical graph is accepted and can be used because as we 

can see that the shape of the graph is almost same with the Ruscitto. The difference 

between FFSMM and Ruscitto is the value of static load. FFSMM calculated from 0 N 

to 400N while Ruscitto only focused on smaller value of static load, 4.4N to 170N. We 

can predict that when the Ruscitto’s static load is increase until 400N, the altitude angle 

will be same. This is because we can see that at the end of Ruscitto’s data, the point is 

meet at the same point as the theoretical data. We can conclude that our graph can be 

used in predicted the high load, N while Ruscitto et al’s graph is more focus on the smaller 

scale of load, N. From this comparison too, we can conclude that our method FFSMM is 

successfully calculated and integrated.  
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

The purpose of this chapter is to provide a review of this study’s conclusion and 

recommendations. This chapter will described about the conclusion of this project, the 

future work and recommendation in continuing and improvement for this study.  

5.2 Conclusion 

This study has shown that the dynamics of the full foil structure of a first 

generation foil-air bearing (FAB) can be represented by a reduced modal model. In this 

study five modal models had been used. Full foil structure modal model (FFSMM) was 

successfully integrated. There is no effect of curvature for modelling the bump foil 

structure in the simultaneous solution. The FFSMM results were proven to be sound by 

comparison against those obtained experimental and theoretical results published in the 

literature for the static equilibrium condition. Besides that, the for this researched is 

identical with linear form of bearing. It showed that there is no effect of curvature for 

modelling the bump foil structure in the simultaneous solution. This solution can be used 

in high static load, N. This solution also can be used for the inclusion of more complex 

structures (Generation II, III designs) which until now was restricted to a simple spring 

damper models. The model can be easily adapted to include Coulomb friction forces, 

rather than equivalent viscous damping.   

5.3 Recommendations 

For this study, the inertia of the top foil was being ignored since the top foil of 

bearing was not being focussed in this study.  For recommendation and improvement, 

others researched can include the top foil for the future study and compare the results. 
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Besides that, this study is focussed on 2D finite element modal analysis. The result for 

2D finite element modal analysis is successfully proved in this paper. For next 

improvement, 3D finite element modal analysis can be developed and compare the final 

results to 2D modal analysis. Furthermore, this paper it discussed for the first generation 

of bearing (Generation I). So as recommendations, others researched can study on other 

bearings, Generation II and Generation III.  
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