

ON-SITE CONDITION MONITORING OF PV

MODULES ASSISTED BY AERIAL

THERMOGRAPHIC IMAGE ANALYSIS

FINAL REPORT

RDU1703128

UNIVERSITI MALAYSIA PAHANG

1

ACKNOWLEDGEMENTS

Special acknowledgment the Research & Innovation Department, Universiti Malaysia

Pahang, for funding through an internal research grant scheme (Vot: RDU1703128) that

has supported this research. Thank Faculty of Electrical and Electronic Engineering

Technology for providing the facilities and equipment needed to produce and complete

the project.

2

ABSTRACT

The aim of this project is to analyze the most major problem in PV module, which

is the solar hotspot. Many causes can lead to this kind of defects towards a PV module

such as shading effect, impurities present on the module surface, and many more. In this

research, the system will capture infrared images of the PV module using an infrared

thermal camera and display the images on the LCD display. Region of module which

having abnormal temperature can be detected. This region needed to be analysed in order

to know if it is a hotspot or not. This system will analyze or check that particular region

to automatically determine where is the hotspot had occurred.

3

TABLE OF CONTENT

ACKNOWLEDGEMENTS 1

ABSTRACT 2

TABLE OF CONTENT 3

CHAPTER 1 INTRODUCTION 5

1.1 Project Background 5

1.2 Problem Statement 6

1.3 Objective 6

1.4 Scope of Project 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Heat detection 9

2.2.1 Thermal Camera 9

2.2.2 Thermal mem sensor 10

2.3 Solar cells (Solar panel) 12

2.4 Hotspot in solar panel 14

2.5 Infrared Thermography 14

CHAPTER 3 METHODOLOGY 21

3.1 Introduction 21

3.2 Hardware Platform 21

3.3 System Design 24

3.4 System Hardware 26

3.4.1 Microcontroller 27

3.4.2 D6T-44l-06 Omron Thermal Sensor 30

4

3.5 System software 32

3.5.1 Arduino IDE 32

3.5.2 Matlab 33

3.6 Proposed System 34

3.7 Irradiance Measurement 35

CHAPTER 4 RESULTS AND DISCUSSION 47

4.1 Introduction 47

4.2 Results 47

4.3 System Integration 51

4.4 Hotspot detection 51

4.5 MATLAB GUI Interface 54

4.6 Irradiance Measurement 55

4.6.1 Data Collection 55

4.6.2 Calibration and Accuracy of System 63

CHAPTER 5 CONCLUSION 69

5.1 Introduction 69

5.2 Limitation 69

5.3 Future Recommendation 69

REFERENCES 71

APPENDIX A HOTSPOT DETECTION ARDUINO CODE 73

APPENDIX B MATLAB CODE 75

APPENDIX B SCHEMATIC DIAGRAM OF IRRADIANCE METER 93

5

CHAPTER 1

INTRODUCTION

1.1 Project Background

There has been an increasing global awareness of solar PV energy use [1]. The

reasons behind this are not only to address climate change, but also to create new

financial opportunities and, most importantly, to give access to energy for countless

people still deprived of modern energy facilities. There is another alternative energy

that had been heavily developed nowadays, such as hydrogen, biomass, geothermal,

wind, wave, tidal, hydro, and nuclear. However, solar energy can be said as the most

‘green’ energy due to its non-pollutant process to the environment. Solar energy is

inexhaustible and clean. Hence, solar energy from the Sun is the ideal energy.

Solar energy is the process of changing solar irradiance into electrical energy.

Earth's solar energy irradiation is extensive, approximately 40 minutes of solar

radiation on earth, sufficient for a year's global consumption of human energy [2].

This solar irradiance is converted to electrical using a PV module efficiently.

However, there is a major problem that cannot be overcome, but only can be

minimized using a bypass diode which is the solar hotspot. This problem is a common

case that will or happen when operating a PV module. Overcoming solar hotspot

problems is important to keep the sustainability of an installed PV system by reducing

any source of the fault, structural defect, or malfunction during either manufacturing

or operating stage.

Hotspot phenomenon is a degrading performance occasion for the PV module. It

is caused due to shading effect cell degradation or any impurities present on the

surface of the solar module that prevents any light from entering the cell. When there

is one cell is blocked from getting light, it will operate in a reverse-biased while others

will do the other hand. Thus, damaged cells will dissipate power and consequently

resulting in an abnormal rise in temperature. Temperature, solar irradiance, and

spectral effects [3], as well as the degradation of PV cells and modules [4], often

appears after a few years of operation and continues to increase after that, are the

main factors which attribute to the discrepancy observed. The extent of cell and

6

module natural degradation after 20–25 years of performance in silicon module

productions can nowadays be observed [5]. Due to the complex manner in which

these defects appear and interrelate, a deeper understanding of the nature of these

defects and the degree to which they correlate with a reduction in PV performance

and efficiency is of prime importance both for the early and accurate defect detection

in existing technologies and the offering of highly improved PV systems.

This project focus on identifying the hotspot phenomenon that happen on the

surface of the PV module. Thermal images of the overall cell temperature are taken

using an infrared camera. This study developed a non-invasive technique that can

detect localized heating and quantify the area of the hotspots, a potential cause of

degradation in PV systems. This is done by the use of infrared thermography, a well-

accepted nondestructive evaluation technique that allows contactless, real-time

inspection. The images will be quantized according to their region and the

temperature difference between the region with ambient temperature is calculated.

The system developed allows users to visually determine solar hotspot using infrared

thermography. This method is proved to be invasive towards the PV module as it does

not have physical contact with the PV process.

1.2 Problem Statement

This hotspot analyzer for the PV module can detect solar hotspots with minimal

procedures that need to be done to detect solar hotspot. It can save more time and give

the user an easier way to instantaneously know which solar cell on the PV module

have hotspot. The previous method has numerous steps that need to conduct such as

data collection, calculation of temperature, measuring output power, and image

processing. Solar hotspot occasion sometimes is misjudged by analyzing using the

visual method because high temperature in solar cell cannot be proven that particular

cell has a hotspot.

1.3 Objective

The main objective is to develop a system that can allow the user to detect hotspot

on a solar module instantly.

7

(i) To design an automatic hotspot detection of a solar module using infrared

image analysis.

(ii) To determine the severity level of the hotspot of the PV module.

(iii) To developed a non-invasive technique that can detect and localize heating

and quantify the area of the hotspots.

1.4 Scope of Project

The scope of the research consists of data collection, data analysis, system

modeling and development. The system design is explained in the research design

section. In summary, the scopes of the research are listed below:

(i) Data collection of cell temperature from the number of solar modules.

(ii) Effectiveness of the system design algorithm to calculate temperature

difference and image processing.

(iii) Analyzing the current problem of another method which is similar objective

with this project.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This research focuses more on quick identification of hotspot on the solar panel.

However, a clear background of the hotspot must be discussed before entering the

next part. The general causes of the hotspot in solar panels divided into two parts,

what is manufacture defect factor, and the other one is an external factor such as

shading, water corrosion and mores. Hotspot heating occurs when they are shading

on cells, the reduced short-circuit current of affected cells becomes lower than the

operating current of the module. This will force affected cells to change into a reverse

bias condition. The reverse bias condition makes the affected behave like an internal

load, and started dissipating the power in the form of heat, which is further causing

deformation of the diode inside the solar panel.

In any place like industry or university lab, they used module analyzer to perform

the analysis in evaluating solar module. This is because the module analyzer able to

provide information such as the I-V curve with the cursor , short circuit current,open-

circuit voltage and etc. The information provided is reliable and accurate for

determining the fault level that happened inside the solar cell. However, to be able to

perform a full check with a short time, a thermal camera appears as a solution to the

problem of tracing hotspot in a big solar farm. Thermography was developed to

improve the visibility of objects in a dark environment by detecting the object’s

infrared radiation. The hotspot on the solar panel emits infrared energy , the energy

is known as its heat signature so that the thermal camera can differentiate between

the difference in temperature due to the heat signature.

9

2.2 Heat detection

Heat detection is an essential part of this project. For this project, the primary heat

sensor used is the OMRON D6T MEMS sensor. For comparing the accuracy on

detecting hotspot, the device such as thermal camera and pyrometer.

2.2.1 Thermal Camera

Thermal cameras are functioning like a normal camera. It has the field of view

(FOV) vary between 6 ◦for a telescopic optic and 48◦ for a wide angle optic. For a

normal thermal camera, the radiation density does not affect by the object distance to

the camera because the thermal camera is increasing every single pixel when the part

of the image is increasing. Therefore, temperature measurements are not influenced

by the distance between object and camera [6].

Inside every infrared camera, the part whose responsible for thermal imaging is

none other than focal plane array (FPA) .Focal plane array is a sensor with 2

dimensional detector pixel matrix specially for certain light spectrum like infrared

.The size of this image sensor is ranged between 20 to 1 million pixels [7]. The

thermal camera and the diagram of FPA is shown in Figure 2-1 and Figure 2-2 .The

Figure 2-3 shows the thermal imaging system by focal plane array .

Figure 2-1 FLIR ONE PRO thermal camera

10

Figure 2-2 The schematic of focal plane array

Figure 2-3 Infrared imaging system

2.2.2 Thermal mem sensor

Omron thermal MEM sensor is a sensor to detect infrared radiation and suitable

to detect the surrounding temperature . The function of the Omron sensor is to

measure the surface temperature of an object where the sensor detects the intensity of

the infrared radiation . [8]The sensor use custom designed sensor ASIC and signal

processing microprocessor and algorithm into tiny package .[8]

The thermal sensor detects the temperature through a convex silicon lens .The

lens has a view angle of 44.2° for x axis and 45.7° for y axis .The MEM sensor consist

of thermopile array and the amount of thermopile array is vary according which

sensor you are using .For this D6T-44L thermal sensor ,it consists of 16 thermopile

array .Inside the sensor ,it has ASIC embedded inside the silicon lens and a

11

microcontroller in PCB to process the temperature data .There is connector from the

PCB to allow user connect the external microcontroller to itself and communicate

through I2C .The Figure 2.4 shows the characteristic and the field of view of MEM

sensor which has 4x4 array that attribute to 16 pixels and the right figure is the FOV

of 1 pixel . Figure 2-5 shows the product structure of MEM sensor .

Figure 2-4 Sensitivity Characteristic

Figure 2-5 Product structure of MEM sensor

The silicon lens consist of thermopile array to gather radiated infrared and direct

on itself .The radiated infrared is then transduced into electrical signal and send to the

ASIC to convert the electrical signal from sensor signal to digital temperature

output .The process of the working principle is shown in Figure 2-6.

12

Figure 2-6 Working principle of MEM sensor

2.3 Solar cells (Solar panel)

A solar cell is a device to convert sunlight to electrical energy . Sunlight which

shines on the solar panel produces both current and voltage .To optimize the optimal

energy conversion ,solar panel must be made from a material which absorption of

light able to raise the energy level of electron .The electron moves from solar cell to

external circuit to dissipate energy and return back to solar cell .

A solar panel is usually made of silicon .They are interconnected silicon cells

which form a circuit .The majority of solar panel used wafer-based crystalline cells

(c-Si)or thin-film .By theoretically ,crystalline silicon is chosen for manufacturing

solar panel due to certain reasons .One of the reason is related to its energy level .The

p-n junction of the silicon is responsible for the exchanging of ions inside the solar

panel . A solar cells is made of p-type silicon (with extra “holes”)and n-type silicon

(with extra electron) .The internal electric field was created by the presence of

oppositely charged ions in depletion zone .when the electron from n-side layer to fill

up the “hole” of p-side layer .The schematic of p-n junction is shown in Figure 2-7.

13

Figure 2-7 The schematic of P-N junction in solar cell

When the sunlight shine on the solar panel ,the electron are escaped and leave

vacancies behind .The electric field will move electron to n-type layer and holes to p-

type layer .If there is a conductor such as metallic wire between n type and p type

layer ,there must be as exchange of ion and creating the flow of electricity .

Crystalline silicon is popular for its existence in PV industry .The reason is it is a

semiconducting material which can control its conductivity through doping

.Generally ,the crystalline silicon divided into several categories which is

monocrystalline silicon ,multi-crystalline silicon ,and several other species of silicon

which is not popular to be used in PV industry .In the country which is rich of sunlight

like Malaysia ,the rate of photon generation is actually increase rapidly due to the

temperature heat up the solar panel and gradually reduces the band gap in crystalline

silicon structure [9].Therefore ,the electron is able to move from valence band to

conduction band to allow to allow the flow of electron in p-n junction .The Figure 2-8

shows the band gap of conductor (metal) ,semiconductor ,and insulator [10].

Figure 2-8 The band gap of conductor ,semi conductor and insulator

14

2.4 Hotspot in solar panel

Hotspot are areas of increasing temperature on the part of solar panel .They are

the outcome of a confined decrease in efficiency which causing lower power output

and degradation of material .They are several causes for hotspot to occur .One of them

is cell mismatch where cells of varying current are connected in series .The other

reasons is cell damage which is caused by defects in manufacture process .Other

external factor such as shading ,dirt and water corrosion can be the causes of hotspot

[11]. Reversed bias in solar cell is generally caused by shading or partial shading on

solar cell .Shading is a problem for solar cell ,since it can reduce the power output to

zero ,and probably caused microscopic damage to solar cell [12] .The reverse bias

model of the solar cell is shown in Figure 2-9.

Figure 2-9 Reverse bias model of solar cell

Shading is a condition where there is a blockage between solar panel and sunlight

.Shading could caused the mismatch of current and further lead to loss in power .The

shade impact depends on the severity and area of the shade [13] .Shading has become

a major challenge to deal with ,as shading is significant design factor affecting the

performance of PV system .Shading a cell with a very high opacity causes it bypass

diode to begin conducting when any current passes through it and keep supply the

load ,but if the bypass diode is absent ,the cell will be reverse biased and possibly

produce a damaging reverse breakdown voltage to causes hotspot failure .[14]

2.5 Infrared Thermography

Infrared thermography is a nondestructive testing technique without affecting the

future usefulness of the equipment .By comparing to the other NDT techniques such

as X-Ray and ultrasonic .Infrared thermography allows the detection of relatively

15

shallow subsurface defects which ranged few millimetre in depth .Infrared

thermography can monitor thermal behaviour of most of the electrical equipment

.Although heat is not conclusive indication of all electrical problem .However ,heat

produced by abnormally high resistance often precedes electrical failures[15] .The

advantages of infrared thermography are providence of fast inspection rate ,safe from

harmful radiation and their results is relatively easy to interpret .On the other hands

,the difficulties in infrared thermography are their capabilities to inspect only

subsurface defects ,and only able to inspect a limited thickness of material under the

surface [16]. In the application of Infrared thermography, the Infrared thermography

can be done in two ways which are active infrared thermography and passive infrared

thermography .The two approaches in infrared thermography is shown in Figure 2-10.

Figure 2-10 Infrared thermography approaches

Overall ,active infrared thermography is approach in which energy source is

required to produce a thermal contrast between the feature of interest and the

background .(e.g : specimens with internal flaw .) .Meanwhile ,passive infrared

thermography in the approach which the features of the interest is naturally higher or

lower temperature than the background .(e.g. :surveillance of people on a scene).

16

Active infrared thermography are used to inspect the solar panel in term of the

degradation in material in crystalline .For performing active infrared thermography

on solar panel ,step heating by light source is essential and it is one kind of excitation

used .The heating was done in two configuration which is backside and front side

heating to check the overall delamination in solar panel .If the solar panel experienced

delamination in certain part ,the thermal image will show a high temperature because

of low thermal conductivity [3] Meanwhile there is no evidence that passive infrared

thermography being used in solar panel inspection ,because passive thermography

inspection is used to inspect on building structure on moisture evaluation and heat

insulation .

Amongst existing condition monitoring techniques and nondestructive testing

methods today, infrared thermography is considered a promising tool for fast and

reliable fault detection. Infrared thermography is a method which detects infrared

energy from the solar module, convert it into temperature and displays image of

temperature distribution. It is a reliable method to observe the performance of solar

cell whether it is operating in a normal condition or not. Infrared thermography uses

mid wave (MWIR, from ~3 to 5μm) or long-wave (LWIR, from ~7 to 14μm) infrared

sensors to obtain thermal images or thermogram of objects under inspection. Based

on Planck’s black body radiation law, all objects emit infrared radiation proportional

to their temperatures.

Solar hotspot is a major problem for this alternative energy as it can give a

significant effect on the solar module performance. The cells exposed to the shading

condition adversely affects the performance of the PV module due to the increase in

the power loss according to Pragyanshree Samantaray (2016) [6]. Until now, there is

no a complete and effective method to prevent this significant problem toward solar

energy. Hence, this problem should be monitored and replaced quickly in order to

prevent the module performance from getting even worse. Thus, methods to

effectively detect solar hotspot is important to keep the solar module performance at

its best.

Numerous study had been attempted to explain about how to detect or cluster

solar hotspot problem on solar module through infrared thermography. K-means

colour quantization is a useful method to quantize certain area of the solar module. It

is easy to identify part of solar module if the module is classified into region based

on their temperature. April M. Salazar (2016) research use K-means colour

17

quantization and CIE L*a*b* colour space to quantize local heating spot. Through

infrared thermography and k-means clustering, local heating areas were isolated [7].

Moreover, according to Erees Queen B. Macabebe (2016), the K-Means clustering

produced the quantized image represented by the contours while DBSCAN resulted

to the segmented image isolating the hotspot area as one of its clusters. Ultimately,

the area of the hotspot can be determined and, with more data sets, may be correlated

to the drop in the efficiency of the solar PV module [8].

Other visual method to determine solar hotspot is through in-line thermography

has been conducted by Stefan Schenk (2014), using uncool bolometric camera and

take continuous series of image, first image as reference. According to him, this

method is fast because it analyses the solar module in the interval of 70ms. The

images during that interval is observe and the parameter coefficient of the module is

analyzed for references [9].

Visual inspection method also can be done to observe the overall performance of

solar module such as checking physical defects on the surface of solar module.

Projects by E. Lorenzo (2012) had done three different methods altogether, visual

inspection, infrared inspection and electrical inspection. He checks physical defects

and followed by infrared thermography by comparing temperature difference. Then,

electrical inspection is done by connecting ‘T’ connectors at the output wires. Voltage

losses is compared due to the hotspot. It is proposed to reject any module exhibiting

hotspots whose corresponding voltage losses (in relation to a non-defective module

being part of the same string), within the PV system in normal operation, exceeds the

allowable peak power losses fixed at standard warranties. This is also applicable to

PV modules with defective bypass diodes, regardless the derived hotspot temperature

[10].

In conclusion, all of the method are related on how to detect hotspot through

visual images and analysing parameters such as voltages. However, there are still no

method exist in order to prevent or distinguish solar hotspot permanently but only a

way to minimize the effect. Hence, this research is performed for getting to identify

solar hotspot automatically. Thus, user can easily know where is the hotspot occur on

solar panel and finding a solution to overcome that particular cell from being affected

by the problem.

18

Table 1: Summary of hotspot detection methods

Method Detail Results Comments

K-means

clustering and

CIE L*a*b color

space

(April M. Salazar,

and Erees Queen

B.

Macabebe,2016)

Use infrared camera

to capture and display

temperature with

reflective temperature

of 10°C. Several

images taken at

several time intervals

to eliminate effect of

glare or temporary

shading factors.

Measure temperature

at four points of

module. The image is

processed with K-

means to cluster

certain area that is

abnormal to each

other.

Defect(crack)

caused that region

to dissipate more

power. Hence,

produced colors

corresponding to

higher

temperatures.

Under reverse-

bias, external

current is fed to the

PV module and the

solar cells begin to

emit light in the

infrared range

Through infrared

thermography and

k means clustering,

local heating areas

were isolated.

Relative percent

area affected by the

hotspot as well as

the temperature

were obtained

using the Hotspot

Detection

algorithm

developed.

Image

Segmentation

Using K-Means

Color

Quantization and

Density-Based

Spatial Clustering

of Applications

with Noise

(DBSCAN)

(Genevieve C.

Ngo and Erees

Queen B.

Macabebe, 2016)

Infrared camera and

infrared sensor is

used. Images is

processed with K-

means color

quantization to

quantize the captured

images into discreet

number of colors.

Then, the images are

send to DBSCAN

algorithm to segment

the images.

Pre-processing

includes the K-

Means algorithm.

In this algorithm,

the number of

clusters was set to

k = 15. Data

normalization is

applied to image

converting the 0 -

255 pixel values

into 0 – 1.0

The K-Means

clustering produced

the quantized

image represented

by the contours.

In-line

thermography

Uncool bolometric

camera takes

continuous series of

Temperature of

solar cell is both

calculated and

This method is fast

because analyzing

the solar module in

19

(Klaus Ramspeck,

Stefan Schenk,

Denny Duphorn,

Axel Metz,

Michael

Meixner,2014)

image as references

(before apply user

defined voltage bias).

IV testing is done

with interval of 70ms.

Voltage is set and

image is analyzed

during reversing

biasing. Reverse

current and voltage,

temperature changes

during biasing is

observed.

measured. The

expected value

from theoretical

calculation is

compared with

physical

measurements.

Difference more

than 5°C counted

as hotspot.

the interval of

70ms. The images

during that interval

is observe and the

parameter

coefficient of the

module is analyzed

for references.

IR inspection on

hotspots and

derived

acceptance/rejecti

on criteria

(R. Moretón , E.

Lorenzo, L.

Narvarte,2012)

Visual inspection of

PV module and check

physical defects if

visible. Infrared

inspection using

infrared camera and

calculate temperature

difference using

formula based on

standardize

irradiance. At night,

electroluminescence

is used. ‘T’

connectors are insert

at module output

wires to compare the

operating voltage

losses due to hotspot.

Micro-cracks

cause current drift

and a

corresponding

heat that leads to

the burning of the

metallization

fingers and

bubbles at the rear

of the modules.

Infrared

inspection did not

reflect the total

hotspot, but only

the hotspots

observed some

months after the

substitution.

ΔT*HS > 30 °C.

Electroluminescenc

e method can

misjudge hotspot

during night time.

Analysis of

hotspot formation

in solar cells

Solar cell is divided

into three regions

hotspot center,

outside hotspot and

non-hotspot areas.

Infrared images are

Developed

localized increase

in surface

temperature after

1200s, at which

point the

Results presented

in this work reveal

a direct correlation

between areas of

high impurity

contaminants and

20

taken at 300s interval.

AES analysis is done.

Auger spectrum using

ion gun to sputter the

surface. Three AES

spectrum is obtained

according to the three

regions mentioned.

SEM image of

specimen (scanning

electron microscopy).

EDX (Energy-

dispersive X-ray

spectroscopy) .

maximum

temperature

profile reached 80

°C. SEM image at

region temperature

80°C clearly

indicates focal

point of heating at

the hotspot. It is

observed that from

regions away from

the hotspot, the

impurity

concentration

starts to decrease

as can be seen by

the reduction in

oxygen

concentration and

other transition

elements

hotspot heating in

different samples

of mc-Si.

Transition

elements and

oxygen must be

minimized so as to

increase the life

expectancy of these

devices and overall

improve systems

reliability

Thermal Image

Analysis and a

Simulation Model

Thermal camera

(portable thermal

imager) employed for

the performed

measurements

featured a 320 x 240

uncooled focal plane

array.

Microbolometer

detector. Temperature

range of 233 to 1273

K(–40 to 1000 °C),

temperature

resolution of 0.1 K

(0.1 °C)image update

rate of 8.5 fps,

spectral range of 8 to

14 μm long.

Physical defects

cause current drift

and a

corresponding

heat that leads to

the burning of the

metallization

fingers and

bubbles at the rear

of the modules

Black-and-white

reproduction,

rainbow color maps

can be confusing

because of their

lack of perceptual

ordering and can be

misleadingly

interpreted through

the introduction of

non-data-dependent

gradients

21

CHAPTER 3

METHODOLOGY

3.1 Introduction

The thermal images of the solar panel will be captured by using Adafruit

AMG8833 IR Thermal Camera Breakout. Then, infrared images will be displayed

on the SPFD5408 2.4 inch TFT LCD display. Thermal Camera Breakout will be

connected through the microcontroller which is the Arduino Mega 2560 to undergo

algorithm that detect hotspot automatically based on temperature difference based on

the environment. An extra sensor which is the LM35 Temperature Sensor will also

be connected alongside the thermal camera breakout to display the ambient

temperature of the surrounding area.

3.2 Hardware Platform

Figure 3-1 Block diagram of overall process of the system design shows the

system design that consists of the thermal camera breakout and temperature sensor as

the main input. Both of this hardware played an important part in this project as it is

needed for capturing and measurement. The type of sensor used for visual imaging

is an Adafruit AMG8833 IR Thermal Camera Breakout which display 8x8 array

of infrared thermal sensors. When connected to microcontroller, it will return an

array of 64 individual infrared temperature readings over I2C. It's like those other

thermal cameras, but compact and simple enough for easy integration. User can

interface with the system design by capture thermal images of solar panel in order

to perform the hotspot detector algorithm. Then, the thermal images are send to

the microcontroller to be analysed and k-means colour quantization is performed on

the images. This process will quantize the captured image into discreet number of

colours. Hence, local heating area on the solar module can be localized because of

the dominant colour from the thermal images.

22

Figure 3-1 Block diagram of overall process of the system design

Figure 3-2 Adafruit AMG8833 IR Thermal Camera Breakout that is used as

thermal visualize.

Other major parts that are important in this system design is temperature

sensor. This sensor is responsible to measure the temperature of the surrounding

area. The DS18B20-PAR is a 1 wire parasite-power digital thermometer in 3 pin TO-

92 package as shown in Figure 3-2 Adafruit AMG8833 IR Thermal Camera Breakout

that is used as thermal visualize.below. It provides 9 to 12bit centigrade temperature

measurements and has an alarm function with non-volatile user programmable upper

and lower trigger points. The DS18B20-PAR does not need an external power supply

because it derives power directly from the data line (parasite power). It has an

operating temperature range of -55°C to +100°C and is accurate to ±0.5°C. Both of

the components mentioned above will function simultaneously when the user turns

on the system design. Thermal images from the camera and ambient temperature from

23

the sensor will be send to microcontroller to be analysed and display on the Liquid

Crystal Display (LCD).

Figure 3-3 LM35 Temperature Sensor IC used to measure ambient temperature.

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560

microcontroller. This microcontroller board come along with 54 digital input or

output pins. 14 of them can be used as PWM outputs. 16 of them can be used as

analog inputs. 4 of them are UARTs (hardware serial ports). It also come with a 16

MHz crystal oscillator, a power jack, USB connection, reset button and an ICSP

header. To support the microcontroller, it contains everything. It can be simply

connected with a USB cable or it can be powered with a AC-to-DC adapter or battery

to make it alive. This microcontroller or microcontroller board is compatible with

many shields that are designed for Arduino. The operating voltage of this

microcontroller board is 5 volts. The input voltage that is recommended is 7-12V.

The input voltage limit is 6-20V. The DC Current per I/O pins is 40 mA. The DC

current for 3.3V pin is 50 mA. The flash memory is about 256 kB of which 8 kB used

by the bootloader. The clock speed of this microcontroller is 16 MHz which is quite

high for this affordable board This can be counted as the brain of this system design

as it is important for the solar hotspot automatic detector. All of the data collected

will be received by this microcontroller to be analysed and calculated.

Figure 3-4 Arduino Mega 2560 that is used as the microcontroller to carry out visual

analyzing and system design algorithm

24

3.3 System Design

The system design flow starting with capturing thermal images of the solar panel

to be analysed. Firstly, K-means colour quantization will be held to clustered certain

region that is abnormal due to its colour (red indicating high temperature). It is easy

to identify which cell is affected when the area of solar module is clustered into

certain region. Then, the value of temperature of each array from the thermal camera

is taken into account. Each array temperature is compared with the ambient

temperature in order to get the temperature difference of the solar cell. Solar panels

are tested at 25 °C and thus solar panel temperature will generally range

between 15 °C and 35 °C during which solar cells will produce at maximum

efficiency. However, solar panels can get as hot as 65 °C at which point solar cell

efficiency will be hindered. Install factors like how close the panels are installed to

the roof can impact the typical heat of your solar system. This algorithm will analyse

temperature using two different condition which is comparing it with average

temperature of solar cell and comparing with the range of normal operating range of

temperature during normal condition.

 ΔT*HS1 = Tcell(max) – Taverage (3.1)

 ΔT*HS2 = Tcell(max) – Tambient(max) (3.2)

Tambient(max) = Tambient + 30 °C, (range between 25 to

60°C on normal condition)
(3.3)

where Tcell(max) is the highest temperature of solar cell captured by the thermal array

sensor and Taverage is the average temperature of the solar cell. Temperature

difference, ΔT*HS1 that is more than 20 °C can be counted as solar hotspot and will

display ‘FAULT’ as the condition. If the ΔT*HS1 is within the range of 5 °C and 20

°C, the display will set the condition as ‘WARNING’. If the ΔT*HS1 exceed 20 °C,

‘FAULT’ will be displayed as the condition on the lcd display. However, the

algorithm will set as ‘FAULT’ when the second condition is a positive value. This is

because the highest temperature exceed the normal range of solar operating

25

temperature. Highest temperature will compared with the highest range from the

ambient temperature This algorithm will calculate and identify which region can be

classified as hotspot. The process or flowchart of this system design is shown in

Figure 3-9. Next, that identified region will be display through the LCD alongside

with the thermal images. User can view the thermal images of solar panel including

with label that said it is the region of hotspot.

Figure 3-5 Flowchart of the process to detect hotspot phenomenon on the solar module

26

3.4 System Hardware

 The system is composed into a few hardware part ,while the embedded

microcontroller that used in this project is Arduino UNO ,and the sensor that used to

collect temperature data is OMRON D6T-44L thermal sensor .The input and output

of the system is shown in Figure 3-6.

Thermal Sensor Arduino UNO Matlab GUI

Figure 3-6 Block Diagram

 The thermal sensor is powered by DC source of 5V and connected to Arduino

UNO .It communicate through I2C protocol .The Arduino UNO will receiving data

from thermal sensor and the received data will be analyse in Matlab .The hotspot will

be detected if any of the array temperature is higher than the calculated solar cell

temperature .The solar cell temperature calculation is shown in the equation below .

 𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑖𝑟 +
𝑁𝑂𝐶𝑇 − 20

800
𝑆 (3.4)

where ,

Tair = ambient temperature in °C

Tcell = cell temperature in °C

NOCT = normal operating cell temperature in °C

S = insolation level in W/m2

 In this part ,all the components will put together by putting the pin of sensor to

the specific pin of Arduino Uno .The overall concept of the set up is shown in Figure

3-7 below .

27

Figure 3-7 The setup of the device to solar panel

3.4.1 Microcontroller

 Arduino UNO is a microcontroller board based on the ATmega328 .It has 14

digital input/output pins (of which 5 can be used for PWM outputs) ,6 analog inputs,

a 16 MHz ceramic resonator ,a USB connection , a power jack ,and ISCP header ,and

a reset button .It contains everything to support the microcontroller ; simply connect

it to a computer with a USB cable or power it with a AC-DC adapter or battery to get

start .

 The UNO differs from all preceding boards in that it does not use the FTDI USB-

to-serial converter .Revision 2 of the Uno board has a resistor pulling the 8U2 HWB

line to ground, making it easier to put into DFU mode .Meanwhile , Revision 3 of the

board has the following new features:

• 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two

other new pins placed near to the RESET pin, the IOREF that allow the

shields to adapt to the voltage provided from the board. In future, shields

will be compatible both with the board that use the AVR, which operate with

5V and with the Arduino Due that operate with 3.3V. The second one is a

not connected pin, that is reserved for future purposes.

• Stronger RESET circuit.

• Atmega 16U2 replace the 8U2.

28

The summary of the Arduino UNO technical datasheet is given in Table 3.2. Arduino

UNO can be powered up by external supply and it is automatically selected depend

on what power source connected . The power pins are given as below :

• VIN - The input voltage to the Arduino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated power

source). You can supply voltage through this pin, or, if supplying voltage via the

power jack, access it through this pin.

• 5V - This pin outputs a regulated 5V from the regulator on the board. The board can

be supplied with power either from the DC power jack (7 - 12V), the USB connector

(5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V

pins bypasses the regulator, and can damage your board.

• 3V3-A 3.3 volt supply generated by the on-board regulator. Maximum current draw

is 50 mA.

• GND - Ground pins.

The ATmega328 has 32 KB with 0.5 KB used for the bootloader. It also has 2 KB of

SRAM and 1 KB of EEPROM which can be read and written with the EEPROM

library.

Table 3.2 Techinical Specification of Arduino UNO.

Microcontroller ATmega328

Operating Voltage 5 V

Input Voltage (recommended) 7-12 V

Input Voltage (limit) 6-20 V

Digital I/O Pins 14 (of which 6 provide PWM

output)

Analog Input pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which

0.5 KB used by bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Arduino UNO has 14 pins as its input and output ,using pinMode(),digitalWrite and

digitalRead() functions .The board operate at 5 V and can provide and receive a

maximum of 40 mA .It also has a internal pull-up resistor of 20 – 50 kΩ which is

29

disconnected by default .Other than that ,Arduino UNO consists of the specialised

function :

• Serial: 0 (RX) and serial :1 (TX) .Used to receive (RX) and transmit (TX) TTL serial

data .These pins are connected to the specific pins of the ATmega8U2 USB to TTL

serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a

low value, a rising or falling edge, or a change in value.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the function of

analogWrite() .

• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication using the SPI library.

• LED (pin 13) : Built in LED device which will switch on when the pin 13 is in HIGH

value ,switch off when the value is LOW .

• TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire

library.

• AREF. Reference voltage for the analog inputs which is used with analogReference().

• Reset. Used to reset the microcontroller. Typically used to add a reset button to shields

which block the one on the board.

Arduino UNO has several facilities for communicating with a computer ,another

Arduino ,or other microcontroller .The ATmega328 basically provide UART TTL

(5V) serial communication through RX pin and TX pin .While ATmega16U2 on the

board channelling the serial communication through USB and appear a virtual com

port in computer software .16U2 is using a standard USB COM driver so no external

driver is used .In Arduino software ,they provide serial monitor where user can read

the data that being sent by Arduino board ,TX and RX will flash alternatively to

indicate the data is being transmitted and receive via the USB-to-serial chip and USB

connection to the computer . A SoftwareSerial library allows for serial

communication on any of the Uno's digital pins. The ATmega328 also supports I2C

(TWI) and SPI communication and also includes a Wire library to simplify usage of

the I2C bus .

Arduino UNO can be programmed by using Arduino IDE .The user are required

to choose the correct com port and board specification .ATmega328 in Arduino UNO

30

comes with a preburned bootloader that allows user to upload the sketch to arduino

without any external programmer as it communicates by using the original STK500

protocol .ISCP is also another option for programming the microcontroller .

Arduino UNO is designed that allows it to reset by software running on a

connected computer .A 100 nanofarad capacitor is used to connect the hardware flow

control lines (DTR) of the ATmega8U2/16U2 to the reset line ATmega328 .When

the reset line is pulled low ,the Arduino chip is reset and Arduino software have a

shorter timeout for uploading the code by simply pressing upload button .The figure

of Arduino software is shown in Figure 3-8.

Figure 3-8 Arduino IDE

3.4.2 D6T-44l-06 Omron Thermal Sensor

The thermal sensor is non contact sensor which is used for sensing surface

temperature of an object .The thermal used for this project is OMRON D6T-44L-06

thermal sensor which sized 14mm*18mm .The main component of this thermal

sensor are silicon lens ,thermopile sensor chips ,analog circuit and logic circuit for

converting to digital value which shows us the temperature data .The particular

thermal sensor consists of 16 arrays of data .It is a supersensitive sensor that is useful

for detecting the presence of hotspot .

31

The sensor works at 5V DC which coordinated with the power of the Arduino

UNO, to interface with Arduino UNO we have to know the I2C address of the D6T-

44L sensor which is 0x0A and the command to get the temperature data which is

0x4C. The Arduino UNO is then request for the temperature of the captured

temperature from the address 0x0A and by sending the 0x4C the data will return into

an array. The array size is 16bit-width, signed, 10 times the estimation of degree

centigrade. Which intend to get the real estimation of the temperature, the value need

to divided by 10, the explanation behind it is to transmit float information simpler

through convert it to integer and convert back back to float after data transmission .

The WireExt.h library was utilized instead of Wire.h to let the Arduino UNO to

communicate with the sensor. The reason is the Wire.h only support until 32 bytes of

data as appeared in Figure 3-9.Therefore ,it is not enough for D6T-44L-06 thermal

sensor to sends 35 bytes of data through Wire.h .

Figure 3-9 Number of Bytes of Output Data from D6T-44L-06 Thermal Sensor .

The equation for calculating the temperature for MEM sensor is summing up the

background and object temperature and divided by the area as shown in the formula

below .

Calculation for near object:

 𝑇𝑥(𝑛𝑒𝑎𝑟) =
(Tb1 + To1)

Area 1
 (3.5)

Calculation for far object

 𝑇𝑥(𝑓𝑎𝑟) =
(Tb2 + To2)

Area 2
 (3.6)

32

The main communication that MEM sensor used with Arduino is through I2C

protocols as it consist 4 of the pins which are Vcc,GND ,SDA and SCL .The SDA

and SCL are responsible controlling the data line and clock line of I2C data .Therefore

the connection will be set up as below :

• Vcc :5V

• GND: GND

• SDA:Pin 4

• SCL:Pin 5

The pinout of MEM sensor is shown in Figure 3-10.

Figure 3-10 Pinout of MEM sensor

3.5 System software

The software used for this project consists of 2 software which are Arduino IDE

and Matlab .The Arduino is mainly act as a platform for building an electronic project

which can include a big variety of electronic component .While ,Matlab is most likely

a software that used to analyse data ,develop algorithm and create model and

application .

3.5.1 Arduino IDE

Arduino is an open-source stage utilized for building electronics projects.

Arduino comprises of both a physical programmable circuit board (regularly alluded

to as a microcontroller) and a bit of programming, or IDE (Integrated Development

Environment) that keeps running on your PC, used to compose and transfer computer

code to the physical board. The Arduino stage has turned out to be very well known

33

with individuals simply beginning with hardware, and all things considered. Not at

all like most past programmable circuit sheets, the Arduino does not require a

different bit of equipment (called a developer) so as to stack new code onto the board

– you can essentially utilize a USB link. Furthermore, the Arduino IDE utilizes a

streamlined variant of C++, making it simpler to figure out how to program. At long

last, Arduino gives a standard frame factor that breaks out the elements of the small

scale controller into a more available bundle.

3.5.2 Matlab

MATLAB is an elite language for specialized registering. It coordinates

calculation, representation, and programming in a simple to-utilize condition where

issues and arrangements are communicated in natural scientific documentation. Run

of the mill utilizes include:

• Math and calculation

• Calculation advancement

• Demonstrating, recreation, and prototyping

• Information examination, investigation, and representation

• Logical and designing illustrations

• Application advancement, including Graphical User Interface building

MATLAB is an intelligent framework whose fundamental information

component is a array that does not require dimensioning. This enables you to tackle

numerous specialized figuring issues, particularly those with grid and vector details,

in a small amount of the time it would take to compose a program in a scalar

noninteractive dialect, for example, C or Fortran. The name MATLAB stands for

matrix laboratory. MATLAB was initially composed to give simple access to

framework programming created by the LINPACK and EISPACK ventures, which

together speak to the best in class in programming for network calculation.

MATLAB has developed over a time of years with contribution from numerous

clients. In college conditions, it is the standard instructional device for basic and

propelled courses in arithmetic, building, and science. In industry, MATLAB is the

instrument of decision for high-efficiency research, advancement, and examination.

MATLAB highlights a group of use particular arrangements called tool

compartments. Important to most clients of MATLAB, tool stash enable you to learn

34

and apply particular innovation. Tool compartments are far reaching accumulations

of MATLAB capacities (M-documents) that stretch out the MATLAB condition to

take care of specific classes of issues. Regions in which tool kits are accessible

incorporate flag handling, control frameworks, neural systems, fluffy rationale,

wavelets, reproduction, and numerous others.

3.6 Proposed System

Our project proposed work is to integrate the thermal sensor with microcontroller

to perform the data collection from the sensor , following by integrate the Arduino

component with Matlab GUI to perform serial reading and perform analysis with

suitable function such as solar cell temperature calculation .The overall flow chart of

hotspot detection system is shown in Figure 3-11.

Figure 3-11 Flow chart of hotspot detection system

35

3.7 Irradiance Measurement

This part discusses two aspects, the software development part and the hardware

development part. The hardware development of this project discussed about

assembling of solar reference cell, sensors, microcontroller and the display unit.

Software development discussed about the measurement of solar irradiance by

interpreting a series of data collected on solar cell and developing the equations and

programming to calculate the irradiance. Figure 3.12 shows the flowchart of the

system.

Figure 3.12: Flowchart of the System

The solar radiation monitoring device starts with the detection of ambient

temperature. The ambient temperature will be detected by the temperature sensor

LM35 and the data collected will be sent to the microcontroller Arduino UNO. Next,

the microcontroller will detect if there is any current flow in the solar cell. There will

only be current flows in the solar cell if there is solar radiation reaches the solar cell.

If there is not current flows, indicating there is no solar radiation to be measured, or

the solar radiation is too weak, leading to extremely low current flow in the solar cell

to be detected. The microcontroller will continue detect current flow until there is a

36

valid current value to be obtained. When there is current flow detected in the solar

cell, the microcontroller works to interpret the current readings, and compute the

corresponding solar radiation. This computation for solar radiation values

corresponding to current flows in solar cell requires initial data collection for the solar

cell with simple circuit which will be further explained in result and discussion. The

solar radiation and ambient temperature readings will be displayed by the

microcontroller on the LCD on the handheld measuring device.

 Figure 3.13 shows the block diagram of the system. The solar cell works as the

solar reference cell will be connected a current sensor module ACS712 to detect the

current flows in the solar cell whenever there is solar radiation reaching on the solar

cell surface. The current sensor module will be connected to the microcontroller

Arduino UNO to interpret the current readings on solar cell. At the same time, a

temperature sensor LM35 will collect the ambient temperature data and send the

readings to microcontroller. Arduino UNO which works as the microcontroller of the

system will interpret and compute solar radiation readings corresponding to the

current flows in solar cell. The solar radiation values and ambient temperature will be

displayed on the LCD of the handheld device. The data can be sent to the developed

app on smartphone for user to have a clearer monitoring purpose.

Figure 3.13: System Block Diagram

The microcontroller, Arduino Uno is connected to a temperature sensor, LM35,

voltage sensor module B25 which is connected to a mini solar cell and a 30 Ω resistor,

and finally connected to a 2x16 yellow backlight LCD for displaying purpose. The

37

connection of each pin of the temperature sensor LM35 to the Arduino Uno is showed

in the table below.

Table 3.3: Connection of Each Pin between Temperature Sensor LM35 and Arduino

Uno

Temperature Sensor LM35 Arduino Uno

Vout A0

+V5 5V

GND GND

 Temperature sensor LM35 is an affordable and easy-to-use temperature sensor

which is suitable for Arduino programming to detect ambient temperature. In this

system, LM35 is chose to act as the temperature sensor to detect the ambient

temperature.

Figure 3.14: The Schematic Diagram of Connection between Solar Cell, 30 Ω Resistor,

Voltage Sensor and Arduino Uno

The connection of each pin of the solar cell, 30 Ω Resistor and the Arduino Uno

is showed in the Table 3.3 below.

38

Table 3.4: Connection of Each Pin between Solar Cell, 30 Ω Resistor, Voltage Sensor

and Arduino Uno

Solar Cell 30 Ω Resistor

Positive pin (DC) Either pin

Negative pin (DA) Either pin

Voltage Sensor Solar Cell

Input (+) Positive pin (DC)

Input (-) Negative pin (DA)

Voltage Sensor Arduino Uno

Out A1

GND GND

VCC -

 Solar cell is connected to a small value resistor, a 30 Ω resistor in a series circuit.

The voltage sensor module is used to measure the voltage drop across the 30 Ω

resistor by connecting to each pin of the resistor or solar cell. The output of the voltage

sensor module is measured and calculated by Arduino Uno by connecting to the A1

pin of Arduino Uno. Figure 3.15 shows the schematic diagram and connection

between LCD and Arduino Uno. Table 3.4 shows the connection of each pin of the

LCD and Potentiometer to the Arduino Uno.

39

Figure 3.15: The Schematic Diagram of Connection between LCD and Arduino Uno

Table 3.5: Connection of Each Pin between LCD, Potentiometer and Arduino Uno

2x16 Yellow Backlight CD Arduino Uno

K GND

A D13/SCK

DB7 A2

DB6 A3

DB5 A4/SDA

E D11 PWM/ MOSI

R/W GND

RS D12/MISO

2x16 Yellow Backlight CD Potentiometer

VO Signal

2x16 Yellow Backlight CD Arduino Uno

VDD 5V

VSS GND

Potentiometer Arduino Uno

+5V 5V

GND GND

40

 A 2x16 Yellow Backlight LCD is used to display the solar irradiance and ambient

temperature of the system. A 10k Ω potentiometer and 220 Ω resistor is also used for

the LCD circuit. Table 3.5 below shows the descriptions of components that will be

used for the solar radiation monitoring system.

Table 3.6: List of Components

Components Descriptions Functions

Arduino Uno

A microcontroller board based on

the ATmega328P (datasheet). It has

14 digital input/output pins (of

which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz

quartz crystal, a USB connection, a

power jack, an ICSP header and a

reset button.

Process data obtained

from temperature

sensor and current

sensor. Display solar

irradiance and

ambient temperature

on LCD. Transmit

data to app.

Solar Cell

A mini silicon solar cell with the

size of 5.2cm x 2.9cm x 0.3cm.

Able to produce output of 5V,

0.15W and 30mA.

Convert solar energy

to electrical energy

through photoelectric

effect.

LCD (16x2) Yellow

Backlight Module

This is a basic text-based 16

characters by 2 lines LCD with

white character on blue backlight. It

utilizes the extremely common

HD44780 parallel interface chipset.

The LCD has a size of 8.03 x 3.61 x

1.0 cm.

Display the solar

irradiance and

ambient temperature.

41

LM35 LM35DZ NS TO-92

Temperature Sensor

A low-cost temperature sensor that

able to read ambient temperature

with the operating condition of 4 to

30V. Rated for full −55˚ to +150˚C

range.

Detect the ambient

temperature.

B25 Voltage Sensor

Module

This module is based on principle of

resistive voltage divider design.

Arduino analog input voltages up to

5V, the voltage detection module

input voltage not greater than

5Vx5=25V or 3.3Vx5=16.5V.

Arduino AVR chips have 10-bit

AD, so this module simulates a

resolution of 0.00489V (5V/1023),

so the minimum voltage of input

voltage detection module is

0.00489V x 5 = 0.02445V.

Detect voltage drop

across the resistor

connected in series to

the solar cell. The

voltage drop is used to

calculate the current

flows in the solar cell

circuit.

30 Ω Resistor

A resistor is a passive two-terminal

electrical component that

implements electrical resistance as a

circuit element. Carbon film

resistors are a fixed form type

resistor.

• Resistance: 30 Ω

• Film: Carbon Film

• Tolerance: 5%

• Power rating: 1/4Watt

Connect in series to

the solar cell to obtain

the voltage drop

across it.

220 Ω Resistor

A resistor is a passive two-terminal

electrical component that

implements electrical resistance as a

circuit element. Carbon film

Used in LCD

connection to prevent

burn.

42

resistors are a fixed form type

resistor.

• Resistance: 220 Ω

• Film: Carbon Film

• Tolerance: 5%

Power rating: 1/4Watt

10kΩ Potentiometer

A three-terminal resistor with a

sliding or rotating contact that

forms an adjustable voltage divider.

If only two terminals are used, one

end and the wiper, it acts as a

variable resistor or rheostat.

• Value: 10K ohm

• Type: Linear potential

meter

• Power: 1/4 Watts

Used in LCD

connection to control

the contrast of

wording.

 The system proposed should include Arduino programming in determining the

relationship between solar irradiance, current and voltage in the circuit. Figure 3.16

illustrates the series circuit of a solar cell and a 30Ω resistor.

Figure 3.16: Series Circuit of Solar Cell and 30 Ω Resistor

 Arduino programming with C or C++ language will be used to interpret data

obtained from temperature sensor and voltage sensor module connected to solar cell.

The voltage sensor module is used to determine the voltage drop, Vd across the

resistor connected in series to the solar cell. By applying the Ohm’s law, V = IR, the

current flows in the circuit can be determined. The current, I flows in the circuit as

showed in Figure 3.10 at any instant can be calculated, which

43

𝐼 =
𝑉𝑑

30
.

(3.7)

The current data is used to calculate the real time solar irradiance based on the

relationship developed between solar irradiance, voltage and current output from

solar cell in the data collection phase. At data collection phase, the current and voltage

readings from the voltage sensor module will be compared to a multimeter reading to

evaluate the accuracy of the voltage sensor module. Solar irradiance meter,

multimeter and voltage sensor module are the equipment and components that used

to collect the parameters which are the solar irradiance, current and voltage. Table 3.6

shows the list of equipment and components used with the parameters to be measured.

Table 3.7: List of Equipment/Components and the Parameters to be Measured

Equipment/ Component Parameters to be measured

Seaward Solar Irradiance Meter Solar Irradiance [W/m2]

Multimeter Current [mA]

Voltage Sensor Module Voltage [V]

Figure 3.17 shows the data collection by using voltage sensor module, multimeter

and solar irradiance meter. The recorded parameters will be used to plot graph to

obtain the relationship between the solar irradiance, current and voltage in Microsoft

Excel. A suitable line of equation is drawn, and the equation is obtained for the

programming purpose in Arduino. Table 3.7 shows the recorded readings for solar

irradiance, current and voltage.

44

Figure 3.17: Data Collection by Using Voltage Sensor Module, Multimeter and Solar

Irradiance Meter

Table 3.8: Recorded Solar Irradiance, Current and Voltage Readings

No

Solar Irradiance

Meter
Multimeter Voltage Sensor |𝐴𝑝𝑝𝑟𝑜𝑥−𝐸𝑥𝑎𝑐𝑡|

(mA)

Error

(%)

Solar Irradiance

[W/m2]

Current

[mA]

Current

[mA]

Voltage

[V]

1 239 7.79 7.32 0.2197 0.47 6.03

2 237 7.79 6.51 0.1953 1.28 16.43

3 239 8.18 7.32 0.2197 0.86 10.51

4 244 8.19 6.51 0.1953 1.68 20.51

5 245 8.22 7.32 0.2197 0.9 10.95

6 257 8.64 8.14 0.2441 0.5 5.79

7 242 8.63 8.14 0.2441 0.49 5.68

8 252 8.65 8.14 0.2441 0.51 5.90

9 267 8.97 8.14 0.2441 0.83 9.25

10 255 8.98 8.14 0.2441 0.84 9.35

11 261 9.3 8.14 0.2441 1.16 12.47

12 275 9.3 8.14 0.2441 1.16 12.47

13 271 9.3 8.14 0.2441 1.16 12.47

14 264 9.38 8.14 0.2441 1.24 13.22

15 274 9.38 8.14 0.2441 1.24 13.22

16 265 9.35 8.95 0.2686 0.4 4.28

17 271 9.74 8.95 0.2686 0.79 8.11

18 299 10.06 8.95 0.2686 1.11 11.03

19 292 10.08 8.95 0.2686 1.13 11.21

20 313 10.55 9.77 0.293 0.78 7.39

21 314 10.54 9.77 0.293 0.77 7.31

22 312 10.66 9.77 0.293 0.89 8.35

45

23 318 11.22 9.77 0.293 1.45 12.92

24 321 11.22 9.77 0.293 1.45 12.92

25 326 11.21 9.77 0.293 1.44 12.85

26 325 11.19 10.58 0.3174 0.61 5.45

27 336 11.47 10.58 0.3174 0.89 7.76

28 336 11.51 10.58 0.3174 0.93 8.08

29 340 11.51 10.58 0.3174 0.93 8.08

30 321 11.49 10.58 0.3174 0.91 7.92

 Table 3.7 above shows part of the recorded data. The readings are recorded in

such a table in Microsoft Excel and then a graph is plot. The error between the actual

reading (multimeter reading) and the approximate reading (sensor reading) is calculated

based on the following equation:

𝐸𝑟𝑟𝑜𝑟 (%) =
| 𝐴𝑝𝑝𝑟𝑜𝑥 − 𝐴𝑐𝑡𝑢𝑎𝑙 |

𝐴𝑐𝑡𝑢𝑎𝑙
 𝑥 100%

(3.8)

 Equation (3.8) is crucial for knowing how accurate the sensor is reading compared

to the actual reading. Multiple calibration process should be done to achieve better

accuracy of system. Ideal accuracy of system is having a percentage of error less than

10%. Figure 3.18 illustrates the graph of solar irradiance vs current plotted based on Table

3.6

Figure 3.18: Graph of Solar Irradiance vs Current

46

 The relationship between the solar irradiance and the current can be interpreted

by an equation based on the collected data. The equation will be used in Arduino

programming to obtain the respective solar irradiance at any instant where the current or

voltage in the circuit is measured by using the voltage sensor. The calculated solar

irradiance by Arduino Uno will be displayed on LCD along with the ambient temperature

data obtained from temperature sensor.

47

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

Results gathered from data testing is analysed and compared with a more advance

and expensive infrared camera. This is to get the efficiency of the design infrared

camera in order for it to captured accurate temperature and perform the developed

algorithm efficiently.

4.2 Results

All of these preliminary results is gathered to test the simple algorithm which is

compared the cell temperature with ambient temperature. This chapter is discussing

about the experiment that has been done on using the thermal camera and the data

acquired is analysed. Thermal data is recorded based on the experimental setup which

is 3 meter above the solar panel and 60 ° setup angle . The data is compared between

the thermal image temperature and the temperature calculation in android application

. The analysed result will then use to determine the location of hotspot ,and verifying

whether the elevated temperature spot is a hotspot .

Thermal images of solar several solar module is taken under direct sunlight as

show in Figure 4-6 and the temperature is displayed through the infrared camera.

Moreover, the short circuit current and open circuit voltage is also measured using a

multi-meter in order to analyzed the PV module performance under normal operating

conditions.

 ΔT*HS = Tcell – Tamb

 = 41.3°C - 25°C

 = 16.3°C

48

Figure 4-1 Temperature of solar cell of module 1.

It can be assumed that there no hotspot phenomenon on that solar module as it

temperature difference does not exceed 30°C. Visual analyzing of the figure above

can be seen that there is no significant difference in the solar cell temperature.

Table 4.1: Short circuit current and open circuit voltage reading

Short circuit current, Isc 3.45A

Open circuit voltage, Voc 21.0V

Figure 4-2 Data measured from the output of solar module

 ΔT*HS = Tcell – Tamb

 = 39.3°C - 25°C

 = 14.3°C

49

Figure 4-3 Temperature of solar cell of module 3.

ΔT*HS = Tcell – Tamb

 = 44.2°C - 25°C

 = 19.2°C

Figure 4-4 Temperature of other solar cell from the solar module.

ΔT*HS = Tcell – Tamb

 = 36.1°C - 25°C

 = 11.1°C

ΔT*HS = Tcell – Tamb

 = 28.5°C - 25°C

 = 3.5°C

50

Figure 4-5 Solar cell with the highest temperature from solar module 1.

ΔT*HS = Tcell – Tamb

 = 47.6°C - 25°C

 = 22.6°C

Fig 11. Module analyzer

51

4.3 System Integration

 At the stage of system integration ,the hardware and software components of this

system will be integrating together .Therefore ,the system integration framework

should be used to illustrate the system description and operation as well as

contributing a clear set of operations that are associated with hotspot detection system

.This framework is aimed to reduce the complexity and time usage on detecting the

hotspot on solar panel .The system integration is shown as Figure 4-6.

Figure 4-6 System integration

4.4 Hotspot detection

The experiment was carried out under 2 different times which is 11 am and 12 pm

.The date of experiment was 10 May 2018 .The thermal data was recorded by using

different equipment such as IR thermometer for detecting the surface temperature of

solar panel and digital thermometer for detecting the ambient temperature .The set up

of the experiment is shown in Figure 4-7.

52

Figure 4-7 setup of the experiment

The insolation level from 11 am to 12 pm vary from 900 W/m2 to 950 W/m2 and

the data was recorded by solar power meter to use as a parameter for Matlab GUI

.The second parameter which is important for cell temperature calculation is NOCT

of solar panel .The NOCT of solar panel can be obtained from the datasheet behind

the solar panel or in online document .In this project ,the model of solar panel is

SolarWorld SW80 mono R5E ,the NOCT this solar panel is 45.5°C .as shown in

Figure 4-8.

Figure 4-8 Datasheet of SW80 mono R5E

The experiment is start by identify the insolation level and the NOCT and input it

into calculation panel ,then connect the Arduino UNO along with the thermal sensor

to the computer to let them identify the comport that is available to connect .After

everything is connected ,the GUI will run and updating the temperature array

provided the device must be positioned to face the solar panel .The below section

show the result of experiment on 2 different time which are 11 am and 12 pm .

CASE 1 (11am)

Ambient temperature (system) :38°C

Ambient temperature (digital thermometer):36.4°C

Insolation (solar power meter):927.5 W/m2

Calculated temperature (system):67.56°C

53

Table 9 Temperature data (IR thermometer)

52.3 57.7 59.2 58.8

52.9 59.2 58.7 59.8

62.5 63.7 63.6 62.5

60 62.7 62.6 62.5

60.8 62.1 61.8 60

58.3 60.3 59.2 57.8

58.3 59.8 59.8 58.3

57 58.6 59 58.6

55.7 56.1 57.1 58.3

Table 10 Temperature data (system)

55.9 61.1 62.6 60.4

54.6 60.3 59.8 60.3

63.6 64.6 64.6 63

62.8 64 64.3 65

63.3 63.3 62.9 61.8

60.1 61.2 60.3 59.8

60.2 61 61 60.1

59.3 59.8 60.2 59.8

57.3 57.4 58.5 59.6

CASES2(12PM)

Ambient temperature (system) :38.3°C

Ambient temperature (digital thermometer):36.9°C

Insolation (solar power meter):940.7 W/m2

Calculated temperature (system):68.28°C

Table 11 Temperature data (IR thermometer) 12PM

55.2 55.1 59.7 56.5

55.2 58 56.5 53.6

55.4 57.5 56.5 55

57.1 59.6 59.2 58.2

57.1 59.6 59.7 58.1

56.6 57.6 57.7 55.3

55.2 59.5 59.1 58.3

59 60.1 60.1 58.8

57.9 58.1 58.6 58.2

54

Table 12 Temperature data (system) 12PM

56.4 56.2 60.2 56.7

56.8 60 57.7 54

57 59.8 57.7 56

58.3 61.1 59.8 60.2

58.4 61.1 60.1 60.1

57.5 59.8 59.6 56.4

56.4 60.1 59.8 59.4

59.7 60.5 60.4 59.3

58.9 59.1 59.6 59.2

From the result above ,it showed that there is some difference in the data from

both system and IR thermometer ,the system developed sensing and measuring the

temperature at a higher reading than the IR thermometer ,although the distance of

measurement for both instrument are the same .The difference ranged from 1°C to

2°C .The factor could be possibly caused by their manufactured sensitivity ,although

they work with the same mechanism which is sensing the infrared radiation .The IR

thermometer is used to measure the surface temperature by the assist of laser pointer

.As for D6T-44L ,it already consist of 4x4 array ,so the temperature that measure by

this particular thermal sensor is actually an area temperature of the surface .Therefore

,the reading are different from one another .

4.5 MATLAB GUI Interface

 A graphical user interface is constructed by using Matlab for monitoring the

temperature and show it in 4x4 arrays from solar panel .It has all feature which show

the real time value ,such as ambient temperature , calculated cell temperature and a

second 4x4 array which shows the location of hotspot if any array temperature is

higher than the calculated cell temperature .The Matlab receive the data through serial

reading and the data is process and divided into pixel .The pixel is able to show the

colour based on the temperature level .The GUI of the system is shown in Figure 4.9 .

55

Figure 4-9 Graphical User Interface of Hotspot Detection System

4.6 Irradiance Measurement

 This part describes the entire project progress outcome, from the data collection

procedure at the very beginning to the analysing data and then design of system.

Several times of data collection have been done to determine the relationship between

current flows from solar cell and the voltage and current readings by recording these

parameters corresponding to each solar irradiance level. These parameters have been

recorded and the error was determined to determine the accuracy of sensor and for

calibration purposes during the system test. The parameters recorded are plotted into

graphs to illustrate the relationship between current, voltage and solar irradiance and

an equation of relation is determined. This equation of relation is used for Arduino

programming by input current to determine the respective solar irradiance. The input

current is determined by using the Ohm’s law, where the voltage reading from voltage

sensor module is used to calculate the current. The system developed is always

compared to the Seaward Solar Irradiance Meter to ensure the accuracy of the system

is improved through calibration process.

4.6.1 Data Collection

 At the initial state of data collection, an experiment is conducted to determine if

there is any relationship between current flows from solar cell and the solar irradiance.

The circuit connection and setup are as shown in Figure 4.10. The devices and

components used are solar cell, 30Ω resistor, multimeter with crocodile clips and a

56

Seaward Solar Survey 200R. The current reading measured by multimeter and the

solar irradiance reading measured by Seaward Solar Survey 200R is recorded in Table

4.5.

Figure 4.10: Measurement of Current and Solar Irradiance

57

Table 4.13: Table of Current Readings from Multimeter and Solar Irradiance Readings

Current,

I(mA)

Seaward Solar Survey 200R

Irradiance, Irr(W/m2)

Current,

I(mA)

Seaward Solar Survey 200R

Irradiance, Irr(W/m2)

3.76 122 14.27 463

2.83 123 17.43 502

3.95 127 17.49 503

4.16 135 17.52 504

4.31 141 17.5 535

4.48 147 17.65 538

5.08 161 17.55 535

5.36 175 17.62 554

5.54 181 17.54 550

5.61 184 17.98 549

5.65 184 17.49 550

5.76 189 17.42 549

5.87 191 5.5 183

5.97 196 5.49 180

6.04 200 5.52 180

6.37 210 5.31 177

6.67 220 5.31 174

9.6 320 4.9 159

13.26 442 4.93 160

13.58 451 4.62 149

13.81 458 4.28 140

13.92 463 4.28 147

13.69 456 4.05 131

13.68 457 3.61 124

13.7 458 3.24 110

13.81 461 3.26 114

14.06 465 3.11 107

14.3 476 3.11 105

58

 A graph of solar irradiance vs current output from solar cell has been plotted in

Figure 4.11. From the graph, the relationship between solar irradiance and current

output from solar cell is said to be a linear relationship. As the solar irradiance

increases, the output current from solar cell also increases.

Figure 4.11: Graph of Solar Irradiance vs Current Output of Solar Cell

 The data collection process also involves determining a suitable value for the

resistor which must be connected in series to the solar cell. A 100kΩ is used to repeat

the experiment and the same parameters are recorded in Table 4.6.

Table 4.14: Table of Current Readings and Actual Solar Irradiance Readings

Current,

I(uA)

Seaward Solar Survey

200R

Irradiance, Irr(W/m2)

Current,

I(uA)

Seaward Solar Survey

200R

Irradiance, Irr(W/m2)

53.9551 0 60.7910 486

53.9551 0 60.7910 501

54.1992 0 61.0352 503

54.4434 100 60.7910 505

54.4434 104 60.5469 514

54.6875 107 60.5469 514

54.1992 113 60.7910 517

54.9316 126 60.5469 519

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20

S
o

la
r

Ir
ra

d
ia

n
ce

 (
w

/m
2

)

Current (mA)

59

54.9316 128 61.0352 521

55.6641 128 60.5469 530

55.6641 139 60.5469 531

55.9082 141 60.7910 534

56.3965 154 60.5469 537

56.6406 155 61.0352 538

56.1523 163 60.5468 547

57.1289 170 60.7910 549

56.1523 170 60.5469 550

57.1289 171 60.7910 556

56.8848 172 60.7910 556

55.9082 178 60.7910 563

56.8848 180 60.5469 565

56.6406 193 60.7910 566

56.8848 200 60.7910 572

56.6406 200 60.5469 572

56.8848 200 60.5469 578

57.1289 208 60.7910 583

57.6172 212 60.7910 586

57.3730 215 60.5469 594

57.3730 221 60.5469 594

57.3730 227 60.7910 594

57.8613 229 60.7910 601

57.8613 238 60.7910 606

57.8613 241 60.5469 613

58.1055 243 61.0352 619

57.6172 249 60.7910 624

58.1055 250 60.5469 632

58.1055 262 60.7910 632

57.8613 266 60.7910 632

58.5937 266 60.5469 635

58.5937 272 60.7910 644

60

58.8379 293 61.0352 648

58.8379 306 60.7910 667

59.3262 318 60.7910 671

58.3262 319 59.5703 678

59.5703 321 60.7910 679

59.5703 345 61.0352 688

59.8415 356 61.0352 694

59.8145 362 61.0352 694

60.0586 368 61.0352 700

60.0586 369 61.2793 705

59.8145 375 61.7910 710

59.8145 378 61.0352 714

59.8145 381 61.0352 715

60.0586 391 61.0352 718

60.0586 397 61.0352 718

60.3027 400 61.0352 719

59.8145 401 61.0352 720

60.0586 417 60.5468 724

60.0586 422 60.5469 724

60.3027 443 60.5690 724

60.5469 443 60.7910 725

60.3027 454 60.3027 725

60.3027 454 60.0586 725

60.5469 464 60.7910 727

60.7910 482 60.7910 728

61.0352 486

 In Figure 4.12, the graph illustrated shows inconsistent current readings at

different irradiance level, unlike for the 30Ω resistor circuit. Before trying 30Ω

resistor, a 1Ω and 5Ω resistors are tried, but the voltage sensor is not detecting any

voltage drop across the small value resistors. The voltage sensor only showing output

when the solar irradiance is high, about 500W/m2 and above. Thus, the system design

61

will be using the 30Ω resistor. The following experiments will be using 30Ω resistor

as well.

Figure 4.12: Graph of Solar Irradiance vs Current Output of Solar Cell

 A more complete, first data collection is done and recorded in table to obtain the

equation of relation and calculating the percentage of error between the sensor reading

and the multimeter reading to attain a better accuracy of system. The accuracy of

system is to be improved through calibration process.

-100

0

100

200

300

400

500

600

700

800

900

53 54 55 56 57 58 59 60 61 62 63

S
o

la
r

Ir
ra

d
ia

n
ce

 (
w

/m
2
)

Current (uA)

62

Figure 4.13: Graph of Solar Irradiance vs Current Output of Solar Cell

 Figure 4.4 illustrates the relationship of solar irradiance and current output from

solar cell in a consistent linear line of graph, with minimal outliers. The relation can

be representation by the equation (4.1):

𝑦 = 25.944𝑥 + 36.252 (4.1)

which y is the solar irradiance [w/m2] and x is the current output from solar cell [mA].

The experiment above is repeated as second data collection on another day to ensure

the results are consistent, with the same components and devices. The results are

recorded in table. Figure 4.14 illustrates a graph plotted by using data in table.

y = 25.944x + 36.252

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40

S
o
la

r
Ir

ra
d

ia
n
ce

 (
w

/m
2
)

Current (mA)

63

Figure 4.14: Graph of Solar Irradiance vs Current Output of Solar Cell

 The repeated experiment verified that the relation between solar irradiance and

current output from solar cell is linear. Thus, the system will be using the equation

(4.2) to compute the solar irradiance.

𝑦 = 26.652x + 20.934

(4.2)

4.6.2 Calibration and Accuracy of System

 Equation (4.2) is applied to the system designed and a lot of data is taken again to

calculate the percentage of error between sensor reading and multimeter reading,

followed by calibration process. The data before calibration is recorded in table (refer

to Appendix C). Figure 4.15 and Figure 4.16 shows a photo of measurement taken

from two systems, the system developed and Seaward Solar Survey 200R device.

y = 26.652x + 20.934

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

S
o

la
r

Ir
ra

d
ia

n
ce

 (
w

/m
2

)

Current (mA)

64

Figure 4.15: Comparing System to Actual Solar Irradiance Reading

Figure 4.16: Comparing System to Actual Solar Irradiance Reading

65

Figure 4.17: Solar Irradiance graph of Seaward Irradiance Meter and System Developed

before Calibration

 From table (refer to Appendix C) and Figure 4.8, there is some error and

difference of solar irradiance readings between the system developed and the Seaward

Solar Survey 200R device. Thus, the data was divided into several clusters and the

average difference for that specific cluster is calculated. The average difference will

be used for the first calibration as shown in the Table 4.7 as shown below.

Table 4.15: First Calibration

Cluster Calibration

Irradiance <= 400 w/m2 + 58.125 w/m2

400 w/m2 < Irradiance <= 600 w/m2 + 46 w/m2

600 w/m2 < Irradiance <= 700 w/m2 + 54.7 w/m2

700 w/m2 < Irradiance <= 800 w/m2 + 60.4583 w/m2

800 w/m2 < Irradiance <= 900 w/m2 + 60.075 w/m2

Irradiance > 900 w/m2 + 81.5556 w/m2

After the first calibration, the data collection process is repeated. The new

percentage of errors are calculated and tabulated as shown in table (refer to Appendix

D) and a graph is plotted in Figure 4.18.

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160

S
O

L
A

R
 I

R
R

A
D

IA
N

C
E

 (
W

/M
2
)

CURRENT (MA)

Seaward Irradiance Meter System developed

66

Figure 4.18: Solar Irradiance graph of Seaward Irradiance Meter and System Developed

after First Calibration

Since the accuracy for the system developed for solar irradiance at 590 w/m2 is

high enough (less than 10% error), the second calibration will be done for the clusters

with solar irradiance lower than 590 w/m2. The second calibration is as shown in

Table 4.8.

Table 4.16: Second Calibration

Cluster Calibration

Irradiance <= 260 w/m2 -33.5263 w/m2

26 w/m2 < Irradiance <= 300 w/m2 -49 w/m2

300 w/m2 < Irradiance <= 350 w/m2 - 48.8883 w/m2

350 w/m2 < Irradiance <= 405 w/m2 -57.7143 w/m2

405 w/m2 < Irradiance <= 510 w/m2 -44.5625 w/m2

0

100

200

300

400

500

600

700

800

900

System Developed SEAWARD Solar Irradiance Meter

67

After the second calibration, the data is collected again and recorded in table, to

check if the error is reduced to desired level. Figure 4.19 illustrates a graph plotted

by using data in table.

Figure 4.19: Solar Irradiance graph of Seaward Irradiance Meter and System Developed

after Second Calibration

 From Figure 4.20, we can see the percentage of error of solar irradiance readings

between the system developed and Seaward Solar Survey 200R device has been

reduced. The percentage of error is successfully been reduced to around 10% or

lesser. Figure 4.21 shows a photo of prototype testing. A prototype of this system is

developed and compared the solar radiation measurement with a Seaward Solar

Survey 200R device. The comparison shows slight difference in the solar irradiance

measurement. A mini solar cell is placed on top on the surface to collect solar

radiation and converts into electricity. A temperature sensor LM35 is placed on the

right surface, located close to the bottom surface. The solar irradiance is computed

and displayed on the yellow backlight LCD. The prototype is powered by a 9V

battery.

0

100

200

300

400

500

600

700

System Developed SEAWARD Solar Irradiance Meter

68

Figure 4.20: Comparing Solar Irradiance Reading from the System Developed and

Seaward Solar Survey 200R Device

Figure 4.21: Final Prototype of the System Developed

69

CHAPTER 5

CONCLUSION

5.1 Introduction

 In this chapter ,the overall result will be conclude and discussed .In conclusion ,

the system developed will be able to detect the hotspot on solar panel .The hotspot

detection system is developed for solar panel by integrating the source code from

Arduino with Matlab GUI . A system that can analyse and indicate the location of

hotspot is built through implementation of the equation in Matlab GUI .

5.2 Limitation

 Since the algorithm of the hotspot detection system is limited to detect hotspot

through the magnitude of temperature .Therefore ,the system is not able to further

verify whether the hotspot is caused by electrical fault through I-V characteristic

.Therefore ,the only thing that could detect the hotspot is through the comparison of

focused cell temperature with the built device such as IR thermometer or IR camera

and cell temperature calculated from application.

Even though the device able to measure solar radiation and ambient temperature,

the accuracy can be further improved. The system developed used a voltage sensor

module with ±0.02V is having not enough resolution for the voltage drop across the

small value resistor connected to the solar cell. The solar cell with 30mA maximum

current output is too small to be detected. Minimal voltage drops across the 30 Ω

resistor is not detectable due to the low resolution of voltage sensor module. As the

voltage drop increases to a certain level which is detectable by the voltage sensor

module, the new solar irradiance only able to be computed.

5.3 Future Recommendation

 This device can set to nearby the solar panel all the time and can act as a

surveillance system , so that any user can access to system through implementation

of IoT. It will reduce the time taken for hotspot detection in solar panel. To improve

the device, a voltage sensor or current sensor with better resolution and accuracy which can

70

detect extremely small current flows from the solar cell should be implemented. A voltage

amplifier circuit can also be inserted in the circuit to amplify the voltage drop. In the other

way round, a solar cell with greater output current can be used. However, the size of the solar

cell should be small enough to be placed in a handheld device. More features such as data

logging, angle measurement and compass can be added to the system too.

71

REFERENCES

1. Vivek Khambalkar, Sandip Nage, Renewable energy: An assessment of public

awareness (July, 2010)

2. Solar Energy Australia, Commercial solar energy, solar panels, industry news,

technology (Oct 28, 2014)

3. S. Nann and K. Emery, “Spectral effects on PV-device rating,” Solar Energy Materials

and Solar Cells, vol. 27, no. 3, pp. 189–216, 1992.

4. A. Parretta, M. Bombace, G. Graditi, and R. Schioppo, “Optical degradation of long-

term, field-aged c-Si PV modules,” Solar Energy Materials and Solar Cells, vol. 86,

no. 3, pp. 349–364, 2005.

5. S. Kaplanis and E. Kaplani, “Energy performance and degradation over 20 years

performance of bp c-Si PV modules,” Simulation Modelling Practice and Theory, vol.

19, no. 4, pp. 1201–1211, 2011.

6. Pragyanshree Samantaray, Sushree Sasmita, Performance of Solar PV Module under

partial shading conditions (2016)

7. April M. Salazar, Erees Queen B. M acabebe1, Hotspots Detection in PV Modules

Using Infrared Thermography (2015)

8. Genevieve C. Ngo, Erees Queen B. Macabebe, Image Segmentation Using K-Means

Color Quantization and Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) for Hotspot Detection in PV Modules (2016)

9. Klaus Ramspeck, Stefan Schenk, Denny Duphorn, Axel Metz, Michael Meixner, In-

line thermography for reliable hot spot detection and process control (2014)

10. R. Moretón,, E. Lorenzo, L. Narvarte, Experimental observations on hotspots and

derived acceptance/rejection criteria.

11. Modules Using Infrared Thermography,” MATEC Web of Conferences, vol. 70, p.

10015, 2016.

12. E. Kaplani, “Detection of Degradation Effects in Field-Aged c-Si Solar Cells through

IR Thermography and Digital Image Processing,” International Journal of

Photoenergy, vol. 2012, pp. 1–11, 2012.

13. A. Sinha, O. S. Sastry, and R. Gupta, “Detection and characterisation of delamination

in PV modules by active infrared thermography,” Nondestructive Testing and

Evaluation, vol. 31, no. 1, pp. 1–16, Jan. 2016.

14. C. Dechthummarong, B. Wiengmoon, D. Chenvidhya, C. Jivacate, and K. Kirtikara,

“Physical deterioration of encapsulation and electrical insulation properties of PV

modules after long-term operation in Thailand,” Solar Energy Materials and Solar

Cells, vol. 94, no. 9, pp. 1437–1440, Sep. 2010.

15. M. C. A. García, W. Herrmann, W. Böhmer, and B. Proisy, “Thermal and electrical

effects caused by outdoor hotspot testing in associations of PV cells: OUTDOOR

HOT-SPOT TESTING,” Progress in PVs: Research and Applications, vol. 11, no. 5,

pp. 293–307, Aug. 2003.

16. “Technical article on infrared cameras.” [Online]. Available:

http://www.optris.com/technical-article-infrared-cameras. [Accessed: 14-Nov-2017].

https://medium.com/@solarenergy?source=post_header_lockup

72

17. “focal plane array - Google Search.” [Online]. Available:

https://www.google.com/search?q=focal+plane+array&rlz=1C1CHBF_enMY721M

Y721&oq=focal+plane+array+&aqs=chrome..69i57.3932j0j7&sourceid=chrome&ie

=UTF-8. [Accessed: 14-Nov-2017].

18. Omron, “Infrared MEMS Thermal Sensor D6T Product Series.”

19. N. I. Ahmad, M. Z. A. Kadir, M. Izadi, N. H. Zaini, M. A. . Radzi, and N. Azis, “Effect

of temperature on a poly-crystalline solar panel in large scale solar plants in Malaysia,”

2015, pp. 244–248.

20. “P/N Junctions and Band Gaps.” [Online]. Available:

http://solarcellcentral.com/junction_page.html. [Accessed: 15-Nov-2017].

21. “hot-spot-mitigation.pdf.” [Online]. Available:

https://docs.google.com/viewer?url=http%3A%2F%2Fwww.dupont.com%2Fcontent

%2Fdam%2Fdupont%2Fproducts-and-services%2Fsolar-PV-materials%2Fsolar-

PV-materials-landing%2Fdocuments%2Fhot-spot-mitigation.pdf. [Accessed: 15-

Nov-2017].

22. “Shading PVEducation.” [Online]. Available:

http://www.pveducation.org/pvcdrom/modules/shading. [Accessed: 17-Nov-2017].

23. G. Shobana, P. Sornadeepika, and R. Ramaprabha, “Global Maximum Power Point

Tracking of PV Array under Partial Shaded Conditions,” International Journal of

Engineering Research, vol. 2, pp. 219–223, Jul. 2013.

24. Guide To Interpreting I-V Curve Measurements of PV Arrays. Solmetric Application

Note PVA-600-1, 2011.

25. C. Hellier, Handbook of Nondestructive Evaluation ,first edition. McGraw-Hill, 2001.

26. X. Maldague, Application of Infrared Thermography In Nondestructive Evaluation.

Université Laval Quebec City, Québec.

73

APPENDIX A

HOTSPOT DETECTION ARDUINO CODE

/*

**

** Declaration for Mem Thermal Sensor **

**

*/

#include <WireExt.h>

#include <Wire.h>

#define D6T_addr 0x0A

#define D6T_cmd 0x4C

#define ByteOfData 35

byte rbuf[ByteOfData];

char ReadSerialCmd;

String Temperature;

float Temp_float[17];

void setup()

{

Wire.begin();

Serial.begin(115200);

}

void loop()

{

Temperature = GetTemperatureData();

if (Serial.available() > 0)

{

ReadSerialCmd = Serial.read();

if (ReadSerialCmd == 'R')

{

Serial.println(Temperature);

}

}

}

String GetTemperatureData()

{

int i;

74

float Temp[17];

String tTemperature;

Wire.beginTransmission(D6T_addr);

Wire.write(D6T_cmd);

Wire.endTransmission();

delay(70);

i = 0;

if (WireExt.beginReception (D6T_addr) >= 0) {

while (i < (ByteOfData)) {

rbuf[i] = WireExt.get_byte ();

//Serial.println(rbuf[i]);

i++;

}

WireExt.endReception ();

}

for (i = 0; i < 17; i++)

{

Temp[i] = ((rbuf[(i * 2)] + (rbuf[(i * 2 + 1)] << 8)) * 0.1);

}

// The Camera is Fixed Vertically Inversed So the sensor value need to be inversed

Temp_float[0] = Temp[0]; //1st Array is Ambient Temperature

for (i = 1 ; i < 17 ; i++)

{

Temp_float[i] = Temp[17 - i];

}

for (i = 0 ; i < 17 ; i ++)

{

tTemperature = tTemperature + Temp_float[i];

if (i < 16)

{

tTemperature = tTemperature + ",";

}

}

return tTemperature;

}

75

APPENDIX B

MATLAB CODE

function varargout = webcam(varargin)

% TEMPERATURESENSORGUI MATLAB code for TemperatureSensorGUI.fig

% TEMPERATURESENSORGUI, by itself, creates a new

TEMPERATURESENSORGUI or raises the existing

% singleton*.

%

% H = TEMPERATURESENSORGUI returns the handle to a new

TEMPERATURESENSORGUI or the handle to

% the existing singleton*.

%

% TEMPERATURESENSORGUI('CALLBACK',hObject,eventData,handles,...)

calls the local

% function named CALLBACK in TEMPERATURESENSORGUI.M with the

given input arguments.

%

% TEMPERATURESENSORGUI('Property','Value',...) creates a new

TEMPERATURESENSORGUI or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before TemperatureSensorGUI_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to TemperatureSensorGUI_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help TemperatureSensorGUI

% Last Modified by GUIDE v2.5 02-May-2018 22:18:02

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @webcam_OpeningFcn, ...

 'gui_OutputFcn', @webcam_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

76

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before TemperatureSensorGUI is made visible.

function webcam_OpeningFcn(hObject, eventdata, handles, varargin)

global isLooping

global delayReceive

global toggle

global LowestTemp;

global HighestTemp;

global Temperature;

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to TemperatureSensorGUI (see VARARGIN)

serialPorts = instrhwinfo('serial');

nPorts = length(serialPorts.SerialPorts);

set(handles.lstPort, 'String', ...

 [{'Select a port'} ; serialPorts.SerialPorts]);

set(handles.lstPort, 'Value', 2);

axes(handles.axes1);

vid= videoinput('winvideo',1);

hImage=image(zeros(1024,768,3),'Parent',handles.axes1);

preview(vid,hImage);

%automatic loop purpose

isLooping = 0;

delayReceive = 0.05;

toggle = 0;

LowestTemp = 0;

HighestTemp = 0;

% Choose default command line output for TemperatureSensorGUI

handles.output = hObject;

77

% Update handles structure

guidata(hObject, handles);

Main_Loop(hObject, handles);

% UIWAIT makes TemperatureSensorGUI wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = webcam_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on selection change in lstPort.

function lstPort_Callback(hObject, eventdata, handles)

% hObject handle to lstPort (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns lstPort contents as cell array

% contents{get(hObject,'Value')} returns selected item from lstPort

% --- Executes during object creation, after setting all properties.

function lstPort_CreateFcn(hObject, eventdata, handles)

% hObject handle to lstPort (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

78

% --- Executes on button press in cmdConnect.

function cmdConnect_Callback(hObject, eventdata, handles)

% hObject handle to cmdConnect (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if strcmp(get(hObject,'String'),'Connect') % currently disconnected

 serPortn = get(handles.lstPort, 'Value');

 if serPortn == 1

 errordlg('Select valid COM port');

 else

 serList = get(handles.lstPort,'String');

 serPort = serList{serPortn};

 serConn = serial(serPort, 'TimeOut', 1, ...

 'BaudRate', str2num(get(handles.txtBaudrate, 'String')));

 try

 fopen(serConn);

 handles.serConn = serConn;

 % enable Tx text field and Rx button

 % set(handles.Tx_send, 'Enable', 'On');

 % set(handles.rxButton, 'Enable', 'On');

 set(hObject, 'String','Disconnect')

 catch e

 errordlg(e.message);

 end

 end

else

 % set(handles.Tx_send, 'Enable', 'Off');

 % set(handles.rxButton, 'Enable', 'Off');

 set(hObject, 'String','Connect')

 fclose(handles.serConn);

end

Main_Loop(hObject, handles);

guidata(hObject, handles);

function txtBaudrate_Callback(hObject, eventdata, handles)

% hObject handle to txtbaudrate (see GCBO)

79

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of txtbaudrate as text

% str2double(get(hObject,'String')) returns contents of txtbaudrate as a double

% --- Executes during object creation, after setting all properties.

function txtBaudrate_CreateFcn(hObject, eventdata, handles)

% hObject handle to txtbaudrate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function txtCommand_Callback(hObject, eventdata, handles)

% hObject handle to txtCommand (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of txtCommand as text

% str2double(get(hObject,'String')) returns contents of txtCommand as a double

TxText = get(handles.txtCommand, 'String');

fprintf(handles.serConn, TxText);

%currList = get(handles.history_box, 'String');

%set(handles.history_box, 'String', ...

% [currList ; ['Sent @ ' datestr(now) ': ' TxText]]);

%set(handles.history_box, 'Value', length(currList) + 1);

%set(hObject, 'String', '');

% --- Executes during object creation, after setting all properties.

function txtCommand_CreateFcn(hObject, eventdata, handles)

% hObject handle to txtCommand (see GCBO)

80

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Send_Serial(handles, Tx)

%TxText = get(handles.txtCommand, 'String');

fprintf(handles.serConn, Tx);

function Receive_Serial(hObject,handles,d)

% d

% disp('d s value received')

% pause(2)

global EnableSaveFile;

global delayReceive

try

 RxText = fscanf(handles.serConn);

 TempArray = strsplit(RxText,',');

 determineTempLevel(TempArray);

 Update_Array(hObject,handles,TempArray,d);

% disp(TempArray(1))

 Update_Label(handles,TempArray(1));

 pause(delayReceive);

 if EnableSaveFile == 1

 Append_File(RxText);

 end

% currList = get(handles.history_box, 'String');

 if length(RxText) < 1

% RxText = 'Timeout @ ';

% set(handles.history_box, 'String', ...

% [currList ; [RxText datestr(now)]]);

 else

% set(handles.history_box, 'String', ...

% [currList ; ['Received @ ' datestr(now) ': ' RxText]]);

 end

81

% set(handles.history_box, 'Value', length(currList) + 1);

catch e

% disp(e)

end

function Update_Label(handles, Temperature)

global LowestTemp;

global HighestTemp;

global TempDouble;

TempDouble = str2double(Temperature);

disp('Update label loop')

% disp(TempDouble)

if (LowestTemp == 0)||(LowestTemp > TempDouble)

 LowestTemp= TempDouble;

end

if (HighestTemp == 0) ||(HighestTemp < TempDouble)

 HighestTemp=TempDouble;

end

disp('Update label inner loop')

set(handles.lblCurrentTemp,'String',(TempDouble));

set(handles.lblLowestTemp,'String',(LowestTemp));

set(handles.lblHighestTemp,'String',(HighestTemp));

 % Dont hv cam invert so no need TemperatureArray1

function Update_Array(hObject, handles, TemperatureArray1,d)

% d

% disp('Update_Array')

% pause(2)

global delayDraw;

global counterDraw;

counterDraw = 0;

delayDraw = 0;

%TemperatureArray=zeros(1,17);

counterDraw=counterDraw+1;

disp('in the outside loop')

TemperatureArray = TemperatureArray1;

 if (get(handles.chkHorizontalInverse,'Value')==1)

 TemperatureArray(2)=TemperatureArray1(5);

 TemperatureArray(3)=TemperatureArray1(4);

 TemperatureArray(4)=TemperatureArray1(3);

 TemperatureArray(5)=TemperatureArray1(2);

82

 TemperatureArray(6)=TemperatureArray1(9);

 TemperatureArray(7)=TemperatureArray1(8);

 TemperatureArray(8)=TemperatureArray1(7);

 TemperatureArray(9)=TemperatureArray1(6);

 TemperatureArray(10)=TemperatureArray1(13);

 TemperatureArray(11)=TemperatureArray1(12);

 TemperatureArray(12)=TemperatureArray1(11);

 TemperatureArray(13)=TemperatureArray1(10);

 TemperatureArray(14)=TemperatureArray1(17);

 TemperatureArray(15)=TemperatureArray1(16);

 TemperatureArray(16)=TemperatureArray1(15);

 TemperatureArray(17)=TemperatureArray1(14);

 end

if(counterDraw >= delayDraw)

disp('in the loop')

set(handles.Array11,'String',(TemperatureArray(2)));

set(handles.Array12,'String',(TemperatureArray(3)));

set(handles.Array13,'String',(TemperatureArray(4)));

set(handles.Array14,'String',(TemperatureArray(5)));

set(handles.Array21,'String',(TemperatureArray(6)));

set(handles.Array22,'String',(TemperatureArray(7)));

set(handles.Array23,'String',(TemperatureArray(8)));

set(handles.Array24,'String',(TemperatureArray(9)));

set(handles.Array31,'String',(TemperatureArray(10)));

set(handles.Array32,'String',(TemperatureArray(11)));

set(handles.Array33,'String',(TemperatureArray(12)));

set(handles.Array34,'String',(TemperatureArray(13)));

set(handles.Array41,'String',(TemperatureArray(14)));

set(handles.Array42,'String',(TemperatureArray(15)));

set(handles.Array43,'String',(TemperatureArray(16)));

set(handles.Array44,'String',(TemperatureArray(17)));

set(handles.Array11,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(2)));

set(handles.Array12,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(3)));

set(handles.Array13,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(4)));

set(handles.Array14,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(5)));

83

set(handles.Array21,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(6)));

set(handles.Array22,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(7)));

set(handles.Array23,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(8)));

set(handles.Array24,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(9)));

set(handles.Array31,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(10)));

set(handles.Array32,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(11)));

set(handles.Array33,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(12)));

set(handles.Array34,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(13)));

set(handles.Array41,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(14)));

set(handles.Array42,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(15)));

set(handles.Array43,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(16)));

set(handles.Array44,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(17)));

set(handles.BArray11,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(2)));

set(handles.BArray12,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(3)));

set(handles.BArray13,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(4)));

set(handles.BArray14,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(5)));

set(handles.BArray21,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(6)));

set(handles.BArray22,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(7)));

set(handles.BArray23,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(8)));

set(handles.BArray24,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(9)));

set(handles.BArray31,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(10)));

84

set(handles.BArray32,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(11)));

set(handles.BArray33,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(12)));

set(handles.BArray34,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(13)));

set(handles.BArray41,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(14)));

set(handles.BArray42,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(15)));

set(handles.BArray43,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(16)));

set(handles.BArray44,'backgroundcolor',ColorOnTemperature(handles,

TemperatureArray(17)));

% d

% disp('in update array')

% pause(2)

 c1=[1 0 0];

 c2=[0 1 0];

 if str2double(TemperatureArray(2)) > d

 set(handles.b1,'backgroundcolor',c1);

 else

 set(handles.b1,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(3)) > d

 set(handles.b2,'backgroundcolor',c1);

 else

 set(handles.b2,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(4)) > d

 set(handles.b3,'backgroundcolor',c1);

 else

 set(handles.b3,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(5)) > d

 set(handles.b4,'backgroundcolor',c1);

 else

 set(handles.b4,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(6)) > d

 set(handles.b5,'backgroundcolor',c1);

 else

 set(handles.b5,'backgroundcolor',c2);

85

 end

 if str2double(TemperatureArray(7)) > d

 set(handles.b6,'backgroundcolor',c1);

 else

 set(handles.b6,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(8)) > d

 set(handles.b7,'backgroundcolor',c1);

 else

 set(handles.b7,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(9)) > d

 set(handles.b8,'backgroundcolor',c1);

 else

 set(handles.b8,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(10)) > d

 set(handles.b9,'backgroundcolor',c1);

 else

 set(handles.b9,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(11)) > d

 set(handles.b10,'backgroundcolor',c1);

 else

 set(handles.b10,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(12)) > d

 set(handles.b11,'backgroundcolor',c1);

 else

 set(handles.b11,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(13)) > d

 set(handles.b12,'backgroundcolor',c1);

 else

 set(handles.b12,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(14)) > d

 set(handles.b13,'backgroundcolor',c1);

 else

 set(handles.b13,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(15)) > d

 set(handles.b14,'backgroundcolor',c1);

 else

86

 set(handles.b14,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(16)) > d

 set(handles.b15,'backgroundcolor',c1);

 else

 set(handles.b15,'backgroundcolor',c2);

 end

 if str2double(TemperatureArray(17)) > d

 set(handles.b16,'backgroundcolor',c1);

 else

 set(handles.b16,'backgroundcolor',c2);

 end

counterDraw=0;

end

guidata(hObject, handles);

function Color=ColorOnTemperature(handles, Temperature)

global tempLevel_1;

global tempLevel_2;

global tempLevel_3;

global tempLevel_4;

cmptempLevel_1=tempLevel_1;

cmptempLevel_2=tempLevel_2;

cmptempLevel_3=tempLevel_3;

cmptempLevel_4=tempLevel_4;

%tempLevel_1=24;

%tempLevel_2=25;

%tempLevel_3=28;

%tempLevel_4=30;

%tempLevel_1=26;

%tempLevel_2=27;

%tempLevel_3=28;

%tempLevel_4=30;

% [1 1 0] y yellow

87

% [1 0 1] m magenta

% [0 1 1] c cyan

% [1 0 0] r red

% [0 1 0] g green

% [0 0 1] b blue

% [1 1 1] w white

% [0 0 0] k black

tTemperature = str2double(Temperature);

 if (tTemperature < cmptempLevel_1)

 Color = [0 1 1];

 end

 if (tTemperature >= cmptempLevel_1) && (tTemperature <= cmptempLevel_2)

 Color = [0 0 1];

 end

 if (tTemperature >= cmptempLevel_2) && (tTemperature <= cmptempLevel_3)

 Color = [1 1 0];

 end

 if (tTemperature >= cmptempLevel_3) && (tTemperature <= cmptempLevel_4)

 Color = [1 0 1];

 end

 if (tTemperature > cmptempLevel_4)

 Color = [1 0 0];

 end

function determineTempLevel(TemperatureArray)

global tempLevel_1;

global tempLevel_2;

global tempLevel_3;

global tempLevel_4;

tempLevel_1=str2double(TemperatureArray(2));

tempLevel_4=str2double(TemperatureArray(2));

for i=2:17

 if (tempLevel_4 < str2double(TemperatureArray(i)))

 tempLevel_4 = str2double(TemperatureArray(i)); %Highest Temperature

 end

88

 if (tempLevel_1 > str2double(TemperatureArray(i)))

 tempLevel_1 = str2double(TemperatureArray(i)); %Lowest Temperature

 end

end

levelGap = (tempLevel_4 - tempLevel_1)/5 ;

tempLevel_1 = tempLevel_1 + levelGap;

tempLevel_2 = tempLevel_1 + levelGap ;

tempLevel_3 = tempLevel_2 + levelGap ;

tempLevel_4 = tempLevel_4 - levelGap;

function Main_Loop(hObject,handles)

global Run;

global isLooping;

global delayReceive;

global toggle;

global TempDouble;

disp('MainLoop b4 Run')

while true

 if (isLooping==1)

 disp(isLooping)

 Send_Serial(handles,'R\n');

 pause(delayReceive);

 a=TempDouble;

 b=str2double(get(handles.y,'string'));

 c=str2double(get(handles.z,'string'));

 d=a+((b-20)/800)*c ;

 ee=d;

 set(handles.u,'string',d);

 pause(delayReceive);

% d

% disp('d s value in main loop')

% pause(2)

 Receive_Serial(hObject,handles,ee);

 end

 if (toggle == 1)

 Send_Serial(handles,'R\n');

89

 a=TempDouble;

 b=str2double(get(handles.y,'string'));

 c=str2double(get(handles.z,'string'));

 d=a+((b-20)/800)*c;

 ee=d;

 set(handles.u,'string',d);

 pause(delayReceive);

% d

% disp('d s value in main loop')

% pause(2)

 Receive_Serial(hObject,handles,ee);

 set(handles.u,'string',d);

 pause(delayReceive);

 toggle=0;

 end

 pause(delayReceive)

end

guidata(hObject,handles)

function y_Callback(hObject, eventdata, handles)

% hObject handle to y (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of y as text

% str2double(get(hObject,'String')) returns contents of y as a double

% --- Executes during object creation, after setting all properties.

function y_CreateFcn(hObject, eventdata, handles)

% hObject handle to y (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

90

function z_Callback(hObject, eventdata, handles)

% hObject handle to z (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z as text

% str2double(get(hObject,'String')) returns contents of z as a double

% --- Executes during object creation, after setting all properties.

function z_CreateFcn(hObject, eventdata, handles)

% hObject handle to z (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in optAverage.

function togglebutton1_Callback(hObject, eventdata, handles)

% hObject handle to optAverage (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of optAverage

% --- Executes on button press in cmdSendR.

function cmdSendR_Callback(hObject, eventdata, handles)

global delayReceive;

global toggle

% hObject handle to cmdSendR (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% TxText = get(handles.txtCommand, 'String');

% fprintf(handles.serConn, TxText);

91

disp('toggle = 1')

toggle = 1;

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

function cmdConnect_CreateFcn(hObject, eventdata, handles)

% hObject handle to cmdConnect (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in AutoRuncmd.

function AutoRuncmd_Callback(hObject, eventdata, handles)

% hObject handle to AutoRuncmd (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Run;

global isLooping;

global delayReceive;

global TempDouble;

disp('autoruncmd')

Run = 1;

% hObject handle to cmdAutoRun (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if strcmp(get(hObject,'String'),'AutoRun [start]') % currently disconnected

 isLooping=1;

 disp('Looping = 1')

 set(hObject, 'String','AutoRun[Stop]')

else

 set(hObject, 'String','AutoRun [start]')

 disp('looping = 0')

 isLooping=0;

end

guidata(hObject, handles);

% --- Executes on button press in chkHorizontalInverse.

function chkHorizontalInverse_Callback(hObject, eventdata, handles)

% hObject handle to chkHorizontalInverse (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

92

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of chkHorizontalInverse

93

APPENDIX B

SCHEMATIC DIAGRAM OF IRRADIANCE METER

