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ABSTRACT 

The examination timetabling problem involves the task of assigning the examinations into a 

limited number of timeslots and rooms with the aim of satisfying all the hard constraints. Most 

of the reported research in the literature starts with constructing the initial timetable by 

scheduling all the examinations and then performs an improvement on the timetable. In this 

research, we investigate a real world examination timetabling problem from Universiti 

Malaysia Pahang (UMP). UMP examination timetabling dataset is a capacitated dataset which 

contains additional constraints, in addition to those commonly used in the literature. The 

proposed algorithms start with constructing the initial timetable using the graph heuristic 

methods. The entire process runs until all of the examinations are assigned successfully. An 

improvement on the solution was implemented using step-count hill climbing and late 

acceptance hill climbing. The proposed approaches are tested on two benchmark datasets, 

namely Toronto dataset and the Universiti Malaysia Pahang (UMP) dataset. The experimental 

results show that the proposed approaches are able to produce good quality solution when 

compared to the solutions from the proprietary software used by UMP. Additionally, our 

solutions satisfy to all the hard constraints which the current systems fails to do. 
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ABSTRAK 

Masalah perjadualan waktu peperiksaan melibatkan tugas menjadualkan peperiksaan ke dalam 

bilangan slot masa dan bilik yang terhad dengan tujuan untuk memenuhi semua kekangan 

keras. Kebanyakan kajian yang dilaporkan dalam kesusasteraan bermula dengan membina 

jadual waktu awalan kemudian melakukan peningkatan pada jadual waktu. Dalam kajian ini, 

kami mengkaji masalah pemeriksaan jadual waktu dunia sebenar dari Universiti Malaysia 

Pahang (UMP). UMP peperiksaan jadual waktu set data adalah set data berkapasiti yang 

mengandungi kekangan tambahan, tambahan kepada yang biasa digunakan dalam 

kesusasteraan. Algoritma yang dicadangkan bermula dengan membina jadual waktu awal 

menggunakan graf kaedah heuristik. Keseluruhan proses berjalan sehingga semua peperiksaan 

yang dijadualkan dengan jayanya. Peningkatan yang digunakan step counting hill climbing dan 

late acceptance hill climbing. Kaedah yang dicadangkan diuji pada dua set data penanda aras, 

iaitu Toronto set data dan set data Universiti Malaysia Pahang (UMP). Keputusan eksperimen 

menunjukkan bahawa kaedah yang dicadangkan dapat menghasilkan penyelesaian yang 

berkualiti baik jika dibandingkan dengan penyelesaian daripada perisian proprietari yang 

digunakan oleh UMP. Selain itu, penyelesaian kami memenuhi semua kekangan keras yang 

sistem semasa tidak berbuat. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

This chapter presents an introduction of the research work. Section 1.2 describes the background 

of the research and basic overview of the timetabling problem. Section 1.3 describes the problem 

statements and the research questions are listed in Section 1.4. Section 1.5 and 1.6 describe the 

objectives and scopes of the research respectively. Lastly, the report organization is describe in Section 

1.7. 

 

1.2 Background of Research 

 

Research on timetabling on course and examination has been conducted over the years. Many 

academic institutions face a considerable amount of challenges in producing optimal course and 

examination timetable in a reasonable time within a limited resource. Both timetabling problems are 

similar in nature which involves assigning the courses or exams into available timeslots aim to satisfy 

varying types of constraints (Wren, 1996; Burke, Kingston and de Werra, 2004). Although the course 

and examination timetabling have many similarities, these two problems actually differ in terms of their 

constraints, user preferences and in the way the problem is constructed (McCollum et al., 2007; 

Abdullah & Turabieh, 2012; Pillay, 2016). For example, an examination timetable may allow multiple 

exams to be carried out in the same room while it is not possible to have two different courses in the 

same room. Examination timetabling is more difficult compared to course timetabling because the 

examinations are organized with registered students. Therefore, some constraints such as a clash free 

(hard constraint) examination timetabling and student satisfaction (soft constraint) have to be considered 

in producing good quality examination timetable. 

This research concentrates on the examination timetabling problem. Like most timetabling 

problems, generating a good quality examination timetable is a challenging and time consuming task 

due to its combinatorial and highly constrained nature. Examination timetabling is a process of assigning 

examinations to a specific number of examination periods to satisfy the constraints. There are two 

categories of constraints that contribute to the complexity of an examination timetabling, namely hard 
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constraints and soft constraints. The hard and soft constraints need to be considered in producing the 

examination timetable because it reflects the institution need and requirement of their timetable. Hard 

constraints refer to those requirements which cannot be broken and must be satisfied at all the times. A 

timetable is considered feasible if it satisfy the hard constraints. An example of hard constraint is a 

student should not be required to sit two examinations at the same time, where the examination timetable 

should be clash free. Soft constraints refer to those requirements that are not essential but should be 

satisfied as much as possible. According to Ayob, Abdullah and Malik (2007), it is not possible to fulfil 

all the soft constraints, hence it is normally being used to evaluate the quality of the examination 

timetable by associating a weighted penalty value with each violation of the soft constraints. An 

example of a soft constraint is that exams need to be spread evenly throughout the examination period 

so that students have time for revision between exams.  

The examination timetabling problem can be divided into two categories of problems, which is 

the un-capacitated problems and capacitated problems. The room capacities are not considered in the 

un-capacitated examination timetabling problem while in the capacitated examination timetabling 

problem the capacities of the room are considered as a hard constraint. The main challenge in 

examination timetabling is to allocate a large number of examinations within the limited resources, such 

as time periods and room availabilities (Burke, Newall and Weare, 1996). According to Burke et al., 

(1996), 73% of universities reported that accommodating examinations is a major problem. Capacitated 

problem resemble the real world problem and it is more complicated compared to un-capacitated 

problem. The room constraint increases the level of complexity to the overall problem in producing a 

good quality solution. Moreover, the increases of the number of student enrolments and constraints 

cause the examination timetabling becomes more challenging. The difficulty of the problem is added 

when these constraints conflict with one another where satisfaction of one constraint can lead to a 

violation of other constraints (Qu et al. 2009; Kahar and Kendall, 2010). For example, in such a situation 

in which we want to reduce the total number of timeslots and at the same time to spread the examinations 

as much as possible over the examination period.  

In this research, we are concern with a real world examination timetabling problem from 

Universiti Malaysia Pahang (UMP) which has a number of different constraints from the literature. The 

additional hard constraints are the splitting of an examination into different rooms in the same building 

and students cannot be scheduled to an examination at different campus as UMP has two campus. 

Besides, the additional soft constraints are the minimization of the room distance for an examination in 

multiple rooms and the minimization of the number of rooms can be split across for an examination. 
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1.3 Problem Statements 

 

The examination timetabling problems have attracted the interested of many researchers over 

the years. A lot of methods have been proposed in an attempt to produce a good quality solution. 

Constructing examination timetabling consists of two phases where the first phase is to generate a 

complete initial solution. The process continues by improving the initial solution timetable which is the 

second phase (Asmuni et al., 2009; Gogos et al., 2012; Kahar and Kendall, 2013). Normally, graph 

heuristics are being used in initial phase to generate the initial solution with the aim of satisfying the 

hard constraints. In the improvement stage, meta-heuristics are used to improve of the initial solution. 

Examples of this technique include hill climbing, tabu search, simulated annealing, genetic algorithm 

and other methods (detail discussion in chapter 2). 

This research is concerned with a real world examination timetabling problem from Universiti 

Malaysia Pahang (UMP). UMP examination timetabling dataset is a capacitated dataset that contains 

additional constraints apart from the commonly used soft constraints. The additional hard constraints 

are,  

a) The examinations need to be scheduled to the appropriate campus; students in campus Gambang 

are not allow to take the examination in campus Pekan and vice versa. 

b) The examinations with the same code but from different campus need to be scheduled 

simultaneously; the examinations for university courses (compulsory for all students) should be 

scheduled at the same time. These constraints have not been investigated before in the literature. 

The soft constraints are  

a) The distance of the assigned rooms for an examination should be minimised  

b) The number of rooms for a split examination should be minimised.  

A comparison of the constraints is discussed in chapter 3. This motivates us to propose UMP datasets 

as benchmark problem instances and to propose an improved examination timetabling approach for 

UMP. 

 

1.4 Research Questions 

 

The research questions are stated for the research guidelines: 

● Can we produce a feasible solution for UMP capacitated examination timetabling 

problem considering two campus constraints. 
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● Can we produce an optimal solution considering the new constraints in UMP 

examination timetabling problem? 

 

1.5 Objectives 

The objectives of the research are as follows: 

● To investigate Universiti Malaysia Pahang (UMP) capacitated examination timetabling 

problem that has dual campus far apart and individual constraint from different UMP 

campus.  

● To implement meta-heuristics approach in solving the UMP examination timetabling 

problem. 

● To evaluate and compare the result of proposed approach with the examination timetable 

being used by UMP. 

 

1.6 Scopes 

The scopes of the work are as follows:  

● The investigation concentrates on a real-world benchmark dataset which is University 

Malaysia Pahang (UMP) examination dataset (e.g. semester 1 and 2, 2014/2015).  

● Investigation focuses on graph heuristics ordering strategy which include largest 

enrolment (LE), largest degree (LD), largest weighted degree (LWD) and saturation 

degree (SD). The improvement methods include hill climbing (HC). 

● The research uses Delphi Program and Pascal language to develop the program for 

examination timetabling. 

● The improvement methods include hill climbing and great deluge algorithm. 

 

1.7 Report Organization 

 

This thesis is organized into five chapters. Chapter 1 explains about the basic overview of the 

timetabling and examination timetabling, problem statements, research questions, research objective 

and the scope of the study. Chapter 2 describes great deluge algorithm in solving the UMP examination 

timetabling problem. Chapter 3 describes the formal mathematical model considering the newer 

constraints. Chapter 4 discusses the conclusion and the contribution of the research work. 
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CHAPTER 2 

 

 

A GREAT DELUGE ALGORITHM FOR A REAL WORLD  

 EXAMINATION TIMETABLING PROBLEM 

 

 

 

Abstract 

The examination timetabling problem involves assigning exams to a specific or limited number of 

timeslots and rooms, with the aim of satisfying all hard constraints (without compromise) and satisfying 

the soft constraints as far as possible. Most of the techniques reported in the literature have been applied 

to simplified examination benchmark datasets. In this paper we bridge the gap between research and 

practice by investigating a problem taken from the real world. This paper introduces a modified and 

extended Great Deluge Algorithm (GDA) for the examination timetabling problem which uses a single, 

easy to understand parameter. We investigate different initial solutions, which are used as a starting 

point for the GDA, as well as altering the number of iterations. Additionally, we carry out statistical 

analysis to compare the results when using these different parameters. The proposed methodology is 

able to produce good quality solutions when compared to the solution currently produced by the host 

organisation, generated in our previous work and from the original GDA.  

 

Keywords: Examination Timetabling, Great Deluge Algorithm, Scheduling 

 

 

2.1 Introduction 

 

Examination timetabling has been the subject of research studies for many years. The exam 

timetable generated by any institution has a significant impact on students, lecturers and administrators. 

The timetable should aim to satisfy all interested parties and hence the solution needs to take into 

account many factors such as ensuring that there are no clashes (i.e. two exams at the same time) for 

students, there is sufficient marking time for lecturers and that administrations are also happy with the 

timetable (McCollum, 2007). Many papers discussing the examination timetable problem can be found 

in the literature, with a good source being the PATAT conference series of selected papers (i.e. Burke 
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and Ross, 1996a; Burke and Carter, 1998; Burke and Erben, 2001; Burke and De Causmaecker, 2003; 

Burke and Trick, 2005; Burke and Rudova, 2007).  

In this paper we present a modification of the great deluge algorithm (GDA) which allows the 

boundary, that acts as the acceptance level, to dynamically change during the search. The proposed 

algorithm will accept a new solution if the cost value is less than or equal to the boundary, which is 

lowered at each iteration according to a decay rate. The proposed GDA uses a simple parameter setting 

and allows the boundary to increase if there is no improvement after several iterations. Additionally, 

when the new solution is less than the desired value (estimation of the required cost value), the algorithm 

calculates a new boundary and a new desired value.  

In order to investigate the proposed algorithm we use a real world capacitated examination 

problem taken from Universiti Malaysia Pahang (UMP). This dataset has several new constraints, in 

addition to those commonly found in the scientific literature. This work is an extension of our previous 

work described in Kahar and Kendall (2010a), in which we presented a constructive heuristic. We are 

now attempting to improve on the (initial) solution returned from the construction heuristic. The rest of 

the paper is organised as follows. In sections 2 and 3, we describe the examination timetabling problem 

and related work. In sections 4 and 5, we describe the GDA and our proposed modification. A 

description of the UMP examination timetabling problem, including the constraints, is discussed in 

section 6. In section 7, we describe the experimental setup to allow reproducibility for other researchers. 

The result from the improvement phase is shown in section 8, followed by statistical analysis in section 

9. Discussion on the results is presented in section 10. Lastly, in sections 11 and 12 we summarise the 

contribution and present our conclusions. 

 

2.2 Examination timetabling problem 

 

The examination timetabling problem involves  assigning exams to a limited number of timeslots 

and rooms with the aim of satisfying the hard constraints and minimising the violations of soft 

constraints (e.g., Carter and Laporte, 1996a; Qu et al., 2009). Hard constraints cannot be broken and a 

timetable is considered feasible if all the hard constraints are satisfied. An example of a hard constraint 

is that no student is assigned to sit more than one exam at the same time. Soft constraints are 

requirements that are not essential but should be satisfied as far as possible, hence, it is used to evaluate 

the quality of the solutions through (perhaps weighted) summation of the number of violations of the 

soft constraints. An example of a soft constraint is to spread exams as evenly as possible from a student’s 

point of view. A list of commonly used constraints is given in Qu et al. (2009), Merlot et al. (2003), 

Burke et al. (1996c) and Cowling et al. (2002).  
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Examination timetabling problems can be categorised into un-capacitated or capacitated 

variants. Unlike the un-capacitated examination timetabling problem, in capacitated problems, room 

capacities are treated as a hard constraint (which more closely reflects real world problems), in addition 

to the other commonly used hard constraints (Pillay and Banzhaf, 2009; Abdullah, 2006). Most of the 

research seen in the literature has investigated the un-capacitated examination timetabling problem, the 

Toronto dataset (Carter et al., 1996b) being a good example. Research on this dataset has mainly 

focussed on the algorithmic performance to produce solutions effectively and quickly (see Qu et al., 

2009). However, McCollum (2007), Qu et al. (2009) and Carter and Laporte (1996a) believe that 

researchers are not dealing with all aspects of the problem. That is, they are only working on a simplified 

version of the examination problem, which only addresses a few common hard constraints (i.e. no exams 

with common students assigned simultaneously) and soft constraints (i.e. spreading conflicting exams 

as evenly as possible).  

Capacitated problems more closely resemble real world problems as they include a room 

capacity constraint and Burke et al.’s (1996c) survey showed that 73% of universities agree that 

accommodating exams is a difficult problem. The difficulties are caused by (a) the lack of available 

exam rooms due to (for example) the room being used for teaching purposes and (b) the splitting of 

exams between more than one room. The size of an exam alone could easily cause the exams to be split 

across more than one room and this should result in additional constraints such as splitting exams onto 

different sites and/or the distance between rooms (Burke et al., 1996c).  

However, the capacitated problem has received less attention from the research community 

probably due to the lack of benchmark datasets. Furthermore, it requires more comprehensive data as it 

has to include the room capacities and this information can be difficult to collect (McCollum, 2007). 

Examples of capacitated examination datasets available in the literature are the Nottingham dataset 

(Burke et al., 1996b), the Melbourne dataset (Merlot et al., 2003), the International Timetabling 

Competition (ITC2007) dataset (McCollum et al., 2010) and the Toronto dataset (which includes the 

total seating capacity introduced by Burke et al., 1996b).  

The Nottingham, Melbourne and (modified-)Toronto dataset is concerned with the total seating 

capacity (allowing multiple exams in the same room). That is, the total number of students sitting in all 

exams, in the same timeslot, must be less than some specified number. This represents a simplified 

problem whereas normally in solving a real-world problem, we would have to take into account 

individual room capacities (Merlot et al., 2003), but this obviously depends on institutional 

requirements. The ITC2007 dataset provides more realistic problems than the (modified-)Toronto, 

Nottingham and Melbourne dataset problems, as it considers individual room capacities. However for 

the UMP dataset, besides considering individual room capacities, it does not allow multiple exams to 
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share a single room. This complicates the problem even further. A description of UMP constraints is 

described in section 6 (also see Kahar and Kendall, 2010a). 

 

2.3 Related work 

 

A variety of techniques have been utilised in solving the examination timetabling problem (see 

Carter and Laporte, 1996a; Schaerf, 1999 and Qu et al., 2009). One popular technique is Hill climbing 

(HC).  HC accepts a candidate solution, if it is an improving solution. HC is simple and easy to 

implement, however it is easily trapped in local optima (Burke and Kendall, 2005). Recently, Burke and 

Bykov (2008) have proposed a late acceptance strategy for hill climbing. The method delays the 

comparison step between a candidate solution and the current (best) solution. The late acceptance hill 

climbing methodology is able to produce good quality solutions compared to other works for the 

Toronto datasets. Tabu search (Glover, 1986) works in a similar way to hill climbing but incorporates 

a memory. To prevent the search from becoming stuck in a local optima, a tabu list (memory) is used 

to hold recently seen solutions or, more likely, some of the attributes of the neighbourhood move and 

ignore solutions which are in the tabu list (Di Gaspero and Schaerf, 2001; Di Gaspero and Schaerf, 

2002, White, Xie and Zonjic, 2004).   

Simulated annealing (SA) (Kirkpatrick, 1983) always accepts better solutions but also accepts 

worse solutions with a decreasing probability as the search progresses (Merlot et al., 2003; Burke et al., 

2003). Great Deluge (Dueck, 1993) works in almost the same way as SA but it uses a boundary as the 

acceptance criteria, which is gradually reduced. New solutions are only accepted if they improve on the 

current solution or are within the boundary value. A further discussion on this methodology follows in 

the next section. 

Variable Neighbourhood Search (VNS) (Mladenovic and Hansen, 1999) is based on the strategy 

of using more than one neighbourhood structure and changing them systematically during the search. 

The use of many neighbourhoods allows VNS to more effectively explore the search space (Abdullah 

et al., 2005; Burke et al., 2010a etc). Other techniques in the literature include ant colony optimisation 

(ACO) (Dorigo, 1996). ACO is inspired by the behaviour of ants, and the way they forage for food. 

Only a few works using ACO for exam timetabling have been reported in the literature (Eley, 2006 and 

Eley, 2007). 

Genetic Algorithms (GA) (Burke and Kendall, 2005) are a population based search which uses 

the principle of biological evolution (i.e. selection, mutation, crossover) to generate better solutions 

from one generation to another (Ross and Corne, 1995 and Burke et al., 2010a). Memetic algorithms 

(MA) are a hybridisation of GA, by incorporating a local-search algorithm. MAs have been shown to 
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work effectively compared to GAs (Burke, Newall and Weare, 1996b; Abdullah, Turabieh and 

McCollum, 2009 etc). 

Hyper-Heuristics (HH) (Burke et al., 2010b) are methods that attempt to raise the level of 

generality at which search methodologies operate. HH can be categorised as a method that selects 

heuristics or generates new heuristics from components of existing heuristics (Burke et al., 2010b). HH 

are concerned with the exploration of a heuristic space rather than dealing directly with solutions to the 

problem (Kendall and Hussin, 2004; Hussin, 2005; Burke et al., 2007 etc).  

Many other techniques can be found in the PATAT series of conference volumes. 

 

 

2.4 The Great Deluge Algorithm 

 

In 1993, Dueck introduced the great deluge algorithm (GDA) that operates in a similar way to 

simulated annealing. However, GDA uses an upper limit (often referred to as the water level) as the 

boundary of acceptance rather than a temperature. The algorithm starts with a boundary equal to the 

initial solution quality. It accepts worse solutions if the cost (objective value) is less than the boundary 

which is lowered in every iteration according to a predetermined rate (known as the decay rate). GDA 

only involves one parameter (decay rate) which is an advantage over SA since the effectiveness of a 

meta-heuristic technique is often dependent upon parameter tuning (Petrovic and Burke, 2004). 

Dueck (1993) applied GDA to the travelling salesman problem. The decay rate used was the 

difference between the boundary and the length of the current tour divided by 500 or 0.01. Dueck was 

able to find good quality solutions. Burke and Newall (2002) implemented GDA in order to solve 

examination timetabling problems. The decay rate is computed as the initial solution multiplied by a 

user provided factor divided by the number of iterations. The algorithm was run for up to 200,000,000 

iterations and the search terminated if there was no improvement in the last 1,000,000 iterations. They 

compared the performance of the great deluge algorithm with simulated annealing and hill climbing, 

and reported that GDA was superior to both these algorithms.  

Burke et al. (2004) implemented time-predefined GDA for the examination timetabling 

problem. The algorithm includes two user-defined parameters; (a) computational time (amount of time 

allowed) and (b) the desired solution (an estimation of the evaluation function that is required). The 

decay rate is calculated as the difference between the initial solution and the desired solution divided 

by the computational time (or number of iterations). According to Burke et al., the time-predefined 

GDA was superior when compared to other methods. McMullan (2007), proposed the use of a steeper 

decay rate (with decay rate propotional to 50% of the entire run on the first stage and 25% on the 

remaining runs) compared to Burke et al. (2004), in order to force the algorithm to reach better quality 
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solutions as early as possible. He also allowed the algorithm to ‘reheat’ (similar to simulated annealing) 

allowing worse moves to be accepted. The re-heat mechanism is activated when there is no 

improvement. The method is able to find better solutions when  compared to other methods (except on 

small instances). 

Silva and Obit (2007) proposed a non-linear decay rate for the boundary control using an 

exponential function. They also included a feature that allows the boundary to rise when its value is 

about to converge to the penalty cost of the solution. Experimentation on the course timetabling 

problem revealed that the non-linear GDA outperforms some of the previous results. Abdullah et al. 

(2009) investigated the hybridisation of a great deluge algorithm and tabu search in solving the course 

timetabling problem. Their algorithm applied four neighbourhood moves (at every iteration) and 

selected the best move. If there is no improvement within a specified time, the boundary is increased 

by a value between zero and three, selected at random. The combination of the two meta-heuristics 

produced good results.   

In this work, we utilise GDA for the UMP examination problem, a real world timetabling 

problem that contains several new constraints. Full details of the problem is given in section 6.  

 

2.5 Modified Great Deluge Algorithm (modified-GDA) 

 

 Suitable parameter settings are important in meta-heuristics and it is often difficult to determine 

the best values to guarantee a good quality solution (Petrovic and Burke, 2004). The introduction of a 

simple and easy to understand parameter (i.e. computational time and desired value) to determine the 

decay rate in Burke et al. (2004) made it straightforward for non-experts (e.g. university timetabling 

officers) to set the parameters, especially when compared to other meta-heuristic techniques (e.g. 

simulated annealing - cooling schedule, tabu search - tabu list size, genetic algorithm - mutation or 

crossover probability rate etc.). Furthermore, they reported that their time-predefined GDA was able to 

produce good quality solutions.   

The success of GDA and the simplicity in setting the parameters is the motivation for us to 

explore this method with the aim of bringing GDA to the university timetabling officers as they are the 

persons responsible for producing the timetable at UMP. Our proposed GDA is shown in figure 1. The 

algorithm starts by setting the desired value D, number of iterations I and the boundary level B (lines 1-

5). The boundary level B is set slightly higher (3%) than the initial solution f(s) obtained from a 

constructive heuristic (Kahar and Kendall, 2010a). This is to allow acceptance of poorer solutions. We 

have tried several other percentages; a higher percentage leads to the search being unfocused, whilst a 

smaller percentage discourages exploration. Based on our observation, a value of 3% is suitable for the 
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investigated dataset. The decay rate is calculated as the difference between boundary level B and the 

desired solution D, divided by the number of iterations (line 6). While the stopping condition is not met, 

we apply the chosen neighbourhood heuristics. We calculate the new cost value f(s*) where s*N(s) 

selected at random (line 10). s* is accepted if f(s*) is less than or equal to f(s) or if f(s*) less than or 

equal to boundary B (lines 11-12). If f(s*) is less than or equal to f(sbest), set sbest = s* (line 13-14). Next, 

the boundary B is lowered based on the decay rate, ΔB (line 15). However, if there is no improvement 

for several iterations, W (W = 5 in this work) or boundary B is less than or equal to f(sbest) or f(s) is less 

than or equal to desired value; then set s = sbest (line 17). The new decay rate ΔB is calculated as the 

difference between f(s) and desired value divided by the remaining number of iterations (line 20). 

However, if f(s) is less than, or equal to, the desired value then a new desired value is calculated as 80% 

of f(s) (line 18-19). This dynamically allows the search to continue by having a new desired value. The 

value of 0.8 is chosen to avoid having a steep boundary thus encouraging exploration of the search 

space. Hence, the boundary is set 3% above f(s) (line 21). Having this condition enables the algorithm 

to dynamically adjust the boundary, decay rate and desired value during the search.  

 We are going to compare the modified-GDA performance with the GDA propose by Dueck, 

(1993) (which will be refer to as Dueck-GDA in the following section) and solution produced by UMP 

and from our previous work (Kahar and Kendall, 2010a). 

 

2.6 University Malaysia Pahang (UMP): Examination Timetabling Problem 

 

 The Universiti Malaysia Pahang (UMP) was established in 2002 and currently operates from a 

temporary campus. This presents many challenges in terms of available space, logistics and human 

resources to manage the university operation. Furthermore, new faculties are being introduced along 

with new programs being offered. This results in an increase in the number of students which, according 

to the timetable officer, makes it difficult to generate a feasible examination timetable. In addition to 

these limitations, the UMP examination timetable problem has other challenging constraints. The hard 

and the soft constraints for the UMP examination assignment are listed in table 1. Further details and 

the mathematical model are available in Kahar and Kendall (2010a). 
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Figure 2.1 Our proposed Great Deluge Algorithm 

 

 

Table 2.1 The exam timetabling constraints  

Hard constraints 

1. No student should be required to sit two examinations simultaneously.  

2. The total number of students assigned to a particular room(s) must be less that the total room 

capacity. 

3. Exams which have been split into several rooms must be in the same building. 

4. Only one examination paper is scheduled to a particular room. That is, there is no sharing of 

rooms with other exam papers (even if enough seats are available). 

 

Soft Constraints 

5. Each set of student examinations should be spread as evenly as possible over the exam period.  

6. The distance between exam rooms, for the same exam, should be as close as possible to each 

other (and within the same building).  

7. A penalty value is applied when splitting an exam across several rooms, as we prefer an exam 

to be in a single (or as few as possible) room whenever possible. 

 

 

 

 

1. Set the initial solution s from the constructive heuristic (Kahar and 

Kendall, 2010a) 

2. Calculate initial cost function f(s) 

3. Set the desired value D 

4. Set the number of iterations I 

5. Set Initial Boundary Level B = 0.03f(s)+ f(s) 

6. Set initial decay Rate ΔB = IDB )(     

7. Set sbest = s  

8. While stopping criteria not met do 

9. Apply neighbourhood Heuristic on S 

10. Calculate f(s*) 

11. If f(s*)   f(s) or f(s*)  B Then 

12. Accept s = s* 

13. If f(s*)  f(sbest) Then 

14. sbest = s*  

15. Lower Boundary B = B – ΔB 

16. If no improvement in W iterations or B  f(sbest) or f(s)  D then 

17. Set s = sbest 

18. If f(s)  D then 

19. D = f(s)*0.8 

20. Set new decay rate ΔB = remainingIDsf ))((    

21. Set B = 0.03f(s)+ f(s) 
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2.7 UMP Examination Timetabling dataset 

 

Our investigations were carried out using two different datasets from semester1-2007/08 and 

semester1-2008/09. In semester 1-2007/08 the total number of examination papers is 157, across 17 

programs offered by 5 faculties. The total number of students is 3,550 with 12,731 enrolments. The 

conflict density matrix is 0.05, which means that 5% of students are in conflict among the examination 

papers. The total available exam space for this dataset is 24 rooms, with each room having a given 

capacity. For semester1-2008/09 the dataset contains a total of 165 examination papers across 23 

programs offered by 7 faculties. The total number of students is 4,284 with 15,416 enrolments. The 

conflict density matrix is 0.05. The total available exam space for this dataset is 28 rooms. Table 2 

summarises these datasets. 

The number of exam days and timeslots are 10 and 20 respectively with 2 timeslots on each 

examination day. There are no exams during the weekend (Saturday and Sunday), hence we exclude 

the weekend timeslots in our timeslot indices. The timeslot indices are as follows: 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.  Indices 1 and 2 refer to day 1, timeslot 3 and 4 refer to 

day 2 and so on. There are no indices 11 to 14 because these indices would refer to Saturday and Sunday. 

 

Table 2.2 Summary of the UMP dataset 

Categories Semester 1-2007/08 Semester 1-2008/09 

Exams 157 165 

Students 3,550 4,284 

Enrolments 12,731 15,416 

Conflict density 0.05 (5%) 0.05 (5%) 

Timeslots per day 2 2 

Rooms 24 28 

 

 

2.8 Experimental setup 

 

We run Dueck-GDA and our modified-GDA using several initial solutions selected randomly 

within the minimum to maximum values of the constructive solution presented in Kahar and Kendall 

(2010a). Note that, in Kahar and Kendall (2010a), the minimum and maximum values produced in 

semester 1-2007/08 is 4.74 and 20.74, and in semester1-2008/09 it is 6.16 and 23.11 respectively. 

Hence, the (randomly) selected initial solutions in semester1-2007/08 is 16.68, 13.74, 10.30 and 7.82, 

and for semester 1-2008/09 they are 18.40, 15.25, 12.30 and 9.21. We ran both methods with 1500 and 
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3000 iterations. The following neighbourhood heuristics are used in our experiments. Note that, unless 

stated otherwise all the exam, timeslot and rooms are selected randomly. 

 

Nh1) Move an exam to a different timeslot and room(s). This move is only possible when the 

destination room and timeslot is empty. 

Nh2) Move an exam to a different room(s) within the same timeslot. This move is only possible when 

the destination room is empty. 

Nh3) Move an exam to a different timeslot maintaining the currently assigned room(s) 

Nh4) Choose an exam from a candidate list of 30, where exams are chosen based on their contribution 

to the objective function. An exam is chosen using roulette wheel selection and moved to a 

different timeslot and room(s). 

Nh5) Same as Nh4 but move the exam to a different room(s) within the same timeslot 

Nh6) Same as Nh4 but move the exam to a different timeslot maintaining the currently assigned 

room(s).  

Nh7) Select two exams and swap the timeslot and room(s) between them. 

Nh8) Select two timeslots and swap the timeslot between them. As an example if timeslot 2 and 

timeslot 6 were selected, move exams in timeslot 2 to timeslot 6 and vice versa. 

Nh9) Same as Nh4 but instead of moving the exam, we swap the selected exam with another exam. 

Nh10) Select two timeslots and move all exams between the two timeslots. As an example if timeslot 2 

and timeslot 6 were selected, move exams in timeslot 2 to timeslot 3; followed by moving exams 

in timeslot 3 to timeslot 4 and so on until exams in timeslot 6 are moved to timeslot 

 

In the next section we show the results when using each of these neighbourhoods. 

 

2.9 Examination assignment: Results 

 

In this section, we compare the examination timetable generated by the UMP proprietary 

software, our constructive heuristic (Kahar and Kendall, 2010a), and Dueck-GDA with our proposed 

GDA (modified-GDA). We used Delphi programming language. Each experiment was run 50 times on 

a Pentium core2 processor. The running time for 1500 iterations is around 480 seconds while 3000 

iterations takes about 960 seconds. The result for semester1-2007/08 is shown in table 3 and semester1-

2008/09 is shown in table 4. 
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2.9.1 Semester1-2007/08 

2.9.1.1 Modified-GDA vs UMP proprietary software 

 

The UMP proprietary software solution is 13.16 with a violation of one of the hard constraints 

(violating the no clash requirement, no.1 in table 1) (Kahar and Kendall, 2010a). Table 3 presents our 

results using the modified-GDA. Note that all of our results respect all the hard constraints. Using 

modified-GDA with 1500 iterations, we are able to produce a solution that is 66% (13.16 compared with 

4.53 ((13.16 - 4.53)/13.16 x 100%)) better with Nh1 when using an initial solution with a cost of 7.82 

compared to the solution produced by the proprietary software. The same calculation of percentage is 

used throughout the discussion. Increasing the number of iterations to 3000, the solution produced with 

Nh1, using an initial cost of 7.82, is 70% (13.16 compared with 4.01) better when compared to the 

proprietary software and 11% (4.53 compared with 4.01) better compared to using 1500 iterations. 

However, increasing the number of iterations, obviously, increases the computational time. 

 

2.9.1.2 Modified-GDA vs constructive heuristic 

 

In the constructive heuristic (Kahar and Kendall, 2010a) the best solution found was 10.98 and 

4.74 using a candidate list of one and five respectively. Comparing modified-GDA with the constructive 

heuristic using a candidate list of one, in modified-GDA with 1500 iterations (table 3), we are able to 

produce a solution that is 59% (10.98 compared with 4.53) better with Nh1 using an initial solution of 

7.82. Even with a poorer initial cost of 16.68, we are still able to improve the solution by 50% (10.98 

compared with 5.51) with Nh1. Extending the search to 3000 iterations, initial cost of 7.82 and 16.68, 

Nh1 produced solutions with a 63% (10.98 compared with 4.01) and 55% (10.98 compared with 4.99) 

improvement when compared to the constructive heuristic solution. In the constructive heuristic, with 

a candidate list of five, modified-GDA is able to produce a better solution but with a smaller margin of 

improvement. Using an initial cost of 7.82 with 1500 and 3000 iterations, the GDA solution outperforms 

the constructive heuristic by 4% (4.74 compared with 4.53) and 15% (4.74 compared with 4.01) 

respectively. However, using a large initial cost 16.68, with 1500 and 3000 iterations, the constructive 

heuristic outperforms the modified-GDA by 14% (5.51 compared with 4.74) and 5% (4.99 compared 

with 4.74) respectively. 
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2.9.1.3 Modified-GDA vs Dueck-GDA 

 

In the Dueck-GDA approach, with 1500 iterations it able to produce 5.07 cost value using Nh6 

and with 3000 iterations producing 4.94 with Nh7. Comparing modified-GDA and Dueck-GDA with 

1500 iterations (table 3), the modified-GDA is able to produce a solution that is 11% (5.07 compared 

with 4.53) better than Dueck-GDA with Nh1 using an initial solution of 7.82. Even though with a 

poorer initial cost of 16.68, the modified-GDA is able to outperform Dueck-GDA by 20% (6.85 

compared with 5.51) with Nh1. Extending the search to 3000 iterations, initial cost of 7.82 and 16.68, 

Nh1 produced solutions with a 19% (4.94 compared with 4.01) and 25% (6.61 compared with 4.99) 

improvement when compared to Dueck-GDA. The best values found by each of the methods describe 

above is shown in figure 2. 

Overall the proposed modified-GDA gives an improvement when compared to the UMP 

proprietary software, the constructive heuristic and Dueck-GDA. From these result it appears that using 

a better quality initial cost outperforms both the UMP proprietary software and the constructive 

heuristic, but using a poorer quality initial solution, the modified-GDA does not guarantee to produce 

high quality solutions – even for Dueck-GDA (when compared to the constructive heuristic with a 

candidate list of five). 

 

 
Figure 2.2 Best values of each method for semester1-2007/08 

 

2.9.2 Semester 1-2008/09 

2.9.2.1 Modified-GDA vs UMP proprietary software 

 

In semester 1-2008/09, the calculated UMP solution was 26.08 with a violation of all of the hard 

constraints (Kahar and Kendall, 2010a). The modified-GDA, with 1500 iterations, the solution produced 

is 77% (26.08 compared with 6.11) better compared to the proprietary software solution 
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Table 2.3 GDA result for semester1-2007/08 

   Modified-GDA       Dueck-GDA 

Neighbourhood moves 
Initial 

Cost 

480 sec  960 sec  480 sec  960 sec 

Ave Stdev Min Max  Ave Stdev Min Max  Ave Stdev Min Max 
 

Ave Stdev Min Max 

Nh1) Move an exam to a different 

timeslot and room(s). 

16.68 6.19 0.37 5.51 7.08  5.50 .30 4.99 6.03  13.72 0.39 12.80 14.40  12.92 0.31 12.22 13.53 

13.74 5.81 0.31 5.24 6.64  5.32 0.25 4.76 5.88  11.70 0.29 10.94 12.12  10.53 0.26 9.76 10.95 

10.30 5.16 0.26 4.65 5.67  4.59 0.23 4.10 5.04  8.79 0.11 8.49 9.02  7.47 0.06 7.29 7.57 

7.82 4.79 0.15 4.53 5.30  4.38 0.15 4.01 4.73  6.44 0.06 6.31 6.55  5.16 0.08 5.01 5.35 

Nh2) Move an exam to a different 

room(s) within the same timeslot. 

16.68 16.55 0.04 16.48 16.58  16.54 0.05 16.48 16.58  16.55 0.04 16.48 16.58  16.56 0.04 16.48 16.58 

13.74 13.22 0.00 13.21 13.22  13.22 0.00 13.21 13.22  13.22 0.00 13.21 13.22  13.22 0.00 13.21 13.22 

10.30 10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30 

7.82 7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82 

Nh3) Move an exam to a different 

timeslot maintaining the current 

assigned room(s) 

16.68 7.44 0.66 5.97 9.83  6.60 0.53 5.22 8.21  12.23 0.63 10.23 13.68  11.66 0.37 10.75 12.67 

13.74 6.90 0.31 6.12 7.61  6.34 0.27 5.84 6.89  11.13 0.36 10.03 11.81  10.13 0.25 9.58 10.55 

10.30 5.97 0.78 5.00 8.12  5.78 0.74 5.03 7.86  8.48 0.21 7.89 8.82  7.25 0.15 6.87 7.52 

7.82 5.71 0.33 4.90 6.39  5.49 0.32 4.79 6.06  6.41 0.23 6.16 7.82  5.15 0.19 4.80 5.86 

Nh4) Move an exam selected among 

the highest penalty value to a different 

timeslot and room(s). 

16.68 6.87 0.38 5.89 7.86  6.76 0.26 6.25 7.35  9.28 0.34 8.62 9.97  9.01 0.30 8.29 9.87 

13.74 6.76 0.38 5.88 7.58  6.64 0.45 5.77 7.88  9.48 0.34 8.79 10.22  9.15 0.33 8.50 9.71 

10.30 5.62 0.36 4.98 6.36  5.65 0.38 4.81 6.46  7.44 0.32 6.63 8.05  7.05 0.15 6.64 7.35 

7.82 5.22 0.19 4.90 5.73  5.22 0.21 4.57 5.84  6.22 0.13 5.90 6.47  5.62 0.24 5.03 6.50 

Nh5) Same as in (Nh4) but move the 

exam to a different room(s) within the 

same timeslot 

16.25 16.54 0.00 16.54 16.54  16.54 0.00 16.54 16.54  16.54 0.00 16.54 16.54  16.54 0.00 16.54 16.54 

13.74 13.50 0.01 13.49 13.51  13.50 0.01 13.49 13.51  13.50 0.01 13.49 13.51  13.50 0.01 13.49 13.51 

10.30 10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30  10.30 0.00 10.30 10.30 

7.82 7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82  7.82 0.00 7.82 7.82 

Nh6) Same as in (Nh4) but move the 

exam to a different timeslot 

maintaining the current assigned 

room(s). 

16.68 7.96 0.79 6.82 10.10  7.91 0.76 6.70 10.20  7.75 0.54 6.85 9.03  7.61 0.47 6.61 8.98 

13.74 8.21 0.59 7.13 9.22  7.97 0.67 7.05 9.78  8.45 0.40 7.78 9.18  8.05 0.39 7.26 8.99 

10.30 6.52 0.48 5.61 8.88  6.49 0.47 5.95 8.82  6.31 0.35 5.68 7.17  6.29 0.36 5.52 7.17 

7.82 6.19 0.30 5.40 6.92  6.07 0.38 4.79 6.83  5.89 0.48 5.07 7.31  5.96 0.45 5.16 7.00 

Nh7) Select two exams randomly and 

swap the timeslot and room(s) 

between them 

16.68 7.12 0.43 6.35 8.27  6.66 0.34 6.04 7.38  12.05 0.54 10.87 13.03  11.36 0.53 9.94 12.39 

13.74 7.37 0.43 6.53 8.85  6.97 0.43 6.20 8.08  10.85 0.40 9.83 11.52  10.02 0.27 9.22 10.65 

10.30 5.63 0.47 4.63 6.53  5.55 0.53 4.42 6.58  8.40 0.19 7.92 8.74  7.22 0.17 6.50 7.51 

7.82 5.40 0.31 4.66 6.01  5.09 0.30 4.66 5.79  6.29 0.12 5.91 6.47  5.17 0.15 4.94 5.54 

Nh8) Select two timeslots and swap 

the timeslot between them. 

16.68 8.45 0.38 7.68 9.48  8.36 0.43 7.40 9.59  9.50 0.45 8.25 10.82  8.93 0.35 8.19 9.67 

13.74 8.43 0.39 7.72 9.37  8.42 0.39 7.73 9.21  8.78 0.34 8.07 9.38  8.37 0.35 7.52 9.16 

10.30 7.20 0.33 6.64 7.82  7.17 0.28 6.66 7.83  7.25 0.34 6.67 8.03  7.13 0.31 6.57 7.81 

7.82 6.55 0.22 6.18 7.13  6.52 0.30 5.77 7.34  6.54 0.23 6.11 6.94  6.57 0.26 6.08 7.07 

Nh9) Same as in (Nh4) but instead of 

moving exam, we swap the selected 

exam with another exam. 

16.68 8.21 0.50 7.32 9.41  8.07 0.45 7.16 9.36  9.04 0.42 8.11 9.76  8.82 0.34 8.05 9.54 

13.74 8.13 0.68 6.91 9.77  7.76 0.47 6.90 8.86  8.47 0.48 7.49 9.54  8.10 0.25 7.52 8.61 

10.30 6.26 0.46 5.34 7.30  6.04 0.60 4.92 7.67  6.71 0.27 6.17 7.29  6.39 0.20 6.02 6.80 

7.82 6.02 0.28 5.44 6.72  6.04 0.35 5.35 6.78  5.79 0.20 5.38 6.41  5.43 0.30 4.91 6.14 

Nh10) Select two timeslots and move 

all the timeslot between them. 

16.68 8.77 0.46 7.79 9.88  8.60 0.44 7.82 9.61  9.77 0.48 8.58 10.65  9.11 0.41 8.19 9.88 

13.74 8.55 0.35 8.01 9.40  8.48 0.37 7.88 9.44  8.88 0.39 8.02 9.60  8.42 0.35 7.59 9.07 

10.30 7.48 0.32 6.79 8.34  7.31 0.38 6.57 8.44  7.32 0.31 6.65 8.10  7.13 0.33 6.57 7.99 

7.82 6.65 0.39 5.83 7.07  6.56 0.38 5.92 7.07  6.59 0.37 5.93 7.48  6.51 0.34 5.81 7.00 

Ave = average; var = variance; stdev = standard deviation; min = minimum; max = maximum 
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Table 2.4 GDA result for semester1-2008/09 

  Modified-GDA  Dueck-GDA 

Neighbourhood moves 
Initial 

Cost 

1500 iterations  8 min  3000 iterations  16 min  1500 iterations  8 min  3000 iterations  16 min 

Ave Stdev Min Max  Ave Stdev Min Max  Ave Stdev Min Max  Ave Stdev Min Max 

Nh1) Move an exam to a 

different timeslot and 

room(s). 

18.40 8.42 0.33 7.61 9.37  7.55 0.28 6.96 8.26  15.67 0.40 14.76 16.48  14.78 0.24 14.30 15.27 
15.25 7.61 0.31 6.89 8.18  7.07 0.30 6.29 7.74  13.37 0.23 12.44 13.78  12.24 0.13 11.96 12.49 

12.30 6.89 0.24 6.33 7.61  6.38 0.20 6.03 6.89  9.50 0.06 9.36 9.61  9.48 0.08 9.22 9.61 

9.21 6.44 0.20 6.11 6.87  6.04 0.15 5.63 6.42  7.91 0.06 7.74 8.04  6.73 0.13 6.47 7.10 

Nh2) Move an exam to a 

different room(s) within the 

same timeslot. 

18.40 18.34 0.01 18.32 18.34  18.34 0.00 18.33 18.34  18.34 0.00 18.33 18.34  18.34 0.01 18.32 18.34 
15.25 15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25 

12.30 12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30 

9.21 9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21 

Nh3) Move an exam to a 

different timeslot maintaining 

the current assigned room(s) 

18.40 8.00 0.36 7.12 8.69  7.26 0.30 6.78 8.03  14.33 0.66 12.68 15.50  13.68 0.40 12.86 14.36 
15.25 8.81 0.33 8.07 9.85  8.23 0.28 7.70 8.71  12.86 0.33 12.00 13.40  11.91 0.26 11.09 12.27 

12.30 8.25 0.35 7.66 8.99  8.02 0.33 7.32 8.80  10.64 0.22 10.05 10.95  9.43 0.09 9.19 9.65 

9.21 7.55 0.25 6.95 8.25  7.13 0.31 6.38 7.82  7.85 0.08 7.53 7.98  6.68 0.14 6.49 7.26 

Nh4) Move an exam 

selected among the highest 

penalty value to a different 

timeslot and room(s). 

18.40 10.15 0.52 9.11 11.41  9.91 0.52 9.09 11.22  12.33 0.35 11.42 13.01  12.07 0.34 11.21 12.81 
15.25 9.40 0.41 8.52 10.25  9.28 0.47 7.92 10.06  11.49 0.44 10.44 12.48  11.30 0.32 10.28 12.01 

12.30 8.46 0.31 7.66 9.18  8.38 0.37 7.72 9.55  10.18 0.24 9.66 10.66  9.56 0.16 9.30 9.97 

9.21 7.47 0.18 7.14 7.84  7.48 0.20 6.97 7.85  8.07 0.14 7.79 8.40  7.91 0.23 7.37 8.38 

Nh5) Same as in (Nh4) but 

move the exam to a different 

room(s) within the same 

timeslot 

18.40 18.39 0.00 18.39 18.39  18.39 0.00 18.39 18.39  18.39 0.00 18.39 18.39  18.39 0.00 18.39 18.39 
15.25 15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25  15.25 0.00 15.25 15.25 

12.30 12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30  12.30 0.00 12.30 12.30 

9.21 9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21  9.21 0.00 9.21 9.21 

Nh6) Same as in (Nh4) but 

move the exam to a different 

timeslot maintaining the 

current assigned room(s). 

18.40 10.98 1.09 9.15 14.57  10.24 0.76 8.98 11.72  11.33 1.25 9.48 14.99  10.66 1.08 9.28 14.71 

15.25 10.98 0.24 10.30 11.61  9.28 0.47 7.92 10.06  10.99 0.31 10.34 11.54  10.88 0.25 10.12 11.37 

12.30 9.80 0.30 9.29 10.54  9.80 0.31 9.21 10.41  9.75 0.35 9.11 10.48  9.75 0.34 9.00 10.46 

9.21 8.96 0.20 8.15 9.14  9.00 0.22 7.86 9.21  8.50 0.37 7.62 9.02  8.50 0.38 7.71 9.09 

Nh7) Select two exams 

randomly and swap the 

timeslot and room(s) between 

them 

18.40 8.99 0.39 8.34 10.01  8.53 0.29 7.99 9.30  14.08 0.51 13.20 15.30  13.62 0.40 11.98 14.39 
15.25 8.21 0.39 7.57 9.27  7.79 0.40 6.96 9.28  12.44 0.35 11.74 13.03  11.68 0.21 11.05 12.05 

12.30 7.03 0.26 6.62 8.07  6.73 0.25 6.19 7.40  10.24 0.26 9.52 10.70  9.13 0.19 8.66 9.45 

9.21 6.71 0.27 6.21 7.35  6.37 0.24 5.86 6.85  7.79 0.09 7.56 7.96  6.57 0.09 6.39 6.85 

Nh8) Select two timeslots 

and swap the timeslot 

between them. 

18.40 10.79 0.45 9.39 11.90  10.23 0.45 9.31 11.12  11.35 0.49 10.31 12.73  10.68 0.43 9.93 11.79 
15.25 10.38 0.43 9.05 11.27  9.79 0.50 9.02 10.88  10.32 0.43 9.49 11.12  9.85 0.46 8.87 11.02 

12.30 9.66 0.34 8.96 10.31  9.69 0.34 8.98 10.36  9.71 0.35 9.03 10.61  9.60 0.31 8.97 10.70 

9.21 8.57 0.06 8.48 8.75  8.58 0.06 8.48 8.76  8.57 0.07 8.48 8.75  8.56 0.05 8.48 8.64 

Nh9) Same as in (Nh4) but 

instead of moving exam, we 

swap the selected exam with 

another exam. 

18.40 10.96 0.52 9.79 11.93  10.74 0.52 9.72 11.99  11.81 0.36 11.00 12.72  11.46 0.40 10.51 12.21 

15.25 9.88 0.38 8.97 10.64  9.85 0.37 9.09 10.53  10.63 0.36 9.96 11.45  10.22 0.35 9.48 10.93 

12.30 8.49 0.31 7.82 9.15  8.39 0.36 7.67 9.38  8.79 0.32 7.70 9.52  9.72 0.26 9.16 10.55 

9.21 7.52 0.24 7.02 8.02  7.45 0.23 6.78 7.87  7.55 0.17 7.20 7.92  7.39 0.23 7.01 7.89 

Nh10) Select two timeslots 

and move all the timeslot 

between them. 

18.40 10.59 0.45 9.51 11.67  10.40 0.47 9.52 11.84  11.42 0.45 10.29 12.33  10.74 0.45 9.92 11.93 
15.25 10.23 0.49 9.25 11.41  10.06 0.49 8.96 10.99  10.49 0.34 9.66 11.41  10.06 0.43 9.10 10.85 

12.30 9.73 0.32 9.26 11.15  9.67 0.20 9.38 10.21  9.70 0.23 9.16 10.50  9.59 0.27 8.94 10.33 

9.21 8.49 0.11 8.30 8.73  8.48 0.09 8.30 8.76  8.50 0.09 8.30 8.66  8.46 0.07 8.30 8.61 

Ave = average; var = variance; stdev = standard deviation; min = minimum; max = maximum 
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(and the solution adheres to all the hard constraints) using Nh1 with an initial cost of 9.21. Increasing 

the number of iterations to 3000, the solution produced with Nh1, using an initial solution of 9.21 is 

78% (26.08 compared with 5.63) better than the proprietary software and 9% (6.11 compared with 5.63) 

better compared to using 1500 iterations. 

 

2.9.2.2  Modified-GDA vs constructive heuristic 

 

 In the constructive heuristic (Kahar and Kendall, 2010a), the minimum solution produced is 

13.89 and 6.61 using candidate lists of one and five respectively. In a comparison between modified-

GDA and the constructive heuristic with a candidate list of one, the modified-GDA with 1500 iterations, 

produced a 56% (13.89 compared with 6.11) better solution with Nh1 using an initial cost of 9.21. Even 

with a poorer initial cost (18.40), the GDA solution is 46% (13.98 compared with 7.12) better using 

Nh3. Extending the search to 3000 iterations, when using an initial cost of 9.21 and 18.40, Nh1 produces 

59% (13.89 compared with 5.63) and 51% (13.89 compared with 6.78), respectively, better solutions 

compared to the constructive heuristic.  

Comparing the modified-GDA result with the constructive heuristic with a candidate list of five, 

modified-GDA with 1500 iterations outperforms the constructive heuristic by 8% (6.61 compared with 

6.11). However, using a poorer initial cost (18.40), the constructive heuristic outperforms modified-

GDA by 7% (7.12 compared with 6.61). In modified-GDA with 3000 iterations, it produces a 15% (6.61 

compared with 5.63) better solution compared to the constructive heuristic. However, with the poorer 

initial cost (18.40), the constructive heuristic outperforms modified-GDA by just under 3% (6.78 

compared with 6.61). 

 

2.9.2.3 Modified-GDA vs Dueck-GDA 

 

For Dueck-GDA, with 1500 iterations it is able to produce a solution of 7.20 using Nh9 and with 

3000 iterations produces 6.39 with Nh7 (see table 4). Comparing modified-GDA and Dueck-GDA with 

1500 iterations (table 4), the modified-GDA is able to produce a solution that is 15% (7.20 compared 

with 6.11) better than Dueck-GDA with Nh1 using an initial solution of 7.82. With a poorer initial cost 

of 16.68, the modified-GDA is able to outperform Dueck-GDA by 20% (9.48 compared with 7.12) with 

Nh3. Extending the search to 3000 iterations, initial cost of 7.82 and 16.68, modified-GDA with Nh1 

produced solutions with a 19% (6.39 compared with 5.63) and 27% (9.28 compared with 6.78) 

improvement when compared to Dueck-GDA. The best value found by each of the methods described 

above is shown in figure 3. 
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Overall our proposed modified-GDA is able to generate superior solutions than the UMP 

proprietary software, the constructive heuristic (see Kahar and Kendall, 2010a) and Dueck-GDA. Based 

on the result from both datasets, it shows that using a good quality, initial solution will produce superior 

results, and possibly even better when using a larger number of iterations. In the next section, we will 

further analyse the results. 

 

 
Figure 2.3 Best values of each method for semester1-2008/09 

 

2.10 Statistical analysis  

 

This section presents a statistical analysis of our results. The aim is to compare the modified-GDA and 

Dueck-GDA as well as the parameters used in the experiments to ascertain whether there are statistical 

differences. In addition we will determine suitable parameter values and neighbourhood heuristics. The 

comparisons include:  

 

a) Compare different initial solutions: Is there any significant difference in using an initial solution with 

a higher cost than using a better quality initial solution? 

b) Compare the number of iterations: Is there any significant difference in using a larger number of 

iterations? 

c) Compare neighbourhood heuristics: Is there any significant difference in the result by using different 

neighbourhood heuristics? 

 

Note that the analyses in (a) to (c) concentrates on the modified-GDA only. We are conscious 

that some of these may seem intuitively obvious (e.g. increasing the number of iterations produces 

superior results) but it is still informative to do the analysis as it is often not carried out.  
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The statistical tests are carried out using t-test, one-way ANOVA, Games Howell post-hoc, 

Kruskal-Wallis or Mann-Whitney U to determine if there are significant differences. The hypotheses to 

be tested are, null hypothesis H0 assumes that the samples are from identical populations, and the 

alternative hypothesis H1 assumes that the sample comes from different populations. We reject H0 when 

p ≤ 0.05 and vice versa. The above hypothesis are used throughout the statistical tests describe in the 

following section. The t-test and Mann-Whitney U are used to compare two samples while one-way 

ANOVA and Kruskal-Wallis are used to compare more than two samples. Games Howell Post-Hoc is 

used in conjunction with one-way ANOVA to investigate the cause of H0 rejection. Games Howell Post 

Hoc compares more than one pair of sample simultaneously. Additionally, Mann-Whitney U is used to 

investigate the rejection cause of H0 in conjunction with Kruskal-Wallis. 

The t-test and one-way ANOVA are used with a normally distributed sample while the Kruskal-

Wallis and Mann-Whitney U are used for non-normally distributed sample. The normality test are 

carried out using Shapiro-Wilk with the null hypothesis H0 assumes that the samples are normally 

distributed, and the alternative hypothesis H1 assumes that the sample is non-normal. We reject the H0 

when p ≤ 0.05 and vice versa.  

We start the statistical test with a normality test using Shapiro-Wilk and then continue with the 

relevant statistical test (as described above) based on the normality test result. 

 

2.10.1 Semester1-2007/08 

2.10.1.1 Significance difference: Modified-GDA and Dueck-GDA 

 

We analyse the modified-GDA and Dueck-GDA result using t-test and Mann-Whitney U. Table 

5 and table 6 show the p-value result for 1500 iterations and 3000 iterations respectively. For 1500 

iterations, (see table 5), we notice that most of the results show significant difference except for the Nh2 

(all initial), Nh5 (all initial), Nh6 (16.68), Nh8 (10.30 and 7.82) and Nh10 (7.82). For 3000 iterations 

(see table 6), again most of the results show significant difference except for Nh2 (all initial), Nh5 (all 

initial), Nh6 (13.74, 7.82), Nh8 (13.74, 10.30, 7.82) and Nh10 (13.74, 7.82).  

Based on both of the runs, generally the result that shows no significant difference involves 

neighbourhood heuristic that performs poorly. 

  

 

 

 



 22 

Table 2.5 Semester1-2007/08 p-values comparison between modified-GDA and Dueck-GDA for 

every neighbourhood heuristics with 1500 iterations  

Neighbourhood 

heuristics 

Initial cost 

16.68 13.74 10.30 7.82 

Nh1 .000 MwU .000 MwU .000 t .000 MwU 

Nh2 .694 MwU .221 MwU 1.00 MwU 1.00 MwU 

Nh3 .000 MwU .000 t .000 MwU .000 MwU 

Nh4 .000 t .000 t .000 t .000 t 

Nh5 1.00 MwU .385 MwU 1.00 MwU 1.00 MwU 

Nh6 .299 MwU .037 MwU .009 MwU .000 t 

Nh7 .000 t .000 MwU .000 t .000 MwU 

Nh8 .000 t .000 t .466 t .900 MwU 

Nh9 .000 t .005 t .000 t .000 t 

Nh10 .000 t .000 MwU .015 t .251 MwU 

MwU = Mann-Whitney U; t = t-test 

 

Table 2.6 Semester1-2007/08 p-values comparison between modified-GDA and Dueck-GDA for 

every neighbourhood heuristics with 3000 iterations   

Neighbourhood 

heuristics 

Initial cost 

16.68 13.74 10.30 7.82 

Nh1 .000 t .000 

MwU 

.000 t .000 t 

Nh2 .019 

MwU 

.427 

MwU 

1.00 

MwU 

1.00 

MwU Nh3 .000 t .000 t .000 

MwU 

.000 

MwU Nh4 .000 t .000 t .000 t .000 t 

Nh5 1.00 

MwU 

.688 

MwU 

1.00 

MwU 

1.00 

MwU Nh6 .018 t .115 

MwU 

.024 

MwU 

.216 t 

Nh7 .000 t .000 t .000 

MwU 

.034 

Nh8 .000 t .503 t .509 t .296 

Nh9 .000 t .000 t .000 t .000 t 

Nh10 .000 t .375 t .013 

MwU 

.652 

MwU MwU = Mann-Whitney U; t = t-test 

 

2.10.1.2 Comparing initial costs  

 

We compare the initial cost based on the number of iterations for all neighbourhood heuristics. 

We use one-way ANOVA (for normally distributed data) and Kruskal-Wallis (for non-normal data) to 

compare between the initial costs (i.e. 16.68, 13.74, 10.30 and 7.82). At the 95% confidence interval, 

the statistical test shows that there exists enough evidence to conclude that there is a difference (reject 
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H0) among the results produced between the initial costs for all of the neighbourhood heuristics (see 

table 7). Referring to table 7, the p-values are all less than 0.05 which leads us to reject H0.  

In-depth analyses on the differences in pair (16.68 with 13.74, 10.30, 7.82; 13.74 with 10.30, 

7.82 and so on) were investigated using Games Howell Post-Hoc (in conjunction with one-way 

ANOVA) and Mann-Whitney U (in conjunction with Kruskal-wallis). Based on the analysis only a few 

of the initial costs show no differences (accept H0) which include:  

 

- Nh3 between 10.30 and 7.82 for both iterations counts.  

- Nh4 between 16.68 and 13.74 for both iterations counts. 

- Nh6 between 16.68 and 13.74 with 3000 iterations. 

- Nh8 between 16.68 and 13.74 for both iterations counts. 

- Nh9 between 16.68 and 13.74 with 1500 iterations. 

- Nh9 between 10.30 and 7.82 with 3000 iterations.  

- Nh10 between 16.68 and 13.74 with 3000 iterations  

 

Generally, the results that show no difference (accept H0) involve using a solution with a large initial 

cost. From this analysis we conclude that it is beneficial to start with the best quality solution possible.  

 

Table 2.7 Semester 1-2007/08 p-value comparison for the initial cost for each neighbourhood 

heuristic based on the number of iterations 

Neighbourhood 

heuristics 

p-value 

1500 iterations 3000 iterations 

Nh1 .000kw .000owA 

Nh2 .000kw .000kw 

Nh3 .000kw .000kw 

Nh4 .000owA .000owA 

Nh5 .000kw .000kw 

Nh6 .000kw .000kw 

Nh7 .000kw .000kw 

Nh8 .000kw .000owA 

Nh9 .000owA .000owA 

Nh10 .000kw .000kw 

owA = one-way ANOVA; kw = Kruskal-Wallis 
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Table 2.8 Semester 1-2007/08 p-value comparison between 1500 and 3000 iterations for each 

neighbourhood heuristic based on initial cost 

Neighbourhood 

heuristics 

Initial cost 

16.68 13.74 10.30 7.82 

Nh1 .000MwU .000t .000t .000MwU 

Nh2 .087MwU .340MwU 1.00MwU 1.00MwU 

Nh3 .000MwU .000t .051MwU .001t 

Nh4 .090t .141t .755t .992t 

Nh5 1.00MwU .038MwU 1.00MwU 1.00MwU 

Nh6 .860MwU .044MwU .524MwU .073t 

Nh7 .000t .000MwU .456t .000MwU 

Nh8 .273t .817t .624t .589MwU 

Nh9 .129t .002t .040t .692t 

Nh10 .065t .303MwU .005MwU .172MwU 

MwU = Mann-Whitney U; t = t-test 

 

 

2.10.1.3 Comparing the number of iterations  

 

We compare the number of iterations (1500 and 3000 iterations) based on the initial cost (i.e. 

1500 vs 3000 with an initial cost of 16.68, 13.74, 10.30 and 7.82) using either t-test or Mann-Whitney 

U depending on whether the data is normally distributed. Table 8 shows the p-value of the comparison 

between the number of iterations executed. At the 95% confidence interval, the result is as follows 

(see table 8): 

 

- Nh1 show significant difference (reject H0) across all initial costs. 

- Nh3 and Nh7 shows significant differences (reject H0) for all initial costs except for 10.30 (accept 

H0). 

- Nh2, Nh4 and Nh8 show no significant differences (accept H0) across all initial costs. 

- Nh5 and Nh6 shows no significant differences (accept H0) for all initial costs except during initial 

13.74 (reject H0).  

- Nh9 show no significant differences (accept H0) for all initial costs except for 13.74 and 10.30 (reject 

H0)  

- Nh10 show no significant differences (accept H0) for all initial costs except during 10.30 (reject H0). 
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Based on these tests, the result varies according to the neighbourhood heuristics. We notice that, 

a diversified neighbourhood heuristics (i.e. Nh1 and Nh7) show significance difference (reject H0) 

between the two iterations compared to undiversified neighbourhood (i.e. Nh2, Nh5 etc). Therefore, 

(considering the solution in table 3) we conclude that it is best to use a large number of iterations. 

However, a search with a large number of iteration would only be worthwhile if it is being 

complemented with a good neighbourhood heuristic (to encourage exploration). 

 

2.10.1.4 Comparing neighbourhood heuristics  

 

We compare all the neighbourhood heuristics based on the initial cost and number of iterations 

using Kruskal-Wallis (i.e. Nh1 vs Nh2 vs Nh3 vs … Nh10 using initial cost 16.86 with 1500 iterations; 

etc). Table 9 show the p-values of the neighbourhood heuristics comparison. The result shows that there 

are significant differences (reject H0) for the solutions produced using different neighbourhood 

heuristics.  

Pair-wise comparison (analysis on the cause of H0 rejection) using Mann-Whitney U on the 

neighbourhood heuristics show that there are significant differences (reject H0) for the solution produced 

by most of the neighbourhood heuristics except for some. For example, Nh2 and Nh5 show no 

difference with an initial cost 7.82 and 10.30 for both iterations and initial cost 16.68 using 3000 

iterations. Table 10 shows a summary of the non significant differences (accept H0) between the 

neighbourhood heuristics. Referring to table 10, we notice that, some of the neighbourhoods (i.e. Nh3 

and Nh4, Nh4 and Nh7) show similarity although the inner working of the heuristics are different.  

Finally, we can summarise that Nh1 produces the best result followed by Nh7 and Nh4. Next 

are Nh3, Nh9, Nh6, Nh8, Nh10, Nh2 and Nh5. In our observation, Nh1 is a robust neighbourhood 

heuristic. Nh2 and Nh5 are the worst neighbourhood heuristics as they are unable to give any 

improvement on the initial cost during the search (especially Nh5). Nh7 works best with a better quality 

initial cost, while Nh4 work best with a large initial cost. Further discussion on the neighbourhood 

heuristics is given in section 11. 
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Table 2.9 Semester 1-2007/08 p-value comparison for the neighbourhood heuristics based on the 

initial cost and the number of iterations 

Initial 

value 

1500 

iterations 

3000 

iterations 16.68 .000 .000 

13.74 .000 .000 

10.30 .000 .000 

7.82 .000 .000 

 

Table 2.10 Semester 1-2007/08 summary of the non-significant differences (accept H0) when 

comparing the neighbourhood heuristics 

 1500 iterations  3000 iterations 

 16.68 13.74 10.30 7.82  16.68 13.74 10.30 7.82 

Nh1 - - - -  - - - - 

Nh2 - - Nh5 Nh5  Nh5 - Nh5 Nh5 

Nh3 - Nh4 Nh4 -  Nh4, 

Nh7 

- Nh4, 

Nh7 

- 

Nh4 - - Nh7 -  Nh7 - Nh7 - 

Nh5 - - - -  - - - - 

Nh6 - Nh8, 

Nh9 

- -  Nh9 Nh9 - Nh9 

Nh7 - - - -  - - - - 

Nh8 - Nh10 - Nh10  - Nh10 Nh10 Nh10 

Nh9 - - - -  - - - - 

Nh10 - - - -  - - - - 

‘-’ = result show rejecting H0 

 

2.10.2 Semester1-2008/09  

2.10.2.1 Significance difference: Modified-GDA and Dueck-GDA 

 

As in the previous section (9.11), we used t-test and Mann-Whitney U to analyses the result. 

Table 11 and table 12 show the p-value result for 1500 iterations and 3000 iterations respectively. For 

1500 iterations, (see table 11), we notice that most of the result shows significant difference except for 

the Nh2 (all initial), Nh5 (all initial), Nh6 (18.40, 15.25 and 12.30), Nh8 (15.25, 12.30 and 9.21), Nh9 

(9.21) and Nh10 (12,30 and 9.21).   

 

In 3000 iterations (see table 12), most of the result show significant difference except for Nh2 

(all initial), Nh5 (all initial), Nh6 (12.30), Nh8 (15.25, 12.30 and 9.21), Nh9 (12.30 and 9.21) and Nh10 

(15.25, 12.30 and 9.21). Based on the result, semester1-2008/09 dataset show more non-significant 
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difference compared to semester1-2007/08. However, the result that shows non-significant difference 

mainly involves neighbourhood heuristic that performs poorly (same as in semester1-2007/08 result). 

 

Table 2.11 Semester1-2008/09 p-values comparison between Modified-GDA and Dueck-GDA for 

every neighbourhood heuristics with 1500 iterations  

Neighbourhood  

heuristics 

Initial cost 

18.4 15.25 12.30 9.21 

Nh1 .000t .000MwU .000t .000MwU 

Nh2 .080MwU 1.00MwU 1.00MwU 1.00MwU 

Nh3 .000MwU .000t .000MwU .000MwU 

Nh4 .000t .000t .000t .000t 

Nh5 1.00MwU 1.00MwU 1.00MwU 1.00MwU 

Nh6 .074MwU .879t .467t .000MwU 

Nh7 .000t .000 .000MwU .000t 

Nh8 .000t .466t .476t .734MwU 

Nh9 .000t .000t .000t .436t 

Nh10 .000 t .003 t .844MwU .330MwU 

MwU = Mann-Whitney U; t = t-test 

 

 

Table 2.12 Semester1-2008/09 p-values comparison between Modified-GDA and Dueck-GDA for 

every neighbourhood heuristics with 3000 iterations   

Neighbourhood 

heuristics 

Initial cost 

18.4 15.25 12.30 9.21 

Nh1 .000t .000t .000MwU .000t 

Nh2 .600MwU 1.00MwU 1.00MwU 1.00MwU 

Nh3 .000t .000MwU .000t .000MwU 

Nh4 .000t .000t .000MwU .000t 

Nh5 1.00MwU 1.00MwU 1.00MwU 1.00MwU 

Nh6 .035MwU .001t .463t .000MwU 

Nh7 .000t .000MwU .000MwU .000MwU 

Nh8 .000t .473MwU .196t .474MwU 

Nh9 .000t .000t .164t .144MwU 

Nh10 .000t .995t .177MwU .288MwU 

MwU = Mann-Whitney U; t = t-test 
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2.10.2.2 Comparing initial costs  

 

We compare the initial cost based on the number of iterations for all neighbourhood heuristics for 

semester1-2008/09 dataset. As in section 9.1.2, we used one-way ANOVA (normally distributed data) 

and Kruskal-Wallis (non-normal data) to compare between the initial costs (i.e. 18.40, 15.25, 12.30 and 

9.21). Referring to table 13, at the 95% confidence interval, there are significant differences on all of 

the results as the p-values are all less than 0.05 (reject H0). In a pair-wise comparison between each 

initial cost using Games Howell Post-Hoc and Mann-Whitney U, the result shows that only a few of the 

initial cost shows no significant differences (accept H0) which include:  

 

- Nh3 between 18.40 and 9.21 with 3000 iterations,  

- Nh6 between 18.40 and 15.25 using 1500 iteration  

- Nh8 between 15.25 and 12.30 using 3000 iteration  

 

Based on the results, the majority of the neighbourhood heuristics show significant differences 

(accept H0) and considering the result in table 4, it is best to start with a good quality solution and thus 

reaffirms our conclusions in section 9.1.2.  

 

Table 2.13 Semester1-2008/09 p-value comparison for the initial cost for each neighbourhood 

heuristic based on the number of iterations 

Neighbourhood 

heuristics 

p-value 

1500 

iterati

ons 

3000 

iteratio

ns 

Nh1 .000kw .000owA 

Nh2 .000kw .000kw 

Nh3 .000kw .000owA 

Nh4 .000owA .000kw 

Nh5 .000kw .000kw 

Nh6 .000kw .000kw 

Nh7 .000kw .000kw 

Nh8 .000kw .000kw 

Nh9 .000owA .000kw 

Nh10 .000kw .000kw 

owA = one-way ANOVA; kw = Kruskal-Wallis 
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Table 2.14 Semester1-2008/09 p-value comparison between 1500 and 3000 iterations for each 

neighbourhood heuristic based on initial cost 

Neighbourhood 

heuristics 

Initial cost 

18.40 15.25 12.30 9.21 

Nh1 .000t .000t .000t .000MwU 

Nh2 .907MwU 1.00MwU 1.00MwU 1.00MwU 

Nh3 .000MwU .000t .001t .000t 

Nh4 .020t .177t .124MwU .811t 

Nh5 1.00MwU 1.00MwU 1.00MwU 1.00MwU 

Nh6 .000MwU .094t .992t .029MwU 

Nh7 .000t .000MwU .000MwU .000t 

Nh8 .000t .000MwU .742t .757MwU 

Nh9 .035t .744t .155t .322MwU 

Nh10 .033t .084t .450MwU .752MwU 

MwU = Mann-whitney U; t = t-test 

 

2.10.2.3 Comparing the number of iterations  

 

As in 9.1.3, we compare the solution for the number of iterations (1500 and 3000 iterations) 

based on the initial cost (i.e. 1500 vs 3000 with an initial cost of 18.40, 15.25, 12.30 and 9.21). Table 

14 shows the p-value of the comparison between the number of iterations. At the 95% confidence 

interval, the result is as follows (see table 8): 

- Nh1, Nh3 and Nh7 show significant differences (reject H0) across all initial costs. 

- Nh2 and Nh5 show no differences (accept H0) in the result for all initial costs. 

- Nh4, Nh9 and Nh10 show significant differences (reject H0) only on initial costs 18.40.  

- Nh6 show significant difference (reject H0) only on initial costs 18.40 and 9.21.  

- Nh8 show significant difference (reject H0) only on initial costs 18.40 and 15.25.  

 

The results show a similar pattern as for semester1-2007/08 and this reaffirms our conclusion 

(as in the previous dataset) that is best to use a larger number of iterations.  

 

2.10.2.4 Comparing neighbourhood heuristics  

 

As in 9.1.4, we compare the set of neighbourhood heuristics based on the initial costs and the 

number of iterations using Kruskal-Wallis. Table 15 shows the p-value of the neighbourhood heuristics 

comparison. At the 95% confidence internal, the statistical result shows that there are significant 
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differences (reject H0) for the solutions produced between the neighbourhood heuristics. An in depth 

analysis using Mann-Whitney U shows that there are significant differences (reject H0) for the solutions 

produced by most of the neighbourhood heuristics. Table 16 summarises the significant differences 

(accept H0) between neighbourhoods. Hence, we can summarise that Nh1 produced the best result, 

followed by Nh7 and Nh3. Next are Nh4, Nh9, Nh10, Nh8, Nh6, Nh2 and Nh5. Again, Nh1 is the best 

heuristic and Nh5 is the worst.  

 

Table 2.15 Semester1-2008/09 p-value comparison for the neighbourhood heuristic based on initial 

cost and the number of iterations 

Initial 

value 

1500 

iterations 

3000 

iterations 18.40 .000 .000 

15.25 .000 .000 

12.30 .000 .000 

9.21 .000 .000 

 

Overall, we can conclude that it is advisable to use the best quality solution as the initial solution 

and a larger number of iterations. In terms of neighbourhood heuristics, the results vary according to 

the neighbourhood heuristic and performance is different between the two datasets. Hence, a 

neighbourhood that works for one dataset might not necessarily work on other dataset. Therefore, it is 

best to use a set of diversified neighbourhood heuristics (e.g. Nh1 and Nh7) as it will encourage 

exploration of the search space. 

 

Table 2.16 Semester1-2008/09 summary of non-significant differences (accept H0) when comparing 

neighbourhood heuristics 

 1500 iterations  3000 iterations 

 18.40 15.25 12.30 9.21  18.40 15.25 12.30 9.21 

Nh1 - - - -  - - - - 

Nh2 - Nh5 Nh5 Nh5  - Nh5 Nh5 Nh5 

Nh3 - - - Nh4, 

Nh9 

 - - - - 

Nh4 - - Nh9 Nh9  - - Nh9 Nh9 

Nh5 - - - -  - - - - 

Nh6 Nh8, 

Nh9, Nh10 

- Nh10 -  Nh8, 

Nh10 

- Nh8 - 

Nh7 - - - -  - - - - 

Nh8 Nh9 Nh10 Nh10 -  Nh10 Nh9 Nh10  

Nh9 - - - -  - - - - 

Nh10 - - - -  - - - - 

‘-’ = result show rejecting H0 
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2.11 Discussion 

 

The proposed GDA give an improvement over the constructive heuristic and outperforms the 

UMP proprietary software. The success of the technique is because of its dynamic acceptance level that 

uses a boundary level which gradually decreases based on a decay rate, but also allows the boundary to 

increase when there is no improvement during search. In increasing the boundary level, the new 

boundary is set higher than the current solution f(s) allowing the search to accept worse solutions. The 

algorithm also adjusts the boundary and a newly desired value is calculated when f(s) is less than or 

equal to the desired value.  

Comparison between Modified-GDA and Dueck-GDA reveal that the Modified-GDA is able to 

produce better quality solutions than Dueck-GDA. Some of the neighbourhood heuristics show non-

significant difference. However, this mainly involves neighbourhood heuristics that perform poorly.  

The modified-GDA gives an improvement over the initial cost (both 1500 and 3000 iterations) 

for the majority of the neighbourhood heuristics. Statistical analysis on the initial cost shows that some 

neighbourhoods (e.g. Nh3, Nh6, Nh8 etc) have similar performance, mostly between large initial costs, 

where semester 1-2007/08 show more similarity compared to semester 1-2008/09. Only a few show 

similarity on a small initial cost (i.e. Nh3 and Nh9), which we believe is caused by the neighbourhood 

heuristics themselves. The neighbourhood heuristic is unable to diversify the search when it is near to 

a local optima.  Referring to table 3 and table 4, we can summarise that using a smaller initial cost 

produce a higher quality solution when compared to using a larger initial cost. However, note that the 

computational time to find a small initial cost takes a bit longer during the constructive phase (Kahar 

and Kendall, 2010a).  

An analysis on the number of iterations, reveals that some of the neighbourhoods (i.e. Nh2, Nh5 

and Nh6) show no difference in their performance between the numbers of iterations. We notice that 

the result is very much dependent on the heuristics used. A diversified neighbourhood would make use 

of the large number of iterations to efficiently explore the search space. This led us to conclude that the 

number of iterations does play a role in the search but it is not as important as the neighbourhood 

heuristics that are used. Using a larger number of iterations gives better results because it enable the 

method to cover more of the search space, compared to small number of iterations. However, this does 

require extra computational time. A good compromise is to use a small initial cost with a large number 

of iterations.  

An analysis on the neighbourhood heuristics shows that Nh1 is the best and Nh5 is the worst. 

The result also show that the neighbourhood heuristics perform differently between the two datasets 

(except for the first and the last two neighbourhoods), although the datasets are similar in terms of the 



 32 

characteristics (see table 2). In our observation, Nh1 (which produce the best result) is a robust 

neighbourhood heuristics (see table 3 and table 4). Nh2 and Nh5 are the worst neighbourhood heuristics 

as it is unable to improve the initial cost except for an initial cost 13.74 on semester 1-2007/08 dataset. 

The result demonstrates the importance of the initial cost in order for the search to advance. Nh7 works 

best with a small initial cost while Nh3, Nh4 and Nh6 work best with large initial cost. Hence, we can 

conclude that the choice of neighbourhood heuristics is very important in the search in order to converge 

to a good quality solution (Thompson and Dowsland, 1998) in addition to a good choice of initial 

solution and number of iterations. 

 

2.12 Statement of contribution 

 

This paper has presented a study of a real-world examination timetabling problem from 

UMP. It involves scheduling exams into timeslots and rooms, and improving upon a constructive 

heuristic. The contributions of this paper are as follows: 

 

a) We have presented a modification of the great deluge algorithm (modified-GDA) that uses a simple 

to understand parameter that permits the boundary (that act as acceptance level) to dynamically 

change during the search. That is, it calculates a new boundary, decay rate and a desired value, if 

there is no improvement after several iterations, or, the boundary is less than the new solution, or, 

when the new solution is less than the desired value.  

b) We have presented an implementation of a modified-GDA in solving a real world examination 

timetabling problem which includes additional constraints that have never been reported before in 

the literature (Kahar and Kendall, 2010a). The modified-GDA is able to give an improved solution 

over the constructive heuristic, better quality solutions compared to the proprietary software and 

Dueck-GDA approach. 

c) We have investigated the effect of the initial solution, the number of iterations and neighbourhood 

heuristics. Statistical analysis has been carried out to determine differences between the various 

components. The choice of neighbourhood heuristics, number of iterations and initial solution plays 

a significant role in the quality of the solution returned.  

 

2.13 Conclusion and future research 

 

In this paper, we have investigated a real world examination timetabling problem aiming to 

improve on the constructive heuristic solution. The modified-GDA approach is able to produce good 
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quality solutions compared to the UMP proprietary software, satisfying all the constraints (which the 

proprietary software fails to do), improve on the constructive result and perform better than the Dueck-

GDA. The propose modified-GDA uses a simple to determine parameter that can find a good solution. 

The selection of neighbourhood heuristics, iterations and initial cost plays a significant part in the 

search. For future work, our aims are to further explore the modified-GDA approach: 

 

- Due to the fact that the neighbourhood heuristics are very important, we are going to investigate the 

use of multiple neighbourhood. We are going to use each neighbourhood in succession. The next 

neighbourhood will be selected if the current neighbourhoods show no improvement.  

- Use all of the neighbourhood heuristics in every iteration.  

- Combine different neighbourhood heuristics. Example using Nh4 or Nh6 in early stage of the search 

and then Nh1 or Nh7 in the latter stages. We believe this could save computational time if a suitable 

neighbourhoods are combined in an intelligent ways.  
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CHAPTER 3 

 

 

EVALUATING UMP EXAMINATION TIMETABLE 

 

 

 

Abstract 

This work presents a study of examination timetabling problem from Universiti Malaysia 

Pahang (UMP). UMP operated from two campuses (i.e., Gambang and Pekan) and this formed 

new constraints for consideration in producing quality UMP examination timetable. These 

new constraints include schedule exams into appropriate campus and similar exams held in 

different campus must be assigned to the same timeslot. These constraints have not been 

examined before in the literature. UMP unable to evaluate examination timetable quality due 

to having no formal mathematical model. Hence, this paper aims to investigate the UMP 

examination timetabling constraints by developing a formal mathematical model and evaluate 

the current UMP examination timetable using the proposed formal mathematical model. 

 

Keywords: Computational Intelligence, Examination Timetabling, Scheduling  

 

3.1 Introduction 

The examination timetabling problem involves allocating examinations to a fix number 

of rooms and timeslots whilst fulfilling the constraints. The constraints differ from one 

institution to another. This constraints can be categorised as hard and soft constraints. The hard 

constraints must be satisfied. An example, no students were assign two examinations 

simultaneously. Timetable that meet the hard constraint are considered as a feasible timetable. 

The soft constraints refer to those requirements that need be met as much as possible6. An 

example, maximise spreading of student examination papers. This would allow student to rest 

and do revision between their exam papers (which is preferred by many students). Hence, the 

soft constraints (also referred to as objective function) enable us to determine timetable quality. 

This involve a mathematical model that calculate the penalty cost value for every soft 

constraints violation. For a quality examination timetable, the total penalty value need to be 

minimised (Abdullah, S. and Turabieh, H., 2012; Ayob, M., et. al., 2007).  
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The uncapacitated problem does not consider room capacity unlike capacitated problem 

which considers room capacity as one of the hard constraint (Abdullah, 2006; Pillay and 

Banzhaf, 2009). Capacitated problem resemble the real-world problem because it take into 

account the room capacity as a hard constraint. The capacitated problems are more complex 

and challenging to solve compared to the uncapacitated problems. The room constraint 

increases the level of complexity to the overall problem in producing a high quality 

examination timetable (Burke, Newall and Weare, 1996b) 

In this paper, we present an investigation of Universiti Malaysia Pahang (UMP) 

examination timetabling problem which consists different constraints from the literature 

(Kendall and Hussin, 2005a). Related work in examination timetabling is presented in section 

2. The UMP examination timetabling problem and its constraints are presented in section 3. In 

section 4, the proposed UMP examination timetabling formal model is discussed. Section 5 

and section 6 desribe the investigated data and discussion on the results respectively. Finally, 

the conclusion and recommendation for the future work is discussed in section 7. 

 

3.2 Related Work 

The most common examination timetabling datasets seen in the literature are the 

Toronto dataset (Carter, Laporte and Lee, 1996), University of Nottingham dataset (Burke, 

Newall and Weare, 1996b) and from University of Melbourne (Merlot et. al., 2003). Over the 

years, many researcher proposed new examination dataset. This include the 2007 Second 

International Timetabling Competition (refer to as ITC2007) dataset (McCollum et. al. 2008), 

UiTM dataset (Kendall, and Hussin, 2005a; Kendall and Hussin, 2005b), UKM dataset (Ayob, 

Abdullah and Malik, 2007) and UMP dataset (Kahar and Kendall, 2010).  

The Toronto dataset is an uncapacitated examination timetabling problems from 

thirteen different academic institutions around the world (Carter, Laporte and Lee, 1996). 

These datasets differ in term of the number of examinations, timeslots and registered students 

as well as the conflict density. For example, instance car-s-91 consists of 35 timeslots, 682 

examinations, 16925 students and conflict density is 0.13 while instance car-f-92 consists of 

32 timeslots, 543 examinations, 18419 students and conflict density is 0.14. The Toronto 

dataset consider only clash free as the hard constraint and spreading of examinations as the soft 

constraints. Many researchers have investigated Toronto dataset including (Abdullah et. al., 

2010; Alzaqebah and Abdullah, 2014; Burke and Bykov 2012; Sabar et. al., 2012a; Turabieh 
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and Abdullah, 2011b). The Nottingham dataset was introduced by Burke (Burke, Newall and 

Weare, 1996b). Nottingham dataset is a capacitated problem which consists of 7896 students, 

23265 student enrolments, 1550 room capacities, 23 available timeslot and 0.03 conflict 

density. The objective of the Nottingham dataset is to reduce the back-to-back exams on the 

same day (Burke, Newall and Weare, 1996b) 

Merlot et. al., (2003) introduced a dataset from University of Melbourne. They 

presented two capacitated datasets which are from semester I (mel01s1) and II (mel01s2) in 

2001. Semester I has 609 exams and 28 available timeslots, while semester II has 657 exams 

with 31 available timeslots. There are two timeslots on every weekday and different capacity 

for each timeslot. There are five rooms in which exams can be assigned. The soft constraint is 

to minimise the back-to-back exams on the same day or overnight.   

The second international timetabling competition (ITC2007) dataset was introduce in 

August 2007. Twelve datasets were introduced with different conflict density, number of 

examinations, total students, available timeslots and rooms. The ITC2007 examination dataset 

hard constraints include no clashing, exams capacity should meet the room capacity and the 

examinations should follow the specified arrangement. The soft constraint of the ITC2007 

examination dataset include, minimising back-to-back exams on the same day, timeslot and 

room usage, mixed examinations length in a timeslot and assign large capacity exam as early 

as possible in the exam period. Many researchers have investigated ITC2007 examination 

dataset (Alzaqebah and Abdullah, 2014; Anwar et. al., 2013; Battistutta, Schaerf and Urli, 

2015; Bykov and Petrovic, 2016; Gogos, Alefragis and Housos, 2012).  

An uncapacitated dataset from UiTM Malaysia was introduced by Kendall and Hussin, 

(2005a). UiTM dataset consists of 2063 examinations, 84675 registered students, 357761 

student enrolments and 40 timeslots. The hard constraints include no clashing. The soft 

constraint include spreading the exams over the exam period and penalise those exams being 

scheduled on weekend.  

A capacitated examination dataset from UKM, Malaysia was introduced by Ayob et. 

al., (2007). The dataset contains 818 examinations, 14047 registered students as well as 75857 

student enrolments, 42 timeslots and total capacity is 1550. The hard constraints include no 

clashing and not allowing students to seat three consecutive examinations in the same day. 

Additionally, students assign to seat consecutive exam must be allocated to the same exam 

room. They also include avoiding room sharing for some exams. The soft constraint are 

spreading and minimise back-to-back exams on the same day. 
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A capacitated dataset from UMP Malaysia was introduced by Kahar and Kendall 

(2010). Two different datasets from different semester were presented. The first dataset 

contains 157 examinations, 3550 students, 12731 student enrolments, 24 rooms and 0.05 

conflict density. The second dataset contains 165 examinations, 4284 registered students, 

15416 student enrolments, 28 rooms and 0.05 conflict density. They proposed two new hard 

constraints that include exams can be scheduled to multiple room but it must be room in the 

same building only. Additionally, the distance between the rooms must be as close as possible. 

Besides, here UMP does not allow multiple examinations sharing the same room (Kahar, and 

Kendall, 2015; Mandal and Kahar, 2015) 

Table 3.1 shows the examination timetable benchmark datasets. Toronto, Nottingham 

and Melbourne datasets are earlier datasets compared to the ITC2007, UiTM, UKM and UMP 

datasets. 

Table 3.1 Examination timetable benchmark datasets 

Datasets Instances Exams Students Enrolments 
Conflict 
density 

Timeslot 
Room 

(capacity) 

Toronto 13 80 - 2419 549 - 30029 5689 - 120681 0.03 - 0.42 10 - 42 n/a 

Nottingham 1 800 7896 34265 0.03 23 1 (1550) 

Melbourne 2 521 - 562 19816 - 20656 60637 - 62248 n/a 28 - 31 5 (3024) 

ITC2007 12 78 - 1096 655 - 16439 n/a 0.01 - 0.18 12 - 80 1 - 50 

UiTM 1 2063 84675 357761 n/a 40 n/a 

UKM 1 818 14047 75857 n/a 42 7 (1550) 

UMP 2 157 - 165 3550 – 4284 12731 - 15416 0.05 20 24 - 28 

 

3.3 Examination Timetabling Problem at UMP 

The Universiti Malaysia Pahang (UMP) was established on February 16, 2002, and is 

located in the east coast state of Pahang. In 2007, there are only five faculties with almost 3550 

students. In 2014, UMP expanded to nine faculties with a total number of student increases to 

7833. UMP currently operated from two different campuses that is located in Gambang and 

Pekan as the main campus. The distance between the two campuses is about 50km apart. 

Operating from two separated campuses presents many challenges in satisfying the hard and 

soft constraints. 



   

38 

 

In UMP, a proprietary system has been used to produce the examination timetable since 

year 2003. The proprietary system managed to produce the examination timetable but it is 

unable to evaluate the timetable quality. This is because the proprietary system has no formal 

mathematical model to evaluate the examination timetable quality. Hence, this motivates us 

(apart from the reasons mention above) to develop a formal mathematical model of the UMP 

examination timetabling problem. Table 3.2 describes the UMP examination timetabling 

constraints. 

 
Table 3.2 UMP examination constraints 

 UMP Examination Constraints 

H
ar

d
 C

o
n
st

ra
in

ts
 

 

H1. No students allowed to sit more than one examination simultaneously.  

H2. The capacity of room must be able to accommodate the total number of students. 

H3. A single exam must be split into rooms in the same building. 

H4. The exam needs to be scheduled to the appropriate campus. 

H5. Similar exams held in different campus must be assigned to the same timeslot. 

H6. Larger examination needs to be scheduled early in the examination period. 

 

 

S
o
ft

 o
n
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ra
in

ts
 

S1. The exam needs to be spread out evenly throughout the exam period. 

S2. The rooms distance of an exam held in multiple rooms should be as close as possible. 

S3. Minimise splitting of an exam over multiple rooms. 

*H4, H5 and H6 is the new constraints 

 

3.4 Proposed UMP Examination Timetabling Formal Model  

This section discusses the UMP examination timetabling constraints and the proposed 

formal model. 

 

Indices  

i, j 1…N 

r, p 1…R 

s 1…S 

t 1…T 

Parameters 

N Number of exams 
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R Number of rooms 

S Number of registered students 

T Number of timeslots 

𝑆𝑖 Number of registered students for exam i 

𝐿𝑖 Campus location for exam i 

𝑀𝑟 Campus location for room r 

𝐵𝑟 Building for room r 

𝑓𝑟 Total capacity for room r 

𝑐𝑖𝑗 Conflict matrix where each element, 𝑐𝑖𝑗 represents the number of students registering 

in both exams i and j.  

𝑑𝑟𝑝 Distance matrix where each element, 𝑑𝑟𝑝 represent the distance between rooms r and 

p.  

𝑣𝑖𝑗 Coincidence matrix where value 1 in 𝑣𝑖𝑗 represents the exams that must be schedule in 

the same timeslot for both exams i and j, 0 otherwise.   

  

Decision variables 

𝑥𝑖𝑡 1 if exam i is assigned to timeslot t, 0 otherwise 

𝑦𝑖𝑟 1 if exam i is assigned to room r, 0 otherwise 

𝑧𝑟𝑡 1 if room r is assigned to timeslot t, 0 otherwise. 

 

The objective function (i.e. soft constraints) include spreading examinations over the exam 

period, minimise the room distance for an exams assigned to multiple rooms and minimise 

splitting of an exam over multiple rooms. The formulation is shown as bellow: 

 

(Minimize) F(x) = F1 + F2 + F3    (eq.1) 

 

The first component of the objective function is F1 (i.e. spreading cost) is formulated in eq.2.  

 

𝐹1  =
∑ ∑ 𝑐𝑖𝑗 .  𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑡𝑖,𝑡𝑗)𝑛

𝑗=1
𝑛
𝑖=1

2𝑆
              (eq.2) 

and 

𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑡𝑖, 𝑡𝑗) = {

32

2
|𝑡𝑖− 𝑡𝑗|

    𝑖𝑓 1 ≤ |𝑡𝑖 −  𝑡𝑗| ≤ 5 

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
     (eq.3) 
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 𝑡𝑖 and 𝑡𝑗 represent the timeslots schedule for exam i and j. Eq.2 represents the spreading cost 

of exams i and exam j, and it is calculated by multiplying with total students in conflict cij with 

the proximity value12. The proximity values used are 16, 8, 4, 2 and 1. Proximity value 16 

represent the exams being schedule consecutively; proximity value 8 represent the exams has 

one timeslot gap, value 4 represent the exams have two timeslot gaps and so on. 

The second component of the objective function is the distance cost, F2 (minimize the distance 

between rooms for those exam assigned in multiple rooms) is shown in eq.4: 

 

𝐹2 =
∑ ∑ ∑ 𝑑𝑟𝑝𝑦𝑖𝑟𝑦𝑖𝑝

𝑅
𝑝=𝑟+1

𝑅−1
𝑟=1

𝑁
𝑖=1

𝑁
                (eq.4) 

 

The third component of objective function is the splitting cost, F3 (splitting of an exam over 

multiple rooms) is formulated in eq.5: 

𝐹3 =
∑ 𝑚𝑖− 1𝑁

𝑖=1

𝑁
                           (eq.5) 

 

Where ℎ𝑖 is the number of rooms exam i has been split across. ℎ𝑖 can be calculated using 

eq.6. 

ℎ𝑖 = ∑ 𝑦𝑖𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑁}𝑅
𝑟=1             (eq.6) 

 

The following is discussion of the hard constraints: 

a. Students cannot assigned to sit more than one examination simultaneously (see eq.7). If 

both exam i and exam j are scheduled to the same timeslot t, the number of students 

register in both exams i and j must be equal to zero (i.e. 𝑐𝑖𝑗= 0). Otherwise the result will 

return a value other than zero which resulting student clashing examinations. 

 

∑ ∑ ∑ 𝑥𝑖𝑡𝑥𝑗𝑡𝑐𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

𝑇
𝑡=1 = 0                          (eq.7) 

                                          

b. Exams i must be assigned only once in timeslot, t. 

∑ 𝑥𝑖𝑡 = 1𝑇
𝑡=1   for all 𝑖 ∈ {1, … , 𝑁}                 (eq.8) 

 

c. Exam i must be split into rooms in the same building only. This requirement allow 
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lecturer to easily assist (i.e. unclear question etc) students during exam.  

∑ ∑ 𝑦𝑖𝑟𝑦𝑖𝑝𝑏𝑟𝑝 =
𝑚𝑖(𝑚𝑖−1)

2
𝑅
𝑝=𝑟+1

𝑅−1
𝑟=1     for all 𝑖 ∈ {1, … , 𝑁}           (eq.9) 

where  

𝑏𝑟𝑝 = {
 1   𝑖𝑓 (𝐵𝑟 =  𝐵𝑝)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                                                                   

d. The number of exam rooms used in timeslot t must not exceed the total rooms in a 

timeslot t, 𝑅𝑡.  

∑ 𝑧𝑟𝑡 ≤ 𝑅𝑡   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ {1, … , 𝑇}𝑅
𝑟=1         (eq.10) 

 

e. The number of students assigned to a room(s) must be less than the maximum room(s) 

capacity. 

𝑆𝑖 ≤ ∑ 𝑦𝑖𝑟𝑓𝑟    𝐹𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑁}𝑅
𝑟=1      (eq.11) 

 

f. The exam needs to be scheduled to the appropriate campus. 

∑ 𝑦𝑖𝑟 . 𝑐𝑎𝑚𝑝𝑢𝑠(𝑀𝑟 , 𝐿𝑖) = 0    

𝑅

𝑟=1

        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, … , 𝑁}     (eq. 12) 

where  

𝑐𝑎𝑚𝑝𝑢𝑠(𝑀𝑟 , 𝐿𝑖) = {
 0   𝑖𝑓 (𝑀𝑟 =  𝐿𝑖)
1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

    

 

g. Exam with the same code but held in different campus need to be assigned in the same 

timeslot. This is consider as coincidence constraints and these exam are presented in 𝑣𝑖𝑗  

 

∑ ∑ 𝑣𝑖𝑗 ∙ 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡(𝑡𝑖 , 𝑡𝑗) = 0𝑁−1
𝑗=1        𝑁

𝑖=1  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ {1, … , 𝑇}     (eq.13) 

Where 

𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡(𝑡𝑖, 𝑡𝑗) = {
 0   𝑖𝑓 (𝑡𝑖 = 𝑡𝑗) 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
    

 

h. Larger examination needs to be scheduled early in the examination period. Examination 

with capacity greater than 400 need to be schedule in timeslot 1 to timeslot 10 only (i.e. 

first week of the examination period).  

∑ 𝑒𝑥𝑎𝑚_𝑐𝑎𝑝(𝑆𝑖) ∙ 𝑡𝑆𝑙𝑜𝑡_𝑚𝑎𝑥(𝑡𝑖) = 0 𝑁
𝑖=1    (eq.14) 

Where 
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𝑒𝑥𝑎𝑚_𝑐𝑎𝑝(𝑆𝑖) = {
1   𝑖𝑓 𝑆𝑖 > 400     
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

    

and 

𝑡𝑆𝑙𝑜𝑡_𝑚𝑎𝑥(𝑡𝑖) = {
1   𝑖𝑓 𝑡𝑖 > 10     
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

    

 

3.5 Investigated Data 

In this section, we describe the examination dataset used to evaluate the formal model 

proposed in section 4. The experiment dataset used are from semester1-2014/2015 and 

semester2-2014/2015. In semester1-201415, the total number of exams is 445, number of 

students is 7,833 and 31,185 number of student enrolments. While in semester2-201415, the 

total number of exams is 426, number of students is 7,157 and 27,526 number of student 

enrolments. The total exam room is 40 in both semester. Table 3.3 show the dataset 

information. 

Table 3.3 Summary of UMP investigated datasets 

Categories Semester1-

201415 

Semester2-

201415 Exams 445 426 

Students 7,833 7,157 

Enrolments 31,185 27,526 

Conflict 

density 

0.04 (4%) 0.04 (4%) 

Timeslot per 

day 

2 2 

Rooms 40 40 

 

 

The number of examination days is 14 with two timeslots on every examination days. 

No exam assigned on Saturday and Sunday. Figure 3.1 and 3.2 show the timeslot indices used 

in semester1-2014 and semester2-201415 respectively. Referring to figure 1 and 2, indices 1 

and 2 refer to day 1, while timeslot 3 and 4 refer to day 2 and so on. The indices 11 to 14 and 

25 to 28 are invisible because those indices refer to weekend. These indices were consider but 

cannot be selected so that we could evaluate the actual examination gap (during weekend). The 

indices 7 and 8 in semester1-21415 are invisible because those indices refer to public holiday 

and no exam assigned on that day. 
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(1, 2, 3, 4, 5, 6, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 

35, 36, 37, 38) 

Figure 3.1 Timeslot indices for semester1-201415. 

 

 

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 

34, 35, 36) 

Figure 3.2 Timeslot indices for semster2-201415. 

 

 

Table 3.4 Result of the UMP Examination Timetable calculated  

using proposed formal model  

No Hard Constraints 
Result (sem1-

201415) 

Result (sem2-

201415) 

H1 
No students are allowed to take more than 
one examination simultaneously. 

Not comply Not comply 

H2 
The number of students allocated to an exam 
room must be less than the maximum 
capacity of room 

Comply Comply 

H3 
An exam must be split into rooms in the 
same building. 

Not comply Not comply 

H4 
The exam needs to be scheduled to the 
appropriate campus. 

Comply Comply 

H5 
Similar exams held in different campus must 
be assigned to the same timeslot 

Comply Comply 

H6 
Larger examination needs to be scheduled 
early in the examination period. 

Comply Comply 

 

3.6 Results and Discussion 

The discussion on the results of the UMP examination timetabling problem is presented 

in this section. Table 4 shows the result of the UMP examination timetable used in semester1-

201415 and semester2-201415. Based on the result calculated using the proposed model, it 

indicates that the examination timetable (i.e. semester1-201415 and semester2-201415) 

generated by UMP did not comply with some of the hard constraints (see Table 4). The UMP 

examination timetable did not comply with the not allowing students to sit two examinations 

simultaneously constraint. Those clashing students had to sit two exams consecutively (held 

straightway after the first exam finish). According to the students it is tiring and stressful 

because they have to sit for 6 hour exam consecutively (where each exam duration is 3 

hours).The second constraint UMP fail to comply is the exam must be split into rooms in the 
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same building only constraint. A number of 25 exams in semester1-201415 and 12 exams in 

semester2-201415 were assigned to rooms in different buildings.  

The examination timetable quality is evaluated based on the three objectives (see 

section 4). In semester1-201415, the total penalty cost is 541.36 with the spreading cost F1 is 

11.30, distance cost F2 is 529.44 and the splitting cost F3 is 0.62. For semester2-201415, the 

total penalty cost is 307.96 with spreading cost F1 is 13.01, distance cost F2 is 294.41 and the 

splitting cost F3 is 0.54. The distance cost for both semester1-201415 and semester2-201415 

are high because some exams were assigned to rooms that is in different building. Based on 

the proposed formal mathematical model, we are able to evaluate the UMP examination 

timetable used in semester1-201415 and semester2-201415.   

 

3.7 Conclusion and Future Work 

Examination timetabling is an important and challenging task faced by every academic 

institution. Every academic institution has a different constraints and resources in producing 

the examination timetabling. Hence, the examination timetable should be generated 

independently to meet the individual requirements. In this paper, a study of the UMP 

examination timetabling problem and its additional constraints is presented. The formal 

mathematical model is presented in this paper. Additionally, the quality of the UMP 

examination timetable used (i.e. sem1-201415 and sem2-201415) is evaluated. The result 

shows that the examination timetable did not comply with some of the hard constraints (i.e. 

infeasible timetable). Additionally, the result also shows a high penalty cost (soft constraints). 

Able to evaluate the timetable solution assist institution to produce timetable that meet the hard 

constraints (i.e. feasible solution) and as much as possible complying with the soft constraints 

(i.e. objective function). 

For future work, we will implement meta-heuristic approaches technique such as hill-

climbing, great deluge algorithm, genetic algorithm and other approaches in producing quality 

result using the porposed formal model. We hope to produce better result then the timetable 

currently being used.  
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CHAPTER 4 

 

 

CONCLUSION 

 

 

Examination timetabling is a challenging task faced by every academic institution. 

Every academic institution has a different constraints and resources in producing the 

examination timetabling. In this research work, a study of the UMP examination timetabling 

problem and its additional constraints is presented. The UMP formal mathematical model is 

presented in this research work taken from two different semester. The quality of the UMP 

current examination timetable being used is evaluated. The result shows that the examination 

timetable did not comply with some of the hard constraints (i.e. infeasible timetable). 

Additionally, the result also shows a high penalty cost (soft constraints). Ablility to evaluate 

the timetable solution assist institution to produce timetable that meet the hard constraints (i.e. 

feasible solution) and as much as possible complying with the soft constraints (i.e. objective 

function). 

For future work, we will further explore other meta-heuristic approaches technique in 

order to produce quality result using the porposed formal model. We hope to produce better 

result then the timetable currently being used.  
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