

A NOVEL DEADLOCK DETECTION ALGORITHM

FOR NEIGHBOUR REPLICATION ON GRID
ENVIRONMENT

NORIYANI BINTI MOHD ZIN

MASTER OF SCIENCE (SOFTWARE

ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

A NOVEL DEADLOCK DETECTION ALGORITHM FOR NEIGHBOUR

REPLICATION ON GRID ENVIRONMENT

NORIYANI BINTI MOHD ZIN

Thesis submitted in fulfillment of the requirements
for the award of the degree of

Master of Science (Software Engineering)

Faculty of Computer Systems & Software Engineering
UNIVERSITI MALAYSIA PAHANG

JULY 2012

 UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s full name :

Date of birth :

Title :

Academic Session :

I declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the Official Secret
Act 1972)*

RESTRICTED (Contains restricted information as specified by the organization

where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open access
(Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of

research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

____________________________ ____________________________

(Student’s Signature) (Signature of Supervisor)

____________________________ ____________________________

New IC / Passport Number Name of Supervisor
Date : Date :

STATEMENT OF AWARD

Master of Engineering (by Research)

Thesis submitted in fulfillment of the requirements for the award of the degree of Master
of Science in Software Engineering.

ii

SUPERVISOR DECLARATION

I hereby declare that I have checked this thesis and in my opinion this thesis is

satisfactory in terms of scope and quality for the award of the degree of Master of

Science (Software Engineering).

Signature :

Name of Supervisor : ASSOC. PROF. DR.NORAZIAH BINTI AHMAD

Position : ASSOCIATE PROFESSOR

 FACULTY OF COMPUTER SYSTEMS & SOFTWARE

 ENGINEERING, UNIVERSITI MALAYSIA PAHANG

Date :

iii

STUDENT DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature :

Name : NORIYANI BINTI MOHD ZIN

ID Number : MCS09002

Date :

iv

This thesis is dedicated to

My beloved parents

Mohd Zin Bin Rapie and Rasimah Binti Othman

&

My siblings

For their endless care and support

v

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to the supervisory committee
Associate Professor Dr. Noraziah Binti Ahmad for her continuing support, professional
guidance and for giving me an opportunity to learn what research is all about.

Sincerely thanks should be forwarded to The Vice Chancellor of Universiti

Malaysia Pahang (UMP), Professor Dato’ Dr. Daing Nasir Ibrahim for the Graduate
Research Scheme (GRS) scholarship.

Special gratitude also to my family, especially to my father, Mohd Zin Bin

Rapie; my mother, Rasimah Binti Othman; my brother Mohd Fadli Azahar; and my
other siblings for their patience and morale support.

Finally, I thank to all my friends especially Asmahani Binti Ab. Rahman, Ainul

Azila Binti Che Fauzi, Rozita Binti Mohd Yusuf, Abul Hashem Beg and Khandaker
Fazley Rabbi who have contributed this research.

vi

ABSTRACT

Deadlock occurs when each of the transaction involves is waiting to grant the data that
has been locked by other transactions. This can lead to a circular wait called Wait-for
Graph (WFG). Deadlock can make the transaction become an inactive, so other
transaction is not able to perform any action and further cause unavailability of
resources. Therefore, an action must be taken to detect and solve this problem. A new
framework and algorithm called Neighbour Replication on Grid Deadlock Detection
(NRGDD) has been developed to handle deadlock cycles that exist during the
transaction in Neighbour Replication on Grid (NRG) environment. The aim of this
research is to handle the deadlock problem in NRG to preserve the consistency of data
and increase the throughput. The NRGDD simulation model has been developed to test
the algorithm on NRG. Two experiments have been conducted to test the correctness of
NRGDD algorithm. The first experiment is to detect two cycles of deadlock while the
second experiment is to spot deadlock by using different number of transaction, from
three to five transactions. The use of three to five transactions is in NRG the data will be
replicated into three to five sites. Each site is locked by different set of transaction.
Then, the transaction can send request to other site that is held by another transaction.
So, circular wait is formed. Through this experiment, the NRGDD simulation model is
able to detect multiple cycles of deadlock which exist on NRG. The NRGDD is
compared with Multi-Cycle of Deadlock Detection and Recovery (MC2DR) algorithm
based on the time required for both models to detect two deadlock cycles and using
different numbers of transactions. The NRGDD achieved 27.5% improvement from
MC2DR. From the experimental result, it is clearly shown that handling deadlock on
NRG using NRGDD is able to preserve the data consistency and increase the throughput
by maximizing the availability of resources.

vii

ABSTRAK

Kebuntuan terjadi apabila setiap traksaksi yang terlibat akan menunggu untuk
mendapatkan data yang telah dipegang oleh transaksi yang lain. Ini boleh menyebabkan
kitaran menunggu yang dipanggil Wait-for Graph (WFG). Kebuntuan akan membuatkan
transaksi menjadi tidak aktif dan transaksi lain tidak dapat melakukan apa-apa kerana
tiada sumber. Oleh itu, tindakan perlu diambil untuk mengesan dan menyelesaikan
masalah tersebut. Rangka kerja dan algoritma baru yang dipanngil Neighbour
Replication on Grid Deadlock Detection (NRGDD) telah dibina untuk mengawal
kewujudan kitaran kebuntuan semasa transaksi berlaku dalam persekitaran Neighbour
Replication on Grid (NRG). Tujuan penyelidikan ini adalah untuk mengawal masalah
kebuntuan dalam NRG bagi memelihara data supaya konsisten dan meningkatkan kadar
sumber yang ada. Model simulasi NRGDD dibina untuk menguji algoritma dalam NRG.
Dua ekperimen di jalankan untuk menguji ketepatan algoritma NRGDD. Experiment
pertama ialah untuk mengesan dua kitaran kebuntuan manakala ekperimen kedua ialah
untuk mengesan kebuntuan menggunakan jumlah transaksi yang berbeza, dari tiga
hingga ke lima transaksi. Penggunaan tiga hingga ke lima transaksi adalah dalam NRG
data akan direplika ke dalam tiga hingga ke lima tempat. Setiap tempat dipegang oleh
transaksi yang berbeza. Kemudian, transaksi boleh menghantar permintaan ke tempat
yang lain yang telah dipegang oleh transaksi lain. Jadi, kitaran menunggu akan
terbentuk. Melalui ekperimen ini, model simulasi NRGDD berkebolehan dalam
mengesan lebih daripada satu kitaran kebuntuan yang wujud dalam NRG. NRGDD telah
dibandingkan dengan algoritma Multi-Cycle of Deadlock Detection and Recovery
(MC2DR) berdasarkan masa yang diperlukan untuk kedua-dua model dalam mengesan
dua kitaran kebuntuan dan penggunaan jumlah transaksi yang berbeza. NRGDD telah
mencapai 27.5% pembaikan dari MC2DR. Dari keputusan ekperimen, ia menunjukkan
dengan jelas bahawa mengawal kebuntuan dalam NRG menggunakan NRGDD boleh
memelihara konsisten data dan meningkatkan daya pemprosesan dengan
memaksimumkan sumber yang ada.

viii

TABLE OF CONTENTS

 Page

SUPERVISOR DECLARATION ii

STUDENT DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION

1.1 Background of Research 1

1.2 Data Grid Environment 2

1.3 Data Replication 3

1.4 Problem Statement 4

1.5 Aim of Research 5

1.6 Objectives of Research 6

1.7 Scope of Research 6

1.8 Organization of Thesis 7

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 8

2.2 Replication 9

2.3 Replication Strategies 10

 2.3.1 Asynchronous Replication 10

ix

 2.3.2 Synchronous Replication 11

2.4 Replication Techniques on Grid 12

 2.4.1 Neighbour Replication on Grid (NRG) 13

2.5 Transaction Handling 16

2.6 Concurrency Control 18

2.7 Deadlock Mechanism 21

 2.7.1 Deadlock Avoidance 22

 2.7.2 Deadlock Prevention 23

 2.7.3 Deadlock Detection 23

2.8 Deadlock Detection Model 24

 2.8.1 Decentralized Algorithm for Detection Generalized Deadlock in

Distributed Systems

24

 2.8.2 Multi-cycle Deadlock Detection and Recovery Algorithm for

Distributed System

26

 2.8.3 Deadlock Detection Views of Distributed Database 29

 2.8.4 Comparison Between the Existing of Deadlock Detection Model 30

2.9 Summary 30

CHAPTER 3 METHODOLOGY

3.1 Introduction 31

3.2 Operational Framework 32

3.3 NRGDD Model 35

 3.3.1 NRGDD Algorithm Definition 36

 3.3.2 Illustration Example 38

3.4 NRGDD Framework 39

x

3.5 Complete Flowchart of NRGDD Framework 41

3.6 NRGDD Algorithm 44

3.7 NRGDD Development 45

 3.7.1 Hardware and Software Components 45

 3.7.2 Programming Implementation 46

 3.7.3 NRGDD Simulation Model 49

3.8 Example 51

 3.8.1 Case #1: Detect Only One Existing Deadlock Cycle on NRG Using

Four Sites

52

 3.8.2 Case #2: Detect Two-Cycles of Existing Deadlock on NRG Using

Five Sites

54

3.9 Comparison between NRGDD and MC2DR 56

 3.9.1: Detect Two-Cycles of Deadlock 56

 3.9.2 Average Deadlock Detection by Using Different Number of

Transactions

56

3.10 Correctness 57

3.11 Summary 58

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 59

4.2 NRGDD Experimental Results 59

 4.2.1 Experiment 1 59

 4.2.2 Experiment 2 64

4.3 Results and Discussion 70

 4.3.1 Detect Two-Cycles of Deadlock 71

 4.3.2 Average Deadlock Detection by Using Different Number of

Transactions

72

4.4 Summary 73

xi

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 74

5.2 Research Objectives Achievement 74

5.3 Conclusion 75

5.4 Future Work 76

REFERENCES 77

BIODATA OF THE AUTHOR 88

LIST OF PUBLICATIONS 89

xii

LIST OF TABLES

Table No. Title Page

2.1 The description of ACID 17

2.2 Descriptions of two phases consist in the two phase commit

protocol

20

2.3 Four common conditions for deadlock to occur 21

3.1 Probe Message 37

3.2 Hardware components specifications 45

3.3 System development tool specifications 46

4.1 The experiment result to detect one cycle of deadlock 62

4.2 Average time taken to detect deadlock cycle for {2,3,4,2} 64

4.3 The experiment results to detect two cycle of deadlock in five

sites

68

4.4 Average time taken to detect first cycle of deadlock {2,3,5,2} 69

4.5 Average time taken to detect second cycle of deadlock

{2,4,5,2}

70

4.6 Required time to detected two-cycle of deadlock in NRGDD

and MC2DR

71

4.7 Average deadlock detection by using 3 until 5 number of

transaction

72

xiii

LIST OF FIGURES

Figure No. Title Page

2.1 General to detail of literature review 9

2.2 A grid organization of 16 copies of an object 14

2.3 Process in NRG 16

2.4 The Wait-for Graph 25

2.5 The distributed spanning tree 26

2.6 Structure of probe and victim message 27

2.7 Pseudo code of MC2DR 28

3.1 Methodology phases 32

3.2 Operational Framework 34

3.3 Sixteen sites of NRG 35

3.4 Different set of transaction request a different site 38

3.5 Transaction waiting for each other to obtain resources 39

3.6 Framework of NRGDD model 40

3.7a Deadlock initiation 41

3.7b Send and receive probe message 42

3.7c Deadlock detection and resolution 43

3.8 Project view of NRGDD model 47

3.9 Toolbox used for designing interface 48

3.10 Source code view of NRGDD model 49

3.11 Interface for NRGDD simulation model 50

3.12 A different set of transactions locked its server 51

3.13 Different set of transaction, Tఒೣ request to update data object x at

different sites, i Є S(Bx)

52

3.14 Different set of transaction, Tఒೣ request to update data object x at

different sites, i Є S(Bx)

53

3.15a Elements of Tఒೣ request for other site that held by other element

of Tఒೣ

53

xiv

3.15b Wait-for graph 54

3.16a Elements of Tఒೣ request for other site that held by other element

of Tఒೣ

55

3.16b Wait-for graph for two-cycle (a) and (b) 56

4.1 Process for detecting deadlock in four sites 61

4.2 Sending of probe message 63

4.3 A single deadlock cycle 64

4.4 Detect two cycles of deadlock in NRG for five sites 65

4.5 Sending of probe message by five transactions 66

4.6 Two cycles of deadlock 66

4.7 Time (in seconds) taken to detect two-cycles of deadlock 71

4.8 Average deadlock detection for different numbers of transactions 73

xv

LIST OF ABBREVIATIONS

DDB Distributed Database

ROWA Read-One-Write-All

BRS Branch Replication Scheme

HRS Hierarchical Replication Scheme

NRG Neighbour Replication on Grid

MC2DR Multi-cycle Deadlock Detection and Recovery

WAN Wide Area Network

ACID Atomicity, Consistency, Isolation, and Durability

OCC Optimistic Concurrency Control

PCC Pessimistic Concurrency Control

2PL Two Phase Locking

RAC Resource Allocation Controller

WFG Wait-For Graph

DST Distributed Spanning Tree

EDD Efficient Deadlock Detection

LTS Linear Transaction Structure

DTS Distributed Transaction Structure

TM Transaction Manager

TQ Transaction Queue

NRGDD Neighbour Replication on Grid Deadlock Detection

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF RESEARCH

Due to the evolution of management in organizations or institutions, distributed

database systems and grid systems need to support hundreds or even thousands of sites

and millions of clients. Therefore, it will face tremendous scalability challenges with

regard to performance, availability (Zhang et al., 2009; He et al., 2009), administrations

(Alom et al., 2010), speed and reliability (Mohammed, 2007; Li et al., 2010).

Furthermore, there is a tendency of storing, retrieving, and managing different types of

data such as experimental data that are produced from many projects. These data play a

fundamental role in all kinds of cross-organizational research and collaborations. For

example, several scientific applications such as Particle Physics, High Energy

Physics(Naseera et al., 2009; Ben Charrada et al., 2010a; 2010b; AL-Mistarihi et al.,

2009; Zhao et al., 2008; Allcock et al., 2003) and Genetics, earthquake engineering

(Naseera et al., 2009; Barney et al., 2008), climate change modelling (AL-Mistarihi et

al., 2009; Zhao et al., 2008), molecular docking, computer micro-tomography

(Noraziah et al., 2010a; 2010b) and astronomy (Zhao et al., 2008, Du et al., 2011), to

cite a few, manage and generate an important amount of data that can reach terabytes

and even petabytes (Li et al., 2010), which need to be shared and analysed. A

community of hundreds or thousands of researchers distributed worldwide must share

these datasets (Naseera et al., 2009; Ben Charrada et al., 2010a). It is difficult, even

2

impossible, to store such amount of data in the same location. Moreover, an application

may need data produced by another geographically remote application. For this reason,

data grid is suitable for the above situation to support the huge amount of data

production by researchers.

1.2 DATA GRID ENVIRONMENT

A data grid is composed of hundreds of geographically distributed computers

and storage resources usually located under different places, and enables users to share

data and other resources. The users can access the information of data easily without

knowing the resource position (Fard et al., 2008). The data grid is required because data

is being produced at a tremendous rate and volume especially from scientific

experiments (Noraziah et al., 2010a; 2010b). The grid computing requirements are more

complex than distributed computing even though it is quite similar to normal distributed

computing.

The aim of the grid computing is to enable resource sharing and coordinated

problem solving in dynamic, multi-institutional virtual organization (Foster et al., 2001;

2002; 2008). Furthermore, the concept of the grid computing arose from the need to

share computing power, mostly for the jobs that use read-only data sets as input (output

from scientific experiments) (Noraziah et al., 2009a). Consequently, the primary design

of data management tools for grid computing was used to manage read-only data sets.

The major problem on grid environment is data management. In grid computing,

there is no limitation on the number of users, departments or organizations. Besides

that, the size of the data managed by data grid is continually growing (Pérez et al.,

2010). In the data grid, when a user requests a data, a large amount of bandwidth could

be spent to send the data from the server to the client. Furthermore, the delay involved

could be high (Bsoul et al., 2011). These problems can be solved through replication.

3

1.3 DATA REPLICATION

In data replication architecture, the data will be replicated into several sites. If

one of the sites has failed, it will fail independently and does not affect other replica

site. Data replication is one of the techniques in distributed and grid systems to increase

availability and reliability of the data. To speed up data access, the data can be

replicated in multiple locations, so that a user can access the data from nearby locations

(Sashi et al., 2011). Replication in distributed environment receives particular attention

for providing efficient access to data, fault tolerance (Bsoul et al., 2011; Sathya et al.,

2010; Noraziah et al., 2010c) and can enhance the performance of the system (Gao et

al., 2005; Noraziah et al., 2008; Tang et al., 2006; Latip et al., 2008). The replication

strategy can minimize the time access to the file by creating many replicas and storing

replicas in appropriate locations. Furthermore, using replication is to reduce bandwidth

consumption (Naseera et al., 2009; Ben Charrada et al., 2010a; 2010b; Shorfuzzaman et

al., 2010) to achieve efficient and dependable data access in grids, improve access time

(Ben Charrada et al., 2010b; Zhao et al., 2008; Du et al., 2011) fault tolerance (Zhao et

al., 2008; Bsoul et al., 2011; Shorfuzzaman et al., 2010) and load balancing (Pérez et

al., 2010;). Organizations need to provide current data to users who may be

geographically remote and request distributed data around multiple sites in data grid

(Noraziah et al., 2010a).

Replication strategies determine when and where to create a replica, taking into

account of the factors such as the request number of the data, network conditions,

storage availability of nodes, and others (Pérez et al., 2010; Sun et al., 2009). Other

researchers that discussed on importance of data replication in distributed systems are

Sashi et al. (2011), Ainul et al. (2011), Beg et al. (2010), Abdi et al. (2010), Li et al.

(2010), Wong et al. (2009), Sun et al. (2009), Latip et al. (2008), Noraziah et al. (2007),

and Wang et al. (2006).

Managing transaction significantly become important in the replication in order

to preserve the consistency of data. Although the transaction may perform all of its

actions on the site that it granted, it may also perform actions on other than the granted

site. Besides that, concurrent access to the data and deadlock problem are the most

4

important issues that must be considered when sharing information in distributed

systems (Alom et al., 2010), especially in distributed database system (Atreya et al.,

2007; Hu et al., 2009). If the transactions have concurrent access to the data, the

deadlock condition may occur. Usually, the deadlock also occurs on workflow models

(Fan et al., 2010); technology that implement the automation of business processes in

whole or part, embedded applications (Xiao et al., 2010; Xiao et al., 2011), automated

manufacturing systems (Roszkowska, 2004), multitasking operating systems (Cheung et

al., 2009), and streaming computations (Li et al., 2010). The deadlock problem is

inherent in a distributed database system which employs locking (Clauss et al., 2010) as

its concurrency control algorithm. Several researches have been carried out regarding

the handling of deadlock problems which are by Alom et al, 2010; Olson et al., 2005;

Wu et al., 2002; Atreya et al., 2007; Srinivasan et al., 2011; Jiang et al., 2008;

Mohammed et al., 2007.

1.4 PROBLEM STATEMENT

Ensuring efficient access to such a huge network and widely distributed data is a

challenge to those who design, maintain and manage the distributed database. In this

system, several characteristics are considered such as: (1) provides an interface for

the user which is transparent to where the data actually resides; (2) ability to locate

the data; (3) network-wide concurrency control and recovery procedures; (4)

translation of queries and data between heterogeneous systems (Bhushan et al.,

2007). Replication in distributed environment receives particular attention for providing

efficient access to data, fault tolerance and enhance the performance of the system (Gao

et al., 2005; Tang et al., 2006).

Even the replication gave more advantages; it still becomes a problem when the

concurrent access happens to the data. The lock mechanism is used when the transaction

makes request to get a data. If the data is available, the transaction that makes a request

will get a lock for that data, otherwise it will wait until the data is unlocked or released

then it can be acquired again. In this situation, a deadlock may occur in which every

transaction involved in the deadlock is waiting to grant the data that has been locked by

another transaction that make a circular wait until an action is taken to detect and

5

resolve deadlock problems. A deadlock can reduce the throughput by minimizing the

available resources, so it becomes an important resource management problem in

distributed systems (Srinivasan et al., 2011). In order to manage the deadlock problems,

a new deadlock detection and resolution algorithm will be proposed to preserve the

consistency of data replication in a distributed environment. The proposed algorithm

will be applied to Neighbour Replication on Grid (NRG) replication model. Before this,

the researcher does not implement the deadlock detection and resolution on NRG.

The NRG replication model is chosen because it can maximize the write

availability with low communication cost due to the minimum number of quorum size

required compared to other techniques such as Read-One-Write-All (ROWA), Branch

Replication Scheme (BRS), and Hierarchical Replication Scheme (HRS). In ROWA

technique (Noraziah et al., 2010d) read operation has low communication cost. This

technique restricts the availability of write operations since they cannot be executed at

the failure of any copy. In BRS technique (Pérez et al., 2010), the replicas are created as

close as possible to the clients who request for the data file. The root replica grows

towards the clients in a branching way, slip replicas into several sub replicas (Noraziah

et al., 2010c). In this technique, the replica tree is grown based on the client needs. In

HRS technique, a hierarchical replication consists of a root database server and one or

more database servers organized into a hierarchy topology (Pérez et al., 2010). Using

this technique, the data will be replicated or copied at all sites and has the highest

storage of use. Besides that, the proposed algorithm will be done in order to preserve the

data consistency and maximize data availability when the transactions concurrently

want to update the data.

1.5 AIM OF RESEARCH

The aim of this research is to handle deadlock problem in replication data

through Neighbour Replication on Grid environment in order to preserve the data

consistency and increase the throughput by maximizing the availability of resources.

6

1.6 OBJECTIVES OF RESEARCH

The objectives of the research are as follows:

i. To propose a new framework to manage deadlock problems during

transaction execution through Neighbour Replication on Grid (NRG)

model.

ii. To develop a new algorithm to manage deadlock problems during

transaction execution through Neighbour Replication on Grid (NRG)

model.

iii. To compare Neighbour Replication on Grid Deadlock Detection

(NRGDD) and Multi-cycle Deadlock Detection and Recovery Algorithm

for Distributed System (MC2DR)

iv. To test the new algorithm to ensure their correctness using two case

studies.

1.7 SCOPE OF RESEARCH

The scope of this research is as follows:

i. Design a new framework by extending the Multi-cycle Deadlock

Detection and Recovery (MC2DR) algorithm in Neighbour Replication

on Grid (NRG) replication model.

ii. Develop a Neighbour Replication on Grid Deadlock Detection

(NRGDD) algorithm for deadlock detection implemented on NRG.

iii. Consider only non-failure cases.

7

1.8 ORGANIZATION OF THESIS

This thesis has been prepared to give details on the definitions, facts,

observations, arguments and procedures in order to meet its objectives. Chapter 1

generally describes the brief background of data grid environments, data replication, the

problem statement, objectives and scope of the research. Chapter 2 presents the

literature review of replication, replication strategies, replication technique on grid,

transaction handling, concurrency control, deadlock mechanism, deadlock detection

model and comparison between the existing of replication model. Chapter 3 presents the

new proposed algorithm, Neighbour Replication on Grid Deadlock Detection (NRGDD)

to handle deadlock on Neighbour Replication on Grid environment. Framework,

flowchart, development of NRGDD simulation model, example cases, comparison

between NRGDD and MC2DR and correctness will also be presented in this chapter.

Chapter 4 addresses the simulation results for detecting the deadlock existing cycles and

compares the executing time taken to detect deadlock based on cycles and the number

of transactions used. The conclusions of the present research are summarized and

presented in Chapter 5. Research objective achievements and suggestion and

recommendation for the future work are also presented in this chapter.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews literatures on replication including its general

information, strategies and techniques implemented on grid. Besides that, the review

is also done on transaction handling, concurrency control, and deadlock mechanism

including its techniques in detecting deadlock occurrence. Figure 2.1 below shows

the general to detail of the review that has been done.

9

Figure 2.1: General to detail of literature review

2.2 REPLICATION

Replication receives particular attention for providing high data availability,

fault tolerance and performance enhancement of the system (Noraziah et al., 2007;

Amjad et al., 2012). In replication, the identical data copies can be replicated to

another site or place. Replication means that 100% of the same data is on other

locations (Bost et al., 2009). It can enable organizations to provide users with access

to current data where and when they need it. If one of the sites has failed, they can

obtain data from an identical data from other sites and the failure of the system can

be transparent for users and applications.

In minimizing communication costs during data access, replication of data

from the primary site to other locations can be an important optimization step to

reduce the frequency of remote data access (Abdi et al., 2010; Zhang et al., 2009).

Furthermore, it can improve performance by scaling the number of replicas with

demand and by offering nearby copies of services distributed over the network

(Noraziah et al., 2007). Huge datasets are collected and stored in different

geographic locations, but are organized through a network with certain topological

structures to provide reliable resources (Zhang et al., 2009).

Transaction
Handling

Replication

Grid Implementations

Concurrency
Control

Strategies Deadlock
Mechanism

Asynchronous

Synchronous

Grid

Avoidance

Detection Prevention

10

In replication, the value of each logical item is stored in one or more physical

data items. Each reads or writes operation on a logical data item must be mapped to

corresponding operations on physical copies (Noraziah et al., 2007). Applications of

such systems broaden across many domains, including business applications (e.g.,

Bank transactions, retail transactions, e-commerce, etc.), scientific applications (e.g.,

NASA's Earth Observing System, Sky Survey, etc.) (Zhang et al., 2009).

Furthermore, through replication, various users can use the data in different locations

which can decrease the latency and increase the reliability of data (Li et al., 2010).

For example, almost every digital enterprise has a compelling reason to employ some

form of database replication for disaster recovery or high availability (Wong et al.,

2009).

Data replication can drive by programs which transfer data to some other

location and then loaded at the receiving location and the data may be filtered and

transformed during replication (Beg et al., 2010). The disadvantage of replication is

it becomes more of a security risk. Handling security across several locations is more

complicated (Alkhatib et al., 1995). But the biggest problem that data replication

introduces is that of concurrency control. It isalready known that the concurrency

control is an issue even without replicated tables; with replicated tables, it becomes

even more complex. How do we ensure data consistency when it is replicated to

more than one site? Without properly placing the replicas, the overall availability can

be hindered because of data consistency requirements (Zhang et al., 2009).

2.3 REPLICATION STRATEGIES

Replication strategies can use either asynchronous or synchronous replication

to copy data.

2.3.1 Asynchronous Replication

In asynchronous replication, changes are made after a certain time with a lot

of data from the master site replicated to different other site (Beg et al., 2010).

Normally, in asynchronous replication, such a transaction writes its commit record to

11

the redo logs, releases all locks, waits for an acknowledgement from the storage

system, and finally sends an acknowledgement to the user.

2.3.2 Synchronous Replication

Synchronization mechanisms are needed to maintain the consistency and

integrity of data among replicas when changes are made by the transactions

(Noraziah et al., 2007). In (Beg et al., 2010) mentioned. With synchronous

replication, changes are made immediately once some data transaction occurs to the

master sites. Once the updated operation occurs on the primary copy, an update on

the transaction results immediately replicates the update at all other sites which is

identical to the primary copy. It is the suitable solution for organizations which are

seeking for the fastest possible data recovery, minimal data loss, and protection

against database integrity problems (Beg et al., 2010).

There are many examples of replication schemes in distributed file and

database systems that are almost based on synchronous replicating, which deploy

quorum to execute the operations with a high degree of consistency and ensure

serializibility (Noraziah et al., 2007). Several schemes are used in synchronous

replication, i.e., all-data-to-all-sites (full replication) and some-data-items-to-all-sites.

The maximum approach of replicating every table at every site (full replication) is

great for availability, but it is the absolute worst arrangement regarding concurrency

control. Furthermore, it causes high update propagation and high storage capacity.

The replication model that uses this scheme is ROWA (Noraziah et al., 2010d). A

few studies have been done in partial replication technique based on some data items

to all sites using the tree structure technique. However, this technique will cause high

update propagation overhead. Therefore, some-data-items-to-all-sites scheme is not

realistic. Moreover, in many applications, there is update-intensive data, which

should be replicated to very few sites.

In this strategy, a user transaction is not allowed to commit except it is

guaranteed that it will be successfully applied on all the replicas. This guarantee can

be achieved by relying on the well-known two-phase commit protocol (Alkhatib et

12

al., 1995), or by middleware that imposes a global order on all user transactions via

an atomic broadcast service (Wong et al., 2009). The main benefit of synchronous

replication is the data can be recovered quickly and automatically handles concurrent

conflicting transactions on different replica databases. The main disadvantage is that

it greatly reduces the throughput of dependent transactions on each replica. The

critical issue is the time period when a transaction is complete and is seeking to

commit. The transaction must first broadcast its intention to commit to the other

replicas and wait for an acknowledgement. The precise mechanics of this

communication depend on the particular implementation, but in all implementations,

database locks cannot be released until the minimum time required for one network

round-trip has elapsed. This network round-trip means that dependent transactions

can commit no faster than the network latency permits.

2.4 REPLICATION TECHNIQUES ON GRID

In managing the replication on the data grid, the replica placement strategy is

important due to the limited storage use of data grids. There are three fundamental

questions (Ben Charrada et al., 2010b; Zhao et al., 2010) that must be answerable to

managing replica placement strategy in data grids:

1. When should the replicas be created?

2. Which files should be replicated?

3. Where should the replicasbe placed?

There is no restriction of users or originations in grid computing. Replication

is one of the basic and the key aspects in grid computing. The importance of data

replication in grid systems and distributed systems (Du et al., 2011) are as the

following:

1. It can effectively increase data access performance from different locations,

and thus reduce data access time cost;

2. It enables a system to handle more workload, as more nodes can be served at

the same time;

13

3. It increases system availability;

4. It can be treated as a backup, and thus ensures the dependability of the data.

2.4.1 Neighbour Replication on Grid (NRG)

In NRG model, all sites are logically organized in the form of a two-

dimensional grid structure (Noraziah et al., 2006; 2009b). As an example, if NRG

consists of sixteen sites, it will logically organize in the form of 4 x 4 grid as shown

in Figure 2.1. Each site contains a master data object. A site is either operational or

failed and the state (operational or failed) of each site is statistically independent of

the others (Noraziah et al., 2006; 2009b). The copy on the site is available when a

site is operational, otherwise it is unavailable.

A data at the primary site is replicated to the neighbouring sites. Let N = n2 be

a set of all sites that are logically organized in two-dimensional grid structure (GS)

form (Noraziah et al., 2009b). The N sites are labelled as n (i, j), where 1 ≤ i < n, 1 ≤

j < n (Noraziah et al., 2009b). The site n (i, j) will connects to its neighbours through

two way links as long as there are sites in the grid, which are sites n (i ± 1, j) and n (i,

j ± 1). The number of data replication is d ≤ 5. For example from Figure 2.2, data

from site 2 will replicate to its neighbours which are site 1, site 3, and site 6. Site 6

has four neighbours, which are sites 2, 5, 7, and 10. As such, site 6 has five replicas.

Similarly, site 7, 10 and 11 also has four neighbours and five replicas. Each of the

primary sites of any data object and its neighbours is assigned to vote one and if not

vote zero. This vote assignment is called binary vote assignment on grid (Noraziah et

al., 2006; 2009b). A neighbour binary vote grid assignment on the grid, B, is a

function such that B (n(i, j)) ϵ {0, 1}, 1 ≤ i < n and 1 ≤ j < n, where B(n(j, j)) is the

vote assigned to the site n (i, j) (Noraziah et al., 2009b). This assignment is treated as

an allocation of replicated copies and a vote assigned to the site results in a copy

allocated at the neighbour (Noraziah et al., 2006; 2009b).

That is 1 vote ≡ 1 copy. Let LB = Where LB is the total

number of votes assigned both to the primary site and its neighbours and it also

equals the number of copies of an object allocated in the system.

14

Let us denote that r and w are the read and write quorums, respectively. The r

+ w must be greater than the total number of copies (votes) assigned to all sites in

order to ensure that the read operations always get an up-to-date value. The

following conditions are used to ensure the consistency (Noraziah et al., 2009b):

1 ≤ r ≤ LB, 1 ≤ w ≤ LB (2.1)

r + w = LB + 1 (2.2)

The conditions (2.1) and (2.2) ensure that there is a non-empty intersection of

copies between every pair of read and write operations. Therefore, this condition

ensures that a read operation has access to the most recently updated copy of

replicated data based on the timestamps (Noraziah et al., 2006). Timestamps are used

to decide which copies are most recently updated.

Let S (B) be the set of sites at which replicated copies are stored equivalent to

the assignment. Then, S (B) = {n (i, j) | B (n (i, j)) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Let Q (B, q) be the quorum set with respect to the assignment B and quorum

q, then Q(B, q) = {G|G ⊆ S (B) and |G| ≥ q} (Noraziah et al., 2009b). As an example,

from Figure 2.2, let site 7 be the primary site of the primary data x. Its neighbours are

sites 3, 6, 8, and 11.

Figure 2.2: A grid organization of 16 copies of an object

6

1 2 3 4

5 7 8

9 10 11 12

13 14 16 15

15

Consider an assignment B for the data file x, such that Bx (5) = Bx (3) = Bx (6)

= Bx (8) = Bx (11) = 1 and LBx = Bx (5) + Bx (3) + Bx (6) + Bx (8) + Bx (11) = 5. Thus, S

(Bx) = {7, 3, 6, 8, 11}. If read quorum for data file x, r = 2 and write quorum w = LBx

– r + 1 = 4, then the quorum sets for read and write operations are Q (Bx, 2) and Q

(Bx, 4), respectively (nrg3), where

Q (Bx, 2) =

Q (Bx, 4)

= .

Figure 2.3 shows the process of data replication in NRG. In NRG, a set of

transaction start to lock a site by initiate lock. Then, it will propagate lock to request

another site. At this stage, what happen if five transactions concurrently want to

request or lock at five replica sites? If this situation happen, deadlock will occur. The

past researcher do not consider any solution if this situation occurs on NRG. The

proposed algorithm is develop to handle deadlock on NRG.

16

Figure 2.3: Process in NRG

2.5 TRANSACTION HANDLING

A transaction (Enokido et al., 2008; Eya et al., 2011; Khachana et al., 2011;

Alkhatib et al., 1995; Xiao et al., 2007; Garcia-Munoz et al., 2007; Zheng et al.,

2010; Sanzo et al., 2010) consists of a series or group of operations performed on a

distributed system. The examples of such distributed applications involving frequent

transactions are distributed databases, distributed-agent based systems and the

numerical analysis as well as simulation applications such as gene analysis or climate

Start

Initiate Lock

Propagate Lock

Check
Quorum =

Obtain Quorum

Release Lock

Update Data

Commit

Unlock

End

17

modelling systems (Bagchi, 2011). There are thousands of distributed nodes which

are connected through network in a very large scale distributed systems such as the

cloud computing and grid computing platforms.

A transaction consists of four properties that lead to the consistency and

reliability of a distributed database. These are Atomicity, Consistency, Isolation, and

Durability, also known as ACID (Garcia-Munoz et al., 2007; Alkhatib et al., 1995;

Khachana et al., 2011). Table 2.1 shows the description of ACID.

Table 2.1: The descriptions of ACID

ACID DESCRIPTION

Atomicity Atomicity means all the actions related to a transaction are

complete or none of them is carried out.

 The recovery of transaction can be split into two types

which correspond to the two types of failures:

o The transaction recovery – due to the system terminating

one of the transactions because of deadlock handling.

o The crash recovery – it is done after a system crash or

hardware failure.

Consistency Consistency means that the committed data must be left in a

consistent manner when the transaction has run its course.

 Refer to its correctness that deals with maintaining

consistent data in a database.

Isolation Isolation means that transactions taking place at the same

time may show other transactions only the committed data.

 Each transaction must maintain the consistency of database

at all times. Consequently, no other transaction can read or

modify data that is being modified by another transaction.

 If this property is not maintained, one of two things which

are lost updates and cascading aborts could happen to the

database.

18

Durability Durability means that the committed data have to be made

permanent.

 Once a transaction commits, its results are permanent and

cannot be erased from the database

 This means that whatever happens after the COMMIT of a

transaction, whether it is a system crash or aborts of other

transactions, the results already committed are not modified

or undone.

2.6 CONCURRENCY CONTROL

The transaction of process normally concurrently has access to the shared

data. When multiple transactions are executed concurrently and involved in

accessing to the data, data consistency (Bagchi, 2011; Clauss et al., 2010) can be

affected because of mutual interference of concurrent transactions (Xiao et al., 2007).

Only one process can be accessed to one data. Therefore, the concurrent

communication in a group of distributed processes requires concurrency control as

well as message ordering mechanisms, which should be scalable and fault tolerant in

nature (Bagchi, 2011).

The concurrency control (Garcia-Munoz et al., 2007; Zheng et al., 2010;

Sanzo et al., 2010; Sanzo et al., 2008) protocols can avoid the mutual interference of

concurrent transactions. It can be done by controlling executing orders of concurrent

data operations which are employed to guarantee logical consistency of shared data.

There are two basic types of concurrency control mechanisms which are optimistic

concurrency control (OCC) (Garcia-Munoz et al., 2007; Bai et al., 2008; Zheng et

al., 2010) and pessimistic concurrency control (PCC) (Garcia-Munoz et al., 2007;

Zheng et al., 2010). In OCC, it is assumed that the transaction conflicts are

improbable to occur when shared data are accessed. Consequently, remote server

resources can stay mainly unused until transactions commit time. If these conflicts do

occur, then transactions are aborted without further ado, and maybe it will try to

retrieve or access again. Besides that, in PCC, the conflicts are expected to occur,

19

and remote resources must be ready to be used on demand at any time during

transaction time. Unless a deadlock occurs, the transactions will terminate

successfully by pessimistic concurrency control. The PCC policy has been used in

locking based. There are two types of locking based used in distributed systems for

handling concurrency control which are Two Phase Locking (2PL) (Sanzo et al.,

2010; Bai et al., 2008; Zheng et al., 2010), and Strict 2PL.

In detecting and resolving conflict among transactions in distributed systems,

the locking based protocols usually combine two phase locking (2PL) with a priority

scheme. However,some intrinsic problems of 2PL such as the possibility of

deadlocks (Zheng et al., 2010) and long blocking times make transactions difficult to

meet their deadlines (Bai et al., 2008). Nevertheless, by using locking manner, when

a client updates data, other clients who update the data will not be affected. Thus,

data loss can be avoided, as well as read data (Zheng et al., 2010).

In order to ensure serializability scheduling, locking protocol must be

observed. The transaction occurs in the specific data object to grant or lock that

resource. If the application is successful, operations may continue, or else it will have

to wait for the corresponding transaction release of lock resources. In handling

concurrency control in transactions, ensuring the consistency of data is important in

order to provide the real data to the user.

If a transaction runs across two sites, it may commit at one site and may fail

at another site, leading to an inconsistent transaction. Two-phase commit protocol

(Eya et al., 2011; Alkhatib et al., 1995; Singh et al., 2009; Khachana et al., 2011) is

most widely used to solve these problems. The two phase commit policy has become

a standard for distributed systems. The commit protocols are implemented in

distributed database system to ensure the transaction atomicity. The two phase

commit protocol consists of two phases as shown in Table 2.2.

20

Table 2.2: Descriptions of two phases consisted in the two phase commit protocol

Phase Descriptions

Prepared phase The coordinator asks all participating sites to send a

commit or abort vote for the transaction which has been

executed (not committed).

Decision phase If coordinators receives the commit vote or yes vote

from all the participants' sites then it issues an instruction

to commit to all the participants.

 If it receives abort vote or no vote from any of the

participants then it sends abort decision to all the

participating sites.

 Prepares participant after getting decision from the

coordinator and releases the data resources pertaining to

the transaction in order to preserve the atomicity of the

distributed transaction.

The commit protocol ensures the transaction atomicity (Eya et al., 2011).

Global transactions may consist of multiple sub transactions that may execute on

different remote sites. Commit protocol forces sub transaction to agree on a single

outcome which means that a global transaction will commit if and only if all the sub

transactions commit. In case if any of the subtransaction fails, the global transaction

aborts and forces successfully executed (not committed) to abort and the previous

state of the system is restored (Eya et al., 2011).

The transaction management deals with the problems of keeping the database

in a consistent state even when concurrent accesses and failures occur, (Alkhatib et

al., 1995). Atomic commit protocol is used to ensure the consistency of data during

transaction occurrence especially when update data has happened. Besides that, it is

also used for data integrity (Eya et al., 2011).

21

2.7 DEADLOCK MECHANISM

Deadlock is defined as a system state in which every process in a set is

waiting for an indefinite period for another process on the same set. This will

continuously happen for their requests to be satisfied.

In a distributed environment, when a thread or a process needs a resource on

another site for its computations, a message (Nyo, 2009; Lee et al., 2005; Clauss et

al., 2010) will be sent to the requested site through a communication network to

grant access to its resource. If the resource is available, it will be granted to the

requesting process; otherwise the requesting process needs to wait until the resource

is released then it can require reaccess to that resource. In this situation, deadlock

(Nyo, 2009; Thiare, 2009) may occur in which processes involved in the deadlock

are waiting indefinitely in a circular fashion until a special action is taken (Abd El-

Gwad et al., 2009; Mohammed, 2007). Unfortunately, it will reduce the throughput

by minimizing the available resources (Srinivasan et al., 2011; Hu et al., 2009; Lee

et al., 2005); therefore it becomes an important problem for resource management in

distributed systems. It is a highly undesirable situation at which the entire or partial

system is crippled (Hu et al., 2009) and become stuck so that restricts the system to

operate or run as usual.

Deadlock may arise since the resources are limited such as a fixed-size pool

of threads or locks protecting mutually exclusive regions and multiple processes have

been spawned at different sites (Sanchez et al., 2007). There are four common

conditions necessary for a deadlock to occur among concurrent processes (Gomez et

al., 2010; Mayer et al., 2010) as shows in Table 2.3:

Table 2.3: Four common conditions for deadlock to occur

Conditions Descriptions

Mutual exclusion Processes require the exclusive use of resources

Hold while waiting Process hold onto resources while waiting for additional

22

required resources to become available.

No pre-emption Processes holding resources determine when they are

released.

Circular waiting Closed chain of processes in which each process is

waiting for a resource held by the next process in the

chain.

The deadlock becomes a hot topic for the past few years and also today the

researcher still try to find the best solution to handle this problem in distributed

environments. The researchers still try to find the way to implement the semantics of

synchronizing merges without deadlock happening to the system (Fan et al., 2010).

There are three techniques traditionally used to deal with deadlocks: i) avoidance, ii)

prevention () and iii) detection (Xiao et al., 2010; 2011; Hu et al., 2009; Mohammed,

2007; Cheung et al., 2009; Sanchez et al., 2007; Fan et al., 2010) which will be

discussed in the following section.

2.7.1 Deadlock Avoidance

Deadlock avoidance is a method that takes a middle route which is a run-time

protocol implementing a resource allocation controller (RAC) (Sanchez et al., 2007).

Moreover, it is also an event driven and avoids actions that may cause the system to

be in a deadlock (Xiao et al., 2011). Based on the resource availability and possible

future requests, it will decide whether to grant a request or not. A resource is granted

only if it is safe (Sanchez et al., 2007). When a process enters the system it must

inform the protocol about its resource utilization. Since the controller has such

strategy, all processes can complete. In addition, deadlock avoidance is used as a part

of scheduling algorithm to prefer at least one possible execution path where no

deadlock will occur (Cheung et al., 2009).

23

2.7.2 Deadlock Prevention

Deadlock prevention ensures that one of the necessary conditions for

deadlock is broken (Sanchez et al., 2007). It is possible if particular resource

allocation policies are applied (Cheung et al., 2009) and it is also sufficient to assure

that at least one of the four necessary conditions of deadlock is not fulfilled to avoid

the deadlock to happen (Mayer et al., 2010). In Hu et al. (2009), deadlock prevention

refers to a group of static rule imposing restrictions on the interactions among

resource requested that may lead to deadlock. In Xiao et al. (2011), deadlock

prevention utilizes system designs and mechanisms which disallow the system from

continually entering a deadlock state.

2.7.3 Deadlock Detection

Deadlock is allowed to occur while a monitoring mechanism is deployed for

detecting their correctness and a recovery procedure is initiated for convenient

resolution (Hu et al., 2009). This approach is applicable only when deadlock states

temporarily exist. In Sanchez et al. (2007), deadlock detection is an optimistic

method for concurrency control, where deadlocks are detected and corrected at a run-

time, such as the rollback of transactions. Deadlock detection is an approach

commonly used in databases but usually not applicable in embedded systems

(especially systems that interact with physical devices) (Sanchez et al., 2007). In

deadlock detection, a resource allocation graph or state graph is normally used to

analyse and identify deadlock situations (Cheung et al., 2009). At least two major

deficiencies (Clauss et al., 2010) created in the system to ensure the deadlock is

present are:

1. The resources will not be available to other processes when it is held by

deadlock processes.

2. Each process involved in the deadlock will add the deadlock persistence time

to its response time.

24

A directed graph called Wait-For Graph (WFG) (Clauss et al., 2010; Lee et

al., 2005; Mitchell et al., 1984) is used to show the dependent relationship between

processes in distribution systems. A cycle in this graph indicates the presence of a

deadlock in the system. Each node in this graph corresponds to a process and an edge

directed from one node to another indicates that the first process is waiting for a

resource which was held by another process.

2.8 DEADLOCK DETECTION MODEL

This section describes the existing algorithm to handle the deadlock problems

in distributed system that was proposed by Selvaraj et al. (2011), Razzaque et al.

(2007) and Alom et al. (2009). Besides that, at the end of this section comparison is

made for each algorithm.

2.8.1 Decentralized Algorithm for Detection Generalized Deadlock in

Distributed Systems

A new decentralized algorithm for detection generalized deadlock in

distributed systems was proposed in Selvaraj et al. (2011). It can handle the

concurrent executions of the algorithm. Based on this algorithm, the initiator builds

the Distributed Spanning Tree (DST) of Wait-For Graph (WFG) through a

propagating probe (CALL) messages along the outgoing edge of WFG in the forward

phase. In the WFG, each node represents a process and an arc represents dependency

relations between the processes. The initiator receives the backwards replies

(REPORT) in the backward phase; the algorithm determines the reducibility of a

blocked node. Until it receives a reply in response to all probes (CALL messages),

the reducibility of a blocked node is arbitrarily delayed. An unblocked process

initiates the reduction of distributed snapshots by eliminating all the reducible nodes

during the backward phase. Then, deadlock processes are declared through the

processes that have not been reduced in the snapshot. Figure 2.4 shows the WFG for

the cycle of deadlock in the form of tree structure.

25

Figure 2.4: The Wait-for Graph

The advantages of this algorithm are the unblocking conditions which were

not carried by the replies. The reducibility of node is not delayed until the

termination of algorithm. Besides that, the initiator does not construct WFG partially

to find out the victim. The DST was built from distributed WFG when the node or

process initiates the deadlock detection algorithm as shown in Figure 2.5. The

initiator propagates the CALL message along the edges in the WFG. After the

successors of the initiator received the CALL message it is then sent to their

successor until the end stage of tree. From end of edge, it then sends REPORT

message to their predecessors until initiator receives REPORT message from its own

successors. Then the algorithm will declare a deadlock. When the initiator detects a

deadlock, it sends abort signal to the victim directly.

26

Figure 2.5: The distributed spanning tree

2.8.2 Multi-cycle Deadlock Detection and Recovery Algorithm for Distributed

System

Multi-cycle deadlock detection and recovery (MC2DR) algorithm is used to

detect the multi-cycle of deadlock problems. The suitable algorithm that will be

chosen in order to solve the deadlock problems is important because some of the

algorithm cannot detect the presence of deadlock also known as phantom deadlocks

and some of them cannot detect deadlocks when the single node or transaction or

process is involved in multiple deadlock cycles.

MC2DR were proposed to detect multiple cycle of deadlock and some

changes have been made such as a probe message structure, a victim message

structure and probe storage structure for each node or transaction or process.

Razzaque et al. (2007) contributes that MC2DR can:

1. Detect all deadlocks reachable from the initiator of the algorithm in a single

execution, even though the initiator does not belong to any deadlock

27

2. Detect multi-cycle deadlocks i.e., deadlocks where a single process is

involved in many deadlock cycles,

3. Decrease the deadlock detection algorithm initiations, phantom deadlock

detections, deadlock detection duration and the number of useless messages

4. Provide with an efficient deadlock resolution method.

The MC2DR used probe message for deadlock detection that consists of four

fields as shown in Figure 2.6 (a). The InitID contains the identity of the initiator of

the algorithm, VictimID is the identity of the node to be victimized upon detection of

the deadlock, DepCnt of a node represents the number of successor for which it is

waiting for resources, and RouteString contains the node IDs visited by a probe

message in order (Razzaque et al., 2007). At each node, there will be a probe

message storage structure, named ProbeStorage, same as that of the probe message

for temporary storage of probes (Razzaque et al., 2007). Only one probe message

will store in Probe Storage at a particular time. MC2DR is history independent and

upon detection of a deadlock, the respective probe message is erased from storage

and the node that detects the deadlock sends a victim message to the node found to

be victimized for deadlock resolution (Razzaque et al., 2007). This message will be

used for deleting probes from respective storage entries. This short message contains

just the first two fields of the probe message as shown in Figure 2.6 (b) (Razzaque et

al., 2007).

 (a) Probe Message (b) Victim Message

Figure 2.6: Structure of probe and victim message

In Razzaque et al. (2007), they did not mention or consider any replication

model to simulate the MC2DR algorithm. The Figure 2.7 shows pseudo code of

MC2DR.

28

Algorithm_Initiation()
{

int W; //waiting time for a particular resource
probe p; allocate memory for p;
if (W > To && ProbeStorage == NULL)
{

p = Create_Probe(i); Send_Probe(i, p);
}

}

probe Create_Probe(node i)
{

p.InitID = i.ID;
p.VictimID = i.ID; p.DepCnt = i.DepCnt;
p.RouteString = i.ID; return (p);

}

Send_Probe(node i, probe p)
{

int j = i.DeptCnt;
while (j)
{

//sends probe to all successors, j
send (j, p); j--;

}
}

Receive_Probe(probe p)
{

if (ProbeStorage == NULL)
{
if(p.DepCnt < i.DepCnt)
{

p.VictimID = i.ID; p.DepCnt = i.DepCnt;
}

p.RouteSting = p.RouteString + i.ID;
Send_Probe(i,p);

}
else if(i.RouteString is prefix of p.RouteString)
{

Deadlock is detected.
//send victim message to all successors and simply blocked nodes
Send_Victim(j, p.VictimID);

}
else if (i is the initiator of another probe)

Exception_Handling(p);
else
{

29

Discard (p);
} //probe message is discarded

}

Receive_Victim(int VictimID)
{

//forward victim message to all successors
Send_Victim(j, VictimID);
if(VictimID == i.ID)
{ // this node is vicitimized

Release (All locks held by this node);
Kill (this node);

}
else
{

Erase Probe message from ProbeStorage;
}

}

Exception_Handling(probe p)
{

int Td; //avg. deadlock detection period
put p in a buffer space;
wait for Td and check for i’s receiving probe
if(i’s probe is received)
{

Discard (p);
}
else
{

p.RouteSting = p.RouteString + i.ID;
Store(p); //Store p in ProbeStorage
Send_Probe(i, p);

}
}

Figure 2.7: Pseudo code of MC2DR

2.8.3 Deadlock Detection Views of Distributed Database

Deadlock detection is very difficult in a distributed database system because

no controller has completed and current information about the system and data

dependencies (Alom et al., 2009). The proposed algorithm shows that the global

deadlock is not dependent on the local deadlock (Alom et al., 2009).

30

A deadlock detection algorithm or technique is correct if it satisfies two

conditions: (1) every deadlock is eventually detected, and (2) every detected

deadlock really exists, i.e., only genuine deadlocks are detected (Alom et al., 2009).

The algorithm is based on creating Linear Transaction Structure (LTS) that used to

find the local cycle of deadlock, Distributed Transaction Structure (DTS) is used to

find the global cycle of deadlock and deciding priority ID of the transaction will be

assigned by the Transaction Manager (TM) and local global abortion. Transaction

Queue (TQ) is used to store the priority ID for all transactions which are in local

deadlock cycles or in global deadlock cycles; the youngest transactions (priority ID)

are aborted to free the system from deadlock cycles.

2.8.4 Comparison Between the Existing of Deadlock Detection Model

The algorithm proposed by Selvaraj et al. (2011) shows that only the initiator

can detect the node or process as a victim to cause the deadlock to happen. Different

with algorithm proposed by Razzaque et al. (2007), it mentions that not only the

initiator can detect deadlock cycle, but another node or process also can detect the

existing of deadlock. In Alom et al.(2009), it only shows that local deadlock is not

dependent with global deadlock. Besides that, the algorithm proposed by Selvaraj et

al. (2011), Razzaque et al. (2007) and Alom et al. (2009) does not mention about the

logical data that will be used to test their algorithm. However, the research proposed

by Razzaque et al. (2007) mentioned that it has simulated the algorithm using fixed

sites (20) and only consider write operation to the data objects.

2.9 SUMMARY

This chapter reviews a study on data replication and its strategies such as

asynchronous and synchronous replication. This chapter also reviews data replication

technique on grid such as NRG. Besides that, a review on transaction handling and

concurrency control also will be presented in this chapter. Lastly, deadlock

mechanism as well as other researchers’ related work on deadlock detection

algorithm has been discussed. In this research, deadlock detection is implemented

with replication model on NRG. This technique is discussed in the next chapter.

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter focuses on firstly describing the operational framework used in

the development of Neighbour Replication Grid Deadlock Detection (NRGDD) then

it is followed by a description of The NRGDD Transaction Model. This chapter

also includes the flowchart and framework of NRGDD with all possible diagrams,

and also the detailed algorithm shown as a pseudo code. Besides that, it also covers

the hardware and software specifications, the NRGDD simulation model, and the

comparison between NRGDD and Multi-cycle Deadlock Detection and Recovery

(MC2DR) (Razzaque et al., 2007). This chapter ends with some examples of cases

and correctness.

32

3.2 OPERATIONAL FRAMEWORK

The methodology used to develop NRGDD has five phases which comprises

of literature study, logical design, implementation, testing and analyse the result as

shown in Figure 3.1. Every phase in this methodology can be divided into several

steps that can be achieved in a suitable time frame.

Figure 3.1: Methodology phases

In the literature study phase, a review was made on data replication including

its strategies which consist of the asynchronous and synchronous replications. In this

phase also, the replication techniques on the data grid were defined. Besides that, a

transaction handling and concurrency control and the definition and traditional

techniques of deadlock handling including the existing techniques were also

reviewed and studied during this phase. Then ultimately, the scope of the research

was identified.

In the logical design phase, the proposed framework was designed to support

the occurrence and detection of the deadlock on Neighbour Replication on Grid

(NRG). Next, the algorithm was designed to manage any deadlock problems that

were able to support the deadlock detection and resolution.

During the implementation phase, the NRGDD simulation was developed in

order to test the proposed algorithm in handling deadlock problems by using

appropriate programming techniques and development tools.

Literature Study Logical Design

Implementation

Testing Result Analysis

33

In the testing phase, the algorithm was tested on the NRG replication model

in order to ensure the algorithm was correct and well functioned. Correct and well

functioned here mean the algorithm can detect deadlock during the time when

transactions made their request to grant resource at any sites on NRG. If the

algorithm can detect and resolve deadlock on NRG, then the final phase will be

implemented. If not, logical design will be revised and followed with the

implementation.

At the final phase, the results were analysed. Next, the report was written

based on the results of the implementation. The operational framework is

summarized as in Figure 3.2.

34

Figure 3.2: Operational framework

Review Deadlock
Detection

Techniques

Identify Scope

Design Deadlock Detection
Framework and Algorithm

Configure Deadlock Detection
Algorithm

Code the Algorithm using
Development Tool

Test the Deadlock Detection
Algorithm using Simulation

Correct and
Well Function?

Analyze and Write
Report

No

Yes

Start

End

Phase 1
Literature Study

Phase 2
Logical Design

Phase 3
Implementation

Phase 4
Testing

Phase 5
Result Analysis

35

3.3 NRGDD MODEL

In the proposed NRGDD model, the deadlock detection algorithm was

developed to be implemented in the Neighbour Replication on Grid (NRG) Model. In

NRG, all sites are logically organized in the form of two-dimensional grid structure.

For example, if NRG consists of twenty-five sites, it will logically organize it in the

form of 5 x 5 grids. The detailed explanations on NRG are in Chapter 2.

A site Y is a neighbour to site X, if Y is logically located adjacent to X. A

relation replicates to the neighbouring sites from its primary site. Four sites on the

corners of the grid have only two adjacent sites, and other sites on the boundaries

have only three neighbours. Thus, the number of neighbours of each site is less than

or equal to 4. Figure 3.3 shows the NRG model consists of sixteen sites. A site A is a

primary site for site B and E. Each site can be primary or neighbour to other sites

such as site B become neighbours to site A, but at the same time it becomes primary

to its neighbour site A, C and F. A site becomes a primary site will replicate its data

to its neighbours. For example, data k from site K replicates to site G, J, L and O.

Figure 3.3: Sixteen sites of NRG

A B C D

E F G H

I J K L

M N O P

36

The replicated data is requested by different sets of transaction to grant the

available resources on the grids. When the transaction is waiting for each other to

obtain the same resource at an infinite time, the deadlock may happen. The NRGDD

simulation model was developed to handle deadlock on NRG. It can detect more than

one cycle of deadlock that happens in NRG.

3.3.1 NRGDD Algorithm Definition

In this section, we defined the following notations:

a) T is a transaction

b) Dx, D is the union of all data object manages by all transaction T of NRG and

x represents one data object (or data file) in D to be modified by an element

of ఈܶ, ఉܶ, ఊܶ , ఋܶ, and ఏܶ.

c) The element of ఈܶ, ఉܶ, ఊܶ , ఋܶ, and ఏܶ will request the same replicated data

object on different sites.

d) λ = α, β, γ, δ, θ where it represents a different group for the transaction T

(before and until the deadlock is detected and resolved). µ is feedback from

other transaction during sending and receiving probe messages and detection

and resolution of deadlocks.

e) The PM is a probe message. It contains a set of probe messages where the

PM (initID, victimized, ProWait, RouteString). See Table 3.1.

f) NRG transaction elements ఈܶ = ൛ ఈܶೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)ൟ,

where Tఈೣ,ெ is a probe message elements of ఈܶ transaction.

g) NRG transaction elements ఉܶ = ൛ ఉܶೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)ൟ,

where Tఉೣ,ெ is a probe message element of ఉܶ transaction.

h) NRG transaction elements ఊܶ = ൛ ఊܶೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)ൟ,

where Tఊೣ,ெ is a probe message element of ఊܶ transaction.

i) NRG transaction element ఋܶ = ൛ ఋܶೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)ൟ,

where Tఋೣ,ெ is a probe message element of ఋܶ transaction.

j) NRG transaction element ఏܶ = ൛ ఏܶೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)ൟ,

where Tఏೣ,ெ is a probe message element of ఏܶ transaction.

37

k) Each node or transaction has a probe message storage structure also known as

ProbeS, at least, one probe message will be stored in ProbeS at a particular

time. The history of ProbeS is independent; when the deadlock has been

detected the probe message is erased from ProbeS.

l) Transaction Tఒೣ,ெ that detects the deadlock sends a victim message to the

transaction found to be victimized for the deadlock resolution. Victim

message elements are initID and victimID. Victim message will be used for

deleting probes from respective storage entries.

Table 3.1: Probe message

The NRGDD transaction model considers a different set of transactions ఈܶ,

ఉܶ, ఊܶ , ఋܶ , and ఏܶ. All elements of the transaction may request data object x

simultaneously at any site of S (B) either at the same or different sites. Each set of

transaction communicate with each other by message passing. Each of them brings

the elements of probe message or PM where PM(initID, victimID, ProWait,

RouteString). At least there will be one probe message being stored in the probe

storage, ProbeS.

Probe Message Descriptions

initID Contains the identity of the initiator of the algorithm

victimID A node or transaction that causes the deadlock to

occur. This node will be victimized for deadlock

resolution.

ProWait The number of successors representing a node or

transaction which is waiting for a resource.

RouteString The node or transaction IDs visited by another node‘s

(transaction’s) probe message in order.

38

3.3.2 Illustration Of Example

Let’s illustrate the working of NRGDD algorithms for detecting deadlock,

through an example. Consider the situation shown in Figure 3.4. A different set of

transactions ఈܶ, ఉܶ, ఊܶ, ఋܶ , and ఏܶ request a lock from a set of sites where S(Bx) = {J,

F, I, K, N}. Each site contains replicates of data x. If the transaction of Tఈೣ,ெ gets a

lock from site i Є S(Bx) and on the other transaction will get a lock from other site j

Є S(Bx) | j ≠ i. Each site i Є S(Bx) has its own Lock Manager (LM) that processes a

request for a lock from the transaction and decide whether the lock can be granted or

not. If the lock is free, it is granted immediately; otherwise, the lock manager will

send a reject message and insert the requesting transaction or node ID into a waiting

list for the lock.

Figure 3.4: Different set of transaction requests a different site

Each of the transaction thus already gets locked from site; they can propagate

lock to another site to grant the resources. If the resource is already granted by

another transaction, it must wait until the resource is released. While the transaction

is waiting to grant the resource at an infinite time, anything happens like it is idle.

Figure 3.5 shows how the deadlock occurs and the cycle develops.

The NRGDD algorithm will be implemented by initiating the deadlock

algorithm. The algorithm is initiated by any transaction with the waiting time more

than the time out. For example, ఈܶ initiates deadlock detection algorithm. Then, ఈܶ

creates probe message and sends it to its successor, ఉܶ. When ఉܶ receives probe

L

G

K

O

J Tαx, PM

Tγx, PM Tβx, PM

Tδx, PM Tθx, PM

39

message it will compare whether ఉܶ obtains the same replicated data as ఈܶ . If it is the

case, then it will check whether the probe storage, ProbeS of ఉܶ is empty or not. And

it also checks for the number of successors for both transactions. If it is empty and ఉܶ

has the highest number of successors, then it will update its ProWait and

RouteString. This step will continue until the transaction that causes the deadlock

receives a victim message from the transaction which detects a deadlock. The

transaction that becomes a victim for the deadlock to occur has the highest number of

successors. Once received the victim message, it sends the message to its successors

then it will abort and release the resource that it is holding.

Figure 3.5: Transaction waiting for each other to obtain resources

3.4 NRGDD FRAMEWORK

The process involves in this model is shown in Figure 3.6 that starts with

initiating the deadlock algorithm when the time for waiting resource is longer than

the time out. Any transaction can initiate a deadlock algorithm. Next, a transaction

creates its probe message then sends to its successors. A successor is a transaction

that holds a resource which other transaction is waiting for it to be granted. The

difference between MC2DR and NRGDD is on the stage of Send and Receive Probe.

K
k

G
k

J
k

O
k

Tఈೣ Held by Wait for

Held by

Held by

Held by

Wait for

Wait for

Wait for

Tఉೣ

Tఋೣ

Tఊೣ

40

In this stage, every transaction that obtains a resource is being compared to ensure it

requests for the same replicated data object. This is because the deadlock occurs

when a set of different transaction requests to obtain the same resource. Besides that,

it is also to ensure that the deadlock really exists. This stage continues to happen

until a transaction receives a victim message from a detector which detects another

transaction that causes the deadlock to occur. Once the deadlock is detected, a

transaction that causes the deadlock will receive a victim message from the

transaction which detects it as a victim. After receiving a victim message, it sends the

message to its successor(s) and then it will abort or kill itself to resolve the deadlock.

Figure 3.6: Framework of NRGDD model

NRGDD Simulation

 Initiate Deadlock

Create Probe

Send and
Receive Probe

Detect Deadlock

Send and
Receive Victim

Resolve
Deadlock

NRG Environment

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Y

41

3.5 COMPLETED FLOWCHART OF NRGDD FRAMEWORK

In Figures 3.7a, 3.7b, and 3.7c, the details of the NRGDD framework are

illustrated. The Figure 3.7a shows the transaction that initiates a dead lock algorithm,

Figure 3.7b shows the transaction that sends and receives the probe message between

them and Figure 3.7c shows the deadlock detection and resolution.

Figure 3.7a: Deadlock initiation

Start

Transaction initiated lock at each
site:

ఈܶ = ൛ ఈܶೣൟ, ఉܶ = ൛ ఉܶೣൟ, ఊܶ = ൛ ఊܶೣൟ,

ఋܶ = ൛ ఋܶೣൟ, ఏܶ = ൛ ఏܶೣൟ

Waiting
resource time
> Timeout?

 Tఒೣ executes deadlock initiation
algorithm, λ = α, β, γ, δ, θ

 Create and send probe message, probe
message = PM(initID, victimID,
ProWait, RouteString)

A

No

Yes

42

Figure 3.7b: Send and receive probe message

Tఓೣ ProWait >
Tఒೣ ProWait

Tఒೣ ’s Dx == Tఓೣ ’s
Dx && Probe

storage == NULL?

 Update Tఓೣ ’s victimID, ProWait,
RouteString

 Send probe message

A

 Tఓೣ receives probe message from Tఒೣ

B
No

Yes

No

Yes

 Update Tఓೣ ’s
RouteString

 Send probe message

43

Figure 3.7c: Deadlock detection and resolution

Prefix?

 Tఒೣ : deadlock is detected
 Send victim message, initID and

victimID to Tఓೣ

B

 Tఓೣ check RouteString with probe
message of Tఒೣ

No

Yes
 Discard probe

message from Tఒೣ

 Tఓೣ receives victim message

victimID ==
Tఓೣ ’s ID?

 Tఓೣ sends victim
message to all its
successor

 Tఓೣ releases locks
 Tఓೣ abort

End

Yes

 Erase probe message
from probe storage.

No

44

3.6 NRGDD ALGORITHM

To execute the NRGDD framework, a new NRGDD algorithm was proposed

by considering the data replication for a data object.

Listing 1: The algorithm of Neighbour Replication on Grid Deadlock Detection

1 Start
2 Tఒೣ initiate deadlock
3 If Wt > To Then
4 Execute deadlock initiation
5 Create Probe message
6 End If
7 Create Probe
8 Tఒೣ create probe message, PM(initID,victimID,ProWait,RouteString)
9 Send Probe message
10 Send Probe
11 Tఒೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧) or
12 Tఓೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)
13 Tఓೣ receive probe message from Tఒೣ,ெ
14 If Tఒೣ’s Dx == Tఓೣ ’s Dx && ProbeS == NULL Then
15 If Tఓೣ ProWait > Tఒೣ,ெ ProWait Then
16 Tఓೣ update victimID, ProWait, RouteString
17 Send Probe message
18 Else
19 Tఓೣ update RouteString
20 Send Probe message
21 End If
22 Else
23 Tఓೣ ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧) check its RouteString with

 RouteString of Tఒೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)
24 If Tఒೣ’s RouteString prefix with Tఓೣ’s RouteString Then
25 Tఒೣ detect deadlock
26 Send Victim message to Tఓೣ , waiting transaction where μ = α, β,
 δ, γ, θ
27 Else
28 Discard probe message from Tఒೣ,ெ
29 End If

45

30 End If
31 Tఓೣ receive victim message
32 If victimID == Tఓೣ ’s ID Then
33 Tఓೣ send victim message to its successors
34 Tఓೣ release lock
35 Tఓೣ abort lock
36 Else
37 Erase probe message from ProbeS
38 End If
39 End

3.7 NRGDD DEVELOPMENT

This section specifies the hardware and software components. Besides that

this section also describes the programming implementation and an explicit

explanation of the NRGDD Simulation Model.

3.7.1 Hardware And Software Components

The implementation of NRGDD requires some minimum hardware and

software specifications. The hardware specifications as shown in Table 3.2 were used

for implementation.

Table 3.2: Hardware component specifications

Hardware Specifications

Processor Intel (R) Core ((TM) 2 Duo CPU T6600 @2.20

GHz 2.20 GHz

Memory 3.00 Gigabyte

Hard Disk 300 Gigabyte

The implementation of the NRGDD was carried out by using C#

programming language. Table 3.3 shows the system development tool specification

46

for this implementation. C# was selected because of the object oriented capabilities

(Craig Utley, 2002). Even simple data types can be treated as objects means that a

data type like int has methods associated with it. Besides that, C# attempts to

simplify the syntax to be more consistent while also removing some of the more

complex features of C++ (Craig Utley, 2002).

Table 3.3: System development tool specifications

System Development Software Specifications

C# Microsoft Visual Studio 2010 Express

Windows 7 Home Premium

3.7.2 Programming Implementation

The programming implementation is developed using C# language. Microsoft

Visual C# 2010 Express is used to write the source code of deadlock detection.

Besides that, the interface is designed by using Windows Form. Visual C# is

developed and maintained by Microsoft Corporation. After installing Microsoft

Visual C# 2010, it can be accessible to the start menu. Microsoft Visual C# 2010 has

its own file format to maintain the source code. Text files are used as the data file.

The screen shot and the usability of the experiment tools are shown and described

below.

Figure 3.8 shows the project and different solutions view of NRGDD

application. This snap shot is shown in Microsoft Visual C# 2010 Express. This

window appears when the project is loaded on the Microsoft Visual C# 2010

Express. The Microsoft Visual C# 2010 Express provides various solutions such as

“Properties," “References," and “Form”." The source code typically appears by right

click on project name “NRGDD_sim” then choose new items to add a class and

items for source code. The class file format for C# is “.cs”.

47

Figure 3.8: Project view of NRGDD model

The Figure 3.9 shows the Microsoft Visual C# 2010 Express toolbox for

designing the interface. In designing the interface for the system, the user can drag

the “Common Control,” “Containers,” and others to the Windows Form

applications.

48

Figure 3.9: Toolbox used for designing interface

Figure 3.10 shows the source code of NRGDD model. The source code is

written in Microsoft Visual C # 2010 Express, and the screen shot shows the part of

the source code (probe message on NRGDD) which is written in C#. The probe

message class detects the deadlock on NRG replication model and determine which

one of the transactions is a victim that causes the deadlock to occur when program is

running.

49

Figure 3.10: Source code view of NRGDD model

3.7.3 NRGDD Simulation Model

The NRGDD model is developed to detect the deadlock in NRG replication

environment. For the experiment, the data file is used to represent the server. There

are five servers used that contains the identical replicated data, data x. The NRGGD

has been simulated in the NRG replication model.

Figure 3.11 below shows an interface for NRGDD model. There are different

sets of transactions that are represented as Transaction 1 until Transaction 5. Each

button A, B, C, D, and E represents the server A, B, C, D and E respectively. Every

transaction will lock its own server such as Transaction 1 locks server A, Transaction

2 locks server B, Transaction 3 locks server C, Transaction 4 locks server D and

Transaction 5 locks server E.

50

Figure 3.11: Interface for NRGDD simulation model

Figure 3.12 shows a set of transaction that locked its own server. After it has

locked its own server, the transaction can request for other server. If the lock is free

at that server, it can grant the request; otherwise it will wait until the lock is released.

For the every process that occurs during simulation, it will be displayed on the text

box called “Process”. The time required to lock the server in milliseconds is also

displayed in “Process”.

51

Figure 3.12: A different set of transactions locked its server

3.8 EXAMPLE

Two case studies are presented in this section to test the correctness of

algorithm. The first case study detects only one existing deadlock cycle on NRG

using four sites. While the second case study detects two cycles of existing deadlock

on NRG using five sites. The uses of four and five sites for both case studies are

because in the NRG replication technique, it only uses 3 until 5 sites to replicate the

same database or data object.

A set of different transactions, ఈܶ, ఉܶ, ఊܶ , ఋܶ and ఏܶ can either come

concurrently or otherwise. All the Tఒೣ of λ = α, β, γ, δ and θ get lock respectively. To

illustrate this, let’s say all elements Tఈೣ , Tఉೣ , Tఊೣ, Tఋೣ and Tఏೣ come to modify data

object x at site A, B, C, D and E respectively. Tఈೣ gets to lock data object x at site A,

then Tఉೣ gets to lock data object x at site B, Tఊೣ gets to lock object x at site C, Tఋೣ

52

gets to lock object x at site D and Tఏೣ gets to lock object x at site E. Figure 3.13

shows the different elements of Tఒೣ get locked at the different sites.

Figure 3.13: Different set of transaction, Tఒೣ requests to update data object x

at different sites, i Є S(Bx)

3.8.1 Case #1: detects only one existing deadlock cycle on NRG using four sites

ఈܶ, ఉܶ, ఊܶ, and ఋܶ can either come concurrently or otherwise. All the Tఒೣ of λ

= α, β, γ, δ get locked respectively. To illustrate this, let’s say all elements Tఈೣ , Tఉೣ ,

Tఊೣ and Tఋೣ come to modify data object x at site A, B, C, and D respectively. Tఈೣ gets

to lock data object x at site A, then Tఉೣ gets to lock data object x at site B, Tఊೣ gets to

lock object x at site C whereas Tఋೣ gets to lock object x at site D. The Figure 3.14

shows the different elements of Tఒೣ get locked at different sites.

A

C

B

D

Tఈೣ Tఉೣ

Tఊೣ Tఋೣ

E

Tఏೣ

53

Figure 3.14: Different set of transaction, Tఒೣ requests to update data object x

at different sites, i Є S(Bx)

Then, after all the Tఒೣ of λ = α, β, γ, δ are locked, this element may request

data object x at the other site that is held by other elements of Tఒೣ . The Figure 3.15a

shows the element of Tఒೣ requests for other site that is currently held by other

elements of Tఒೣ .

Figure 3.15a: Elements of Tఒೣ request for other site that is held by other

elements of Tఒೣ

A

C

B

D

Tఈೣ Tఉೣ

Tఊೣ Tఋೣ

A
x

B
x

C
x

D
x

Tఈೣ Held by Wait for

Held by

Held by

Held by

Wait for

Wait for

Wait for

Tఉೣ

Tఋೣ

Tఊೣ

54

As any transaction can only wait for one object at a time, objects can be left

out of ‘wait-for graph’ as in Figure 3.15b. It shows only one cycle of deadlock. The

NRGDD algorithm will be used to detect the existing cycle of deadlock by sending a

probe message.

Figure 3.15b: Wait-for graph

3.8.2 Case #2: detects two-cycles of existing deadlock on NRG using five sites

Then, after all the Tఒೣ of λ = α, β, γ, δ, θ are locked, this element may request

data object x at the other site that is held by other elements of Tఒೣ . The Figure 3.16a

shows the element of Tఒೣ request for other site that is currently held by other element

of Tఒೣ .

Tఉೣ Tఋೣ

Tఊೣ

55

Figure 3.16a: Elements of Tఒೣ request for other site that is held by other

element of Tఒೣ

As any transaction can only wait for one object at a time, objects can be left

out of ‘wait-for graph’ in as in Figure 3.16b. The wait-for graph below shows the two

cycles of deadlock exist on the NRG replication model. The NRGDD algorithm will

detect the two cycles of deadlock and solve it by sending a probe message to

communicate with other transaction, Tఒೣ .

Figure 3.16b: Wait-for graph for two-cycles (a) and (b)

A
x

B
x

C
x

D
x

Tఈೣ

Held by
Wait for

Held by

Held by

Held by

Wait for

Wait for

Wait for

Tఉೣ

Tఋೣ

Tఊೣ

E
x Tఏೣ

Wait for

Held by Wait for

(a) (b)

Tఉೣ

Tఏೣ

Tఊೣ Tఉೣ Tఋೣ

Tఏೣ

56

3.9 COMPARISON BETWEEN NRGDD AND MC2DR

There are two differences between NRGDD and MC2DR.The first difference

is in the time used for both algorithms to detect whether two cycles of deadlock have

occurred on sites. And the second is in the different number of transactions used to

get the average time taken by both models to detect a deadlock.

3.9.1 Detect Two Cycles of Deadlock

The uses of two cycles of deadlock are because both the NRGDD and

MC2DR are considered as detectors of multi cycles of deadlock in a distributed

system. In MC2DR, it shows the steps to detect multi cycles of deadlock on sites that

are meant for write operation. On the other hand, NRGDD detects multi cycles of

deadlock through replication technique, NRG, which is also considered for write

operation. The difference between both models is in the uses of logical data. The

NRGDD uses data replication while MC2DR does not consider the data replication.

3.9.2 Average Deadlock Detection by Using Different Number of Transactions

The different number of transaction is used to get the average time of

deadlock detection for both models, NRGDD and MC2DR. The 3, 4 and 5 number of

transactions will be used. This is because in NRG when a different transaction

requests to be locked at one site, only one transaction is able to be locked at one

particular site. Therefore, the uses of 3, 4 and 5 transactions are after each of the

transaction gets their lock at the sites. Then, the transactions will be waiting for each

other to get the same resources.

57

3.10 CORRECTNESS

Assertion 1: If the transaction waits indefinitely for each other for their requests to

be satisfied at an infinite time, the deadlock algorithm will be initiated by one of the

transactions until the cycles are formed. Then the deadlock detection has been

executed successfully.

Proof: The transaction, Tఒೣ that is waiting for resources held by another transaction

at an infinite time, whereby the time for waiting has increased and becoming longer

than the time for requesting resources. Then, the algorithm will execute to initiate the

deadlock detection algorithm. Tఒೣ creates a probe message, PM where PM(initID,

victimID, ProWait, RouteString).

The transaction, Tఒೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧) sends its probe message to

transaction, Tఓೣ its waiting resource that is held by this transaction. On receiving

probe message, Tఓೣ checks its probe storage whether it is empty or full. If the probe

storage is empty, the Tఓೣcompares its ProWait with Tఒೣ ’s ProWait. Since, Tఓೣ has a

ProWait greater than Tఒೣ , and then Tఓೣ will update its probe message by changing its

victimID, ProWait and RouteString. The Tఓೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)

sends its probe message to other transaction that is holding the resource that it is

waiting for. The steps above are repeated until the probe message is sent to the

transaction which its probe storage is not empty. When this situation happens, the

Tఓೣ ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧) compares its RouteString with

Tఒೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧)’s RouteString. If the RouteString is prefix

then Tఓೣ,ெ(௧ூ,௩௧ூ,ௐ௧,ோ௨௧ௌ௧) detects the cycle of deadlock. The

Tఓೣ ,ெ sends the victim message that contains victimID and ProWait to Tఒೣ,ெ . Then,

Tఒೣ,ெ checks whether its victimID is equal to victimID which it receives from

Tఓೣ ,ெ . If the victimID is equal, then the Tఒೣ,ெhas detected an occurrence of a

victim of deadlock. Therefore, the deadlock has been detected successfully.

58

Assertion 2: If probe storage of transaction contains probe message, then only one

transaction can detect a single deadlock cycle at one time.

Proof: In NRGDD, only one probe message, PM(initID, victimID, ProWait,

RouteString) will be stored on probe storage for each transaction, Tఒೣ . Then, the

algorithm will execute at Line 23 for this situation. Therefore, there is no possibility

for two or more of transactions, Tఒೣ to detect a single deadlock cycle.

3.11 SUMMARY

In this chapter, a new technique to handle deadlock in replication data namely

Neighbour Replication on Grid Deadlock Detection is discussed. By using this

technique, the multi cycles of deadlock will be detected during the occurrence of

transaction in NRG. Besides that, it can detect deadlock during write operation in

order to ensure the consistency of replication data on each site. After a different set

of transaction is successful to get locked at a particular site, they can request for

other lock. If the lock is granted by other transaction, it will wait until they unlock

that site. If every transaction is waiting for each other at an infinite time, a form of

deadlock is built. The cycle exists in the form of Wait-for Graph (WFG). Then, one

of the transactions will initiate the deadlock algorithm. A probe message is created to

be sent to the successor(s). This step will continue until one of the transactions

detects a transaction that causes deadlock to occur. After that, it will send the victim

message to the transactions that become a victim of the deadlock. Finally, the victim

will send a victim message to its successor(s) where it will abort and kill itself to

release lock at the site that it has granted.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 INTRODUCTION

This chapter describes the experimental results for Neighbour Replication on

Grid Deadlock Detection (NRGDD) in handling deadlock on NRG replication

model. Besides, this chapter also proves that NRGDD can manage deadlock

happened on replication data on grid. Finally, the results are compared with other

deadlock detection model.

4.2 NRGDD EXPERIMENTAL RESULTS

4.2.1 Experiment 1

For the first experiment, the case that has been tested is by detecting one

deadlock cycle on NRG in four sites of replicated data. There are four different sets

of transactions, Tఈೣ , Tఉೣ , Tఊೣ and Tఋೣ which are requested to modify data file x at

site A, B, C, and D respectively. Next, each transactions requests other server hold

by other transaction to update data file x.

60

Figure 4.1 shows the processes which occur to detect deadlock in four sites

on NRG replication technique. Transaction 1 which represents Tఈೣ locked server A.

Then Transaction 2 or Tఉೣ locked server B, Transaction 3 or Tఊೣ locked server C and

transaction 4 or Tఋೣ locked server D. When each transaction locked its own server,

transaction 1 requests for server B that is held by transaction 2. Next, transaction 1

initiates a deadlock algorithm when the waiting time is higher than times out.

Transaction 1 creates its probe message, (1, 1, 1, ‘1’), and send it to its waiting

process or successor(s), transaction 2. Transaction 2 updates its probe message and

stores it to probe storage as (1, 1, 1, and ‘12’). Transaction 2 also sends its probe to

its waiting process, transaction 3. Transaction 3 will then update its probe storage to

(1,1,1, ‘123’) followed by, sending this probe to its waiting process, transaction 4.

Next, transaction 4 will update its probe to (1,1,1, ‘1234’) and send its probe to its

waiting process, transaction 2. However, transaction 2 has already store probe on its

storage. The route string in probe carried by transaction 4 will be compared with the

route string in transaction 1’s probe. If it is prefix, transaction 4 becomes a detector

of deadlock and then send victim message to transaction 2. Besides, transaction 2

sends victim message to its waiting process before transaction 2 kills itself or abort to

release lock and delete probe message from the probe storage. For this experiment,

Table 4.3 simplifies the results of how NRGDD handles deadlock problems occur in

transaction Tఈೣ , Tఉೣ , Tఊೣ and Tఋೣ at all sites by detecting only one cycle of deadlock.

61

Figure 4.1: Process for detecting deadlock in four sites

From the result of Table 4.1, at time which is equal to 1(t1), the instant x at

all servers are unlock. At t2, the transactions begin. At t3, there is transactionTఉೣ , Tఊೣ

and Tఏೣin which locked site B, C and D respectively. At t5, Tఉೣ propagates lock to

server C that is held by Tఊೣ , and then Tఊೣ propagates lock to Tఏೣ while at the same

time Tఏೣ propagates lock to Tఉೣ. Each of the transaction is waiting for each other to

grant the resource. Based on Figure 4.1, transaction 1, Tఈೣ initiates deadlock

algorithm. After that, it creates a probe message and sends it to Tఉೣ(transaction 2). At

t6, Tఉೣ updates its probe message to Tఉೣ,ெ(ଵ,ଵ,ଵ,′ଵଶ′) and simultaneously it sends

probe message to Tఊೣ . At t7, Tఊೣ receives probe message fromTఉೣ, and updates its

probe to Tఊೣ,ெ(ଵ,ଵ,ଵ,′ଵଶଷ′) before send it to Tఏೣ . Subsequently, at t7 Tఏೣ updates its

probe message into Tఏೣ,ெ(ଵ,ଵ,ଵ,′ଵଶଷସ′) and sends probe message to its successor,

Tఉೣsimultaneously. However, Tఉೣ is already received probe message from Tఈೣ and

then Tఏೣ compares its RouteString with Tఉೣ’s RouteString at t9. At the same time the

route strings for both are prefixed and the deadlock is detected. Tఏೣ will sends a

victim message that contains initID and victimID to Tఉೣ . At t10, Tఉೣ receives a

62

victim message and then sends it to its successor, Tఊೣ .Tఊೣ receives a victim message

at t11. Next, at t11 the lock is released and probe message is deletes from its probe

storage (ProbeS). In the interim, Tఊೣ and Tఏೣ also delete their probe message from

their ProbeS. Finally, at t12 Tఉೣ unlocks site B.

Table 4.1: The experiment results for detecting one cycle of deadlock

Replica Time B C D
t1 unlock(x) unlock(x) unlock(x)
t2 begin_transaction begin_transaction begin_transaction
t3 write lock(x) write lock(x) write lock(x)
t4 wait wait Wait
t5 Tݔߚ Propagate lock: C TݔߛPropagate lock: D Tݔߠ Propagate lock: B

t6 Update probe message:

T(′12′,1,1,1)ܯܲ,ݔߚ. Send

probe to Tݔߛ

wait Wait

t7 Receive probe: update

probe

T(′123′,1,1,1)ܯܲ,ݔߛ. Send

to Tݔߠ

t8 Receive probe: update

probe T(′1234′,1,1,1)ܯܲ,ݔߠ.

Send to Tݔߚ

t9 Detect deadlock: Route

string prefix with

T(′12′,1,1,1)ܯܲ,ݔߚ’s route

string. Send victim to

Tݔߚ

t10 Receive victim

message. Send to its

waiting process, Tݔߛ .

t11 Receive victim

message

63

t12 Kill: released lock &

delete probe message
Delete probe message Delete probe message

t13 Unlock(x)

Figure 4.2 shows transaction 1 which has initiated deadlock algorithm by

sending probe message to transaction 2. Then, transaction 2 sends its probe message

to transaction 3 and transaction 3 sends its probe message to transaction 4.

Transaction 2 received probe message from transaction 4. As described, transaction 2

has already received probe message from transaction 1. Therefore, it compares its

route string with route string of transaction 4.Transaction 4 has detected that

transaction 2 is a victim of a deadlock that occur.

Figure 4.2: Sending of probe message

Figure 4.3 shows a single deadlock cycle which has been detected on NRG

which is Tఉೣ,ெ(ଵ,ଵ,ଵ,′ଵଶ′) waiting for T(′123′,1,1,1)ܯܲ,ݔߛ, for the moment it also waits

forTఏೣ ,ெ(ଵ,ଵ,ଵ,′ଵଶଷସ′). Furthermore, transaction Tఏೣ,ெ(ଵ,ଵ,ଵ,′ଵଶଷସ′) is also waiting

forTఉೣ,ெ(ଵ,ଵ,ଵ,′ଵଶ′).

1 2

3 4

Tఈೣ,ெ(ଵ,ଵ,ଵ,ᇲଵᇲ)

Tఉೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶᇲ)

Tఊೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶଷᇲ)

Tఏೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶଷସᇲ)

64

Figure 4.3: A single deadlock cycle

Table 4.2 shows the average time taken until the cycle is detected and

resolved for one cycle of deadlock {2,3,4,2).

Table 4.2: Average time taken to detect deadlock cycle for cycle {2,3,4,2}

Lock

Time(s)

B C D

Initiate Lock 0.001 0.001 0.001

Propagate Lock 0.001 0.001 0.001

Detect Deadlock 0.001 0.001 0.002

Receive Victim Message 0.001 0.002 0.002

Release Lock 0.001 0.001 0.001

4.2.2 Experiment 2

For second experiment, the case that has been test is detecting two deadlock

cycles on NRG in five sites of replicated data. There are five different sets of

transactions, ఈܶ, ఉܶ, ఊܶ , ఋܶ and ఏܶ which request to modify data file x at site A, B, C,

D and E respectively. To facilate that, each of the transactions requests other server

hold by other transaction to update data file x.

2

3 4

Tఉೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶᇲ)

Tఊೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶଷᇲ)

Tఏೣ,ெ(ଵ,ଵ,ଵ,ᇲଵଶଷସᇲ)

65

Figure 4.4 shows the process to detect two cycles of deadlock existed in NRG

for five sites. Transaction 1 which represents Tఈೣ locked server A. Subsequently,

transaction 2 or Tఉೣ locked server B while transaction 3 or Tఊೣ locked server C,

transaction 4 or Tఋೣ locked server D and transaction 5 or Tఏೣ locked server E. All of

these transactions request other servers that are held by other transaction as stated in

figure above. When the transaction is waiting for another transaction to release lock

at infinite time, transaction 1 initiate a deadlock algorithm and then creates a probe

message, (1, 1, 1, ‘1’). It is then send to the waiting process or successor, transaction

2. Once a probe is received, transaction 2 updates the probe message and stores to its

probe storage as (1, 2, 2, ‘12’). This transaction changes its victimID and proWait

because it is waiting to more than one process. Therefore, it changes victimID to its

transaction ID equal to 2 and proWait which is depend on the sum of waiting process

it is waiting for. Transaction 2 also sends its probe to its waiting process, transaction

3 and transaction 4. Then, transaction 3 updates its probe storage to (1,2,2, ‘123’).

And transaction 4 updates its probe to (1,2,2, ‘124’). Next, transaction 3 sends its

probe to its waiting process, transaction 5. Then, transaction 5 updates its probe to

(1,2,2, ‘1235’).

Figure 4.4: Detect two cycles of deadlock in NRG for five sites

66

Transaction 4 also sends its probe to transaction 5. Figure 4.5 shows the way

of probe message that is sent among transactions. However, when transaction 5 is

already received probe from transaction 3, consequently probe message from

transaction 4 will be discarded. Route string in probe carried by transaction 5 will be

compared to route string in transaction 2’s probe. If it is prefix, then transaction 5

becomes a detector of deadlock and then sends victim message to transaction 2. In

addition, transaction 2 sends victim message to its waiting process before it kills

itself to release lock and delete probe message from the probe storage.

Figure 4.5: Sending of probe message by five transactions

Figure 4.6 shows two cycles of deadlock which are detected on NRG.

Figure 4.6: Two cycles of deadlock

1 2

3 4

Tఈೣ,ெ(ଵ,ଵ,ଵ,ᇲଵᇲ)

Tఉೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶᇲ)

Tఊೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶଷᇲ)

Tఋೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶସᇲ)
5

Tఉೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶᇲ)

Tఏೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶଷହᇲ)

2

3 4

Tఉೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶᇲ)

Tఊೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶଷᇲ) Tఋೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶସᇲ)

5 Tఉೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶᇲ)

Tఏೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶସହᇲ)Tఏೣ,ெ(ଵ,ଶ,ଶ,ᇲଵଶଷହᇲ)
2

5

67

From the result from Table 4.3, at time equal to 1(t1), instant x at all servers

are unlock. At t2, the transactions begin. At t3, there is transactionTఉೣ, Tఊೣ , Tఋೣ and

Tఏೣwhich locked site B, C, D and E respectively. At t5, Tఉೣ propagates lock to server

C and D that are held by Tఊೣ and Tఋೣ and Tఊೣ propagates lock to server E that is held

by Tఏೣ . At the same time, Tఋೣ also propagates lock to server E that is held by

Tఏೣwhereas Tఏೣ propagates lock to server B that is held byTఉೣ . Each of the

transaction is waiting for each other to grant the resource. Based on Figure 4.5,

transaction 1, Tఈೣ initiates the deadlock algorithm. After that, it creates a probe

message and sends it to Tఉೣ(transaction 2). At t6, Tఉೣ updates its probe message to

Tఉೣ,ெ(ଵ,ଶ,ଶ,′ଵଶ′) and sends probe message to Tఊೣ and Tఋೣ simultaneously. At t7,

Tఊೣ receives probe message from Tఉೣand then updates its probe to Tఊೣ,ெ(ଵ,ଶ,ଶ,′ଵଶଷ′)

and then send it to Tఏೣ . At t8, Tఋೣ receives probe message from Tఉೣ , and updates its

probe to Tఋೣ,ெ(ଵ,ଶ,ଶ,′ଵଶସ′) before sends it to Tఏೣ. At t9, Tఏೣ receives probe message

from Tఊೣ , then updates its probe to Tఏೣ,ெ(ଵ,ଶ,ଶ,′ଵଶଷହ′). This is followed by, Tఏೣ

which will send probe message to Tఉೣ . At t10, Tఏೣ receives probe message from

Tఋೣ,ெ(ଵ,ଶ,ଶ,′ଵଶସ′). However, this probe will be discarded because Tఏೣ already have

probe message in its ProbeS. At t11, the deadlock is detected because RouteString of

Tఏೣis prefix with RouteString of Tఉೣ. Then, Tఏೣ sends victim message to Tఉೣ . At t12,

Tఉೣ receives victim message from Tఏೣ and then sends it to its waiting process, Tఊೣ

and Tఋೣ . At t13, both of the transactions receive victim message from Tఉೣ. Then, at

t14 Tఉೣ releases its lock and delete probe message from its ProbeS. Meanwhile, Tఊೣ

and Tఋೣ also delete its probe message from their ProbeS. Finally, at t15, Tఉೣ unlocks

server B.

68

Table 4.3: The experiment results to detect two cycle of deadlock in five sites

Replica

Time
B C D E

t1 unlock(x) unlock(x) unlock(x) unlock(x)
t2 begin_transaction begin_transaction begin_transaction begin_transaction
t3 write lock(x) write lock(x) write lock(x) write lock(x)
t4 wait wait wait Wait
t5 Tݔߚ Propagate

lock: C, D

TݔߛPropagate lock:

E

Tݔߜ Propagate

lock: E

Tݔߠ Propagate

lock: B

t6 Update probe

message:

T(′12′,1,2,2)ܯܲ,ݔߚ.

Send probe to

Tݔߛ , Tݔߜ

wait wait Wait

t7 Receive probe:

update probe

T(′123′,1,2,2)ܯܲ,ݔߛ.

Send to Tݔߠ

t8 Receive probe:

update probe

T(′124′,1,2,2)ܯܲ,ݔߜ.

Send to Tݔߠ

t9 Receive probe:

update probe

T(′1235′,1,2,2)ܯܲ,ݔߠ

Send to Tݔߚ
t10 Receive probe:

Discard probe

from

T(′124′,1,2,2)ܯܲ,ݔߜ

t11 Detect deadlock:

Route string

69

prefix with

T(′12′,1,2,2)ܯܲ,ݔߚ’s

route string. Send

victim to Tݔߚ

t12 Receive victim

message from Tݔߠ .

Send to its waiting

process, Tݔߛ , Tݔߜ .

t13 Receive victim

message
Receive victim

message

t14 Kill: released lock

& delete probe

message

Delete probe

message
Delete probe

message
Delete probe

message

t15 Unlock(x)

For this experiment, Table 4.4 and Table 4.5 show the average time required

for the NRGDD algorithm to detect two cycles of deadlock that existed on NRG.

Table 4.4: Average time taken to detect first deadlock cycle for cycle {2,3,5,2}

Lock

Time(s)

B C E

Initiate Lock 0.002 0.001 0.001

Propagate Lock 0.001 0.002 0.002

Detect Deadlock 0.002 0.002 0.002

Receive Victim Message 0.002 0.002 0.002

Release Lock 0.001 0.001 0.001

70

Table 4.5: Average time taken to detect second deadlock cycle for cycle {2,4,5,2}

Lock

Time(s)

B D E

Initiate Lock 0.002 0.001 0.001

Propagate Lock 0.001 0.001 0.001

Detect Deadlock 0.001 0.001 0.002

Receive Victim Message 0.002 0.002 0.002

Release Lock 0.001 0.001 0.001

4.3 COMPARISON BETWEEN NRGDD AND MC2DR

The proposed Neighbour Replication on Grid Deadlock Detection (NRGDD)

in replication technique, Neighbour Replication on Grid (NRG) has been compared

with deadlock detection algorithm, Multi-cycle Deadlock Detection and Recovery

(MC2DR) algorithm (Razzaque et al., 2007) in terms of executing time taken to

detect two cycles of deadlock and average time of deadlock detection using different

number of transaction.

The NRGDD only compared to MC2DR not to other algorithm because

MC2DR simulates their algorithm during write operation happened on sites. Besides

, MC2DR is suitable to be contrasted with NRGDD because NRGDD is also done

during write operation. The different between NRGDD with MC2DR is NRGDD is

implemented on replication data on grid. Furthermore, in other algorithm such as

Decentralized Algorithm for Detection Generalized Deadlock in Distributed Systems

(Selvaraj et al., 2011) and Deadlock Detection Views of Distributed Database (Alom

et al., 2009) elucidate their algorithm in general situations (explained in Chapter 2).

71

4.3.1 Detect Two-Cycles of Deadlock

The experiment has been done to compare time required for detecting two-

cycles of deadlock detection between NRGDD and MC2DR. Table 4.6 shows the

results of the time engaged for NRGDD and MC2DR to detect two-cycles of

deadlock.

Table 4.6: Required time to detect two-cycles of deadlock in NRGDD and MC2DR

Deadlock Detection Model Detect two-cycles of Deadlock

(seconds)

NRGDD (proposed) 0.005

MC2DR 0.28

Figure 4.7 shows that NRGDD occupied 0.005 seconds to detect two-cycle of

deadlock compared to MC2DR that occupied 0.28 seconds to detect two-cycle of

deadlock. From Table 4.5, it was found that the NRGDD took less time which is

about 27.5% less than MC2DR in detecting two cycles of deadlock.

Figure 4.7: Time (in seconds) taken to detect two-cycles of deadlock

NRGDD

MC2DR

0

0.05

0.1

0.15

0.2

0.25

0.3

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

Deadlock Detection Model

Executing Time Taken to Detect Two-
Cycles of Deadlock

NRGDD (proposed)

MC2DR

72

4.3.2 Average Deadlock Detection by Using Different Number of Transactions

The comparison is also made by using three to five number of transactions.

This is because in NRG when a different transaction requests to get lock at one sites,

only one transaction can get lock at one site. Therefore, the uses of 3, 4 and 5

transaction are after each of the transaction get their lock at the sites. Then, the

transactions are waiting for each other to get the same resources.

Table 4.6 and Figure 4.8 show the results of the duration for both models,

NRGDD and MC2DR spend to detect deadlock with different number of

transactions. It is concluded that NRGDD provides less time average of deadlock

detection rather than MC2DR for every number of transactions. The NRGDD

performs 0.002 seconds besides MC2DR performs 0.22 seconds to detect deadlock

for 3 transactions. By using 4 transactions, NRGDD still applies less time to detect

deadlock about 0.004 rather than MC2DR which is 0.26 to detect deadlock.

Furthermore, even for 5 transactions the NRGDD still need less time about 0.005

than MC2DR, 0.28 to detect deadlock.

Table 4.7: Average deadlock detection by using different numbers of transactions

Transactions No.

Average Deadlock Detection (Time)

NRGDD MC2DR

3 0.002 0.22

4 0.004 0.26

5 0.005 0.28

73

Figure 4.8: Average deadlock detection for different numbers of transactions

4.4 SUMMARY

This chapter presents the detailed process of how this model detects the cycle

of deadlock in NRG as what has been described. From the result section, it is clearly

shown that handling deadlock in replication data through proposed NRGDD is able

to detect the present of deadlock and at the same maximize the availability of

resource. The NRGDD spends less time to detect cycles of deadlock in NRG

replication model than MC2DR. Besides, even though by using different number of

transactions, NRGDD still employs less time to detect deadlock in NRG compared to

MC2DR.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 INTRODUCTION

This research has been addressed using Neighbour Replication on Grid

Deadlock Detection (NRGDD) model to handle deadlock problems during the

execution of transaction on replication technique, in NRG environment. This chapter

summarizes the important findings from the work carried out this research. It also

includes some suggestions for future work in each of the areas covered during this

research.

5.2 RESEARCH OBJECTIVES ACHIEVEMENT

In this research, the technique which is based on the previous work by other

researchers has been discussed in Chapter 2. In particular, a new algorithm called

Neighbour Replication on Grid Deadlock Detection (NRGDD) is proposed in order

to manage deadlock problem in Neighbour Replication on Grid environment (as

inChapter 3). Only replication that has the same data copy is considered for deadlock

detection especially on write operation. Furthermore, NRGDD only detects the

presents of deadlock.

 75

This algorithm has been expanding from the existing MC2DR model.

Compared to the existing model which manage on sites without consider any

replication technique; this algorithm is used to handle deadlock on NRG replication

technique. Hence, the capability of the new algorithm to handle deadlock is better

than the MC2DR. This is because in handling deadlock on NRG its only replicated

the data to 3, 4 and 5 sites even on NRG used more than 16 sites. Therefore,

NRGDD algorithm can detect deadlock faster than MC2DR. This algorithm has been

tested through the NRGDD simulation model (Chapter 3).

Experiments have been conducted in order to prove this technique to be able

to handle deadlock problem and to increase the throughput by maximizing the

available resources through resolution as in Chapter 4. Next, an analysis of NRGDD

techniques is presented in terms of executing time taken to detect deadlock in NRG

environment. After comparing NRGDD with MC2DR, it proves that NRGDD

requires short time to detect existing deadlock on NRG.

Thus, this research is it contributes to a new framework and algorithm,

Neighbour Replication on Grid Deadlock Detection (NRGDD) which was

successfully developed to manage deadlock problems during transaction execution

through Neighbour Replication on Grid (NRG) model (Chapter 3).

The proposed algorithm, NRGDD is compared with Multi-cycle Deadlock

Detection and Recovery Algorithm for Distributed System (MC2DR) (Razzaque et

al., 2007) in terms of executing time taken to detect two-cycles of deadlock and

average time taken for deadlock detection using different number of transactions

which are discussed earlier (Chapter 4).

Besides, two experiments have been conducted in order to ensure the

correctness of NRGDD algorithm. For the first experiment, the deadlock is detected

by using four sites to detect one cycle of deadlock. For the second experiment, five

sites are used to detect two-cycles of deadlock on NRG. The results for both

experiments are successfully reported in Chapter 4. The NRGDD requires the

 76

shortest time taken than MC2DR to detect deadlock. The NRGDD achieved 27.5%

improvement from MC2DR.

5.3 FUTURE WORK

NRGDD can be improved in many different ways. Currently, NRGDD is

simulated by the use of NRGDD simulator. In the future, NRGDD can be

implemented on real time in distributed database systems by using Local Area

Network (LAN) or Wireless Area Network (WAN).

As we know, breakdown can occur at anytime during transactions. Currently,

NRGDD does not support handling deadlock by considering failure cases. In the

future, NRGDD will take this challenge to handle deadlock in failure cases and fault

tolerance in distributed database system in real time environment.

In future this study is able to create a significant improvement for commercial

usage. NRGDD can enlarge in Cloud Computing in order to avoid the minimizing of

available resource when deadlock occur during transaction in the system.

77

REFERENCES

Abd El-Gwad, A.O., Saleh, A.I., and Abd-ElRazik, M.M. 2009.A Novel Scheduling

Strategy for an Efficient Deadlock Detection. Proceedings of International

Conference on Computer Engineering & Systems.ICCES 2009, pp.579-583.

Abdi, S., and Mohamadi, S. 2010. Two Level Job Scheduling and Data Replication in

Data Grid. Proceedings of International Journal of Grid Computing &

Applications (IJGCA), 1 (1): 23 – 27.

Ainul, A.C. F., Noraziah, A., Noriyani, M.Z., Beg, A.H., Nawsher, K., and Elrasheed

I.S. 2011. Handling Fragmented Database Replication through Binary Vote

Assignment Grid Quorum. Journal of Computer Science, 7 (9): 1338 - 1342.

Alkhatib, G., and Labban, R.S. 1995. Transaction Management in Distributed Database

Systems: The Case of Oracle's Two-Phase Commit. Journal of Information

Systems Education, 13 (2): 95-103.

Allcock, W., Bresnahan, J., Bunnb, J., Hegded, S., Insley, J., Kettimuthu, R., Newmanb,

H., Ravotb, S., Rimovsky, T., Steenberg, C., and Winkler, L. 2003. Grid-Enabled

Particle Physics Event Analysis: Experiences Using a 10 Gb, High-Latency

Network for a High-Energy Physics Application. Future Generation Computer

Systems, pp. 983-997.

AL-Mistarihi, H.H.E., and Yong, C.H. 2009. On Fairness, Optimizing Replica Selection

in Data Grids. IEEE Transactions on Parallel and Distributed Systems, 20 (8):

1102-1111.

78

Alom, B.M.M., Henskens, F., and Hannaford, M. 2010. Optimization of Detected

Deadlock Views of Distributed Database. Proceedings of International

Conference on Data Storage and Data Engineering, pp. 44-48.

Alom, B.M.M., Henskens, F.A., and Hannaford, M.R. 2009. Deadlock Detection Views

of Distributed Database. Proceedings of Sixth International Conference on

Information Technology: New Generations, 2009. ITNG’09, pp. 730-737.

Amjad, T., Sher, M., and Daud, A. 2012. A Survey of Dynamic Replication Strategies

for Improving Data Availability in Data Grids. Future Generation Computer

Systems, 28 (2): 337 – 349.

Atreya, R., Mittal, N., Kshemkalyani, A.D., Garg, V.K., and Singhal, M. 2007. Efficient

Detection of a Locally Stable Predicate in a Distributed System. Proceedings of

Journal Parallel Distributed. Computing, 67 (4):369-385.

Bagchi, S. 2011. A Distributed Algorithm for Ordered, Atomic and Simultaneous Group

Communication. Future Generation Computer Systems, 27 (5) 466-475.

Bai, T., Liu, Y.S., and Hu, Y. 2008. Timestamp Vector Based Optimistic Concurrency

Control Protocol for Real-Time Databases. Proceedings of 4th International

Conference on Wireless Communications, Networking and Mobile

Computing.WiCOM '08, pp.1-4.

Barney, H.T., Low, G. C. 2008. Object Allocation with Replication in Distributed

Systems. Proceedings of International Journal of Information Technology, 4 (1):

28-36.

Beg, A.H., Ahmad, N., AbdAlla, A.N., and Khan, N. 2010. Framework of Persistence

Layer for Synchronous Data Replication (PSR). Proceedings of Australian

Journal of Basic and Applied Sciences, 4(10), pp. 5394-5400.

Bhushan, S., Patel, R.B., and Dave, M. 2007. A Secure Time-Stamp Based Concurrency

Control Protocol for Distributed Databases. Journal of Computer Science, 3 (7):

561-565.

79

Ben Charrada, F., Ounelli, H. and Chettaoui, H. 2010b. An Efficient Replication

Strategy for Dynamic Data Grids. 2010 International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp.50-54.

Ben Charrada, F., Ounelli, H., and Chettaoui, H. 2010a. Dynamic Period vs Static Period

in Data Grid Replication. 2010 International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC), pp.565-568.

Bhushan, S., Patel, R.B., and Dave, M. 2007. A Secure Time-Stamp Based Concurrency

Control Protocol for Distributed Databases. Journal of Computer Science 3 (7):

561-565.

Bost, Charron, B., Pedone, F. and Schiper, A. 2009.Replication Theory and Practice.

Berlin Heidelberg NewYork, Springer, ISBN-10 3-642-11293-5 Springer, ch. 2.

Cheung, E., Chen, X., Hsieh, H., Davare, A., Sangiovanni-Vincentelli, A., and

Watanabe, Y. 2009. Runtime Deadlock Analysis for System Level Design.

Proceedings of Design Automation for Embedded Systems, 13 (4): 287-310.

Clauss, P.N., and Gustedt, J. 2010. Iterative Computations with Ordered Read–Write

Locks. Journal of Parallel and Distributed Computing, 70 (5): 496-504.

Craig Utley. 2002. Why You Should Move to C#.

http://www.techrepublic.com/article/why-you-should-move-to-c/1050356 (2 July

2012).

Du, Z., Hu, J., Chen, Y., Cheng, Z., and Wang, X. 2011. Optimized QoS-Aware Replica

Placement Heuristics and Applications in Astronomy Data Grid. Journal of

Systems and Software, 84 (7): 1224-1232.

Enokido, T., and Takizawa, M. 2008. A Purpose-Based Synchronization Protocol of

Multiple Transactions. Proceedings of 14th IEEE International Conference on

Parallel and Distributed Systems. ICPADS '08, pp.145-152.

80

Eya, B. A., AhlemN., FaïezG., 2011, Performance of Short-Commit in Extreme

Database Environment. Proceedings of International Journal of Database

Management Systems(IJDMS), 3 (2): 1 – 41.

Fan, C., and Xu, M. 2010. A Solution to Deadlock in Implementing Synchronizing

Merges of Workflow. Proceedings of 6th International Conference on Advanced

Information Management and Service (IMS), Nov. 30 – Dec. 2 2010.pp. 498.

(05713501).

Fard, A.M, Kamyar, H., and Naghibzadeh, M. 2008. Multi-Expert Disease Diagnosis

System Over Symptom Data Grids on the Internet. Proceedings of World

Applied Sciences Journal, 3(2): 244-253.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. Proceedings of International Journal of High

Performance Computing Application 15(3): 200-222.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. 2002. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Globus

Project, pp. 1-30.

Foster, I., Zhao, Y., Raicu, I. and Lu, S. 2008. Cloud Computing and Grid Computing

360-Degree Compared. Grid Computing Environments Workshop, GCE '08 ,

pp.1-10.

Fox, G., Ko, S.-H., Pierce, M., Balsoy, O., Kim, J., Lee, S., Kim, K., Oh, S., Rao, X.,

Varank, M., Bulut, H., Gunduz, G., Qiu, X., Pallickara, S., Uyar, A., and Youn,

C. 2002. Grid Services for Earthquake Science. Proceedings of Concurrency and

Computation: Practice and Experience 14 (6-7) 371-393.

Garcia-Munoz, L.H., Armendariz-Inigo, J.E., Decker, H., and Munoz-Escoi, F.D. 2007.

Recovery Protocols for Replicated Databases-A Survey. Proceedings of 21st

International Conference on Advanced Information Networking and Applications

Workshops. AINAW '07, 1: 220-227.

81

Gomez, E., and Schubert, K. 2010. Algebra of Synchronization with Application to

Deadlock and Semaphores. Proceedings of IEEE First International Conference

on Networking and Computing, pp. 202-208.

He, X., Ou, L., Engelmann, C., Chen, X., and Scott, S.L. 2009. Symmetric

Active/Active Metadata Service for High Availability Parallel File Systems.

Journal of Parallel and Distributed Computing, Volume 69, Issue 12, December

2009, pp. 961-973.

Hu, H., and Li, Z. 2009. Local and Global Deadlock Prevention Policies for Resource

Allocation Systems Using Partially Generated Reachability Graphs. Comput. Ind.

Eng. 57(4): 1168-1181.

Hu, H., Li, Z., and Zhou, M. 2008. Two Generalized-Petri-net-based Strategies for

Deadlock Prevention in Resource Allocation Systems. Proceedings of IEEE

International Conference on Systems, Man and Cybernetics.pp.1948-1953.

Jiang, B., Deprettere, E., and Kienhuis, B. 2008. Hierarchical Run Time Deadlock

Detection in Process Networks. Proceedings of IEEE Workshop on Signal

Processing Systems, pp. 239-244.

Khachana, R.T., James, A., and Iqbal R. 2011. Relaxation of ACID Properties in

AuTrA, The Adaptive User-Defined Transaction Relaxing Approach. Future

Generation Computer Systems, 27 (1): 58-66.

Khanli, L.M., Isazadeh, A., and Shishavan, T.N. 2011. PHFS: A Dynamic Replication

Method, to Decrease Access Latency in the Multi-Tier Data Grid. Future

Generation Computer Systems, 27 (3): 233-244.

Latip, R., Ibrahim, H., Othman, M., Sulaiman, M.N, and Abdullah, A. 2008. Quorum

Based Data Replication in Grid Environment. RSKT'08 Proceedings of the 3rd

International Conference on Rough Sets and Knowledge Technology, pp. 379-

386.

82

Lee, S., and Joo, K.H.2005. Efficient Detection and Resolution of OR Deadlocks in

Distributed Systems. Journal of Parallel and Distributed Computing, 65 (9):

985-993.

Li, P., Agrawal, K., Buhler, J., Chamberlain, R.D., and Lancaster, J.M. 2010. Deadlock-

Avoidance for Streaming Applications with Split-Join Structure: Two Case

Studies. Proceedings of 21st IEEE International Conference on Application-

specific Systems Architectures and Processors (ASAP), pp. 333-336.

Li, T., Yan, B., and Luan, Z. 2010. Fast Large File Distribution in Data Grid.

Proceedings of International Conference on Intelligent Computing and

Integrated Systems (ICISS), pp.577-582.

Ling, Y., Chen, S., and Chiang, C.J. 2006. On Optimal Deadlock Detection Scheduling.

Proceedings of IEEE Transactions on Computers, 55 (9):1178-1187.

Mayer, S., and Furmans, K. 2010. Deadlock Prevention in a Completely Decentralized

Controlled Materials Flow Systems. Logistic Research, Springer, pp. 1-12.

Mitchell, D.P., and Merritt, M.J. 1984. A Distributed Algorithm for Deadlock Detection

and Resolution. In Proceedings of the Third Annual ACM Symposium on

Principles of Distributed Computing, pp. 282-284.

Mohammed, T.S. 2007. Performance Improvement and Deadlock Prevention for a

Distributed Fault Diagnosis Algorithm. Journal of Computer Science 3(2): 107-

112.

Naseera, S., and Murthy, K.V.M. 2009. Agent Based Replica Placement in a Data Grid

Environement. First International Conference on Computational Intelligence,

Communication Systems and Networks. CICSYN '09, pp.426-430.

Noraziah A., Deris, M.M., Ahmed, N.A., Saman, M.Y.M, Norhayati, R., and Alfawaer,

Z.M. 2007. Preserving Data Consistency through Neighbor Replication on Grid

Daemon. Proceedings of American Journal of Applied Sciences 4 (10): 751-758.

83

Noraziah, A. 2009c. Neighbour Replica Failure Semantic Using NRTM in Distributed

Environment. Proceedings of International Conference on Software Engineering

& Computer Science, Malaysia, pp. 530-533.

Noraziah, A., Abdalla, A.N., and Sidek, R.M. 2010d. Data Replication Using Read-One-

Write-All Monitoring Synchronization Transaction System in Distributed

Environment. Journal Computer Science 6: 1033-1036.

Noraziah, A., DerisM.Mat, Ahmed N.A., Norhayati R., Saman, M.Y., Norhaslinda D.C.,

2009a. Neighbour Replication Transactions Processing in Distributed System.

Advances in Systems Science and Applications, (ASSA), Proceedings of

International Journal of IIGSS, 9 (2).

Noraziah, A., Deris, M.M., Rosli, N., Saman, Md.Y.M.,Mamat, R., and Wan

NikShuhadah, W.N. 2006. Managing Neighbour Replication Transactions in

Distributed Systems. Proceedings of International Symposium on Distributed

Computing & Applications Business Engineering and Science, 1: 95-101.

Noraziah, A., Deris, M.M., Saman, M.Y.M., Norhayati, R., Rabiei, M., and Shuhadah,

W.N.W. 2009b. Managing Transactions on Grid-Neighbour Replication in

Distributed Systems. Proceedings of International Journal of Computer

Mathematics Vol. 86, Iss. 9, pp. 1-10.

Noraziah, A., AinulAzila, C.F, Roslina, M.S., Noriyani, M.Z. and Beg, A.H. 2010.

Lowest Data Replication Storage of Binary Vote Assignment Data Grid.

Proceedings of NDT (2), the Second International Conference on Networked

Digital Technologies, pp. 466 – 473.

Noraziah, A., Klaib, M.F.J., and Sidek, R.M. 2010c.Failure Semantic of Neighbour

Replication Grid Transaction Model. Proceedings of 10th IEEE International

Conference on Computer and Information Technology(CIT 2010), pp.668-673.

Noraziah, A., Zin, N.M., Sidek, R.M., Klaib, M.F.J., and Wahab, M.H.A. 2010b.

Neighbour Replica Transaction Failure Framework in Data Grid. Proceedings,

84

Part II. Communications in Computer and Information Science. NDT 2010, Part

II, CCIS 88, Zavoral F. et al. (Eds.), Springer-Verlag Berlin Heidelberg, pp. 488–

495.

Nyo, T.T. 2009.Maximizing the Degree of Concurrency and Consistency in Distributed

Parallel Processing Environment. Proceedings of International Conference on

Future Networks, pp.258-262.

Olson, A.G., and Evans, B.L. 2005. Deadlock Detection for Distributed Process

Networks. Proceedings of IEEE International Conference on Acoustics, Speech,

and Signal Processing, 5: 73-76.

Razzaque, M.A., and Hong, C.S. 2008.Multi-Token Distributed Mutual Exclusion

Algorithm. Proceedings of 22nd International Conference on Advanced

Information Networking and Applications, pp.963-970.

Razzaque, M.A., Mamun-Or-Rashid, M., and Hong, C.S. 2007. MC2DR: Multi Cycle

Deadlock Detection and Recovery Algorithm for Distributed Systems.

Proceedings of the High Performance Computing and Communications, pp.

554–565

Roszkowska, E. 2004. Supervisory Control for Deadlock Avoidance in Compound

Processes. Proceedings of IEEE Transactions on Systems, Man and Cybernetics,

Part A: Systems and Humans, 34 (1): 52- 64.

Sanchez, C., Sipma, H.B., and Manna, Z. 2007. Generating Efficient Distributed

Deadlock Avoidance Controllers. Proceedings of IEEE International Parallel

and Distributed Processing Symposium, pp.1-8.

Sanzo, P.D., Ciciani, B., Quaglia, F., and Romano, P. 2008. A Performance Model of

Multi-Version Concurrency Control. Proceedings of IEEE International

Symposium on Modeling, Analysis and Simulation of Computers and

Telecommunication Systems, pp.1-10.

85

Sanzo, P.D., Palmieri, R., Ciciani, B., Quaglia, F., and Romano, P. 2010. Analytical

Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data

Access Patterns. In Proceedings of the First Joint WOSP/SIPEW International

Conference on Performance Engineering, pp. 69-78.

Sashi, K., and Thanamani, A.S. 2011. Dynamic Replication in a Data Grid Using a

Modified BHR Region Based Algorithm. Future Generation Computer Systems,

27(2): 202-210.

Sathya, S.S., and Babu, K.S. 2010. Survey of Fault Tolerant Techniques for Grid.

Computer Science Review (2010). 4 (2): 101-120.

Shahzad, M.Y., and Rizwan, M. 2011. Performance of Short-Commit in Extreme

Database Environment. International Journal of Database Management Systems

(IJDMS), 3 (2).

Singh, Y.J., and Mehrotra, S.C. 2009. An Analysis of Real-Time Distributed System

under Different Priority Policies. Proceedings of World Academy of Science,

Engineering and Technology, 56: 166-171.

Srinivasan, S., and Rajaran, R. 2011.A Decentralized Deadlock Detection and

Resolution Algorithm for Generalized Model in Distributed Systems.

Proceedings of Distributed Parallel Databases,29: 261-276.

Sun, X., Zheng, J., Liu, Q., and Liu, Y. 2009. Dynamic Data Replication Based on

Access Cost in Distributed Systems. Proceedings of the 4th International

Conference on Computer Sciences and Convergence Information Technology,

pp. 829-834.

Thiare, O. 2009. A Solution to Improve Algorithm for Distributed Mutual Exclusion by

Restricting Message Exchange in Quorums. Proceedings of Second International

Conference on the Applications of Digital Information and Web

Technologies,pp.38-42.

86

Wang, Y., and Sijun, L. 2006. Research and Performance Evaluation of Data

Replication Technology in Distributed Storage Systems. Proceedings of

Computers & Mathematics with Applications, 51: 1625-1632.

Wong, L., Arora, N.S., Gao, L., Hoang, T., and Wu, J. 2009. Oracle Streams: A High

Performance Implementation for Near Real Time Asynchronous Replication.

Proceedings of IEEE 25th International Conference on Data Engineering,

pp.1363-1374.

Wu, H., Chin, W.-N., and Jaffar, J. 2002. An Efficient Distributed Deadlock Avoidance

Algorithm for the AND Model. Proceedings of IEEE Transactions on Software

Engineering, 28(1): 18-29.

Xiao, X., and Lee, J.J. 2010. A True O(1) Parallel Deadlock Detection Algorithm for

Single-Unit Resource Systems and Its Hardware Implemention. Proceedings of

IEEE Transactions on Parallel and Distributed Systems, 21(1): 4-19.

Xiao, X., and Lee, J.J. 2011. A Parallel Multi-Unit Resource Deadlock Detection

Algorithm with O (log2 (min (m,n))) Overall Run-Time Complexity. Journal

Parallel Distributed Computing, 71(7): 938-954.

Xiao, Y., Zhang, H., and Wang, F. 2007. Maintaining Temporal Consistency in Real-

Time Database Systems. Proceedings of International Conference on

Convergence Information Technology, pp.1627-1633.

Zhang, Z., Wu, W., and Shekhar, S. 2009. Optimal Placements of Replicas in a Ring

Network with Majority Voting Protocol. Journal of Parallel and Distributed

Computing, 69(5): 461-469.

Zhao, W., Xu, X., Xiong, N., and Wang, Z. 2008. A Weight-Based Dynamic Replica

Replacement Strategy in Data Grids. IEEE Asia-Pacific Services Computing

Conference. APSCC '08, pp.1544-1549.

87

Zhao, W., Xu, X., Wang, Z., Zhang, Y. and He, H. 2010. A Dynamic Optimal

Replication Strategy in Data Grid Environment. International Conference on

Internet Technology and Applications, pp.1-4.

Zheng, Q., and Bi, X. 2010.An Improved Concurrency Control Algorithm for

Distributed Real-Time Database. Proceedings of 2010 IEEE International

Conference on Advanced Management Science (ICAMS), 2:364-367.

88

BIODATA OF THE AUTHOR

The author was born in 1985 in Kelantan, Malaysia. She obtained diploma in Computer

Science in 2003 and bachelor degree in Computer Science (Software Engineering) in

2006 from University Malaysia Pahang, Malaysia. Currently she is undergoing her M.Sc

program at the Faculty of Computer Systems and Software Engineering, University

Malaysia Pahang.

Her current research interests include distributed systems, database systems, database

replication and deadlock handling in database. She has published 4 articles in journals

and proceedings (international). For this work, she has published one scientific journal

and three proceedings.

89

LIST OF PUBLICATIONS

1. Noriyani Mohd Zin , A.Noraziah , Ahmed N. Abdalla, Ainul Azila Che Fauzi,
“Solving Two Deadlock Cycles through Neighbor Replication on Grid Deadlock
Detection Model”, Journal of Computer Science, 8(2): 265-271, 2012.Index:
ISI.

2. Noriyani Mohd Zin, A.Noraziah, Ainul Azila Che Fauzi, “Neighbour
Replication on Grid Deadlock Detection Framework”, Ezendu et al. (Eds):
Communications in Computer and Information Science (CCIS) vol. 194,
Springer-Verlag Berlin Heidelberg, pp. 350–357, 2011.Index: ISI Proceedings
and Scopus.

3. Noriyani Mohd Zin, A.Noraziah, A.H.Beg, Ainul Azila Che Fauzi, “Deadlock
Detection and Resolution in Neighbour Replication on Grid”, ICCCM2011, pp.
426-430, 2011, ISBN-13:978-981-08-8636-3.

4. Noriyani Mohd Zin, A.Noraziah, Ainul Azila Che Fauzi, Tutut Herawan,
“Replication Techniques in Data Grid Environments”, Proceedings ACIIDS'12
Proceedings of the 4th Asian conference on Intelligent Information and Database
Systems - Volume Part II pp. 549-559.

