

DEVELOPMENT OF EFFICIENT T-WAY TEST DATA GENERATION

ALGORITHM AND EXECUTION STRATEGIES

KHANDAKAR FAZLEY RABBI

Thesis submitted in fulfillment of the requirements

For the award of the degree of

Master of Computer Science

UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2012

vi

ACKNOWLEDGEMENTS

The work presented in this thesis was undertaken under the main supervision of

Prof. Dr. Sabira Khatun, to whom I am grateful for her support, interest and her

insightful and critical comments in all stages of the work. To say the least, without her

encouragement and enthusiasm, this work may not be done with this strength. Also,

even she is very busy; she took an enormous task of revising my thesis word by word.

Her efforts are greatly appreciated and will never be forgotten. Thanks again Prof.

I am also grateful to En. Che Yahaya for his help and co-operation during this

work.

I am also thankful to all of my friends in Malaysia, who gave their support and

help through many helpful and enjoyable discussions. In particular, I am thankful to all

academic staffs in the Faculty of Computer Science and Software Engineering, UMP,

and all those persons who have encouraged me to complete my study. Thanks!

I am also grateful to my parents, brothers and sisters, uncles and aunts for strong

encouragement in my studies, so that I could be successful in my life. Dad and mom,

thank you for the prayers – this thesis is for both of you.

Finally, I would like to thank my loving wife (Rupu). To my daughter (Rijja),

thanks for being patient all along. I am sorry to have sometimes neglected all of you to

pursue my dream.

vii

ABSTRACT

For a typical software product, it is desired to test all possible combinations of

input data in various configurations, Exhaustive testing is impossible to execute prior to

release in the market. The lack of resources, cost factors and tight deadlines to market

are some of the main factors that prevent this consideration. In current practice, usually

the test-data are selected and executed randomly. Many useful strategies (2-Way and T-

Way sampling) were developed to generate test-data and facilitate smooth testing

process. Comprehensive test data generation is nondeterministic polynomial hard

problem (NP-complete). Hence, optimization in terms of number of generated test-data

and execution time is in demand. Motivated by these, this thesis addresses the design,

implementation and validation of four effective test data generation strategies in terms of

2-way and T-way as follows: (I) PS2Way (Pairwise Search for 2-way Test Data

Generation) strategy is based on parameters pair technique. This strategy is able to

reduce the number of test data, but the execution time is not optimized. (II) EasyA (Easy

Algorithm for 2-way Test Data Generation) is developed based on matrix based

calculation to overcome the time constrains by keeping the number of test data in an

acceptable range. This strategy is unable to support non uniform values. (III) R2Way

(Random Search for 2-way Test Data Generation) with execution tool is developed to

support both uniform and non-uniform values using search based software engineering.

R2Way outperforms other existing strategies but cannot support higher interaction level

(T > 2). And finally, (IV) MTTG (Multi-Tuple based T-way Test Data Generation)

strategy is developed inspiring kids “Card Game” to overcome the limitations of

interaction strength. An executable prototype tool is also developed for auto test

execution besides efficient test data generation. Empirical data shows that MTTG is

effective and outperforms other strategies in terms of number of test data generation

time (more than 74% improvement), maintaining a tolerable test data size. All the

proposed strategies are simpler to implement and handle. They are also efficient in terms

of execution time and able to generate highly reduced test data suites to fulfil the current

demand (easy and faster process) by software development companies.

viii

ABSTRAK

Bagi setiap produk perisian yang biasa, ia hendaklah menguji semua

kemungkinan kombinasi data input dalam pelbagai konfigurasi, iaitu ujian menyeluruh

sebelum ia dipasarkan. Kekurangan sumber, faktor-faktor kos dan tarikh akhir yang

ketat untuk ke pasaran adalah antara faktor utama yang menghalang pertimbangan ini.

Dalam amalan semasa, biasanya data ujian dipilih dan dilaksanakan secara rawak.

Pelbagai strategi yang berguna (2-hala dan pensampelan T-hala) telah dibangunkan

untuk menjana data ujian dan memudahkan proses ujian yang lancar. Penjanaan data

ujian yang komprehensif adalah masalah nondeterministic polinomial (NP-lengkap)

yang susah. Oleh itu, pengoptimuman dan pelaksanaan dari segi bilangan masa data

ujian adalah permintaan yang terdesak. Didorong oleh masalah ini, tesis ini

telah menunjukkan rekabentuk, pelaksanaan dan pengesahan empat strategi ujian

generasi data dari segi 2-hala dan T-hala yang berkesan seperti berikut: (I) Strategi

PS2Way (Pencarian berpasangan untuk Penjanaan Data Ujian 2-hala) berdasarkan

teknik sepasang parameter. Strategi ini dapat mengurangkan bilangan data ujian, tetapi

masa pelaksanaan tidak dioptimumkan. (II) EasyA (Algoritma Mudah untuk Generasi

Data Ujian 2-hala) dibangunkan berdasarkan pengiraan berasaskan matriks untuk

mengatasi kekangan masa dengan menjaga bilangan data ujian dalam julat yang boleh

diterima. Strategi ini tidak dapat untuk menyokong nilai-nilai bukan seragam. (III)

R2Way (Pencarian Rawak untuk Penjanaan Data Ujian 2-hala)

dengan perisian dibangunkan untuk menyokong kedua-dua nilai yang seragam dan tidak

seragam dengan menggunakan carian berdasarkan kejuruteraan perisian. R2Way

melebihi prestasi strategi lain yang sedia ada tetapi tidak boleh menyokong interaksi

tahap yang lebih tinggi (T> 2). Dan akhirnya, (IV) strategi MTTG (Multi-tuple

berdasarkan Data Generasi Ujian T-Way) di inspirasikan dari "Permainan Kad" kanak-

kanak untuk mengatasi keterbatasan kekuatan interaksi. Satu alat prototaip boleh laku

juga dibangunkan untuk pelaksanaan ujian auto selain generasi data ujian yang cekap.

Data empirikal menunjukkan bahawa MTTG adalah berkesan dan melebihi prestasi

strategi yang lain dari segi generasi bilangan ujian masa data (lebih daripada 74%

peningkatan), mengekalkan saiz data ujian yang diterima. Semua strategi yang

dicadangkan adalah mudah untuk dilaksanakan dan dikendalikan. Ianya juga cekap dari

segi masa pelaksanaan dan mampu mengurangkan penjanaan ujian sederetan data untuk

memenuhi permintaan semasa (proses yang mudah dan lebih cepat) oleh syarikat-

syarikat pembangunan perisian.

ix

TABLE OF CONTENTS

 Page

STATEMENT OF AWARD FOR DEGREE ii

SUPERVISOR’S DECLARATION iii

STUDENT’S DECLARATION iv

DEDICATION v

ACKNOWLEDGEMENTS vi

ABSTRACT vii

ABSTRAK viii

TABLE OF CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xvii

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Overview Of Software Testing 2

1.3 Problem Statements & Motivation 3

1.4 Research Aim And Objectives 6

1.5 Scope Of The Research 7

1.6 Study Module 7

1.7 Organization Of Thesis 9

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10

2.2 Overview 10

 2.2.1 Don’t Care Formula 12

 2.2.2 Don’t Care Formula: Proof of Correctness 14

2.3 Classification Of Test Data Generation Strategies 18

2.4 Algebraic strategies 19

x

 2.4.1 2-Way Strategies 19

 2.4.2 T-Way Strategies 19

2.5 Computational strategies 19

 2.5.1 2-Way Strategies 21

 2.5.2 T-Way Strategies 22

2.6 Artificial intelligence strategies 25

 2.6.1 2-Way Strategies 25

 2.6.2 T-Way Strategies 26

2.7 Comparison of All 2-Way Strategies 28

2.8 Comparison of All T-Way Strategies 29

2.9 Summary 29

CHAPTER 3 PS2WAY: AN EFFECTIVE PAIRPARAMETER SEARCH

ALGORITHM FOR PAIRWISE TEST DATA GENERATION

3.1 Introduction 31

3.2 PS2Way Strategy 31

 3.2.1 Creating Pair parameters and values 32

 3.2.2 Combination of Pairs 33

 3.2.3 Adjustment Algorithm 33

3.3 Results And Discussions 35

3.4 Summary 38

CHAPTER 4 EASYA: EASY AND EFFECTIVE WAY TO GENERATE

PAIR WISE TEST DATA

4.1 Introduction 39

4.2 EasyA Strategy 39

 4.2.1 Pair Generation 40

xi

 4.2.2 Easy Test Data Generation 40

 4.2.3 Adding Test Data To The Uncovered Pairs 42

4.3 Results & Discussions 44

4.4 Summary 46

CHAPTER 5 R2WAY: A RANDOM SEARCH ALGORITHM FOR

PAIRWISE TEST DATA GENERATION

5.1 Introduction 47

5.2 R2Way Strategy 47

 5.2.1 Pair Generation 48

 5.2.2 Test Data Generation 49

 5.2.3 Pair covering & Test data selection 50

 5.2.5 Prototype Tool 54

5.3 Results & Discussions 56

5.4 Summary 57

CHAPTER 6 MTTG: A MULTI-TUPLE BASED EFFECTIVE STRATEGY

FOR TEST DATA GENERATION AND EXECUTION

6.1 Introduction 58

6.2 MTTG Strategy 58

 6.2.1 MTTG methodology/workflow 59

6.3 The experiment 63

 6.3.1 MTTG Product 63

 6.3.2 Manual Generator 63

 6.3.3 Auto Web Generator 65

 6.3.4 Auto Web Execution 66

6.4 Results And Discussions 68

 6.4.1 MTTG VS 2-Way Strategies 68

xii

 6.4.2 MTTG VS T-way Strategies 69

 6.4.3 Result In Terms Of Overall Time for Hardware and Software 77

 6.4.4 Result In Terms Of Overall Time for Web Based Application 78

6.5 Summary 79

CHAPTER 7 CONCLUSION

7.1 Introduction 80

7.2 Conclusion With Research Summary 80

7.3 Contribution Of The Research 81

7.4 Future Work 82

REFERENCES 83

APPENDIX 92

BIODATA OF AUTHOR 95

LIST OF PUBLICATIONS 96

xiii

LIST OF TABLES

Table No. Title Page

2.1 Operation Example 11

2.2 Exhaustive Combinations (at T=4) 12

2.3 3-Way Combinations for ABC (D is negligible) 13

2.4 3-Way Pair Combinations 16

2.5 Analysis of 3-Way Combination Occurrences 17

3.1 Example parameters with values 32

3.2 Pair parameters with exhaustive test data 32

3.3 Example of pair search and final test data generation 34

3.4 Comparison of the generated test data for PS2Way 37

3.5 Comparison of PS2Way execution time (in seconds) 37

4.1 Generated header and value pairs 40

4.2 Algorithm to generating test data from odd number (3) 41

4.3 Algorithm to generate Test data from even number (4) 42

4.4 Comparison of generated test data sizes for EasyA 45

4.5 Comparison of EasyA Execution Time (in seconds) 46

5.1 Generated header pairs and values 48

5.2 Exhaustive test data number with the values 49

5.3 Construction of test data from some random values 50

5.4 Pair covering and test data selection procedures 51

5.5 Comparison of generated test data sizes for R2Way 56

5.6 Comparison of R2Way execution time (in seconds) 57

6.1 Comparison of generated test data size for MTTG (T = 2) 68

6.2 Comparison of MTTG (T=2) Execution time (in seconds) 69

6.3 Comparison of MTTG performance with other T-Way

strategies for G1

71

6.4 Comparison of MTTG performance with other T-Way

strategies for G2

72

xiv

6.5 Comparison of MTTG performance with other T-Way

strategies for G3

73

6.6 Comparison of MTTG performance with other T-Way

strategies for G4

74

xv

LIST OF FIGURES

Figure No. Title Page

1.1 Software Engineering Product Life Cycle 2

1.2 Microsoft Excel Proofing Option 4

1.3 Study Module 8

2.1 All 3-Way Combinations for ABC, ABD, ACD, and BCD 14

2.2 Reconciliation of all 3-Way Combinations for ABC, ABD, ACD, and

BCD

15

2.3 Kids Cards games deck 20

2.4 ACA Search Space (Shiba et al., 2004) 22

2.5 The PSO search space and the particles 23

3.1 PS2Way pseudo code for adjustment algorithm 34

3.2 Flow chart of the Algorithm 35

4.1 EasyA pseudo code for uncovered pair 43

4.2 Flowchart of EasyA 44

5.1 R2Way Pair covering and test data selection algorithm 52

5.2 Flowchart of R2Way 53

5.3 Generator window 54

5.4 Same parameter & value window (uniform) 54

5.5 Different parameter and value window (non-uniform) 55

5.6 Generated test data for a uniform parameterized value. 55

6.1 Illustration of N-Tuples generated for 2-way interaction 59

6.2 Illustration of Missing parameters 60

6.3 MTTG pseudo code for constructing test data 61

6.4 Complete workflow of MTTG 62

6.5 The initial view of MTTG application 64

6.6 A view after generating test data manually 65

6.7 Auto test data generation view from Web page 66

6.8 Output view of auto web page test data generator 67

6.9 Auto Execution view of MTTG 67

6.10 (a) Maximum T supportability of MTTG (test data size) 75

xvi

6.10 (b) Maximum T supportability of MTTG (test data generation time) 76

6.11 Maximum T supportability of MTTG compare to others 77

6.12 Overall time comparison of MTTG for T-Way interaction – G4 78

xvii

LIST OF ABBREVIATIONS

V & V Verification and Validation

NP-hard Non-deterministic polynomial-time hard

PS2Way Pair Parameter Search based 2 way strategy

R2Way Random search based 2 way strategy

EasyA Easy Algorithm

MTTG Multi Tuple based T way Generation

IPO In Parameter Order

TCG Test Case Generator

mTCG Modified Test Case Generator

TConfig T way test configuration

CTS Combinatorial Test Services

AETG Automatic Efficient Test Generator

mAETG Modified Automatic Efficient Test Generator

GA Genetic Algorithms

ACA Ant Colony Algorithm

IPOG Generation of In Parameter Order

TVG Test Vector Generator

ITCH Intelligent Test Case Handler

GTWAY/G2WAY Generation Of Test Case

xviii

SBSE Search Based Software Engineering

PSO Particle Swarm Intelligence

NA Not Available

NS Not Supported

TCAS The common Traffic Collision Avoidance System

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Computing technology has highly improved these days. From type writing to

telephony was once manual have been automated nowadays. Although mobile phones,

washing machines, robots are hardware but it controls through a software system. The

software now also became automated and intelligent. And all above the software and

hardware is now became an integral part of our life.

Can we imagine our lives without software? Our favourite facebook, iphone,

ipad, windows/linux/Macbook is our life partner. We can’t think of our life without

those. Our favourite iphone without software will be too limited to use for our life. Thus

we can divide our digital life into two digital items. One is the software and another is

the hardware.

The software itself cannot do anything without hardware and software can’t run

by itself. A software is always be driven by any hardware. For any hardware there have

some fixed maintenance costs. But for software maintenance comes with lot of things

from the first line of coding where software gets its life. The software itself can also

customize whenever needed. So even though programmer writes bad/bug codes it can be

fixed anytime. Although one can’t produce error free software but through a proper

testing the quality (i.e. software is reliable enough to meet the requirement) and

maintenance cost can be highly reduce. This chapter focuses on the overview of

2

software testing and current research problems. Additionally this chapter also highlights

the work plan of the thesis.

1.2 OVERVIEW OF SOFTWARE TESTING

Software testing is a process which ensures that the delivered software is error free

(as much as possible) and meets the software requirements. It is a routine work often

asked by the stakeholders and end users. The process makes sure that the software is

performing as expected. Along with software coding, software testing costs around 40%-

50% of total software development cost (Klaib 2009). In system development, the life

cycle can be considered as follows (Wikipedia, 2012)

Figure 1.1: Software Engineering Product Life Cycle

3

 Referring to Figure 1.1, the system development starts with “Requirement

Analysis”. In this phrase the customer/stakeholders prepare software/system

specification which is also known as requirement document. The requirement document

is then reviewed or tested by a verification and validation (V & V) team. After that the

design of entire system including test plans is produces by managers or software

architects. In the implementation phrase the software programmers usually write the line

of codes and testers performs the code level testing which is also known as “Unit

Testing”. In the testing phrase the all other functional or non functional testing drives by

testers according the test plan. In this phrase the V & V team and/or customers performs

an acceptance testing to make sure the software meets the specifications. And then the

software is ready to release. In the evolution phrase maintenance testing is performed.

The testing itself don’t produce anything but it reduces the risks of the software

hence improve the quality of the software and makes sure that the software is

performing as it is expected. To perform the tests in different phrase, producing “Test

Data” also known as “Test Cases” is one of the biggest challenges in the industry.

1.3 PROBLEM STATEMENTS AND MOTIVATION

Software testing and debugging is one of the integral part of software

development life cycle in software engineering but this process is still very labour-

intensive and expensive. Around 50% of project money goes under software testing

(Klaib, 2009) Hence, the focus is to find automatic and cost-effective software testing

and debugging techniques to ensure high quality of released product. Nowadays,

research on software testing focuses on test coverage criterion design, test-data

generation problem, test oracle problem, regression testing problem and fault

localization problem. Among these problems test-data generation problem is an

important issue in producing error free software. To solve this problem, Pairwise

strategy (i.e. two-way interaction) has been known as an effective test data reduction

strategy and able to detect from 60 to 80 % of the faults (Klaib, 2009).

4

For example, the ‘proofing’ tab under ‘option’ dialog in Microsoft excel (Figure

1.2), there are 6 possible configurations needed to be tested. Each configuration takes

two values (checked or unchecked).Top of that the ‘French modes’ takes 3 possible

values and ‘Dictionary language’ takes 54 possible values. So to test this proofing tab

exhaustively, the number of test data need to be executed is 26 x 54 x 3 i.e. 10,368.

Assuming each test data may consume 4 minutes to execute; results around 28 days to

complete the exhaustive test of this ‘proofing’ tab (Klaib, 2009).

Figure 1.2: Microsoft Excel Proofing Option

Similar to a hardware product which has 30 on/off switches can give a

considerable example. To test all possible combination may need 2
30

 = 1,073,741,824

test data, and consume 10,214 years by considering 5 minutes for each single test data.

Nowadays, research work in combinatorial testing aims to generate least possible test

data. The solution of this problem is non-deterministic polynomial-time hard (NP-hard)

(Colbourn et al. 2004, Tai and Lei, 2002, Williams et al. 1996, Kuhn, D. R. et al. 2004).

So far many approaches have been proposed and also many tools have been developed

to find out the least possible test suit in polynomial time.

5

The examples shown above are known as “Combinatorial Explosion Problem” in

common software testing. Since the time and resources are limited hence the common

research questions are:

1. What is the smaller and optimal test data set?

2. What strategy should be chosen for test data generation?

3. What coverage should be chosen for testing the software?

In modern computing combinatorial explosion problem (Cohen et al. 1997,

Cohen et al. 2006b, Colbourn et al. 2004, Tai and Lei, 2002, Klaib 2009) is known as

one of the greatest challenge. From the last decade scientist from different place worked

on this problem and proposed different strategy and methods to produce test data.

Although through parallel testing (e.g. (ITL / NIST, 2008, Yunis et al.) 2009) the time

can be reduce significantly. Since the complexity and width of the software getting

bigger by days, it is also becoming impossible to do the exhaustive testing. International

Software Testing and Quality Board (ISTQB) stated that “Exhaustive testing is

impossible”. Thus there should have strategies which help to produce quality test data

(which is possible to execute) by keeping the standard quality.

Some researchers including Bryce and Colbourn, 2006, Dalal et al., 1999, Kuhn

and Okum, 2006, Kuhn and Reilly, 2002, Kuhn et al., 2004, Yan and Zhang, 2008 stated

that the interaction among different variables causes the hardware and software failures

and the interaction is relatively very small (usually 3 to 6). If “T” is known as the

interaction which may cause the failures the test data should be T-Way combination

(Ellims et al., 2008b). This T-Way combination also results the smaller number of test

data. This T-Way combination is also known as “T-Way Testing”. If the variable “T” is

2, it is known as 2-Way testing or “Pairwise Testing”. The concept of “Pairwise

6

Testing” and “T-Way testing” is same differencing in pairwise T = 2 only and in T-Way

T > 2.

Researchers developed lot of useful T-Way testing strategies to reduce the

number of test data (i. e. to solve combinatorial explosion problem) including TConfig

(Williams, 2000), CTS (Hartman and Raskin, 2004a), AETG (Cohen et al., 1997, Cohen

et al., 1994), mAETG (Cohen, 2004, Cohen et al., 2008, Cohen et al., 2006a, Cohen et

al., 2007a, Cohen et al., 2007b, Cohen et al., 2003), GA (Shiba et al., 2004), ACA

(Shiba et al., 2004), IPOG (Lei et al., 2007c), Jenny (Jenkins, 2003), TVG (Schroeder et

al., 2002, Schroeder et al., 2003, Schroeder and Korel, 2000b), GTWay (Klaib et al.,

2009) and PSTG (Bestoun et al.,2010)). All these strategies use real data or some data

models to produces test data. The data then converted into a special format to execute

those against the system. However the test data generation time can be improved and

automatic execution support can be included.

However, researchers find that producing minimum set of test data is NP-

complete (Shiba et al., 2004, Tai and Lei, 2002, Wan-qiu et al. 2012) (Not deterministic

polynomial hard). More elaborately any specific strategy cannot always produce

minimum number of test data with minimum generation time. By motivated on these

problems this research investigates and developed several optimal strategies including

PS2Way, EasyA, R2Way and MTTG. Unlike others, MTTG is a commercial prototype

tool which also supports automatic execution for web based software systems. These

strategies are useful for detecting software fault in a polynomial time which is the main

hypothesis of this thesis.

1.4 RESEARCH AIM AND OBJECTIVES

The aim of this research is to investigate, develop and validate simpler and

efficient pairwise and T-way test data generation and execution strategies. The main

objectives of the work undertaken are:

7

1. To study and investigate test data generation for optimum solution.

2. To design an efficient T-Way strategy for data generation.

3. To develop and implement the T-Way strategy as a prototype tool.

4. To evaluate the performance of T-Way strategy in terms of test size and

execution time.

1.5 SCOPE OF THE RESEARCH

The main issues regarding software testing is test data generation and execution.

Typically it takes long time to generate test data and the execution process is still very

laborious as most the strategies don’t support auto execution.

In this thesis, four strategies have been proposed to overcome those issues.

Finally a strategy has been developed to support auto execution. The scope of the

research is to make a suitable strategy which supports both uniform and non-uniform

values, generates test data based on real values (real input values used i.e. no index type

values) and also able to support auto execution by developing a tool towards a smooth

software testing process. The scope of the research is to develop a series of test data

generation strategy and finally development of an efficient T-Way test data generation

strategy. The proposed strategies also used dummy data to evaluate its result with

existing strategies since the consideration and assumption has been taken from Klaib et.

al. 2009 that has been used dummy data to convey his evaluation. The research supports

testing in “Black box” testing phrase thus any type of product prior release to market can

be tested through the proposed strategies is also the scope of the research.

1.6 STUDY MODULE

 Figure 1.3 shows the summary of the research direction considered in this thesis.

The followed direction to achieve the objectives is presented in an inner box, where the

bold area means the research area which is not covered in this thesis.

8

Figure 1.3: Study module

9

1.7 ORGANIZATION OF THESIS

The remainder of this thesis is organised into seven chapters as follows.

Chapter 2 presents an overview as well as highlights the main characteristics of 2

way and T-way strategies. At the end of Chapter 2, an analysis of existing works is

presented which provides the requirements and justification for the development of a

new strategy.

Chapter 3 discusses and justifies the detailed algorithm and implementation of

pair parameter search based test data generation (PS2Way) strategy along with

comparative results.

Chapter 4 discusses and justifies the detailed algorithm and implementation of

matrix based strategy to generate 2-way test data (EasyA). The details description of the

algorithm and the comparative result has also been shown.

Chapter 5 discusses and justifies the detailed algorithm and implementation of

Random search based 2 way strategy (R2Way). The details description of the algorithm,

the tool and the comparative result has been shown here.

Chapter 6 discusses and justifies the detailed algorithms and implementation of

Multi-tuple based T-way test data generation strategy (MTTG) along with the tool and

the comparative results.

Finally, the conclusion of this work is presented in Chapter 7 by highlighting the

significance of findings along with considerations for future work.

10

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, some of the systematic approaches have been elaborated based on

the T-way interaction of variables. It begins with an overview of concepts and

terminology used in this thesis. Then, the main characteristics of combinatorial strategies

are identified to facilitate their review and analysis. These analyses are then used to

provide justification for the development of all the proposed strategies. Finally, this

chapter ends with a brief summary.

2.2 OVERVIEW

One of the main objectives of this research is to minimize the test data based on

the variable “T”. Here the variable “T” indicates the interaction among different input

values. To understand the interaction “T” which also reflects the reduction of test data,

following example is illustrated.

11

Figure 2.1: Example device - 4 point socket.

Referring Figure 2.1, testing a very simple 4 point socket has 4 sockets (input

parameters) and each socket have on and off (input values). Thus it can be illustrated to

the system as shown in Table 2.1. To identify the input parameters A, B, C and D has

been named. Each parameter has on and off values.

Table 2.1: Parameter and Value illustration

A B C D

On On On On

Off Off Off Off

Here, one test data or test case resides in one of the set of X= {A, B, C, D}. So

all the possible sets of the system can be represent in Table 2.2 which is known as full

power i. e. T = 4, also known as exhaustive numbers. Here, the numbers of all possible

combination can also be calculated with a very easy formula [the number of test data =

(number of values)
the number of parameters

 = 2
4
 = 16]. By clearly observing the data shown in

the Table 2.2, it can also be seen that parameter A has repeated entry 16/2 = 8 times,

where B has 8/2 = 4 times, C has 4/2 = 2 times and finally D has 2/2 = 1 times.

12

Table 2.2: Exhaustive Combinations (at T=4)

X (Number of all possible set)

A B C D

On On On On

On On On Off

On On Off On

On On Off Off

On Off On On

On Off On Off

On Off Off On

On Off Off Off

Off On On On

Off On On Off

Off On Off On

Off On Off Off

Off Off On On

Off Off On Off

Off Off Off On

Off Off Off Off

2.2.1 Don’t Care Formula

One basic strategy to reduce the test data is known as “Don’t Care”. From the

above Table 2.2, if parameter D is known to have less impact on the system then it can

be considered as “Don’t Care”. Thus, the value of D can be randomly anything. So the

combination of ABC will be known as a 3-Way combination (T = 3). The combination

of ABC has shown in Table 2.3.

Using this strategy the number of total test data (X) can be reduce from 16 to 8,

i.e. 50% of reduction shown in Table 2.3. But most of the time it is unknown about the

less impact parameter of a system. Almost every parameter has same effect to produce

defects. Thus, it is possible to take all the combinations each in one time where each

value can be “Don’t Care” one time which has been illustrated in Table 2.4.

