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A B S T R A C T   

Hybrid nanofluids, which are made by suspending non-identical nanoparticles, have been a prominent research 
area because of their high efficiency in heat transfer. The analysis of the magnetohydrodynamics flow of Ag-TiO2 
hybrid nanofluid over a permeable wedge with heat radiation and viscous dissipation is mathematically 
examined in this paper. Ordinary differential equations are deduced by applying the corresponding similarity 
transformations to the mathematical modelling of the governing partial differential equations. The dimensionless 
governing equations are solved using the built-in bvp4c function in the MATLAB package to compute the dual 
solutions and the stability analysis. A respectable degree of agreement has been obtained after comparing the 
current results with the earlier study. Prandtl number, magnetic parameter, radiation parameter, Eckert number, 
and other governing factors have all been studied, along with their physical impacts on fluid flow. The graphical 
results have been demonstrated and described in relation to the profiles of temperature and velocity distribution, 
skin friction as well as the Nusselt number. It has been established that the higher volume percentage of titania 
nanoparticles has the potential to improve thermal conductivity, and the first solution has been found to be stable 
in this flow.   

1. Introduction 

Scientists and researchers are constantly striving to increase the 
thermal conductivity of materials in order to get the greatest possible 
outcome in boosting the heat transfer rate. Formerly, conventional base 
fluid was utilized as the heat transfer fluid. However, due to the low 
thermal conductivity, the process is inefficient. Therefore, solid particles 
had been dispersed into the conventional fluid to boost the thermal 
conductivity. Maxwell [1] pioneered this notion by determining the 
possibility of increasing the heat transfer rate of fluids containing a large 
volume fraction of solid particles. Nevertheless, the outsized particles 
produce sedimentation and inhibit heat transfer reactivity. As a result, 
nanoparticles of a smaller scale have been developed to improve both 
suspension stability and thermal conductivity, which is known as 
nanofluid. Choi and Eastman [2] began the investigation to overcome 
the problem of low thermal conductivity and reinvent the heat transfer 
rate of fluids that can be coordinated by floating metallic nanoparticles. 
Therefore, the nanofluid has gained enormous attraction and has been 

explored with different aspects like thermal physical properties, vis-
cosity, magnetic, chemical reaction and stability. The reviews from the 
researchers mostly agreed that the nanofluid tremendously improves the 
performance of thermal conductivity in conventional fluids [3–5]. The 
study was then expanded by dispersing two different types of nanoscale- 
sized particles simultaneously, leading to the coining of the phrase 
“hybrid nanofluid”. 

The uniqueness of hybrid nanofluid is attributed to the composition 
of two dissimilar metallic nanoparticles that dissolve in the based fluid. 
By selecting the two ideal nanoparticles, thermal conductivity will be 
improved and produce a better rate of heat transfer [6]. The combina-
tion’s goal is to either strengthen each component’s ability to function 
alone or to compensate for any weaknesses to generate an optimum heat 
transfer rate. As a result, many scientists are curious to find out how 
hybrid nanofluids can increase thermal conductivity. They used a wide 
range of different aspects in their research to determine the efficacy of 
enhancing heat transmission, including magnetic field, porous media, 
diverse plate surface properties, thermal radiation, viscosity, chemical 
reaction, and others. A spectacular thermal network and rheological 
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features that were influenced by the synergistic interaction of dispersion 
composite nanoparticles were also documented in numerous reviews of 
hybrid nanofluids. The anomalous rise in the heat transfer rate of hybrid 
nanofluid will be a major feature in thermal physical roles where it can 
function as a cooler or warmer, making it advantageous and effective in 
the heat exchanger and solar energy system applications [7,8]. Bhatti 
et al. [9] analysed the behaviours of diamond and Silica nanoparticles in 
water-based hybrid nanofluid through the solar collector application 
and noticed that the vigorous doping for both nanoparticles accom-
plished a preferable thermal elevation, especially close to the wall. 

Additionally, the fluid flows through wedge-shaped surfaces with a 
variety of effects also drawn extensive attention in the past few decades. 
The problem on wedge-shaped surfaces had been considered and pio-
neered by Falkner and Skan [10], who proposed the solutions of 
boundary layer equations for streaming flows over static wedges with 
arbitrary angles. They developed a similarity transformation by which 
the differential boundary layer equations can be reduced to a nonlinear 
normal differential equation of third order, and subsequently described 
it arithmetically. Almost any situation involving general fluid flow, such 
as in factories, research facilities, or even in the building of prototypes 
for future aerospace or defence technologies, will involve boundary 
layer flow past a wedge. Flows past a wedge are used in a wide variety of 
fields, including nuclear power plants, the flow of molten metals over 
ramped surfaces, polymer processing, the development of flaps on 
aircraft wings to improve lift, manoeuvrability and drag, the launching 
of chilled air through AC panels, crude oil extraction, the modelling of 
warships and submarines, liquid metal flows in heat exchangers, and 
many more. Transonic flows over airfoils and wings, are also one of the 
primary topics of research involving wedge angle [11]. Gorla et al. [12] 
studied the impact of Brownian motion and thermophoresis parameter 
on the mixed convection of nanofluid past a vertical wedge. Khan et al. 
[13] explored the influence of heat generation/absorption on Falkner- 
Skan flow of Carreau nanofluid over a wedge and found that the 

temperature gradient increased as the wedge angle parameter increased. 
A year later, Awaludin et al. [14] noticed that increasing the angle of the 
wedge improved the range of solutions. In subsequent years, several 
researchers did studies on Falkner-Skan flow using combinations of 
other physical characteristics to ascertain the impacts of the flow 
[15–17]. 

Furthermore, hybrid nanofluids subjected to magnetic field have a 
big potential for applications in industrial sectors such as geothermal 
energy extractors, liquid–metal cooling of nuclear reactors, electro-
magnetic casting, generators and flow meters as well as medical sectors 
like cancer therapy, asthma treatment and drug release. The study of 
electrically conducting fluids under the influence of magnetic fields is 
known as magnetohydrodynamics (MHD). A moving conductive fluid 
can experience currents from magnetic fields, which polarises the fluid 
and changes the magnetic field in a reciprocal manner. Researchers 
consider MHD in their model since it is believed to be one of the decisive 
variables to increase thermal conductivity in the fluid flow [18]. The 
formation of electrically conducting fluid is due to the coupling between 
the magnetic field and velocity field, inducing the currents into such a 
hybrid nanofluid flow and releasing forces acting on the fluid and 
remoulding the magnetic field itself. The presence of magnetic field with 
Lorentz force interacts with the buoyancy force in the governing flow 
and temperature fields, hence, the phenomenon of MHD is described 
completely through the momentum and energy differential equations 
which comprise Navier–Stokes equations and Maxwell’s equations. As 
mentioned by Wakif et al. [19], the increasing resistive Lorentz forces 
along with higher suction parameter tend to slow down the fluid ve-
locity. Nowadays, numerous researchers worked on the stimulation of 
MHD and heat transfer of hybrid nanofluid flow to determine the 
viability and practicality of the effects of MHD on hybrid nanofluids 
[20–22]. Pordanjani et al. [23] examined the effect of magnetic field on 
the convective heat transfer of hybrid nanofluid in a square diagonal 
cavity. They claimed that the entropy generation hardly changes when 

Nomenclature 

Roman letters 
a positive strength constant 
Ag argentum/silver nanoparticles 
b stretching/shrinking constant 
B magnetic field 
Ec Eckert number 
f(η),F(η) velocity function 
H2O water 
k thermal conductivity 
k* mean absorption coefficient 
m the power–law parameter of Falkner-Skan 
M magnetic parameter 
Nux local Nusselt number 
Pr Prandtl number 
qw surface heat flux 
qr radiative heat flux 
Rd thermal radiation parameter 
Rex local Reynolds number 
S suction parameter 
T temperature 
TiO2 titania/titanium dioxide nanoparticles 
u, v velocity components along the × and y directions, 

respectively 
ue external fluid flow 
uw surface velocity 
vw mass flux velocity 

x, y Cartesian coordinates 

Greek symbols 
α thermal diffusivity 
β Hartree pressure gradient 
Ω total wedge angle 
ψ stream function 
γ1 smallest eigenvalue 
σ* Stefan–Boltzman constant 
μ dynamic viscosity 
ρ density 
σ electrical conductivity 
γ eigenvalue 
η similarity variable 
θ dimensionless temperature 
ϕ1 Argentum nanoparticles volume fraction 
ϕ2 Titania nanoparticles volume fraction 
λ stretching/shrinking parameter 
ν kinematic viscosity 

Subscripts 
w condition at the surface 
∞ condition at the ambient 
nf nanofluid 
f base fluid 
hnf hybrid nanofluid 

Superscript 
′ differentiation with respect to η  
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• The temperature distribution profile as well as heat transfer rate 
enhances when the thermal radiation parameter grows in number.  

• An increase in the suction parameter upsurges the velocity gradient 
and shear stresses but reduces the temperature distribution profile.  

• Higher volume fraction of argentum nanoparticles increases the skin 
friction coefficient but reduces the local Nusselt number.  

• Titania nanoparticle’s higher concentration causes the diminution of 
the skin friction coefficients and enhances the thermal conductivity 
of the hybrid nanofluid.  

• The first solution for this study is feasible and stable while the second 
solution is unstable according to the computed smallest eigenvalue. 
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