International Conference on Computational Science and Information Management (ICoCSIM)
Vol. 1(2012) 233-238

Lessons Learned from the Implementation of xGTWay
families of Unit Testing Tool

Maryam ‘Afaf Abdul Karim®, Rozmie Razif Othman®, Kamal Z. Zamli®*

“School of Electrical and Elecronics, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
bSchool of Computer and Communication, Universiti Malaysia Perlis, PO Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia
‘Faculty of Computer Systems and Sofiware Engineering, Universiti Malaysia Pahang, Lebuh Tun Razak, 26300 Kuantan, Pahang, Malaysia

Abstract

Unit testing can be a long and repetitive process typically requiring laborious efforts. In an effort to alleviate such a burden, we have developed
a set of evolving automation tools, known as xGTWay, as part of our research and development projects. Over the last 7 years, xGTWay has
evolved through numerous evolutions yet maintaining the same objectives as its predecessor (i.e.to automate unit testing as much as possible).
In this paper, the entire generations of xGTWay are presented along with the comparative analysis between them.

Keywords: Unit Testing; Test Automation, xGTWay

1. Introduction

Unit testing involves testing a specific component or function within software system [1, 2]. The boundary that defines the
unit to be tested can be subjective and is up to the tester to identify. Typically, unit testing focuses on a specific portion of codes
that make up the system of interest. To ensure that unit testing usefully captures unwanted defects; testers typically target to
cover all lines of code in the implementation. Here, testers are required to develop many test cases where each of which
represents specific condition or scenario that is relevant to the code being tested. On top of that, testers will have to execute these
test cases and analyze their results for conformance analysis based on some defined test oracles. If number of test cases in the
range of hundreds, manual processes to write, execute, and analyze test cases can be painstakingly dull and lengthy [3, 4].
Furthermore, the need to retest codes due to design or code changes can also be unattractive and burdensome activity [5].

To alleviate the aforementioned problems, testers often employ automation tools. With automation tools, the entire testing
process can be completely automated, hence, lighten the burden on testers from mundane and labor intensive chores. Enabling
seamless automation as our main aim, we have developed xGTWay as part of our research and development project. In the past 7
years, XGTWay has evolved into 5 families of implementations from SFIT [6], JTst [7], G2Way [8], GTWay [9], and xGTWay
respectively. In this paper, the detailed description of each family of xGTWay will be elaborated. In doing so, a summary of
feature comparison will be made accordingly.

2. Evolution of xGTWay

This section highlights the evolution of xGTWay families by highlighting their similarities and differences in order to reflect
on some of the lessons learned.

2.1. SFIT

The earliest family member, Software Fault Injection Tool (SFIT) [6, 10-12] uses Java technology to automate unit testing and
enables up to 2500 test cases to be executed automatically. Implementation wise, SFIT relies on the users to provide the input test
values and Java Reflection Application Programming Interface (API) to be able to construct the test drivers automatically. The
use of Reflection APIs enables the program to access the internal structure of classes to be tested. Being able to access the
internal class information allows SFIT to executetest cases automatically without user intervention, thereby alleviating the
problem concerning the effort required in creating test drivers and the test framework.

233

Maryam ‘Afaf Abdul Karim, Rozmie Razif Othman, Kamal Z. Zamli/ICoCSIM vol. 1 (2012) 233-238

(Need to test Java® code)

—¥ ¥

(... the old way) ' ..using SFIT M
- * ~" Develop teft cases ~ * —
(Must gain access to source code) (Gain access to either source code or dlass files)
— * SFIT
¢~ Develop test cases for each methad ™ ' automation
* Ny in a dass file ’/
* (Develop test cases in the fault file)
(/— Develop Java® test drivers for each It
A test case in every class S
/- Build the test drivers)
- e
Compile timg""‘j}
errors?/-’"
‘ Run testy
C_Execute each test driver sequemially_) (Buscute ;i’;:f;;szc';elf in fault)
..--'4”07119
""'\errcrs?)
{ Conformance ahalysis
(Manually analyse results -) C Analyse categorised log files)
(Jawa code tested ™
. _/

Fig. 1. Traditional Testing Method Compared to SFIT [11]

The architecture of the program consists of a few classes that are specialized in performing specific functions. There are five
mentioned components of SFIT: Class Inspector, Fault Setting, Loader and Generator, Fault Injector and Log. Class inspector is
used for interrogating the unit to be tested. Fault setting captures the information related to the test cases to be used for testing.
The program uses a file with special formats called fault file in order to understand the requirement of testing that has to be done.
The loader and generator are used for executing the test cases and generating intermediate files, which are to be utilized during
the testing process. Finally, fault injector is for injecting the tests or faults that have been specified in the fault file and log is used
for saving information pertaining to the test automation that has been executed.

Comparative study in the literature demonstrates that SFIT is capable of automating test drivers and execute them within
acceptable speed. The software is able to simplify the traditional testing method shown in Fig. 1, that is, by eliminating multiple
manual steps required which includes creating the test drivers and iterating the actual test case execution.

2.2. JTst

Following SFIT, the next generation of test automation tool, called JTst[7, 13, 14], was created. Its inception was due to the
limitation of the automation capability seen in SFIT. Based on the same principle, the new software addresses the same unit test
automation concerns as its predecessor. Unlike SFIT, JTst has additional features including automated test input data generation
and the ability to execute test cases concurrently. JTst was designed with the purpose of generating test data using combinatorial
approach made up of greedy algorithms and t-way combinations. The test data generation was implemented using the
combinatorial approach with two possibilities. The first method considers varying one sensitivity variable for test generation
based on specific parameters. The second methodvariesmultiple sensitivity variablesbased on any given parameters.

234

Maryam ‘Afaf Abdul Karim, Rozmie Razif Othman, Kamal Z. Zamli/ICoCSIM vol. 1 (2012) 233-238

Table 1. SFIT versus JTst

SFIT JTst

Class Inspector Class Inspector
Fault Setting Text Editor
Loader and Generator Automated Loader
Log Data Logger

JTst consists of five components: Class Inspector, Test Editor, Test Combinator, Automated Loader and Data Logger. Many
componets of JTst are reuse from SFIT, however the list of components differ with the addition of test combinator and automated
loader for supporting combinatorial approach and concurrent test execution. Table 1 lists the components that are common
between the two tools. The function of test combinator is to generate combination of test inputs based on the user provided test
case, which represents the base test cases that can be sourced from the program specification or previous data that causes the
program to fail. The algorithm used is based on the modified greedy algorithm and the sensitivity variable can be a combination
of two or more input parameters.

JTst was adopted to evaluate the robustness of Jada, which is a Java implementation of a parallel programming model called
Linda. From the experiment done, JTst is able to test Jada tuple space operations even in the absence of the source codes. This
is doable due to the use of Reflection API in retrieving the structure of the classes being tested. Applicability of JTst in testing
environment is also backed up with the observation of some of the useful features that it offers such as generating test drivers and
concurrent test executions. Upon test completion, a few loopholes were found in Jada when it is supplied with unsupported or out
of range input values.

2.3. G2Way

Like JTst, .G2Way [8] provide a mechanism to generate the combination of test cases to be executed and concurrent execution
of test cases. Nonetheless, the strategy used for test data generation in G2Way is different than that of JTst. Specifically, G2Way
allows pairwise values of combination to be produced by combining all pair values for each input parameter.

G2Way is made up of four components: Parser Algorithm, Pair Generation Algorithm, Backtracking Algorithm and Executor
Algorithm. The overall flow of test execution is similar to its predecessor. First, the base test data is provided in the form of fault
files and parsed by the parser algorithm. The pair generation algorithm uses the values from the fault files to generate
combination of test data for the test execution. The algorithm iterates through the number of possible indexes based on the input
parameter value and analyzes its binary representation to find those with only two bits having the value of 1. Based on the result,
possible pairwise values combination for each parameter can be produced by recombining all pair values of each parameter.

Next, the backtracking algorithm is employed to produce a complete combination of test data based on the results obtained
from the pairwise generation process. The executor runs the test automation after all possible combinations have been collected.
Parallel execution is possible in G2Way by utilizing multiple threads. Comparative experiments were undertaken to compare the
performance of G2Way against JTst using a web-based configuration example consisting of 4 parameters with each of them
having 3 values. Based on the results, G2Way efficiently generated 10 possible combinations as compared to JTst with redundant
27 combinations.

2.4. GTWay

GTWay [9, 15] represents a natural progression from G2Way. Instead of supporting only pairwise test generation, GTWay
addresses the general t-way combinations, where t represents the general interaction strength. During the t-way pair generation
process, the amount of indexes with binary bit set to 1 is counted and those that have the same count as the selected t parameter
are chosen. For example, for 3-way combinations where t is equal to 3, indexes 7, 11, 13 and 14 with their binary representations
0111, 1011, 1101 and 1110 respectively, are chosen. Although earlier research shows favorable results with the increasing
interaction strength, parameter t, the method is not efficient when the number of parameter coverage is very large[16]. When the
amount of input parameter increases, there is a high chance that it will face combinatorial explosion problem since the number of
t-way test sets increases exponentially.

Therefore, a separate research focusing only on test data generation was conducted. In this study, Modified In Parameter Order
General (MIPOG) [16-18]was proposed, which is an extension of In Parameter Order General[19, 20] (IPOG) that allows both
horizontal and vertical parameters extensions. With this approach, smaller sized test suites with acceptable execution time were
generated compared to other methods, especially IPOG.

235

Maryam ‘Afaf Abdul Karim, Rozmie Razif Othman, Kamal Z. Zamli/ICoCSIM vol. 1 (2012) 233-238
2.5. xGTWay

xGTWay represents the most recent family of implementations. Notably, the ability to generate test data automatically does
not exist in XxGTway Similar to GTWay, the users have to provide the test data as the input parameters of the test executor in the
form of fault files. xGTway removes the burden from the tester to have to design the framework of each of the unit test. Instead,
testers are only required to provide the test values that they would want to check through fault files with specific syntax. The
program automatically generates the structure of the test case in Java language after analyzing the specified functions to be
tested. Then, the execution of test cases is automated. The result of the test is logged to a file for the user to analyze after the
testing completes. The process is supported by four components: Class Inspector, Test Editor, Test Executor and Data Logger.

Unlike all of its predecessors, xGT Way is capable of resuming execution from the last saved state. With the fault tolerant-like
characteristic, if the test execution is accidentally aborted or voluntarily halted, the entire automated process does not have to be
restarted from the beginning, thereby, wasting time and efforts that have been put earlier. Instead, the test automation can
continue its execution on the last saved state known as a checkpoint. In the current design, users can specify the checkpoint
interval either statically or dynamically.

3. Comparison amongst xGTWay Families of Implementations

Based on the discussion on earlier sections, this section summarizes the features of each of the xGTWay families of
implementations. To facilitate discussion, the main characteristics that are common have been identified including the abilities
to:

Generate test data

Execute test cases automatically

Support concurrent execution of test cases

Recover and resume test execution from interruption

Table 2. Feature Comparisons between xGTWay Families of Implementations

SFIT SFIT JTst G2Way GTWay xGTWay
Generate test data X N N N X
(based on (based on pairwise (based on t-way
parameter interaction) interaction)
sensitivity)
Execute test cases N \ v \/ N
automatically
Support concurrent X \ v N Not fully
execution of test supported
cases
Recover and resume X X X X X
test execution from
interruption

= Applicable, X = Not Supported

Referring to Table 2, no single implementation has all the desired features. Here, each implementation gives focus on certain
aspect of the features of interests. Notably, xGTWay has not fully supported concurrent test execution. In the current version,
concurrent test execution can have unwanted side effect (i.e. inconsistent state of execution) owing to its ability to support
recovery and resumption.

A more subtle difference between xGTWay families lies in its process flow as shown in Fig. 2. Here, JTst, G2Way and
GTWay are grouped together since all three of them have the automated test generation capability. On the other hand, xGTWay
has another alternative path to automate the test execution through its resumption facility, which is to resume test execution from
where it stopped. All implementations merge toward same point within the automation process, that is, during the automated test
execution activity.

236

Maryam ‘Afaf Abdul Karim, Rozmie Razif Othman, Kamal Z. Zamli/ICoCSIM vol. 1 (2012) 233-238

GF[T JTst, GEWay, GTWay, xGTWay

Gain access to either source code or XGTWay
class files
‘ Develop test cases in the fault ﬁle)

JTst, G2Way, GTWay

Opticnally use recombinator to
permutate test cases

Automation

xGTWay
L]
|}
v .
: \ J
L}
L}
SFEIT, xGTWay g Resume test execution upon
" " interruption
L}
. =
L}
v 4 I

automatically in parallel

(Analyse categorised log files)
h 4
(Java Code Tested)

Fig. 2. Comparative Process Flow

G{emtstestcasesdeﬁnedmfaultﬁle -— e = _I

4. Concluding Remark

In this paper, the evolution of xGTWay families of implementation has been highlighted. Although with different features, the
objective of easing the burden from the testers in the testing the developed source code remains intact in each implementation.
Currently, there is no single version of the family that is robust enough which have all the essential capabilities required. Further
enhancement on the latest version of XxGTWay can include adding the test generation feature and verifying the parallel test
execution implementation in order to enhance its applicability amongst the rest of the family members.

237

Maryam ‘Afaf Abdul Karim, Rozmie Razif Othman, Kamal Z. Zamli/ICoCSIM vol. 1 (2012) 233-238

References

[1] Hakonen H, Hyrynsalmi S, Jarvi A. Reducing the Number of Unit Tests with Design by Contract. in Proceedings of the 12th
International Conference on Computer Systems and Technologies 2011; 161-166.

[2] Brown MK. A Framework for Parallel Unit Testings: Work in Progress in Proceedings of the 48th Annual Southeast Regional
Conference 2010; 1-4.

[3] Bertolino A. Software Testing Research: Achievements, Challenges, Dreams in Future of Software Engineering Conference 2007; 85-
103.

[4] Berner S, Weber R, Keller RK. Observations and Lessons Learned From Automated Testing in Proceedings of the 27th International
Conference on Software Engineering 2005; 571-579.

[5] Stobie K. Too Darned Big to Test Queue 2005; 3: 30-37.

[6] Alang Hassan MD, Zamli KZ, Isa NAM. SFIT — A Software Fault Injection Tool in Proceedings of The First Malaysian Software
Engineering Conference (MySEC’05) 2005; 260-262.

[7] Zamli KZ, Isa NAM. JTst — An Automated Unit Testing Tool for Java Program American Journal of Applied Sciences 2008; 5: 77-82.

[8] Klaib MFJ, Zamli KZ, Isa NAM, Younis MI, Abdullah R. G2Way A Backtracking Strategy for Pairwise Test Data Generation in
Proceedings of 15th Asia-Pacific Software Engineering Conference 2008; 463-470.

[91 Zamli KZ, Klaib MFJ, Younis MI, Isa NAM, Abdullah R. Design And Implementation Of A T-Way Test Data Generation Strategy
With Automated Execution Tool Support Information Sciences 2011; 181: 1741-1758

[10] Alang Hassan MD. Enhancing and Evaulating a Software Fault Injection Tool (SFIT) Master Thesis 2005; Universiti Sains Malaysia.

[11] Zamli KZ, Alang Hassan MD, Isa NAM, Fadel JKM. Development of an Automated Testing Tool for Java® Programme ASM Science
Journal 2007; 1: 87-100.

[12] Zamli KZ, Hassan MDA, Isa NAM, Azizan SN. An Automated Software Fault Injection Tool for Robustness Assessment of Java
COTs in Proceedings of International Conference on Computing &Informatics (ICOCI '06) 2006; 1-6.

[13] Zamli KZ, Isa NAM, Klaib MFJ, Azizan SN. A Tool for Automated Test Data Generation (and Execution) Based on Combinatorial
Approach International Journal of Software Engineering and Its Applications 2007; 1: 19-35.

[14] Zamli KZ, Isa NAM, Klaib MFJ, Azizan SN. Designing A Combinatorial Java Unit Testing Tool in Proceedings of the Third
Conference on IASTED International Conference: Advances in Computer Science and Technology (ACST'07) 2007; 153-158.

[15] Klaib MFJ. Development Of An Automated Test Data Generation And Execution Strategy Using Combinatorial Approach PhD Thesis
2009; Universiti Sains Malaysia.

[16] Younis MI, Zamli KZ, Isa NAM. MIPOG - Modification Of The IPOG Strategy For T-Way Software Testing in Proceeding of The
Distributed Frameworks and Applications (DFmA) 2008.

[17] Younis MI. MIPOG: A Parallel T-Way Minimization Strategy For Combinatorial Testing PhD Thesis2010; Universiti Sains Malaysia.

[18] Younis MI, Zamli KZ. MC-MIPOG: A Parallel T-Way Test Generation Strategy For Multicore Systems ETRI Journal 2010; 32: 73-83.

[19] Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J. IPOG: A General Strategy For T-Way Software Testing in Proceedings of the 14th
Annual IEEFE International Conference and Workshops on The Engineering of Computer-Based Systems 2007; 549-556.

[20] Lei Y, Kacker R, Kuhn R, Okun V, Lawrence J. IPOG/IPOG-D: Efficient Test Generation For Multi-Way Combinatorial Testing
Journal of Software Testing, Verification and Reliability 2008; 18: 125-148.

238

