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Abstract. This paper provides a comprehensive survey on the current state of 

prosthetic robotic arm; focusing on grasping strategy, sensing technologies, and 

control system. Numerous studies have been carried on prosthetic robotic arm 

field in improving its functionality. Mechanical/ prosthetic robotic arm is built to 

function as real—human-hand like  for various fields like medical and industrial 

purposes. Starting from the design to details of every single compartment of the 

arm, up to providing the most needed function according to the purpose of the 

prosthetic robotic arm was built. The implementation method and system con-

trol/architecture used are with proven experimental results that indicate each 

study's outcome is the primary concern.  Although each developed prosthetic ro-

botic arm differed between each other based on their purpose and technology 

used, aiming for the optimal design similar to human’s hand proves challenging 

for researchers, especially when it comes to the issue of practicality in whether it 

can be used to accomplish regular tasks a standard arm are able to. 
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1 Introduction 

Hand loss can severely affect a patient’s life by limiting the ability to perform different 

physical movements and affecting its independence in the long run. It is estimated that 

nearly 3.10 million people have been living with upper limb disability since 2016 [1]. 

Prosthetic care, economical and affordable devices can improve the quality of life for 

disabled patients. However, nearly 38 million patients in developed countries lack ac-

cess to affordable prosthetic devices. Unfortunately, the rate of limb loss is significantly 

higher in developing countries, including 2.40 million patients with upper limb ampu-

tations. Undeveloped health care systems have worsened the situation for patients 
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where it is estimated that nearly 2.7 million people in developing countries have partial 

hand amputations due to traumatic labour injuries and diseases [2]. 

The weighted prevalence of having any disability in the United States is shown in 

Figure 1, showing their citizen’s higher prevalence of disability. Amputations are per-

formed as a lifesaving surgical procedure to decrease long term complications after 

upper body extremity injuries like a neuroma and wound complications. Nearly 1.7 

million people in the United States are living with limb loss. It is estimated that, yearly 

there are 50,000 to 100,000 amputations in the United States [2]. Amputations can sig-

nificantly impact personal quality of life and functionality in daily life activities. Length 

preservation in the upper extremity has supreme importance. An extended lever-arm 

permits more massive force generation, which can further be utilized to energise pros-

thetics with a small force on underlying soft tissues. Therefore, it is essential to consider 

optimal treatment after analysing the remaining body part [3]. 

 

 

Fig. 1.  Overview of disability in the United States [2].  

Partial hand amputation, shoulder disarticulation, transhumeral and transracial are 

included in main types of upper limb amputations. Upper limb Prosthetic devices can 

help amputees perform daily activities [4]. Two main types of upper limb prosthetics, 

including passive prosthetic, functional and active prosthetics, are externally powered 

or body-empowered devices. A practical prosthetic robotic arm can only ease specific 

movement in achieving tasks. Besides that, the strength of the hand grip is a significant 
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