NCON-PGR_2022_085

Mini-Review on CO₂ Reforming Methane in Aspect of Fibrous Zeolite's Properties S.N. Miskan^a, H.D. Setiabudi^{a,b*}, B. Abdullah^c, S.A.F. Syed Muhammad^d and S.B. Ismail^e

^aFaculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.

^bCentre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, 26300 Pekan, Pahang, Malaysia. ^cDepartment of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia.

^dBioprocess and Polymer Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310 UTM, Johor, Malaysia.

^eFaculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia.

*Corresponding author: herma@ump.edu.my

Abstract

The threat of climate change resulting from the excessive emission of greenhouse gases remains intractable. CO_2 reforming of methane (DRM) has attracted considerable attention owing to its advantages in converting two primary greenhouse gases (CH_4 and CO_2) into synthesis gas (H_2 and CO). However, catalyst deactivation arose from sintering and carbon formation is the primary problems for DRM that must be urgently solved. In this regard, creating support materials with fibrous morphology and dendrimeric structures is becoming an intriguing approach demonstrating its advantages in improving catalyst's physicochemical properties thus promote an excellent catalytic activity, stability, and deactivation resistance during reaction. This mini-review focuses on the physicochemical features of fibrous zeolite-supported type catalysts and their significance in DRM catalytic performance, including the interaction between metal and support, metal dispersion, particle size, porosity, and surface area. This study also provide the understanding of catalysts and suitable for DRM.

Keywords: CO₂ reforming methane; Fibrous type.