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ABSTRACT 

 

Categorical data clustering has attracted much attention recently due to the fact that 

much of the data contained in today’s databases is categorical in nature. Many 

algorithms for clustering categorical data have been proposed, in which attribute-

oriented hierarchical divisive clustering algorithm Min-Min Roughness (MMR) has the 

highest efficiency among these algorithms with low clustering accuracy, conversely, 

genetic clustering algorithm Genetic-Average Normalized Mutual Information (G-

ANMI) has the highest clustering accuracy among these algorithms with low clustering 

efficiency. This work firstly reveals the significance of attributes in categorical data 

clustering, and then investigates the limitations of algorithms MMR and G-ANMI 

respectively, and correspondingly proposes a new attribute-oriented hierarchical 

divisive clustering algorithm termed Mean Gain Ratio (MGR) and an improved genetic 

clustering algorithm termed Improved G-ANMI (IG-ANMI) for categorical data. MGR 

includes two steps: selecting clustering attribute and selecting equivalence class on the 

clustering attribute. Information theory based concepts of mean gain ratio and entropy 

of clusters are used to implement these two steps, respectively. MGR can be run with or 

without specifying the number of clusters while few existing clustering algorithms for 

categorical data can be run without specifying the number of clusters. IG-ANMI 

algorithm improves G-ANMI by developing a new attribute-oriented initialization 

method in which part of initial chromosomes is generated by using the attributes 

partitions. Four real-life data sets obtained from University of California Irvine (UCI) 

machine learning repository and ten synthetically generated data sets are used to 

evaluate MGR and IG-ANMI algorithms, and other four algorithms are used to compare 

with these two algorithms. The experimental results show that MGR overcomes the 

limitations of MMR and the average clustering accuracy is improved by 19% (from 

0.696 to 0.83), at the same time maintains the highest efficiency. IG-ANMI greatly 

improves the efficiency of G-ANMI (improved by 31% on the Zoo data set, 74% on the 

Votes data set, 59% on the Breast Cancer data set, and 3428% on the Mushroom data 

set) as well as the clustering accuracy of G-ANMI (the average clustering accuracy on 

four UCI data sets is improved by 10.6%, from 0.815 to 0.901), at the same time 

maintains the highest clustering accuracy. IG-ANMI has obvious advantage against G-

ANMI on large data sets in terms of clustering efficiency as well as clustering accuracy. 

In addition, both of MGR and IG-ANMI have good scalability. The running time of 

MGR and IG-ANMI algorithms tend to vary linearly with the increase of the number of 

objects as well as the number of clusters.  
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ABSTRAK 

 

Pengelompokan data kategori telah menarik banyak perhatian baru-baru ini disebabkan 

kebanyakan data yang terkandung di dalam pangkalan data hari ini adalah data kategori 

dalam alam semula jadi. Algoritma untuk mengelompokkan data kategori telah banyak 

dicadangkan, di mana algoritma pengelompokan hierarki berorientasikan sifat, Min-Min 

Roughness (MMR) mempunyai kecekapan tertinggi tetapi mempunyai ketepatan 

pengelompokan yang rendah, sebaliknya, algoritma pengelompokan genetik Genetic-

Average Normalized Mutual Information (G-ANMI) mempunyai ketepatan tertinggi 

dalam pengelompokan, manakala kecekapan kelompok yang rendah. Tesis ini 

mendedahkan kepentingan ciri-ciri dalam pengelompokan data kategori, dan kemudian 

menyiasat batasan algoritma MMR dan G-ANMI, seterusnya mencadangkan algoritma 

baru pengelompokan berorientasikan sifat memecah-belahkan hierarki dipanggil Mean 

Gain Ratio (MGR) dan algoritma pengelompokan genetik yang lebih baik dipanggil 

Improved G-ANMI (IG-ANMI) bagi data kategori. MGR mengandungi dua langkah 

iaitu memilih sifat kelompok dan memilih kelas kesetaraan pada sifat kelompok. 

Konsep teori maklumat berdasarkan purata nisbah keuntungan dan entropi kelompok 

digunakan untuk melaksanakan kedua-dua langkah ini. MGR boleh dijalankan dengan 

atau tanpa menyatakan bilangan kelompok, manakala beberapa algoritma kelompok 

yang sedia ada bagi data kategori hanya boleh dijalankan tanpa menyatakan bilangan 

kelompok. Algoritma IG-ANMI meningkatkan prestasi G-ANMI dengan 

membangunkan satu sifat pengawalan baru yang berorientasikan kaedah di mana 

sebahagian daripada kromosom awal dijana dengan menggunakan pembahagian sifat. 

Empat set data sebenar yang diperolehi dari UCI dan sepuluh sintetik set data yang 

dihasilkan sendiri digunakan untuk menilai algoritma MGR dan algoritma IG-ANMI, 

dan empat algoritma lain digunakan untuk membandingkan dengan kedua-dua 

algoritma tersebut. Keputusan eksperimen menunjukkan bahawa MGR mengatasi 

batasan MMR dan purata ketepatan pengelompokan meningkat sebanyak 19% (0,696-

0,83), pada masa yang sama mengekalkan kecekapan yang tertinggi. IG-ANMI  

memperbaiki kecekapan G-ANMI (bertambah baik sebanyak 31% ke atas set data Zoo, 

74% ke atas set data Votes, 59% ke atas data Kanser Payudara, dan 3428% ke atas set 

data Mushroom) dan juga pada ketepatan kelompokan G-ANMI (purata ketepatan 

kelompokan pada empat data UCI dipertingkatkan sebanyak 10.6%, daripada 0.815 ke 

0.901), pada pada masa yang sama mengekalkan kelompok ketepatan tertinggi. IG-

ANMI mempunyai kelebihan yang jelas terhadap G-ANMI pada set data yang besar 

dari segi kecekapan kelompok serta ketepatan pengelompokan. Di samping itu, kedua-

dua MGR dan IG-ANMI mempunyai penskalaan yang baik. Masa larian untuk MGR 

dan IG-ANMI berubah selari dengan pertambahan bilangan objek dan juga kelompok. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

In this chapter, the background of the research is outlined, followed by problems 

statement, research objectives, research outcomes, and lastly, the thesis organization. 

 

1.1 BACKGROUND  

 

In this section, three terms related to our research are briefly described, 

including Knowledge Discovery in Databases (KDD), Data Mining, and Clustering. 

Figure 1.1 illustrates the relation between them.  

 

 

 

Figure 1.1: The relation between KDD, Data Mining and Clustering 

 

1.1.1 KDD 

 

With the rapid development of information and communication technology, 

human beings have accumulated tremendous amounts of data. Contributing factors 

include popular use of internet, ubiquitous data collection and storage devices including 
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digital camera, mobile phone, bar code scanner, and various inexpensive disks with size 

of gigabytes or terabytes, and the computerization of many fields such as industry, 

scientific, medicine, business, education, and so on. The explosive growth of data has 

generated a big challenge to data processing techniques:  how to extract useful 

information and knowledge from the vast amounts of data (Han and Kamber, 2006). 

This leads to a significant research on the field of information processing, that is, KDD 

(Piatesky-Shapiro et al., 1996; Sever, 1998; Duntsch and Gediga, 2000; Atkinson-

Abutridy et al., 2004). KDD aims to discover some novel, valid, useful, and 

understandable rules or patterns in large data sets (Piatesky-Shapiro et al., 1996). The 

process of KDD consists of a series of transformation steps, as is shown in Figure 1.2. 

 

  

 

 

 

 

 

 

 

Figure 1.2: The process of KDD 

 

Adapted from: Tan et al. (2006) 

 

First, data preprocessing transforms the original data into an appropriate form 

according to the need of following processes. The steps involved in data preprocessing 

include: 

 

 Clean Data: This step removes noise in the raw data. 

 Integrate Data: This step fuses data from multiple sources. 

 Select Data: This step selects data related to the knowledge discovery task 

from the database. 

 Transform Data: This step transforms or consolidates data into appropriate 

format for mining by summarizing or aggregating data. Data reduction may 
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also be performed to gain a subset of the original data without sacrificing its 

integrity. 

 

After the preprocessing, some data mining methods are employed to extract 

potential data patterns. The choice of methods usually depends upon the goal of the 

KDD task. The selection of algorithms generally depends upon the type of the data set 

and the attribute values. 

Generally, a specific user is only interested in a small part of the patterns 

produced by the data mining methods. Thus, a postprocessing procedure is required. 

The steps involved in postprocessing include: 

 

 Evaluate patterns: This step indentifies the valid and useful patterns according 

to some measures given by user. 

 Represent Knowledge: The mined knowledge is represented to the user by 

using some information representation and visualization techniques. 

 

1.1.2 Data Mining 

 

Data mining (Han and Kamber, 2006; Tan et al., 2006; Han et al., 2011; Fu, 

2011; Liao et al., 2012) is the process of mining potential rules or patterns in vast 

amount of data stored in data warehouses, large databases, or other knowledge 

repositories. There are two categories of tasks in data mining: descriptive mining task 

and predictive mining task. The former reveals the general character of the data in the 

database. The latter builds inference model and conducts prediction on the current data 

(Han and Kamber, 2006). Concretely, four of the core data mining tasks are described 

below. 

 

i. Classification 

The process of data classification consists of two steps. The first step builds a 

model, which is usually called classifier by applying some classification algorithm on a 

training data set with the known class labels. Classifier characterizes data classes and 

distinguishes them. Classification is a typical supervised learning process because the 

class label of each training data is previously known. There are many methods for 
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constructing classifier, such as decision tree, k-nearest neighbor classification, Bayesian 

classification, artificial neural network, and support vector machines. The second step 

uses the derived classfier to predict the class of current data whose class label is 

unknown.  

 

ii. Association analysis 

Association analysis is used to discover interesting relationships concealed in 

large databases. The discovered relationships are typically represented as association 

rules. Association analysis consists of two steps. The first step finds all the itemsets 

whose frequence is equal to or greater than the predefined support count threshold. 

These itemsets are called frequent itemsets. The second step produces strong association 

rules in terms of the found frequent itemsets which satisfy minimum support threshold 

as well as minimum confidence threshold. Association analysis can be applied to many 

fields such as market basket transactions, web mining bioinformatics, medical 

diagnoses, and so on.  

 

iii.  Cluster analysis 

Unlike classification which analyzes class-labeled data objects, clustering is a 

typical unsupervised learning process, that is, the class labels of data objects involved in 

clustering are previously unknown when the clustering algorithm is being executed; 

even in most cases the number of clusters is also unknown in advance. The data objects 

are clustered in terms of the rule of making the intracluster similarity (the similarity 

between the objects in the identical cluster) maximum and making the intercluster 

similarity (the similarity between the objects in the different clusters) minimum (He et 

al., 2005a). In other words, an object is much more similar to the objects in the identical 

cluster than to the objects in other clusters. Clustering has been used to group sets of 

related customers, documents, genes, communities in social network and so on. 

 

iv. Outlier detection 

Outlier detection is the task of identifying data objects whose characteristics are 

significantly different from the rest of the data objects. Such data objects are known as 

outliers. Outliers usually are simply considered as noise data to be discarded in many 

data mining algorithms. Nevertheless, the unusual events might be more significant than 
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the more usually appearing ones in some specific applications such as deceit detection. 

The goal of outlier detection is to discover the real outliers and avoid falsely labeling 

normal objects as anomalies. Outlier detection has been widely applied to the detection 

of deceit (Ngai et al., 2011), network intrusions, and unusual patterns of disease. 

 

1.1.3 Clustering 

 

As mentioned in Section 1.1.2, clustering is one of the core tasks of data mining. 

It can reveal the potential patterns and distributions in the objective data by grouping 

the similar objects together. Clustering plays a very important role in many data 

processing tasks, for example large data sets segmentation, summarize data,  

unsupervised classification, and so on (Halkidi et al., 2001). 

Clustering techniques have been applied to many domains such as gene data 

analysis, mobile computing, social networks, medicine, document analysis, security 

assessment in power systems, management, and image and video anlysis. For example, 

Hung and Peng (2011) developed algorithm Time Clustering to cluster call detail 

records for mining mobile user movement patterns. Jiang et al. (2004) analyzed many 

clustering methods for complicated gene related data. Zhao and Zhang (2011) 

introduced a new clustering method for extracting community structure from social 

networks. Wong et al. (2002) proposed a clustering method which can be applied on 

tissues segmentation in a medical imaging approach. Kalogeratos and Likas (2011) 

proposed a robust clustering method called k-synthetic prototypes to implement 

document clustering. Feng et al. (2011) proposed a graph based model to cluster 

Chinese blogs by using embedded sentiments. Saglam et al. (2006) developed a 

clustering method to segment customers of a company based on the customer and 

transaction attributes. Kalyani and Swarup (2011) introduced K-means clustering 

approach into the evaluation of power system. Given operating condition and 

contingency, the state of a power system is classified to secure or insecure. Cheng and 

Leu (2009) proposed a k-prototypes clustering algorithm to handle the classification 

problems of construction management. Based on cluster analysis, Mathieu and Gibson 

(2004) proposed a method for large scale research and development planning. Cheng et 

al. (2011) applied spectral clustering into 3D human posture segmentation with surface 

normal constraint. Vretos et al. (2011) proposed a face clustering algorithm based on 
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mutual information to analyze movie contents. Huang et al. (2011) proposed a robust 

clustering algorithm to do image segmentation in L∗a∗b∗ color space. 

 

1.2 PROBLEMS STATEMENT 

 

Most of aforementioned clustering algorithms only can be applied on numerical 

data.  A common way to measure the similarity between numerical data points is to 

define distance functions by employing the inherent geometric attributes in numerical 

data. Nevertheless, there exists a lot of categorical data in the databases (Parmar et al., 

2007) which is usually characterized by a set of descriptive attributes. There is no order 

between the attribute values on these descriptive attributes. Therefore, distance measure 

can not be defined between categorical data values. For example, suppose a data set 

which stores some information about customers is considered. As is shown in Table 1.1, 

each customer is described by the attributes “age”, “sex”, “income”, and “investments”. 

Obviousy, it is difficult to define the distance or similarity between the values “youth” 

and “senior”, or between the customers 3 and 4. Therefore, those clustering algorithms 

dealing with numerical data can not be directly employed to categorical data clustering. 

Recently, researchers have paid much attention on categorical data clustering. 

 

Table 1.1: An instance of categorical data set 

 

ID Age  Sex Income Investments 

1 youth male high stocks 

2 middle-aged female high stocks 

3 youth female  medium stocks 

4 senior  male  medium bonds 

5 middle-aged male low bonds 

6 senior  female medium bonds 

 

Formally, the problem of categorical data clustering is defined as follows. Given 

a data set D containing objects O1, …, ON, every object Oj (j = 1…N) is described by d 

categorical attributes, that is, Oj is a d-dimensions vector ),...,( 1 d

jjj OOO  . With a 

specified integer k, the objects are broken into k groups G1, …, Gk, toward the goal of 
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the minimization/maximization of a criterion (objective function). That is, the problem 

of categorical data clustering is an optimization problem. Unfortunately, this 

optimization problem is NP-complete (Barbara et al., 2002). Therefore most researchers 

resort to heuristic methods to solve it, such as k-modes (Huang, 1998), CAtegorical 

ClusTering Using Summaries (CACTUS) (Ganti et al., 1999), RObust Clustering using 

linKs (ROCK) (Guha et al., 2000), COOLCAT (Barbara et al., 2002), Squeezer (He et 

al., 2002), Transactions Clustering using Self-Organizing Map (TCSOM) (He et al., 

2005b), ccdByEnsemble (He et al., 2005a), MMR (Parmar et al., 2007), k-Average 

Normalized Mutual Information (k-ANMI) (He et al., 2008) and so on. Heuristic 

methods tend to find local optimal clustering (Deng et al., 2010), thus a few researchers 

try to solve the problem of categorical data clustering by direct optimization, such as 

genetic clustering algorithms ALG-RAND (Cristofor and Simovici, 2002) and G-ANMI 

(Deng et al., 2010), both of them use genetic algorithm (GA) to find globally optimal 

clustering.  

Evaluating these clustering algorithms for categorical data is a non-trivial task 

(He et al., 2008). At present, the most widely used criteria for evaluation include 

clustering accuracy (Huang, 1998) and clustering efficiency. Clustering accuracy 

measures the quality of the results of clustering algorithms. It has been pointed out aht 

the higher the value of clustering accuracy, the better the results of clustering (He et al., 

2008). Clustering efficiency is usally measured by the running time of an algorithm. 

Obviously, the more running time an algorithm takes on a data set, the lower efficiency 

it has. Experimental results (Guha et al., 2000; Cristofor and Simovici, 2002; Parmar et 

al., 2007; Deng et al., 2010) have shown that heuristic algorithms have low clustering 

accuracy while have high efficiency in comparison with direct optimization based 

algorithms, conversely, direct optimization based algorithms have high clustering 

accuracy while have low efficiency in comparison with heuristic algorithms. Hence, 

new clustering algorithms for categorical data with high efficiency as well as high 

clustering accuracy are needed.  

One of the heuristic algorithms is MMR (Parmar et al., 2007). MMR is based on 

the rough set theory. It first chooses a partitioning attribute with MMR value, and then 

split the set of objects into two clusters on the selected partitioning attribute. Repeat the 

above process on the current longest clusters until reaching the specified number of 

clusters (The details of MMR algorithm are described in Section 2.3.8). The above 
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clustering procedure can be organized top-down as a tree structure; hence MMR 

belongs to hierarchical divisive algorithm. In addition, all the partition operations are 

performed on the attribute; therefore, inherently MMR is an attribute-oriented 

hierarchical divisive algorithm. MMR is one of the most efficient algorithms among the 

aforementioned algorithms; however, it has some inherent limitations. First, it is biased 

toward the attribute with the smallest value domain size or with the most unbalanced 

partition as determining the partitioning attributes. Second, it selects the longest cluster 

to split in each iteration. However, the real clusters are not always embedded in the 

attribute with the smallest value domain size or with the most unbalanced partition, and 

selecting the longest cluster to split is not always consistent with the natural distribution 

of clusters. Therefore, these limitations result in low clustering accuracy of MMR 

algorithm. On the contrary, G-ANMI, one of the direct optimization based algorithms, 

has the highest clustering accuracy among the existing algorithms for categorical data 

clustering; however, it has very low efficiency. Inherently, G-ANMI is a genetic 

clustering algorithm, that is, genetic algorithm is used to find globally optimal 

clustering in this algorithm. The low efficiency of G-ANMI is mainly caused by genetic 

algorithm in which lots of iterations are needed to find globally optimal clustering 

(Deng et al., 2010). 

Based on the drawbacks of MMR and G-ANMI algorithms, there is a need for 

improving these two algorithms. Therefore, two research questions have been proposed: 

 

 How to develop an attribute-oriented hierarchical divisive algorithm to cluster 

categorical data that attains high clustering accuracy, at the same time 

maintains the highest efficiency among the existing algorithms for categorical 

data clustering? 

 How to develop a genetic algorithm to cluster categorical data that attains high 

efficiency, at the same time maintains the highest clustering accuracy among 

the existing algorithms for categorical data clustering? 

 

In addition, for existing algorithms for categorical data clustering, users have to 

specify the cluster number before running them. However, it is a difficult task for user 

to know the exact number of clusters in a data set in advance. Hence, the third research 

question is: 
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 How to develop categorical data clustering algorithms which can be run 

without specifying the number of clusters? 

 

1.3   RESEARCH OBJECTIVES AND SCOPE 

 

This research embarks on the following objectives: 

 

i. To develop an attribute-oriented hierarchical divisive algorithm to 

cluster categorical data that attains high clustering accuracy, at the same 

time maintains the highest efficiency among the existing algorithms for 

categorical data clustering, and can be run without specifying the 

number of clusters. 

ii. To develop a genetic algorithm to cluster categorical data that attains 

high efficiency, at the same time maintains the highest clustering 

accuracy among the existing algorithms for categorical data clustering. 

iii. To evaluate the proposed algorithms on some real-life data sets and 

some synthetically generated data sets as well, and to do a comparison 

between the proposed algorithms with the baseline algorithms in terms 

of the clustering accuracy and efficiency. 

 

The scope of this research falls within categorical data clustering using 

attribute-oriented methods. 

 

1.4 RESEARCH OUTCOMES 

 

The following are the research outcomes: 

 

i. The design and development of a novel attribute-oriented hierarchical 

divisive algorithm for categorical data clustering.  

ii. The design and development of an improved genetic algorithm for 

categorical data clustering. 
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1.5 THESIS ORGANIZATION 

 

The rest of this thesis is divided into 5 chapters and organised as follows: 

 

Chapter 2: The basic knowledge about clustering and existing literatures about 

categorical data clustering are reviewed in this chapter. It covers the 

components needed in the design of clustering algorithms, some earlier 

clustering algorithms, entropy based algorithms, k-means like 

algorithms, and optimization based algorithms. 

 

Chapter 3: This chapter analyzes the significance of attributes in categorical data 

clustering, and proposes a novel attribute-oriented hierarchical divisive 

clustering algorithm for categorical data using information theory, 

termed MGR. An illustrative example is described to show how MGR 

algorithm works. Finally, it analyzes the limitations of MMR algorithm, 

conducts the comparison between MGR and MMR, and presents the 

advantage of MGR over MMR algorithm. 

 

Chapter 4: This chapter analyzes the reason for low efficiency of G-ANMI 

algorithm, and proposes an improved genetic clustering algorithm for 

categorical data, termed IG-ANMI. A new attribute-oriented 

initialization method of IG-ANMI algorithm is described and an 

illustrative example is described to show how it works. 

 

Chapter 5: This chapter describes the experiments design and experimental results 

of MGR and IG-ANMI algorithms including the clustering accuracy, 

clustering efficiency, scalability, and the running results of MGR 

algorithm without specifying the number of clusters, and compares them 

with other four algorithms in terms of clustering performance and 

efficiency.  

 

Chapter 6: This chapter describes the conclusions and future work. 

 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW  

 

 

2.1       INTRODUCTION 

 

This chapter introduces the basic knowledge about clustering and several 

popular clustering algorithms for categorical data. The chapter is organized as follows: 

 

 Section 2.2 introduces some basic steps to develop clustering process and the 

components needed in the design of clustering algorithms. 

 Section 2.3 describes several popular clustering algorithms for categorical 

data.  

 

2.2       CLUSTERING 

             

Before describing particular clustering algorithms for categorical data, the basic 

steps to develop clustering process and the components needed in the design of 

clustering algorithms including data types, dissimilarity measures, objective functions, 

membership and the categorization of clustering methods are briefly discussed. 

 

2.2.1 Basic Steps in Clustering Process 

 

Generally, developing a clustering process includes the following basic steps 

(Piatesky-Shapiro et al., 1996): 

 Preprocessing. It is necessary to preprocess the raw data before using them in 

clustering task, such as feature selection, handling missing value. 

 Clustering algorithm selection. Select or design a clustering algorithm 



 

 

 

12 

appropriate for the objective data set. 

 Evaluation of clustering results. Employing some mostly-used criteria or 

measurements to evaluate the clustering results, such as clustering error, 

adjusted rand index, clustering efficiency and so on. These criteria or 

measurements should be irrespective of specific clustering algorithms 

(Rezaee, Lelieveldt and Reiber, 1998). 

 Interpret clustering results. In most cases, the domain experts are needed to 

give a meaningful interpretation of the clustering results. This process is 

usually accomplished with the help of other experimental analysis. 

 

2.2.2 Data Types 

 

The data processed by cluster analysis probably derive from various 

applications. Each object usually is characterized by m attributes, that is, each object is a 

m-dimensional vector. Thus, data type refers to the type of attribute value. In general, 

there are the below five types of attribute value:   

 

 Numerical 

                Numerical data can either be continuous or discrete. There exists a natural 

order between two numerical values on the same attributes such that distance 

measures based on geometric attributes can be defined. Length, temperature, 

pressure, velocity and weight are typical examples of numerical data. 

 Binary  

                A binary attribute takes on values either 1 or 0. Value 1 indicates the presence 

of the attribute, while value 0 indicates the absence of the attribute. For 

example, an animal has value 1 on binary attribute feather means that the 

animal has feather, has value 0 means that the animal has not feather.  

 Categorical 

          Categorical attribute is usally regarded as the generalization of binary 

attribute which can take on more than two values. There is no inherent order 

or similarity between the multiple values of an attribute. Let us take color as 

an example, which is a categorical attribute that might take four values: black, 

white, green, and blue. Words, integers (Notice that such integers do not 



 

 

 

13 

represent any specific ordering), and symbols can be used to denote 

categorical attribute values. 

 Ordinal 

          Ordinal data can either be continuous or discrete. Ordinal attributes focus on 

the relative ordering of the values rather than the actual magnitude. For 

example, in a sports game the relative ranks (e.g. champion, runner-up) are 

usually cared much more than the actual score of an athlete.  

 Mixed 

                In some real-life data sets, objects might be characterized by attributes with 

different data types. Generally, a data set can include all of the 

aforementioned four data types. For example, the profile of customers 

consists of categorical attributes such as nationality and education background 

as well as numerical attributes like income. 

 

2.2.3 Dissimilarity Measures 

 

Many clustering algorithms require the definition of dissimilarity measure, 

which examines the closeness between the data objects. Many methods have been 

proposed to define dissimilarity measures. For different dissimilarity measures, the 

clustering results may be different. It depends on one’s motivation and data types to 

choose the appropriate measure. For some algorithms, a dissimilarity matrix is 

constructed to store the similarities of all pairs of data objects. In this section, some 

commonly used dissimilarity measures will be discussed. 

 

i. Dissimilarity Metrics for Numerical Data 

 

The dissimilarity between two numerical data objects is usually calculated in 

terms of the distance between them. Euclidean distance is the most widely-used distance 

measure whose definition is as follows. 
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where S = (s1, s2, …, sn) and T = (t1, t2, …, tn) are two n-dimensions objects. 

Manhattan distance is also a widely-used measure, which is defined as 

 

                          dis(S, T) = |s1-t1| + |s2-t2| + … + |sn-tn|                               (2.2) 

 

ii. Dissimilarity Metrics for Binary Data 

 

There are two types of binary attributes, symmetric and asymmetric. If two 

values are equally important for a binary attribute, namely they have the same   weight, 

the binary attribute is symmetric. For example, attribute gender is symmetric since 

values male and female have the same weight. For the objects S and T with symmetric 

attributes, a simple mismatch coefficient can be used to assess the dissimilarity between 

them. 
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where r, u, v, and w are defined as follows: 

 w: the number of attributes on which objects S and T have value 0. 

 r: the number of attributes on which objects S and T have value 1. 

 v: the number of attributes on which object S has value 0 and object T have 1. 

 u: the number of attributes on which object S has value 1 and object T have 0. 

If two values have different weight for a binary attribute, the binary attribute is 

asymmetric. For example, negative and positive results of a medical diagnosis have 

different influences on the disease verification. For asymmetric attribute, positive 

matches (two 1s) are usually regarded more important than negative matches (two 0s). 

Thus, the number of negative matches, w, can be excluded in the calculation. Jaccard 

coefficient is the most popular measure which examines the proximity between two data 

objects. Its definition is as follows: 
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iii. Dissimilarity Metrics for Categorical Data 

 

The dissimilarity between two categorical data S and T is usually calculated as 

the proportion of mismatches: 

 

                                            
n

q
TSdis ),(                                                   (2.5) 

 

where n is the number of attributes and q is the number of attributes on which S and T 

have the distinct value, that is, the number of mismatches. 

Converting the categorical attributes to binary attributes is an alternative 

method. Concretely, each of the values in an attribute is set as a new binary attribute. 

Then the dissimilarity measures for categorical data discussed above can be used. 

 

iv. Dissimilarity Metrics for Ordinal Data 

 

The way of calculating the dissimilarity between objects with ordinal attributes 

is similar to that of calculating the dissimilarity between objects with numerical 

attributes. First, the range of each attribute is mapped onto [0.0, 1.0] ([m, n] denotes an 

interval, including all the values between m and n) to make each attribute has the same 

weight, and then dissimilarity is computed using any of the distance measure for 

numerical data. 

 

v. Dissimilarity Metrics for Mixed Data 

 

For mixed data, a desirable approach is to perform a single clustering, 

processing all data types together. First, the dissimilarities between the objects S and T 

on each type of attribute are computed according to the corresponding dissimilarities 

measures discussed above, and then map the dissimilarities onto the same interval [0.0, 

1.0]. Finally, the average of the normalized dissimilarities is calculated as the 

dissimilarity between the objects S and T. 
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2.2.4 Objective Functions 

 

For many clustering algorithms, clustering is treated as an optimization problem 

whose aim is to make an objective function minimization or maximization. The 

definitions of objective function vary with algorithms. For example, some algorithms 

use the sum of the squares of error (SSE) as objective function (Huang, 1998 and San et 

al., 2004). Some graph based clustering algorithms define an objective function relavant 

to the Normalized Cut in a graph (Shi and Malik, 2000 and Flake et al., 2004). 

Information-theoretic algorithms usually define an objective function based on the 

entropy of clusters (Barbara et al., 2002; Andritsos, 2004 and Andritsos et al., 2004), 

conditional entropy of partitions (Cristofor et al., 2002) or maximize the average 

normalized mutual information (He et al., 2008 and Deng et al., 2010). Some algorithms 

use the links between data objects to define an objective function (Guha et al., 1999). 

 

2.2.5 Membership 

 

In general, clustering algorithms assume that objects belong to one single cluster 

only, however, in some cases, different clusters may overlap each other, and hence 

some objects may have multiple memberships. Many fuzzy theory based algorithms 

have been proposed to handle the problem (Huang and Ng, 1999; Kim et al., 2004 and 

Gan et al., 2009). In the framework of fuzzy clustering each object belongs to multiple 

clusters with different memberships rather than exactly belonging to one cluster. The 

membership is usually defined as a function of dissimilarities. For each object, 

memberships among different clusters must sum to 1. For example, a data set of 4 

objects is partitioned into 3 clusters using some fuzzy theory based clustering algorithm 

and a membership matrix W = {wij} is obtained as is shown in Table 2.1, where wij 

denotes the membership of the object Oi to cluster Cj. 
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Table 2.1: An example of membership matrix 

 

wij C1 C2 C3 

O1 0.65 0.10 0.25 

O2 0.20 0.65 0.15 

O3 0.70 0.10 0.20 

O4 0.05 0.10 0.85 

 

From Table 2.1, it can be seen that object O1 has membership degrees 0.65, 0.10 and 

0.25 to clusters C1, C2, and C3, respectively. Since object O1 has the highest degree of 

membership to cluster C1, then object O1 should belong to cluster C1. Similarly, objects 

O2, O3, and O4 should belong to cluster C2, C1, and C3, respectively. 

 

2.2.6 Categorization of Clustering Methods 

 

In general, clustering algorithms can be classified as follows (Jain et al., 1999): 

 Hierarchical clustering. These types of algorithms hierarchically decompose 

the given data set. There are two ways to implement hierarchical methods: 

agglomerative or divisive. The agglomerative approach is a kind of bottom-up 

approach. Each object is regarded as a cluster at the beginning, and then the 

clusters that are close to each other are merged consecutively, until the 

termination condition is satisfied. The hierarchical divisive approach is a kind 

of top-down approach. All of the objects are considered in one cluster at the 

beginning, and then iteratively select a cluster and divide it into some smaller 

clusters, until the termination condition is satisfied. 

 Partitional clustering. These types of algorithms try to directly divide the data 

set into a group of disjoint clusters. The algorithm requires users to specify the 

number of clusters at first, and then an initial partition is created by using a 

partitional approach, next, a relocation process based on the objective criterion 

is performed to improve the partition successively until there is no 

improvement in the value of the objective criterion. 

 Grid-based clustering. Object space, in this type of methods, is quantized into 

a grid structure which consists of many cells. Then the whole clustering 

process is conducted on the grid structure. 
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 Density-based clustering. This type of clustering is implemented in such a 

way that extending a given cluster continuously if the density (number of 

objects) in the neighborhood is greater than the predefined threshold. By using 

density-based clustering method, clusters with arbitrary shape can be 

discovered. 

 

2.3       ALGORITHMS FOR CATEGORICAL DATA CLUSTERING 

 

Many algorithms have been proposed for categorical data clustering. 

Ralambondrainy (1995) proposes a method in which category attributes is converted 

into binary attributes, that is, each of the categories in an attribute is set as a new binary 

attribute. These binary attributes is regarded as numeric and handled by k-means 

(MacQueen, 1967) algorithm. Huang (1997 and 1998) proposed k-modes algorithm to 

extend the k-means algorithm to categorical data. A new cocept of modes is used to 

replace the means of clusters in k-means. Subsequently, based on k-modes, many 

algorithms are proposed including fuzzy k-modes (Huang and Ng, 1999), adapted 

mixture model (Jollois and Nadif, 2002), tabu search technique (Ng and Wong, 2002), 

improved initial points determination algorithm for k-modes algorithm (Sun et al., 

2002), an extension of k-modes algorithm to transactional data (Giannotti et al., 2002), 

fuzzy centroids (Kim et al., 2004), initialization methods for k-modes and fuzzy k-

modes (Cao et al., 2009 and Bai et al., 2011), attribute value weighting in k-modes (He 

et al., 2011), a dissimilarity measure for k-modes (Cao et al., 2012), and genetic fuzzy 

k-modes (Gan et al., 2009). ROCK (Guha et al., 2000) is a hierarchical agglomerative 

clustering algorithm in which the notion of “links” is defined to measure the closeness 

between clusters. QROCK (Dutta et al, 2005) improves the efficiency of ROCK 

algorichm. Sieving Through Iterated Relational Reinforcement) (STIRR) (Gibson et al., 

2000) introduces the concept of non-linear dynamic system into categorical data 

clustering. The objects can be clustered if the dynamic system converges. CACTUS 

(Ganti et al., 1999) constructs summary information from the data set and uses this 

summarization to discover clusters. Based on information theory, several algorithms are 

proposed. COOLCAT (Barbara et al., 2002) explores the connection between clustering 

and entropy. LIMBO (Andritsos et al., 2004) applies the Information Bottleneck (IB) 

method to the problem of clustering categorical data. “Best K” (Chen and Liu, 2005) 
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proposes a BkPlot method for determining the best K number of clusters in a categorical 

data set. The method is implemented with a hierarchical clustering algorithm HierEntro. 

Recently, several works try to cluster categorical data by using cluster ensemble 

technique. He et al. (2005a) investigate the commonalities between cluster ensemble 

and categorical data clustering, and employ some cluster ensemble algorithms to cluster 

categorical data. Subsequently, the same authors propose k-ANMI (He et al., 2008), 

which optimizes Average Normalized Mutual Information (ANMI) in a k-means 

framework. Gionis et al. (2005) cluster categorical data by employing a cluster 

ensemble algorithm which is based on disagreement measure. MMR (Parmar et al., 

2007) applies rough set theory to categorical data clustering. To improve the accuracy 

and efficiency of clustering, Herawan et al. (2010) propose a rough set based method 

named Maximum Dependency Attributes (MDA) for selecting clustering attribute. A 

few researchers try to cluster categorical data by direct optimization. ALG-RAND 

(Cristofor and Simovici, 2002) and G-ANMI (Deng et al., 2010) employ genetic 

algorithm to cluster categorical data. TCSOM (He et al, 2005b) algorithm extends 

traditional Self-Organizing Map (SOM) to cluster binary data. The same authors also 

propose Squeezer (He et al., 2002) algorithm. Squeezer can be used to cluster 

categorical data streams since it sequentially deal with each input data object and group 

it in an appropriate cluster. Chen and Chuang (2004) investigate the correlation between 

attribute values and propose algorithm CORrelated-Force Ensemble (CORE) based on 

correlated-force ensemble. There also exist some algorithms focusing on transaction 

data clustering. Wang et al. (1999) propose the notion of large item and utilize it to 

cluster transactions. Similarly, another notion named the small-large ratio is presented 

and used to cluster market basket data (Yun et al., 2001). Yun et al. (2002) apply the 

item taxonomy to clustering process. Xu and Sung explore the purchase features of 

customers and propose a caucus based algorithm. Cao and Liang (2011) propose a data 

labeling method to allocate unlabeled objects into proper clusters. 

The following sections will describe the details of some popular algorithms 

among the above algorithms.  
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2.3.1 k-means, k-modes and Fuzzy k-modes Algorithms 

 

i. k-means algorithm 

 

k-means (MacQueen, 1967) is a typical partitional clustering algorithm. It has 

been widely used since proposed. The algorithm starts with the selection of initial 

cluster center, k objects is randomly selected as the initial cluster center or mean. Then 

each of of the rest objects is grouped into the cluster which is the closest to it, in terms 

of the distance between the cluster center and the object. Next, the new center of each 

cluster is recomputed. Repeat this procedure until the within-clusters SSE converges. 

The clustering process can be formulated as follows (Bobrowski and Bezdek, 1991 and 

Huang 1998): 

 

                       Minimize     
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where k is the specified number of clusters, n is the number of objects, Xi is a data 

object, Q={Q1, Q2, …, Qk} is a matrix of cluster centers, W is an nk partition matrix,  

and d(.,.) is the square Euclidean distance between two data objects.  

The optimization problem can be solved by iteratively solving the following two 

minimization problems: 

 

 Problem P1: Set QQ ˆ  and solve the smaller problem )ˆ,( QWP . 

 Problem P2: Set WW ˆ  and solve the smaller problem ),ˆ( QWP . 

 

Problem P1 is solved by  
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Let Qj = (qj,1, …, qj,m), problem P2 is solved by 
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for ms 1  , and kj 1 . 

 

ii. k-modes 

 

The k-means algorithm can only be used to cluster numerical data since the 

similarity between data objects and cluster centers is measured by Euclidean distance. 

To extend the k-means algorithm to categorical data, Huang (1998) proposed the k-

modes algorithm in which Euclidean distance is replaced with a simple matching 

dissimilarity measure, and the means of clusters are replaced with modes.  

 

 Dissimilarity measure 

 

Given two objects X, Y, suppose they are characterized by m categorical 

attributes, k-modes algorithm counts the total mismatches of the corresponding attribute 

values of the two objects as the dissimilarity measure between X and Y, which is 

denoted as ),( YXdc and defined as follows, 
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 Mode of a Set 

 

Given a set of categorical objects X = {X1, X2, …, Xn}, each of which is 

characterized by m categorical attributes. The vector Q = [q1, q2, …, qm] that minimize  
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is called the mode of X. It has been proved that each element in the mode takes the most 

frequent value of the corresponding attribute in the set. 

 

 Algorithm 

 

Replacing the Euclidean distance in Equation (2.6) with the dissimilarity 

measure defined in Equation (2.10), the new objective function is obtained. 
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Accordingly, problem P1 is solved by using the new dissimilarity measure, 

problem P2 is solved by using modes of clusters. Figure 2.1 lists the steps of k-modes 

algorithm in detail.  

 

 

 

                               Figure 2.1: The k-modes algorithm   
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iii. Fuzzy k-modes 

 

Following the fuzzy k-means-type process, k-modes algorithm can be extended 

to fuzzy k-modes. The objective of the fuzzy k-modes clustering is to find W and Q that 

minimize  
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subject to Eq.(2.7), where 1 is the weighting exponent, (.,.)cd  is defined in 

Eq.(2.10), W = (wji) is the nk   fuzzy membership matrix, and Q ={Q1, Q2, …, Qk} is 

the set of cluster centers. Note that 1  gives the hard k-modes clustering, i.e., the k-

modes algorithm. 

Let Q ={Q1, Q2, …, Qk} be fixed, then the fuzzy membership matrix W is 

updated by 
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for ni 1 , kj 1 . 

 

Given the estimate of W, the cluster centers is updated as 
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for kj 1 , ml 1 , where m is the number of attributes, DOM(Al) is the domain of 

attribute Al, , 



ltill axi

ji
nt

wr
,1

maxarg  . 

 

 



 

 

 

24 

2.3.2 ROCK and QROCK 

 

i. ROCK 

 

ROCK (Guha et al., 2000) is a hierarchical agglomerative clustering algorithm 

for categorical data. Traditional agglomerative clustering algorithms only examine the 

similarity between data objects when objects are considered to be merged into a single 

cluster. Experiments have shown that traditional methods tend to make errors. ROCK 

proposes the notions of neighbours and links for categorical data and considers the 

neighbourhoods of two objects when they are considered to be merged. Two objects can 

be merged if they have similar neighbourhoods.  

 

 Neighbours and links 

 

ROCK first defines the concept of neighbours. Given a similarity function s(Oi, 

Oj) that measures how close objects Oi and Oj are, Oi and Oj are called neighbours each 

other if the below inequation holds 

 

                                             ),( ji OOs                                                 (2.17) 

 

where   is a predefined threshold.  

The number of common neighbours between objects Oi and Oj is named the 

number of links between Oi and Oj, and denoted by link(Oi, Oj). The larger the number 

of links between two objects, the higher possibility the two objects belong to the same 

cluster. 

 

 Criterion function and goodness measure 

 

ROCK aims to maximize the intra-cluster summation of links, and meanwhile 

minimize the inter-cluster summation of links. The criterion function is defined as 

follows: 
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where Ci refers to i
th

 cluster, ni is the size of i
th

 cluster, )(21 f

in  denotes the expected 

number of links between objects pairs in Ci.  

In order to find a good clustering that maximizes the objective function, ROCK 

algorithm also define a measure, named goodness measure, to determine the best cluster 

pair to merge at each step, which is defined as follows. 
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where link[Ci, Cj] denotes the number of cross links between clusters Ci and Cj, ni =|Ci| 

and nj=|Cj|. The value )(21)(21)(21)(  f

j

f

i

f

ji nnnn    denotes the expected number of 

cross links between objects pairs in clusters Ci and Cj. 

 

 

 Algorithm 

 

The algorithm starts with calculating the number of links between objects. At the 

beginning, each object forms a single cluster. The algorithm builds a local heap L[i] for 

each cluster i and a global heap G. Each local heap L[i] contains every cluster which has 

non-zero links with cluster i. The clusters j in L[i] are ordered in descending order of 

g(i, j). G contains all the clusters which are ordered in descending order of the max 

element in each cluster. At each step, select first cluster j in G and the first cluster in 

L[j] as the best clusters pair to be merged. The related elements in local heap and global 

heap need to be updated once two clusters are merged. The process iterates until only 

desired number of clusters left in G. Figure 2.2 describes the ROCK algorithm in detail. 

 



 

 

 

26 

                                 

 

Figure 2.2: The ROCK algorithm 

 

 

ii. QROCK 

 

QROCK (Dutta et al, 2005) improves the efficiency of ROCK algorichm. The 

authors define the notion of link graph and further explore the relationship between the 

link graph and clustering. Based on the relationship, a quick version of ROCK is 

proposed. 

 

 Link graph 

 

             Given a set S of objects, the link graph G for S is builded in such a way that S is 

regarded as the set of vertices, and there is an edge between two vertices if they have 

non-zero links. 
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 The relationship between link graph and the final clusters 

 

 Based on the concept of link graph, the authors prove that the clusters produced 

by ROCK algorithm are equivalent to the connected components in the link graph G if 

inter-cluster links equal to zero.  

 

 The algorithm 

 

The QROCK algorithm starts with the computing of nblist[i] for each object i. 

nblist[i] stores the neighbours of data object i. Next, repeat the following process on 

every nblist[i]: the algorithm take an object w from nblist[i] and merge the connected 

component containing w with the connected components of all other objects in nblist[i]. 

Figure 2.3 shows the QROCK algorithm.   

 

 

 

                                 Figure 2.3: The QROCK algorithm 

 

In the above algorithm, the procedure initialization(i) creates a connected 

component that contains only the object i, find_component(w) returns the connected 

component which contains object w, and merge(U, V) calculates the union of connected 

components U and V. 
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Compared with ROCK, QROCK algorithm need not to compute the links, build 

local and global heaps, and sort the heaps, which leads to QROCK are more efficient 

than ROCK. However, QROCK can not replace ROCK completely because of the 

different termination condition. ROCK terminates either when k clusters are generated 

or when inter-cluster links equal to zero, however, QROCK terminates only when inter-

cluster links equal to zero. Both algorithms produce the same results when ROCK 

terminates since inter-cluster links equal to zero, but different results when ROCK 

terminates since the desired number of clusters is reached. Although the authors argue 

that specifying the desired number of clusters is less practical than specifying the 

similarity threshold, it can not be guaranteed that the results of QROCK are more 

meaningful than that of ROCK.   

 

2.3.3 STIRR 

 

Gibson et al. (2000) introduce non-linear dynamical systems into categorical 

data clustering and propose algorithm STIRR (Sieving Through Iterated Relational 

Reinforcement). Each attribute category is represented as a weighted vertex in a graph. 

The set of weights of all the nodes is called a configuration. The initial configuration 

can be either chose uniformly (e.g. all weights set to 1) or, randomly (e.g. each weight 

set to an independently chosen random value in [0, 1]). The algorithm iteratively 

updates weight of any single node to change the configuration. The weight of node v is 

updated by applying a combiner function chosen in advance separately to the members 

of all tuples that contain v, and adding the results. Authors’ potential choices for 

combiner function are product operator and addition operator. The dynamical system 

finally iterates to a stable state called as basin.  

The algorithm maintains multiple copies of the configuration, w1, …, wm for 

clustering the set of objects. The configuration w1 iterates to a basin, called principal 

basin. The basins correspond to other configurations are called non-principal basins. 

The weights in non-principal basins will divide the attribute values of each attribute into 

two groups when the fixed point is reached. One group has positive weights and the 

other has negative weights. Intuitively, these groups correspond to projections of 

clusters on the attribute. However, a non-trivial post-processing step is required to 

automatically identify the final clusters, which was not solved in STIRR.  
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2.3.4 CACTUS 

 

CACTUS (Ganti et al., 1999) constructs summary information from categorcial 

data set and uses the summarization to discover clusters. By generalizing the definition 

of a cluster for numerical data, the authors introduce a new definition of a cluster for 

categorical data. Several basic concepts are defined as follows. Given attribute value ai 

in attribute Ai and attribute value aj in attribute Aj, the number of tuples that have these 

two values is called Support of values pair (ai, aj). If their support is greater than a 

threshold, attribute value pair (ai, aj) are said to be strongly connected. A cluster 

consists of a set of attribute values each of which is strongly connected to all other 

attribute values in the cluster. The attribute value pair containing two values from the 

same attribute is measured by Similarity. Given attribute values a1 and a2 in attribute Ai, 

Similarity between a1 and a2 is defined as the number of such attribute values in other 

attributes that are strongly connected with a1 as well as a2. 

CACTUS defines intra-attribute and inter-attribute summaries based on the 

notions of support and similarity. The similarities between attribute values of the same 

attribute constitute the intra-attribute summaries. All strongly connected attribute value 

pairs each of which has attribute values from different attributes constitute the inter-

attribute summaries.  

The CACTUS algorithm first calculates all intra-attributes and inter-attributes 

summaries, which is called summarization phase. Then candidate clusters are generated 

by extending 2-clusters to 3-clusters and so on, which is called clustering phase.  The 

candidate clusters generated in clustering phase need to be validated. In the validation 

phase, the support of each candidate cluster is calculated. Only clusters whose support 

passes the threshold requirement are retained. 

 

2.3.5 Entropy Based Algorithms 

 

COOLCAT and LIMBO are typical entropy based clustering algorithms for 

categorical data. They are introduced in this section. 
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i. COOLCAT  

 

COOLCAT (Barbara et al., 2002) first explores the relationship between 

information entropy and clustering: the entropy of clusters consisting of similar objects 

is lower than that of clusters consisting of dissimilar ones. The algorithm clusters 

objects towards the goal of making the expected entropy of the clusters minimization.  

 

 Problem formulation 

 

Let D be a data set containing N objects p1, p2, …, pN, where each point is 

described by M categorical attributes x1, x2, …, xM, and given an integer k, the points 

would be separated into k groups G1, G2,…,Gk , or clusters which have the minimum 

expected entropy. The algorithm defines the expected entropy of the clusters as follows. 
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where G = {G1, G2, …, Gk} represents the clustering. DGi  , with the property that 

 ji GG , for all i, j =1, …, k, i j. E(Gi) represents the entropy of the ith cluster. 

To simplify the calculation, independence of the attributes of the record is assumed, 

thus, the entropy of the ith cluster is calculated as follows. 
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                         (2.21) 

 

where, )( jG xE
i

, j=1,…, M, is the entropy of the attribute xj about the cluster Gi.   

Unfortunately, the problem is NP-Complete, therefore a heuristic based algorithm is 

proposed. 

 

 Algorithm 

 

The algorithm starts with an initialization step which discovers a set of clusters 

in a sample set Q taken from original data set D (|Q| << N). The initialization step is 
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implemented by finding the k most “dissimilar” objects from the sample set Q. 

Concretely, the algorithm first finds two points 
1sp , 

2sp that have maximum  expected 

entropy E(
1sp ,

2sp ) and places them in two clusters G1, G2, respectively. From there, 

proceeding incrementally, an unprocessed object 
jsp  that maximizes min i=1… j-

1(E(
isp ,

jsp )) is chose for the j-th cluster. 

Next, an incremental step is performed to place the rest of the objects in sample 

data set Q and the remaining objects in data set (D - Q), in the clusters produced in 

initialization step. For each of the remaining objects, the algorithm tries to place it in 

each of the clusters and calculate the corresponding expected entropy, then selects the 

cluster corresponding to the minimum expected entropy as the final cluster of the 

objects. Figure 2.4 lists the details of the procedure.  

 

 

 

Figure 2.4: Incremental step of COOLCAT algorithm 

 

 

ii. LIMBO  

 

LIMBO (Andritsos et al., 2004) algorithm is an extension of the Agglomerative 

Information Bottleneck (AIB) (Solnim and Tishby, 1999) algorithm.  
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 AIB algorithm 

 

Let D be a data set containing n objects with m attributes, Gk = {g1, g2, …, gk} 

be a disjoint k-partition (k-clustering) of the objects in D.  

AIB is a hierarchical agglomerative clustering algorithm. At the beginning of the 

algorithm, each object Dd  forms a single cluster. Then the algorithm interates n-k 

steps to reduce the number of the clusters. Suppose the algorithm is at step n-s+1 with s-

partition Gs, two clusters gi, gj are selected and merged into a single cluster to generate a 

new partition Gs-1. The selection of clusters gi and gj at each step follows the principle 

that the information loss in transfering from partition Gl to partition Gl-1 is minimized. 

The information loss can also be viewed as the increase in the uncertainty. Thus, the 

objective of AIB algorithm is to minimize the entropy of the clustering, which is the 

same as the objective function of COOLCAT. 

 

 Distribution Cluster Feature  

 

High computational complexity of the AIB algorithm makes it unsuitable for 

dealing with large data sets (Andritsos et al., 2004). LIMBO proposes a model named 

Distribution Cluster Feature (DCF) which summarizes information about the clusters 

for dealing with large data sets. Given a cluster g, the conditional probability of the 

attribute value, p(V | g), and the probability of cluster g, p(g), its DCF is defined as 

follows: 

 

                                                DCF(g) = (p(g), p(V | g))                                       (2.22) 

 

DCF is organized as a B-tree in which the leaves denote a clustering of the data 

set.  

 

 Algorithm 

 

The LIMBO algorithm starts with calculating a DCF for each object, and then 

constructs the DCF tree to summarize the data by inserting these DCFs into it. The next 

step of the algorithm is to the cluster the objects on DCF tree. The DCFs of the tree 



 

 

 

33 

leaves are merged by employing the AIB algorithm to generate a specified number of 

clusters. The authors of LIMBO claim that other clustering algorithm can also be 

employed in the step. Finally, a scan is performed over the objects and each object is 

grouped to the cluster whose center is most similar to this object.  

 

2.3.6 k-ANMI  

 

k-ANMI (He et al., 2008) clusters categorical data in a k-means framework. It 

uses average normalized mutual information as the objective function. In order to 

efficiently implement the algorithm, the concept of histogram of attribute is defined and 

multiple hash tables (each hash table denotes a histogram) are employed.    

 

 Objective function 

 

The mutual information based criterion used in k-ANMI borrows from cluster 

ensemble methods (Strehl and Ghosh, 2002). Given r groupings with the qth grouping 

)(q  having k(q) clusters, the [0,1]-normalized mutual information criteria between 

grouping )(a  and )(b is computed as follows: 
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where ng is the length of cluster Cg in grouping )(b , n
(h)

 is the length of cluster Ch in 

grouping )(a ,  )(h

gn  is the number of objects in cluster Ch according to )(a  as well as in 

cluster Cg according to )(b . 

Given a labeling , and a set of r labelings,  , the ANMI between  and   is 

calculated as follows: 
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Given the desired number of clusters, k, the optimal k-clustering )( optk should 

be the clustering that has the highest ANMI with r labelings,  , that is, 
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where  goes through all possible k-partitions. 

 

 Data structure 

 

The main data structure used in k-ANMI algorithm is the histograms of 

attributes. Suppose D is a set of n objects characterized by r categorical attributes A1, 

…, Ar. Vi denotes the value set of attribute Ai. qa denotes the frequency of attribute value 

iVa , that is, the number of objects DO  with O.Ai = a. If attribute Ai has pi distinct 

attribute values, the histogram of Ai is defined as the set of pairs: hi = {(a1, q1), (a2, q2), 

…, (api, qpi)}. The histogram of dataset D is defined as H = {h1, h2, …, hr}. k-ANMI 

uses (k+1)r histograms as basic data structure totally, where r histograms are 

constructed for r attributes, rk histograms for label vector  . 

 

 Algorithm 

 

The k-ANMI algorithm starts with an initialization procedure. Each object is put 

into the closest cluster according to the dissimilarity measure which is calculated as the 

average distance between this object and the objects in cluster. Next, an iteration phase 

is performed; each object t is moved to an existing cluster to maximize ANMI until 

there is no improvement in ANMI for one iteration. Figure 2.5 shows the k-ANMI 

algorithm. 
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Algorithm k-ANMI 

Input:        D           // the categorical database 

                   k            // the number of desired clusters 

Output:     clusterings of D 

 

/* Phase 1-Initialization */ 

01   Begin 

02          foreach object t in D 

03                counter++ 

04                update histograms for each attribute 

05                if counter<=k then 

06                         put t into cluster Ci where i = counter 

07                else 

08                         put t into cluster Ci to which t has the smallest distance 

09                write <t, i> 

/* Phase 2-Iteration */ 

10          Repeat 

11                 not_moved =true 

12                 while not end of the database do 

13                         read next object < t, Ci > 

14                         moving t to an existing cluster Cj to maximize ANMI 

15                         if Ci != Cj then 

16                                write <t, j> 

17                                not_moved =false 

18          Until not_moved 

19    End 

 

Figure 2.5:  The k-ANMI algorithm 

 

2.3.7 Genetic Clustering Algorithms 

 

In this section, two genetic algorithm based methods for categorical data 

clustering are described, namely ALG-RAND (Cristofor and Simovici, 2002) and G- 

ANMI (Deng et al., 2010). These two algorithms use genetic algorithm to search the 

optimal partition of the objects.   

 

i. ALG-RAND  

 

ALG-RAND tries to find a median partition over the space of all partitions of 

the data objects of the database, which is most similar to all the partitions defined by the 

attributes of the data set. The algorithm generalizes the concept of classical conditional 

entropy to evaluate the dissimilarity between two partitions. Since finding the median 
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partition is an NP-complete problem, ALG-RAND uses a genetic algorithm to find an 

approximative solution. 

 

 Generalized conditional entropy 

 

Let f be a generator, R be the set of rows of a table T, and let },...,{ 1 nBB , 

},...,{ 1 mCC be two partitions of R. The f-conditional entropy of   relative to   is 

defined as  
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Three functions can be used as generator in ALG-RAND, that is, fgini (p) = p-p2 

(the Gini index), fent (p) = -plogp (the Shannon entropy), and fpeak (given by fpeak(p) = p 

for 5.00  p  and fpeak (p) = 1-p for 15.0  p  ). 

 

 Dissimilarity measure 

 

Let PART(R) denotes the set of partitions of a set R. If f is a generator,  ,  

PART(R), then the mapping d 
f
: PART(R)  PART(R)  R given by  

 

                                           )|()|(),(  fff HHd                                (2.27) 

 

is a definite dissimilarity on PART(R). When  is close to  , meaning that their classes 

have many elements in common, then both )|( fH and )|( fH are close to 0, so 

),( fd is close to 0. 

 

 Genetic algorithm 

 

Let T be a table with rows (objects) set R and attributes set H, k be the desired 

number of clusters. The objective of ALG-RAND algorithm is to search for the median 
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partition, that is a partition  such that k|| , and   minimizes the sum 

 HA A

fd ),(  . 

A k-chromosome on a table T is function K: R{1, …, k}. An element of the 

set {1, …, k} is called a class identifier. The partition K of the set of rows R 

determined by the k-chromosome K is K = {C1, …, Ck}, where Cj = {rR| K(r) = j} 

for kj 1 . The chromosomial population consists of k-chromosomes, K1, K2, …, KM, 

where each k-chromosome Ki can be regarded as a sequence of length N=|R| 

representing a possible assignment of the rows of the table T to the k classes of the 

partition 
iK . Initially, the chromosomes K1, K2, …, KM are generated using random 

values between 1 and k. 

The idea of the genetic evolution is to modify the chromosomes in the current 

population by using mutation and crossover as genetic operators such that in the new 

population chromosomes will be increasingly closer to the median partition, that is, they 

will summarize better and better the columns of the table T. Figure 2.6 shows the the 

algorithm in detail. 

 

initialize the population of genetic algorithm 

while (true) 

         compute the fitness of chromosomes in the population; 

         if (there has been no relative improvement in best fitness value for    

Nmax iterations) 

         then 

                  output the partition of Kbest; 

                  exit; 

          copy fittest (1 − r − m)M chromosomes to new population; 

          select probabilistically max{2, rM} chromosomes to cross over; 

          apply crossover operator to the selected chromosomes 

                 and copy the offspring to the new population; 

          select with uniform probability max{1,mM} chromosomes to mutate; 

          apply mutation operator to the selected chromosomes 

                 and copy the modified chromosomes to the new population; 

          Use the new population  to replace the old one; 

 

Figure 2.6: The pseudo code of the ALG-RAND algorithm 
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ii. G-ANMI 

 

From the perspective of objective function and searching method, G-ANMI can 

be considered as a combination of ALG-RAND and k-ANMI algorithms. It uses ANMI, 

the same one in k-ANMI, as the objective function, and a basic genetic algorithm which 

works in the same way as the one in ALG-RAND to search globally optimal partition 

measured by ANMI. 

Initially, the algorithm generates a group of partitions of objects and encodes 

them as chromosomes. These chromosomes form the initial population.  Then, ANMI 

described in Eq. (2.24) is used to calculate the fitness of each chromosome. Based on 

the fitness values, some genetic operations are employed to generate a new population 

by changing the chromosomes in the current population. The latest chromosomes are 

expected to be more similar to the optimal partition than the previous chromosomes. 

Repeat the above steps until the best fitness has kept invariable in some successive 

iterations.  

 

2.3.8 MMR 

 

MMR (Parmar et al., 2007) is a rough set based attribute-oriented hierachical 

divisive clustering algorithm.  

 

 Definitions 

 

Given objects set U, attributes set A, suppose V is the set of all attribute values, 

Q is a subset of A and f: U×A→V is an information function. Q defines an 

indiscernibility relation IND(Q) on U as 

 

    })),(),(,()),((),{()( qvfqufQqUUvuvuQIND            (2.28) 

 

Let U/Q denote the partition of U induced by IND(Q) and [u]Q denote the 

equivalence class containing Uu in partition U/Q. Given a set of objects UT  , the 

lower approximation and upper approximation of T with respect to Q are defined 

respectively as  
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Given attributes Aaa ji , ( ji aa  ), let )( iaT  denote the subset of objects 

which have attribute value   on attribute ia , )( ia aT
j

 and )( ia aT
j

 denote the 

lower approximation and upper approximation of )( iaT  with regard to ja , 

respectively, the roughness of )( iaT  with regard to ja is defined as 
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Given attribute Aaa ji , , let },...,,{ 21 kai
V  , where ||

iaVk  , the mean 

roughness on attributes ia with respect to ja  is defined as 
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Given m attributes, the minimum of the mean roughness on attributes 

)( Aaa ii  with respect to ja ( mj 1 , ij  ), is called min-roughness of attribute ia ,  

and defined as, 
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Given m attributes, the minimum of min-moughness of these m attributes is 

called the Min-Min-Roughness (MMR), and defined as,  
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 Algorithm 

 

MMR first chooses a partitioning attribute with MMR value, and then split the 

set of objects into two clusters on the selected partitioning attribute. Iteratively repeat 

the process on the current longest clusters until reaching the specified number of 

clusters. Figure 2.7 describes the details of MMR algorithm. 

 

Algorithm: MMR 

Input: Data set U, and required number of clusters k 

Output: k clusters on U 

Begin  

Step 1: Set Longest_Cluster = U (In the following step, clustering will be 

conducted on the Longest_Cluster), 

Set Current Number of Clusters (CNC) = 1. 

Step 2: For each attribute ia , calculate Min-Roughness MR )( ia . 

Step 3: Calculate the Min-Min-Roughness MMR. 

Step 4: Select attribute with the MMR as partitioning attribute. 

Step 5: From the partition defined by partitioning attribute, select the 

equivalence class with the minimum roughness as the splitting 

equivalence class. 

Step 6: Split Longest_Cluster into two clusters: the objects correspond to the 

splitting equivalence class, and the rest objects in Longest_Cluster. 

Store them into Clusters_Table. 

Step 7: Find the current longest cluster in Clusters_Table and assign it to 

Longest_Cluster. Delete the longest cluster from Clusters_Table. 

Step 8: CNC = CNC+1, if CNC < k, then go to Step 2, else output the 

clusters in Clusters_Table. 

End. 

 

                                              Figure 2.7: The MMR algorithm 
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2.3.9 MDA 

 

MDA (Herawan et al., 2010) is a rough set based method for selecting clustering 

attribute in categorical data set. It employs the dependency between attributes of the 

data set to select clustering attribute instead of the roughness between attributes.  

  

 Definitions 

 

In information system S = (U, A, V, f ), given any two attributes ia , Aa j  , the 

dependency of ia  with respect to ja is denoted by )( ia ak
j

and defined as follows 

 

                                                
U

Xa
ak

i

j

aUX j

ia

 


/
)(

)(                                       (2.35)  

   

Next, given m attributes, max-dependency of attribute )( Aaa ii  is defined as 

 

                                   ))(),...,(),...,(()(
1 iaiaiai akakakMaxaMD

mj
                       (2.36)  

 

where ji aa  , mji  ,1 . 

After obtaining the m values of )( iaMD , mi ,...,2,1 . MDA method selects the 

attribute with the maximum value of max-dependency as clustering attribute, i.e. 

 

                                 ))(),...,(),...,(( 1 mi aMDaMDaMDMaxMDA                      (2.37) 

 

 

Based on the dependency of attributes in the rough set theory in information 

systems, MDA algorithm is given as follows. 
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 Algorithm 

 

Algorithm: MDA 

Input:    Data set U 

Output: Clustering attribute  

Begin  

Step 1: For each attribute Aai  , perform Steps 2 - 4. 

Step 2: Determine the equivalence classes of ai. 

Step 3: Calculate )( ia ak
j

, ij aa  , mj 1 . 

Step 4: Calculate MD(ai). 

Step 5: Calculate MDA. 

Step 6: Select attribute with MDA as clustering attribute. 

End. 

 

                                              Figure 2.8: The MDA algorithm 

 

2.3.10 Squeezer 

 

Squeezer (He et al., 2002) sequentially reads each object from a data set and 

places it in an appropriate cluster. Since each object is visited once during the whole 

process, Squeezer can be used to cluster categorical data streams. The algorithm defines 

a similarity measure between an object and a cluster to determine the final cluster for an 

object being handed. The similarity measure between a given object u and a cluster G is 

computed as: 
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),(                                            (2.38) 

 

where ai is the value of i
th

 attribute of object u, m is the number of attributes, sup(ai) 

denotes the number of value ai appears in the ith attribute of cluster G.  

            For the first object, it forms a single cluster. For the consequent each object, the 

algorithm first calculate the similarities between the object and the existing clusters, and 
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then selects out the largest value of similarity. If the largest value exceeds the 

predefined threshold s, the object is placed into the cluster corresponding to the largest 

similarity; else this object forms a new cluster alone. The algorithm halts when all 

objects in the data set are clustered.  

 

2.3.11 Discussion 

 

k-means like algorithms including k-modes and various variants of k-modes, 

have the identical advantage with the k-means algorithm, namely they have high 

efficiency as they handle large data sets. However, they also have the identical 

disadvantage with the k-means algorithm, that is, the clustering results might vary with 

different initial values of modes (Parmar et al., 2007). 

It has been shown that many algorithms such as COOLCAT, LIMBO, and 

MMR outperform algorithm ROCK. The limitations of ROCK have been pointed out in 

these works. Firstly, the number of clusters generated by ROCK might exceed the 

number specified by user. Secondly, ROCK might create a large cluster including 

objects from many classes. Thirdly, the clustering results produced by ROCK 

significantly vary with the predefined threshold.  

For algorithm STIRR, the data set can be clustered only as the mapped dynamic 

system converges. Moreover, a non-trivial post-processing step is required to 

automatically identify sets of closely related attribute values and final clusters, which 

was not solved in STIRR. Finally, there are many choices of combiner functions; 

however, STIRR can not guarantee the performance of the system for any combiner 

function. Rigorous experiments are needed to generate a meaningful clustering. 

CACTUS introduces a new definition of a cluster for categorical attributes.  A 

cluster is considered as a high-density node set in which each node pair is strongly 

connected. The advantage of CACTUS is that it can conduct a subspace clustering since 

it discovers clusters in subsets of the attributes. Experimental results on synthetic data 

sets show that CACTUS has better efficiency and scalability than STIRR. However, 

such a cluster definition requires every node pair to be strongly connected in a cluster. 

Consequentely, a large number of clusters are likely to be generated and the cluster 

number may not be close to the desired one in the user perspective (Chen and Chuang, 

2004).  
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Information entropy based algorithms COOLCAT and LIMBO have the same 

objective function. COOLCAT uses sampling to construct the initial clusters; hence, the 

clustering results may be affected by the size of sample and the distribution of the real 

clusters. In addition, the order of processing objects also influences the clustering 

results so that the authors have to introduce a re-processing phase. The comparative 

analysis conducted by authors of LIMBO shows that the clustering performance and 

parameter stability of LIMBO are better than that of STIRR and ROCK. 

ALG-RAND, k-ANMI, and G-ANMI define the problem of categorical data 

clustering as optimization problem. On the one hand, the objective functions of these 

three algorithms are all based on information theory, where ALG-RAND uses 

conditional entropy while k-ANMI and G-ANMI use normalized mutual information. 

On the other hand, k-ANMI works in a k-means framework, while ALG-RAND and G-

ANMI uses genetic algorithm to find the optimal partition. k-ANMI tends to discover 

local optimal partition, ALG-RAND and G-ANMI try to discover globally optimal 

partition instead. The authors of k-ANMI and G-ANMI have conducted comparative 

analysis with ALG-RAND and showed that k-ANMI and G-ANMI outperform it on 

clustering accuracy. The authors of k-ANMI assert that their algorithm beats other 

algorithms including k-modes, ccdByEnsemble, and Squeezer. While G-ANMI 

improved clustering accuracy in comparison with heuristic algorithms, low efficiency 

caused by genetic algorithm is still a large obstacle before it can be widely used.  

MMR algorithm has high efficiency due to the fact that it split the objects from 

the viewpoint of attributes. However, it has some limitations, which will be analyzed in 

Chapter 3. MDA algorithm improves the accuracy and efficiency of selecting clustering 

attribute by using the dependency between attributes. However, it can only be used to 

select clustering attribute rather than to cluster the data set. 

Squeezer is suitable for clustering data streams since it scans each tuple only 

once. However, each dataset need a different threshold makes the selection of threshold 

a difficult work for users. Although the authors proposed a sampling technique to 

generate the threshold, it is not necessarily suitable for various datasets (e.g. some 

datasets are unbalanced). In addition, the algorithm usually produces more clusters in 

comparison to other algorithms, which probably results in meaningless clusters. For 

example, the algorithm generates 28 clusters on Congressional Votes dataset; 

nevertheless, there exists only two real clusters in the dataset. 



 

 

 

 

 

CHAPTER 3 

 

 

MGR: A NEW ATTRIBUTE-ORIENTED HIERARCHICAL DIVISIVE 

CLUSTERING ALGORITHM FOR CATEGORICAL DATA USING 

INFORMATION THEORY  

 

 

3.1       INTRODUCTION 

 

In this chapter, a novel hierarchical divisive clustering algorithm for categorical 

data, named MGR is proposed, which implements clustering from the viewpoint of 

attributes. The significance of attributes in categorical data clustering is analyzed first, 

followed by the description of MGR technique, the pseudocode of MGR algorithm, an 

illustrative example, and comparison with MMR algorithm. The chapter is structured as 

follows: 

 

 Section 3.2 analyzes the significance of attributes in categorical data 

clustering. 

 Section 3.3 describes the details of MGR technique. 

 Section 3.4 describes the MGR algorithm and gives an illustrative example. 

 Section 3.5 compares MGR algorithm with MMR algorithm. 

 

3.2       THE SPACE OF ATTRIBUTES PARTITIONS 

 

Most existing clustering algorithms for categorical data focus on the relation 

between the objects or the relation between an object and clusters during the process of 

clustering. These relations are usually measured by similarity or dissimilarity. It can be 

said that these methods are object-oriented. In fact, a data set consists of two elements: 

objects and attributes. Therefore, besides objects, the attribute is also an important 

aspect deserving to be considered for clustering. In a categorical data set, each attribute 
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defines a partition of the set of objects, each partition consists of some equivalence 

classes (an equivalence class is a set of objects which has the same value on an 

attribute). All the partitions form the space of attributes partitions. 

Let us first look at an example. Table 3.1 shows a categorical data set with ten 

objects and five attributes. The column of real classes implies that the set of objects can 

be partitioned into three classes. Suppose that the objects in each class are the same 

while completely distinct from the objects in other classes. Ai, Bi, Ci (i=1,...,5) denote 

different categories on the ith attribute. The requirement now is to cluster the data set 

without knowing the real classes in advance. Using the object-oriented methods like k-

modes, k-ANMI, the number of clusters has to be specified first and then the processes 

of initialization, iteration are conducted. Specifying the number of clusters in advance is 

difficult. Suppose the number of clusters is set to two in this example, the accuracy of 

clustering would be affected. In fact, from the viewpoint of attributes, it can be seen that 

each attribute partition the data set in the same way. If such relation between the 

attributes can be found, a perfect clustering of the data set including three clusters will 

be obtained by using the partition defined by any attribute without specifying the 

number of clusters in advance. Therefore, using attribute to cluster the data set in this 

example is a better way than using the object-oriented methods. The example reveals 

the potential of the space of attributes partitions for categorical data clustering.  

 

Table 3.1: Example data set with ten objects and five attributes 

 

Objects Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Real classes 

O1 A1 A2 A3 A4 A5 1 

O2 B1 B2 B3 B4 B5 2 

O3 B1 B2 B3 B4 B5 2 

O4 C1 C2 C3 C4 C5 3 

O5 A1 A2 A3 A4 A5 1 

O6 B1 B2 B3 B4 B5 2 

O7 A1 A2 A3 A4 A5 1 

O8 C1 C2 C3 C4 C5 3 

O9 B1 B2 B3 B4 B5 2 

O10 C1 C2 C3 C4 C5 3 



 

 

 

47 

In a real-life categorical data set, the partitions defined by attributes are not as 

perfect as that in the above example (i.e. the partitions defined by attributes are not 

always completely same); however, if the real classes are sufficiently distinguishable 

from each other, the objects in the same real classes have distinct value on some 

attributes from the objects in the other real classes, consequently, there exist some 

partitions defined by attributes which are similar to the real clustering of objects; at 

least, there exist some equivalence classes in these partitions which are similar to the 

real classes. Table 3.2 shows a simple example of such case. In Table 3.2, the partitions 

defined by attributes are not completely same, however, there are some equivalence 

classes (in the circles) in these partitions are as the same as the real classes. Our goal is 

to find such partitions and equivalence classes from the space of attributes partitions to 

construct the clustering of the objects. 

 

Table 3.2: Example data set with six objects and three attributes 

 

Objects Attribute 1 Attribute 2 Attribute 3 Real classes 

O1 A1 A2 A3 1 

O2 A1 A2 A3 1 

O3 B1 B2 A3 2 

O4 B1 B2 A3 2 

O5 B1 C2 B3 3 

O6 B1 C2 B3 3 

 

In addition, the number of attributes is usually less than the number of objects in 

a data set, thus it is possible to improve the clustering efficiency if the space of 

attributes partitions is employed for clustering. 

 

3.3        MGR TECHNIQUE 

 

3.3.1  Basic Idea of MGR 

 

A good clustering of the objects should share as much information as possible 

with the partitions defined by each attribute (attributes partitions for short) (He et al., 
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2005a; He et al., 2008; Cristofor and Simovici, 2002; Deng et al., 2010). The aim of 

MGR algorithm is to search some equivalence classes from attributes partitions to form 

such a clustering of the objects that share as much information as possible with the 

attributes partitions. Concretely, MGR first selects a clustering attribute whose partition 

shares the most information with the partitions defined by other attributes, and then on 

the clustering attribute, the equivalence class with the highest intra-class similarity is 

output as a cluster, and the rest of the objects form the new current data set. Repeat the 

above two steps on the new current data set until all the objects are output. Figure 3.1 

illustrates the basic steps of MGR technique. 

 

 

 

Figure 3.1: The basic steps of MGR technique 

 

 

 Determining Clustering Attribute 

 

Two partitions share much information implies that the equivalence classes 

contained in these two partitions are similar to each other. For example, given six 

objects {1, 2, 3, 4, 5, 6} and three partitions on them, P1 = {{1, 2}, {3, 4}, {5, 6}}, P2 = 

{{1, 2}, {3, 4}, {5}, {6}}, P3 = {{1}, {2, 3}, {4, 5, 6}}. It is obvious that P1 and P2 
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share more information than P1 and P3 or P2 and P3 because the equivalence classes 

contained in P1 and P2 are more similar (two equivalence classes are the same). That is, 

two partitions share much information means that they are similar (or close) to each 

other. Therefore, among the attributes partitions, the partition defined by the clustering 

attribute should be the most similar one to the partitions defined by all other attributes. 

In decision tree classification algorithms C4.5(Quinlan, 1993), the information 

theory based concept of gain ratio is used as the similarity measure of the partition 

defined by an attribute with respect to the partition defined by class label attribute. In 

MGR algorithm, the definition of gain ratio is extended to mean gain ratio (MGR) to 

measure the similarity between the partition defined by an attribute and the partitions 

defined by all other attributes. In algorithms C4.5, the higher an attribute’s gain ratio is, 

the more similar the attribute to the partition defined by class label attribute. 

Consequently, the higher an attribute’s MGR is, the closer the partition defined by the 

attribute to the partitions defined by all other attributes. Thus, the attribute with the 

highest MGR is selected as the clustering attribute.  

 

 Selecting Equivalence Class 

 

Clusters of similar data objects have lower entropy than those of dissimilar ones 

(Barbara et al., 2002). In MGR algorithm, the entropy of cluster is used to select 

equivalence class from the partition defined by clustering attribute. The lower the 

entropy of a cluster is, the more similar the objects in the cluster. Thus, the equivalence 

class with the lowest entropy is selected as the splitting equivalence class and output as 

a cluster. 

 

3.3.2  Information System 

 

The data objects in a categorical data set are characterized by a set of categorical 

attributes. The concept of information system gives a formal description of objects in 

terms of their attribute values. Thus, a categorical data set can be formally described 

using an information system. The discussion about MGR in this chapter will be based 

on the notion of information system.  

An information system is defined as a quadruple S = (U, A, V, f ), where: 
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 },...,,{ 21 nxxxU   is a set of n data objects, called a universe. 

 },...,,{ 21 maaaA   is a set of m attributes. 

 
ja

m

j VV 1  , 
jaV  is the domain of attribute aj.  

  f:U×A→V is an information (knowledge) function such that 
jaji Vaxf ),( , 

for every AUax ji ),( , mj 1  and ni 1 .  

 

An information system can be represented as an information table which 

consists of attribute-value pairs. Table 3.3 shows such an information table. 

 

Table 3.3:  An information system 

 

U a1 a2  ak  am 

x1 f(x1, a1) f(x1, a2)  f(x1, ak)  f(x1, am) 

x2 f(x2, a1) f(x2, a2)  f(x2, ak)  f(x2, am) 

              

xn f(xn, a1) f(xn, a2)  f(xn, ak)  f(xn, am) 

 

The notion of information system can be regarded as a generalization of the 

concept of relational database table by labeling the rows of database table with the 

objects and labeling the columns with the attributes. Note that two different objects can 

have the same description, namely redundant tuples in an information table; However, 

in a relational database table it is not allowed.  

 

3.3.3  Information Theory 

             

Claude Shannon’s paper, “A Mathematical Theory of Communication”, 

published in the Bell System Technical Journal in 1948, is universally acknowledged as 

the beginning of information theory. This paper generated a profound influence on 

communication technology and attracted many researchers from a variety of 

backgrounds to contribute to the subject and expand it to many applications. 

Information theory has become an interdiscipline of electronic engineering, computer 

http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/Bell_System_Technical_Journal
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science, physics, statistics, and applied mathematics. It has been widely applied to 

numerous areas, such as communication networks, internet, cryptography, data 

compression, artificial intelligence, natural language processing, and so on. 

The theoretical basis of Information theory includes probability theory and 

statistics. The most important concept in information theory is entropy, which is used to 

measure the amount of uncertainty related to a random variable. The higher the 

uncertainty is, the higher the entropy. Suppose X is a discrete random variable, D is the 

value set of X, and P(x) is the probability of x given some Dx , the entropy of X is 

defined as follows, 

 

                                        



Dx

xPxPXH )(log)()(                                  (3.1)                

 

There are two remarks about this definition. First, the base of the logarithmic is not 

specified. The base of the logarithmic determines the unit of information entropy. Base-

2 unit called bit, is the most commonly used unit of information entropy. Other units 

include base-10 (common logarithm) and base-e (natural logarithm). Second, if P(x) =0, 

the term P(x) log P(x) is defined to be 0. 

For a categorical data set represented by an information system S = (U, A, V, f), 

each attribute Aai  can be regarded as a random variable, and each category of 

attribute ai is regarded as a value of the random variable. Therefore, the above definition 

can be easily mapped onto a categorical data set. Let U/ai ={X1,…,Xj,…, Xh} denote the 

partition on U defined by ai where UX j  denotes an equivalence class (namely the 

block of objects which have the same value on ai), and base-2 unit be the unit of 

information entropy, the Eq. (3.1) can be mapped onto a categorical data set as follows.  

 

Definition 3.1. Given attribute Aai  , suppose ai defines partition U/ai ={X1, X2, …, 

Xh}, the entropy of ai about the partition is defined as 
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ssi XPXPaE
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2 ))((log)()(                               (3.2) 

 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Common_logarithm
http://en.wikipedia.org/wiki/Natural_logarithm
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where h is the domain size of ai, UX s   is an equivalence class, 
U

X
XP

s

s )( , s =1, 

2,…, h. 

 

Another important concept in information theory is conditional entropy. Given 

two random variables X and Y, the conditional entropy of X given Y is used to measure 

the uncertainty about X after observing Y, and defined as follows. 

 

                      
 


Yy Xx

yxPyxPyPYXH )|(log)|()()|(                         (3.3) 

 

Replacing the random variables X and Y with attributes, Eq. (3.3) can be mapped 

onto a categorical data set as follows. 

 

Definition 3.2. Given attributes Aaa ji , , suppose ai, aj define partitions U/ai ={X1, 

X2, …, Xh}, U/aj ={Y1, Y2, …, Yg}, the conditional entropy (CE) of ai with respect to aj 

is defined as 
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where UYX ts , ,
U

Y
YP

t

t )( ,
t

st

ts
Y

XY
YXP


)(  , s =1, 2, …, h and t =1, 2, ..., g. 

 

Now that H(X) stands for the information about X before Y is known, and H(X|Y) 

stands for the information about X given Y, the difference H(X)-H(X|Y) must represent 

the amount of information provided about X by Y. This quantity is called information 

gain, and defined as  

 

                                             I(X ; Y) = H(X) - H(X | Y)                                          (3.5) 

 

Similarly, Eq. (3.5) can be mapped onto a categorical data set as follows. 
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Definition 3.3. Given attributes Aaa ji , , the information gain (IG)of ai with respect 

to aj is defined as  

  

                                                )()()( iaiia aCEaEaIG
jj

                                   (3.6) 

 

Based on the concepts of entropy and information gain, algorithm C4.5 

(Quinlan, 1993) defines the concept of gain ratio as follows. 

 

Definition 3.4. Given attributes Aaa ji , , the gain ratio(GR)of ai with respect to aj is 

defined as  

 

)(
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i
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aE

aIG
aGR j

j
                                    (3.7) 

 

As mentioned in Section 3.3.1, MGR algorithm extends the definition of gain 

ratio to mean gain ratio to measure the similarity between the partition defined by an 

attribute and the partitions defined by all other attributes. It is defined as follows. 

 

Definition 3.5. Given attribute Aai  , the mean of gain ratio(MGR) of ai is defined as  
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                                   (3.8) 

 

In addition, MGR algorithm uses the notion of entropy of cluster to select 

equivalence class from the partition defined by clustering attribute. Entropy of cluster is 

defined as follows. 

 

Definition 3.6. Assume the attributes in A are independent from each other, given a 

cluster UC  , the entropy of C is defined as  

 

                                 )(...)()()( 21 mCCC aEaEaECEntropy                            (3.9) 
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where, )( iC aE , i=1, 2, …, m denotes the entropy of attribute ai about the partition 

defined by ai on C, which is calculated by Eq. (3.2). 

 

 

3.4       MGR ALGORITHM 

 

Figure 3.2 shows the MGR algorithm in details.  
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Algorithm:  MGR 

Input:           U        //the set of objects 

                      A        //the set of attributes 

                      k        //the desired number of clusters  

Output:        clustering of U 

  

01  Begin  

02         Current_Dataset = U  

03         CNC = 1.         // set current number of clusters 

04         Repeat     

05                 for each attribute Aai   

06                         Calculate_MGR(ai) 

07                 end for 

08                 // the attribute with the highest MGR is selected as clustering attribute 

09                 a = Select_attribute( A, MGR(ai))   

10                 p = U/a       //get the partition defined by a 

11                 for each equivalence class ei in p 

12                         Calculate_Entropy(ei)        //using Eq. (3.9) 

13                 end for 

14                 // the equivalence class with the lowest entropy in p is selected as the  

15                 // splitting equivalence class. 

16                 e = Select_equivalence_class (p, Entropy(ei)) 

17                 print(e)       //output e as a cluster 

18                CNC = CNC+1 

19                Current_Dataset = Current_Dataset - e 

20         Until CNC==k or |Current_Dataset /ai| = =1 for each attribute ai  

21          print (Current_Dataset)    //output Current_Dataset  as the last cluster 

22     End     

 

                                 Figure 3.2: MGR algorithm 

 

The function of Calculate_MGR(ai) is implemented by using Eq. (3.2), Eq. 

(3.4), Eq. (3.6), Eq. (3.7), and Eq. (3.8), the details are described in Figure 3.3. 
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01  Begin 

02          Determine equivalence classes in the partition Current_Dataset /ai 

03          Calculate E(ai) 

04          for each attribute Aa j  ( ij  ) 

05                   Calculate )( ia aCE
j

 

06                   Calculate )( ia aIG
j

 

07                   Calculate )( ia aGR
j

 

08          end for  

09          Calculate )( iaMGR   

10  End 

 

Figure 3.3:  The procedure of calculating MGR )( ia  

 

In view of the size of some selected equivalence classes might be very small, 

they are regarded as outlier. If the size of the equivalence class with the lowest entropy 

is less than a specified threshold, the equivalence class with the next lowest entropy will 

be checked until the size of an equivalence class is greater than the threshold. Thus, the 

procedure of selecting the equivalence class (Line 16 in Figure 3.2) is fined as is shown 

in Figure 3.4.  

 

01   Begin 

02           Size_flag = true 

03           Repeat 

04                    e = Select_equivalence_class (p, Entropy(ei))   

05                    if |e| < threshold 

06                            Size_flag = false  

07                            p = p-e 

08                    else 

09                    Size_flag = true 

10           Until Size_flag==true 

11   End 

 

Figure 3.4:  The procedure of selecting the equivalence class 
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It is possible that the sizes of all first |V(a)-1| equivalence classes are less than 

the threshold. In that case, the clustering attribute a is gave up and the attribute with the 

next highest MGR will be checked. 

There is a remark about the termination of MGR algorithm. It is not necessarily 

to specify the number of clusters k for the algorithm. If the number of clusters is not 

specified, the algorithm will terminate as each attribute in the current dataset only has 

one equivalence class. This is a more natural way than specifying the number of clusters 

especially when user experiences difficulties in specifying the number of clusters. 

Next, an illustrative example of the MGR algorithm is presented. 

 

Example 3.1. Table 3.4 shows a data set of students’ enrollment qualification used to 

illustrate the application of the MGR algorithm. There are eight objects with seven 

categorical attributes. The number of clusters is set to 3. 

 

Table 3.4: An information system of student’s enrollment qualification 

 

 

 

Source: Herawan et al. (2010) 

 

First, the mean of gain ratio of each attribute is calculated. Let us take attribute 

“Degree” as an example. Following the algorithm shown in Figure 3.3, the mean gain 

ratio of attribute “Degree” is calculated as follows. 

Attribute “Degree” defines the partition 

U/ Degree = {{1, 2}, {3, 4, 5, 6}, {7, 8}}. 

Using Eq. (3.2), the entropy of attribute “Degree” is calculated as follows 
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E(Degree) =  4
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1
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4

1
  = 1.5 

Next, for each attribute aj (aj   ai = Degree), )( ia aCE
j

, )( ia aIG
j

, and )( ia aGR
j

 

are calculated, respectively. Let us take attribute “English” as an example. 

Attribute “English” defines the partition 

U/ English = {{1}, {2, 3, 4, 5, 6, 7}, {8}}. 

            Using Eq. (3.4), the conditional entropy of attribute “Degree” with respect to 

attribute “English” is calculated as follows 

CEEnglish(Degree) = )0
8

1
)log

6

1
log

3

2
log

6
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1

2
3

2

2
6

1

2   

                               = 0.939 

Using Eq. (3.6), the information gain of attribute “Degree” with respect to 

attribute “English” is calculated as follows 

IGEnglish(Degree) = 1.5 - 0.939 =0.561 

Finally, the gain ratio of attribute “Degree” with respect to attribute “English” is 

obtained by using Eq. (3.7) 

GREnglish(Degree) = 
5.1

561.0
=0.374. 

 With the same process, the gain ratios of attribute “Degree” with respect to 

other attributes are obtained,  

GRExperience(Degree) = 0.541,  

GRIT(Degree) = 0.667,  

GRMathematics(Degree) = 0.333,  

GRProgramming(Degree) = 0.333, 

GRStatistics(Degree) = 0.230.  

Consequently, according to Eq. (3.8), the mean gain ratio of attribute “Degree” 

is obtained, 

 

 MGR(Degree) = 
6

23.0333.0333.0667.0541.0374.0 
 = 0.413. 

 

Following the same procedure, the mean gain ratios of other attributes are 

calculated. The results of gain ratio and mean gain ratio are summarized in Table 3.5. 
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Table 3.5: GR and MGR of all attributes in Table 3.4 

 

Attribute 

(with respect to) 

Degree English Experience IT Math Programming Statistics MGR 

Degree - 0.374 0.541 0.667 0.333 0.333 0.230 0.413 

English 0.529 - 0.305 0.293 0.236 0.236 0.293 0.315 

Experience 1.000 0.399 - 0.384 0.384 0.384 0.000 0.425 

IT 1.000 0.311 0.311 - 0.000 0.000 0.189 0.302 

Mathematics 0.500 0.250 0.311 0.000 - 1.000 0.189 0.375 

Programming 0.500 0.250 0.311 0.000 1.000 - 0.189 0.375 

Statistics 0.344 0.311 0.000 0.189 0.189 0.189 - 0.204 

 

Second, the clustering attribute with the highest MGR is chose. Table 3.5 shows 

that attribute “Experience” has the highest MGR, thereby, it is chose as clustering 

attribute.  

Third, the splitting equivalence class with the minimum entropy is determined. 

Attribute “Experience” defines a partition {{1, 2, 3, 4, 5, 6}, {7, 8}}. C1 and C2 are used 

to denote {1, 2, 3, 4, 5, 6} and {7, 8}, respectively. According to the Definition 3.6, the 

entropies are calculated as follows 

 Entropy(C1) = 
1CE (Degree) + 

1CE (English) +
1CE (Experience) +

1CE (IT)  

+
1CE (Math) +

1CE (Programming) +
1CE (Statistics)  

                        = ( 3

2

2
3

1

2 log
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2
log
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1
 ) + ( 6
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log

3

1
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                        = 5.323 

 

  Entropy(C2) = 
2CE (Degree) + 

2CE (English) +
2CE (Experience) +

2CE (IT)  

+
2CE (Math) +

2CE (Programming) +
2CE (Statistics) 

                        = 0 + 1 + 0 + 0 + 0 + 0 + 1 

                        = 2 
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 In this example, the threshold of the size of splitting equivalence class is set to 

be 3% of the number of data set, that is, threshold = 0.03*8 = 0.24 < 1. Obviously, set 

{7, 8} has the lowest entropy and its size is greater than threshold. Hence, set {7, 8} is 

selected as splitting equivalence class.  

Finally, splitting equivalence class {7, 8} is output as a cluster, equivalence class 

{1, 2, 3, 4, 5, 6} is regarded as the new current dataset to further process. 

Over the new current dataset, the above procedure is repeated. This time, 

attribute “Degree” is chose as clustering attribute and {1, 2, 3, 4, 5, 6} is partitioned to 

two clusters {1, 2} and {3, 4, 5, 6}. Subsequently, set {1, 2} is selected as the splitting 

equivalence class since it has the lowest entropy, and output as a cluster. Set {3, 4, 5, 6} 

becomes the new current data set. Since the current number of clusters reaches 3 so far, 

the procedure of iteration stops. The current dataset is output as the final cluster.  In the 

end, the data set is partitioned to three clusters, C1 = {7, 8}, C2 = {1, 2}, C3 = {3, 4, 5, 

6}. 

 

 

3.5       MGR COMPUTATIONAL COMPLEXITY 

 

Given a data set, assume n is the number of objects, m is the number of 

attributes, l is the maximum number of values in the attribute domains and k is the 

required number of clusters. To achieve k clusters, the algorithm has to runs k-

1iterations. In each iteration, the time to determine equivalence classes for each attribute 

is mn, the time to compute the entropy of attributes is ml, the time to calculate the 

conditional entropy is m
2
l, the time to calculate the IG and GR is 2m

2
, the time to 

calculate MGR is m, the time to determine the clustering attribute is m, the time to 

compute the entropy of the equivalence classes on the clustering attribute is ml
2
.  The 

whole time for k-1iterations is km
2
(2+l)+km(n+l+l

2
+2). Generally, l << n, thus, the 

computational complexity is O(km
2
l + kmn), which is polynomial time. 
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3.6       COMPARISONS WITH MMR 

 

3.6.1 Limitations of MMR 

 

In this section, the limitations of MMR algorithm are analyzed and illustrated 

with some examples. 

 

i. MMR algorithm is biased toward the attribute with the smallest value domain 

size or with the most unbalanced partition as determining the partitioning 

attribute (Step 4 in Figure 2.7).  

 

There are two reasons for this limitation. First, MMR has two properties as 

follows.  

 

Proposition 3.1. Given an information system S = (U, A, V, f ), if an attribute defines an 

one-equivalence-class partition, then the attribute has minimum Min-Roughness, i.e. 

MMR. 

 

Proof.  Suppose attribute Aai   defines a one-equivalence-class partition, which means 

all the objects in U have the same value on attribute ia . Suppose the same value is , 

for any attribute Aa j  ( ij  ), the lower approximation and upper approximation of 

)( iaT  with regard to ja are calculated as follows 

 

UaTaT iaia jj
 )()(   

 

 Then, using Eq. (2.31), the roughness of )( iaT  with regard to ja is obtained 

 

   0
)(

)(
1)( 











ia

ia

ia

aT

aT
aTR

j

j

j
 

 



 

 

 

62 

Using Eq. (2.32) and Eq. (2.33), the mean roughness and Min-Roughness of 

attribute ia  are obtained  

 

0)( ia aRough
j

, and 0)( iaMR . 

 

From the definitions in Section 2.3.8, it is easy to get that 0)( aMR  for each 

Aa . Hence, attribute ia  has minimum Min-Roughness, i.e. MMR.    □ 

 

Proposition 3.2. Given an information system S = (U, A, V, f ), if an attribute defines a 

partition with one-element equivalence classes , then the attribute has maximum Min-

Roughness in A. 

 

Proof.  Suppose attribute Aai   defines a partition with one-element equivalence 

classes, which means each object in U has a different value on attribute ia .  

For any attribute Aa j  ( ij  ), suppose there are 
1j

N one-element equivalence 

classes, 
2j

N non one-element equivalence classes in the partition jaU / .  Using the Eq. 

(2.31), the following two conclusions are obtained. 

(1) There are 
1j

N  equivalence classes in the partition iaU / whose roughness 

equal 0 with respect to attribute ja . 

(2) There are 
1j

NU   equivalence classes in the partition iaU / whose 

roughness equal 1 with respect to attribute ja . 

Thereby, using Eq. (2.32), the mean roughness on attributes ia with respect to ja is 

calculated as follows   

 

U

NU
aRough

j

ia j

1)(


  

 

Conversely, the roughness of all equivalence classes in the partition jaU / with 

respect to attribute ia equal 0, hence the mean roughness on attributes ja with respect to 

ia  equal 0, that is 
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 0)( ja aRough
i

 

 

Finally, the following formula is obtained by using Eq. (2.33).  

 

    0)(
},,...,1,min{

)( 1 


 j

j

i aMR
U

ijmjNU
aMR   

 

0)()(  ji aMRaMR when there exists an attribute ja with 0
1
 jNU , which 

means attribute ja  also defines a partition with one-element equivalence classes. 

Hence, if an attribute defines a partition with one-element equivalence classes, then the 

attribute has maximum Min-Roughness in A.   □ 

 

In the following discussion, the attribute that defines a one-equivalence-class 

partition is called P1-type attribute, the attribute defines a partition with one-element 

equivalence classes is called P2-type attribute. Further, let us give a deep insight into 

these two types attributes. A P1-type attribute has two properties: (1) it has the smallest 

value domain size; (2) it has the most unbalanced partition. Reversely, for a P2-type 

attribute, (1) it has the biggest value domain size; (2) it has the most balanced partition. 

The two propositions imply that the attribute with the smaller value domain size 

or with the more unbalanced partition usually has lower Min-Roughness, which means 

MMR algorithm prefers to select such attribute as the partition attribute. For example, if 

a partitioning attribute is required to be selected (Step 4 in Figure 2.7) from an attribute 

set which includes a P1-type attribute, according to MMR algorithm, the P1-type 

attribute will be selected since it has MMR value, while it is impossible to be selected 

for a P2-type attribute because of its maximum MR value. This finally results in the 

extreme selection of MMR algorithm as determining the partitioning attribute, namely, 

MMR algorithm is biased toward the attribute with the smallest value domain size or 

with the most unbalanced partition (although P1-type attribute is excluded when the 

algorithm is implemented). 

Second, from the definition of roughness (Eq.( 2.31)), it can be seen that the 

formula only focuses on the precision of X with respect to aj, regardless of the size of X 
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and the distribution of attribute ai.  This also contributes to the extreme selection as 

determining the partitioning attribute. 

Determining partitioning attribute is the key of MMR algorithm. Such extreme 

selections will decrease the clustering accuracy of MMR algorithm; after all, the real 

clusters are not always embedded in such attributes. The following examples illustrate 

these two cases. 

 

Example 3.2. There are five objects in a small data set as is shown in Table 3.6. Each 

object has four categorical attributes: Size, Material, Shape, and Colour. The domain 

sizes of these four attributes are 2, 3, 4, and 5, respectively.  

 

Table 3.6:  Example data set with five objects and four attributes 

 

U Size  Material Shape Colour 

1 Big Wood Circle Red 

2 Small Plastic Square Green 

3 Big  Wood Ellipse Yellow 

4 Small Plastic Circle White 

5 Small Metal Triangle Black 

 

Following MMR algorithm, attribute “Size”, which has the smallest domain 

size, is selected to split the dataset in the first selection. Suppose three clusters are 

required, attribute “Material” will be selected in the second selection (iteration) to split 

objects set {2, 4, 5}. Note that attribute “Material” also has the smallest domain size 

except for single-value attribute “Size” (excluded) when objects set is {2, 4, 5}. 

 

Example 3.3. Using a data generator (Cristofor et al., 2002), a data set of 5 objects with 

5 attributes a1, a2, ..., a5 is generated as is shown in Table 3.7.  
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Table 3.7:  Example data set with five objects and five attributes  

 

U a1 a2 a3 a4 a5 

1 0 0 1 0 0 

2 0 1 1 1 1 

3 1 1 0 1 1 

4 0 1 0 0 0 

5 0 0 0 1 0 

 

The data generator sets value 0 on most attributes (four out of five) for objects 1, 

4, and 5, and sets value 1 on most attributes (four out of five) for objects 2 and 3, that is,   

the reference partition is {0, 1, 1, 0, 0}. The real clusters can be obtained from this 

reference partition, namely {{1, 4, 5}, {2, 3}}. Following MMR algorithm, attribute a1 

is selected as the partition attribute. Thereby, the clustering result is {{3}, {1, 2, 4, 5}}. 

Note that, MMR algorithm selects the attribute with the most unbalanced 

partitions among all attributes in this example. In the above dataset, each attribute has 

the same number of equivalence classes, i.e. 2. The numbers of the objects in each 

equivalence class are listed in Table 3.8. Values 0 and 1 in Table 3.7 denote different 

categories of an attribute regardless of order, therefore, class 1 in Table 3.8 denotes the 

equivalence class that includes object 1, and class 2 denotes the other equivalence class. 

It is obvious that attribute a1 has the most unbalanced partitions. 

 

Table 3.8:  The numbers of the objects in each equivalence class  

 

Equivalence classes a1 a2 a3 a4 a5 

class 1 4 2 2 2 3 

class 2 1 3 3 3 2 

 

 

ii. Selecting the current longest cluster to further binary split (Step 7 in Figure 

2.7) is not always consistent with the natural distribution of clusters. 
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For unsupervised learning, the length of the clusters is not known in advance. 

There exist some clusters with longer length in data sets. Therefore, using the length of 

clusters as the criterion is not natural, that is, it is not always consistent with the natural 

distribution of clusters. The following example illustrates the view. 

 

Example 3.4. Table 3.9 shows an animal world data set which is modified from (Hu, 

1995). There are seven objects with seven categorical attributes: Hair, Teeth, Feet, Eat, 

Milk, Fly, and Swim. The attribute “Type” shows the real classes of the animals, i.e. 

{mammal, bird, reptile}. Note, attribute “Type” does not participate in the process of 

clustering.  

 

Table 3.9:  The animal dataset 

 

Animal Hair Teeth Feet Eat Milk Fly Swim Type 

Tiger Y pointed claw meat Y N Y mammal 

Cheetah Y pointed claw meat Y N Y mammal 

Giraffe Y blunt hoof grass Y N N mammal 

Zebra Y blunt hoof grass Y N N mammal 

Albatross N N claw grain N Y Y bird 

Eagle N N claw meat N Y N bird 

Viper N pointed N meat N N N reptile 

 

Following MMR algorithm, first, attribute “Hair” is selected to split the dataset. 

With attribute “Hair”, two clusters are obtained, i.e. P1 = {Tiger, Cheetah, Giraffe, 

Zebra} and P2 = {Albatross, Eagle, Viper}. Next, cluster P1 is selected to be further split 

because P1 is the current longest node among all the clusters. This time, attribute 

“Teeth” is chose as partition attribute. With attribute “Teeth”, two clusters are obtained, 

i.e. P11 = {Tiger, Cheetah} and P12 = {Giraffe, Zebra}. Finally, three clusters are 

obtained, C1 = {Tiger, Cheetah}, C2 = {Giraffe, Zebra}, and C3 = {Albatross, Eagle, 

Viper}. However, in terms of attribute “Type”, the real clusters are C1 = {Tiger, 

Cheetah, Giraffe, Zebra}, C2 = {Albatross, Eagle}, and C3 = {Viper}.  

Assuming partition P2 was selected to be further processed instead of the longest 

node P1 after splitting by attribute “Hair”, obviously, the clustering results will be the 
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same as the real clusters. Therefore, selecting the longest node is not always consistent 

with the natural distribution of clusters. 

 

 

iii. MMR algorithm has to store all clusters produced during the execution of 

program 

 

In order to select the current longest clusters for the further process, MMR 

algorithm has to store all clusters produced during the execution of program, which is 

space consuming. All clusters correspond to all objects, suppose there are n objects in 

dataset and only store the ID of the objects in clusters, then at least n space nodes are 

required to store them, that is, the extra space complexity is O(n). 

 

3.6.2 Comparison Between MGR and MMR 

 

MGR algorithm can overcome the above limitations of MMR algorithm well. 

Corresponding to those limitations, MGR algorithm has the following advantages: 

 

i. MGR algorithm is not biased toward extreme selections. 

 

There are two reasons for this view. First, it can not be confirmed that P1-type 

and P2-type attributes have the maximum or minimum of mean gain ratio. Thus, they 

are not necessarily selected as clustering attribute. 

Second, in the decision tree learning algorithm C4.5, the reason for using gain 

ratio measure is to avoid extreme selection caused by information gain measure. The 

mean gain ratio used in MGR algorithm has the same principle, thus it can avoid 

extreme selections. 

 

Example 3.5. Let us reconsider the clustering of the data set in Example 3.3. Here the 

data set is reclustered using MGR algorithm. 

 

Following MGR algorithm, the results of gain ratio and mean gain ratio are 

summarized in Table 3.10.           
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Table 3.10:  Gain Ratio of all attributes in Table 3.7 

 

Attribute 

(with respect to) 
a1 a2 a3 a4 a5 MGR 

a1 - 0.237 0.237 0.237 0.446 0.289 

a2 0.176 - 0.021 0.021 0.433 0.162 

a3 0.176 0.021 - 0.021 0.021 0.059 

a4 0.176 0.021 0.021 - 0.433 0.162 

a5 0.332 0.433 0.021 0.433 - 0.304 

 

 

Table 3.10 shows that attribute a5 has the highest MGR. Therefore, according to 

MGR algorithm, attribute a5 is chosen as the clustering attribute. Attribute a5 partitions 

the data set shown in Table 3.7 into two clusters, that is {{1, 4, 5}, {2, 3}}. It has been 

mentioned in Example 3.3 that the data generator set the real clusters as {{1, 4, 5}, {2, 

3}}. Thereby, the clustering result generated by MGR algorithm on this data set is the 

same as the real clusters. 

 

ii.  In each iteration, MGR algorithm output the cluster found regardless of its 

length and perform binary split on the remaining objects. 

 

The way of MGR algorithm is more natural than that of MMR algorithm, that is, 

it is more consistent with the real distribution of clusters. The following example 

illustrates the view. 

 

Example 3.6. Let us reconsider the clustering of the data set in Example 3.4. Here the 

data set is reclustered using MGR algorithm. 

 

Following MGR algorithm, two iterations are needed to obtain three clusters 

from the data set. The results of gain ratio and mean gain ratio in the first iteration are 

summarized in Table 3.11 which shows the one-to-one relationship between attributes 

by using the same attributes for both axes. Each cell (except for the cells in the last 

column) of Table 3.11 gives the gain ratio value of an attribute with respect to another 

attribute and the last column gives the MGR value of each attribute.  
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Table 3.11: Gain Ratio of all attributes in Table 3.9 in the first iteration 

 

Attribute 

(with respect to) 
Hair Teeth Feet Eat Milk Fly Swim MGR 

Hair - 0.601 0.420 0.420 1.000 0.477 0.021 0.490 

Teeth 0.380 - 0.633 0.702 0.380 0.554 0.197 0.474 

Feet 0.300 0.715 - 0.664 0.300 0.212 0.378 0.428 

Eat 0.300 0.793 0.664 - 0.300 0.290 0.300 0.441 

Milk 1.000 0.601 0.420 0.420 - 0.477 0.021 0.490 

Fly 0.544 1.000 0.338 0.463 0.544 - 0.007 0.483 

Swim 0.021 0.311 0.529 0.420 0.021 0.006 - 0.218 

 

Attribute “Hair” has the highest MGR among all the attributes, thus it is chosen 

as clustering attribute. Two clusters are obtained by attribute “Hair”, i.e. T1 = {Tiger, 

Cheetah, Giraffe, Zebra} and T2 = {Albatross, Eagle, Viper}. Next, cluster T1 is output 

since it has the lowest entropy and cluster T2 is to be further split in the second iteration. 

The results of gain ratio and mean gain ratio in the second iteration are summarized in 

Table 3.12. 

 

Table 3.12: Gain Ratio of all attributes in Table 3.9 in the second iteration 

 

Attribute  

(with respect to) 
Hair Teeth Feet Eat Milk Fly Swim MGR 

Hair - 0 0 0 0 0 0 0 

Teeth 0 - 1 0.274 0 1 0.274 0.425 

Feet 0 1 - 0.274 0 1 0.274 0.425 

Eat 0 0.274 0.274 - 0 0.274 1 0.304 

Milk 0 0 0 0 - 0 0 0 

Fly 0 1 1 0.274 0 - 0.274 0.425 

Swim 0 0.274 0.274 1 0 0.274 - 0.304 

 

In the second iteration, attribute “Teeth” is the first attribute that has the highest 

MGR. Therefore, it is selected as clustering attribute. Two clusters are obtained by 

attribute “Teeth”, i.e. T21 = {Albatross, Eagle} and T22 = {Viper}.  Finally, three clusters 
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are obtained, i.e. C1 = {Tiger, Cheetah, Giraffe, Zebra}, C2 = {Albatross, Eagle}, and C3 

= {Viper}, which is the same as the real clusters. 

The example illustrates that the way of MGR algorithm is more natural than that 

of MMR algorithm. 

 

iii. For MGR algorithm, there is no need of storing all clusters produced 

during the execution of program. 

 

In each iteration, MGR first selects a clustering attribute, and then selects an 

equivalence class on the clustering attribute, finally outputs the seleted equivalence 

class as a cluster (Line 17 in Figure 3.2). In other words, all the clusters produced in the 

iterations are directly printed rather than stored in memory, thus, there is no need of 

extra space for storing all clusters during the execution of program.  

 

 

3.7       SUMMARY 

 

This chapter reveals the significance of attributes for categorical data clustering 

and proposes a novel attribute-oriented hierarchical divisive clustering algorithm named 

MGR for categorical data. Mean gain ratio and entropy of clusters, two information 

theory based concepts, are introduced in the implementation of MGR algorithm. From 

the analysis of the limitations of MMR algorithm and the comparison between MGR 

and MMR, it can be seen that MGR can overcome the limitations of MMR algorithm. 

The polynomial computational complexity implies that MGR still maintains high 

efficiency. 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 4 

 

 

IG-ANMI: AN IMPROVED GENETIC CLUSTERING ALGORITHM FOR 

CATEGORICAL DATA 

 

 

4.1       INTRODUCTION 

 

Deng et al. (2010) propose G-ANMI, which is an ANMI based genetic 

clustering algorithm for categorical data. It has been demonstrated that G-ANMI 

algorithm is superior or comparable to existing clustering algorithms for categorical 

data including ALG-RAND, ccdByEnsemble, k-ANMI, k-modes, TCSOM, and 

Squeezer, according to clustering accuracy. However, the low efficiency of G-ANMI is 

a considerable obstacle before it can be widely used in practice. The low efficiency of 

the algorithm is mainly contributed by genetic algorithm in which lots of iterations are 

needed to find globally optimal solution (Deng et al., 2010). Especially when a big 

population size is used, each iteration will take much time. Hence, new methods which 

can reduce the number of iterations of genetic algorithm in G-ANMI are desired.  

G-ANMI algorithm first randomly generates a set of partitions of objects which 

form a population. These randomly generated partitions are far from the distribution of 

the real classes in the processed data set. The farther these partitions are from the 

distribution of the real classes, the more iteration G-ANMI needs to reach the optimal 

solution. Thus, improve the initial population is a possible method to reduce the number 

of iteration of G-ANMI. As described in the last chapter, MGR algorithm implements 

clustering from the viewpoint of the attribute, in which the partitions defined by 

attributes and the equivalence classes in these partitions are used to build the clustering 

of the objects. Inspired by the idea of MGR, the space of attributes partitions are tried to 

be used to construct the initial population of G-ANMI. In this chapter, an improved 

genetic clustering algorithm for categorical data is proposed, termed IG-ANMI. Based 

on G-ANMI, IG-ANMI improves the method of initialization. Prior to the description of 
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the algorithm, the preliminary knowledge about genetic algorithms (GAs) and algorithm 

G-ANMI are introduced. The chapter is structured as follows: 

 

 Section 4.2 introduces GAs. 

 Section 4.3 describes the algorithm G-ANMI.  

 Section 4.4 describes the algorithm IG-ANMI. 

 

4.2       GENETIC ALGORITHMS 

             

GAs (Holland, 1992; Mitchell, 1998; Man et al., 2001) are a part of evolutionary 

computing, which is a rapidly growing area of artificial intelligence. GAs were invented 

by Holland (1992) and developed by him and his students and colleagues.  

 

4.2.1 Biological Background 

 

Cell is the basic component of an organism. In the nucleus of each cell there is a 

set of threadlike linear strand of DNA called chromosomes. Chromosomes carry the 

hereditary information which are encoded and stored in the hereditary units called genes. 

Each gene has a particular location in a chromosome and represents a particular 

characteristic of an organism, such as the number of legs, intelligence and so on. Each 

characteristic has some different settings, for instance, the number of leges may be 2, 4, 

6, etc. All the hereditary information carried by chromosomes in a cell's nucleus is 

referred to genome. Specific set of genes of an organism and their settings are called the 

organism's genotype.  

When sexual reproduction takes place between two organisms, two 

chromosomes from parent will recombine by performing crossover to produce two new 

chromosomes. There might exsit some mistakes during cell's reproduction, that is, some 

genes might be mutated. It is possible that the mutated genes express completely new 

characteristics. These basic processes including natural selction, mutation and 

recombination enable the life on earth continuously evolve. 
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4.2.2 The Outline of Basic GAs 

 

The first step of GAs is to generate a set of chromosomes called initial 

population, which are generated randomly in most cases. Each chromosome in current 

population is then evaluated and assigned a fitness value. Based on these fitness values, 

some chromosomes in current population are chose and used to generate new 

population. In general, the higher the fitness value a chromosome has, the more chances 

it has to be selected. Repeat the above steps on the new generated population until the 

best fitness vaule or the number of iterations exceeds the predefined threshold. Figure 

4.1 shows the steps of basic GAs. 

 

 

 

                            Figure 4.1: The outline of basic GAs 

 

When the Basic GAs is used in practice, the implementation of some steps 

varies with the different applications, including encoding of chromosomes, how to 

select parent chromosomes, and what types of crossover and mutation are used. These 

problems will be discussed in the following sections, respectively. 
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4.2.3 Encoding of Chromosomes 

 

When GA is being used to solve a problem, the possible solutions of this 

problem have to be encoded as chromosomes. The encoding varies with the problems. 

There are several successfully used ways of encoding for a chromosome, such as binary 

encoding, permutation encoding, value encoding, and tree encoding. The mostly used 

binary encoding and value encoding are introduced below. 

 Binary Encoding  

    Each chromosome is encoded as a strand of 1 or 0. Table 4.1 shows the 

example of chromosomes with binary encoding. 

 

Table 4.1: The example of chromosomes with binary encoding 

 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

 

 Value Encoding 

It is possibly difficult using binary encoding to solve some special problems 

in which some complex values are involved. Each chromosome in value 

encoding is encoded as a strand of some values. Values depend on the 

problem, they might be characters, real numbers, words, or some complex 

objects. Such encoding method is suitable to solve some particular problems; 

however, new mutation and crossover methods special for these problems are 

usually required. Table 4.2 shows the example of chromosomes with value 

encoding. 

 

        Table 4.2: The example of chromosomes with value encoding 

 

Chromosome A white, yellow, red, pink, blue, green 

Chromosome B 3.19  8.45  2.37  6.23  9.77  11.55  

Chromosome C UYTORSVNYPLKWAHJBQWIMS 
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4.2.4 Fitness Function 

 

During the evolution of population, each chromosome has to be evaluated how 

fit it is to be a solution of the problem. Such evaluation is performed by the fitness 

function. The return value of fitness function named fitness value usually is a positive 

number. The higher the fitness value is, the fitter the chromosome to the solved problem 

(Man et al., 2001).  

The fitness function is usally defined by transforming the objective function. For 

instance, ffi /  is one of commonly used definitions of fitness function, where if  

denotes the evaluation of i
th

 chromosome and can be calculated by using objective 

function, and f  denotes the average evaluation of all the chromosomes. Moreover, a 

chromosome’s rank in the population can also be used to compute the fitness value.   

 

4.2.5 Selection Operators 

 

Selection refers to selecting some chromosomes in the population to create new 

offspring according to chromosomes’ fitness. In GA, the selection operation complies 

with Darwin's evolution theory, that is, the fittest ones should be selected. There are a 

number of ways to do selection, such as elitism, roulette wheel selection, rank selection, 

tournament selection, and Boltzman selection (Mitchell, 1998). The most commonly 

used methods including roulette wheel selection and elitism are introduced below. 

 

i. Roulette Wheel Selection 

 

In this method, the chromosomes are mapped onto a roulette wheel, where each 

chromosome occupies a piece of space whose area is proportion to its fitness value. 

Figure 4.2 shows an example of such mapping.  
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Figure 4.2: The mapping of chromosomes onto a roulette wheel 

 

Imaging a die is thrown on the roulette wheel; the chromosome which finally 

contains the die will be selected. Obviously, the bigger the area of a chromosome is, the 

more times it is selected. The algorithm shown in Figure 4.3 simulates the process. 

 

 

 

               Figure 4.3:  The algorithm of roulette wheel selection 

 

ii.  Elitism 

 

Elitism guarantees some best first chromosomes survive in the new population 

by directly copying them to new population. Elitism is usually followed by other 

selection methods which are used to deal with the rest chromosomes. Since elitism 

preserves the fittest solution, it can speed the convergence of GA. 

 

4.2.6 Crossover Operators 

 

Crossover is a process of recombining chromosomes to create new offsprings,   

which has a great impact on the performance of GAs. Crossover can be implemented in 

many ways including single point crossover, two point crossover, uniform crossover, 
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and arithmetic crossover. The selection of the method for crossover relies on the way of 

encoding as well as the solved problem. In this section, single point crossover for binary 

encoding is described. 

For example, single point crossover is performed on two chromosomes 

0010110011010010 and 1111111100000000. First, generate a random number as 

crossover point denoted by |, and then exchange the corresponding bits in two 

chromosomes after the crossover point. The process is shown in Table 4.3.  

 

Table 4.3:  Single point crossover for binary encoding 

 

Chromosome 1 0010 | 110011010010   

Chromosome 2 1111 | 111100000000 

Offspring 1 0010 | 111100000000 

Offspring 2 1111 | 110011010010 

 

 

4.2.7 Mutation Operators 

  

Mutation is a process of randomly changing a few parts of the new offspring 

generated by crossover operation, which prevents the solutions of the solved problem 

being local optimal solutions. The way of encoding usually determines the method of 

mutation. For a chromosome with binary encoding, first randomly choose some bits, 

and then switch them to 1 or 0. Table 4.4 shows the mutation operation performed on 

the offsprings in Table 4.3, where the mutated bit is in bold style. 

 

Table 4.4:  Mutation for binary encoding 

 

Offspring 1 0010111100000000 

Offspring 2 1111110011010010 

Mutated 1 0000111100001000 

Mutated 2 1111010011010011 
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4.2.8 Parameters of GAs 

 

The settings of some important parameters including population size, crossover 

probability, and mutation probability usually influence the performance of GAs.  

 

 Population size refers to the number of chromosomes in population. 

Generally, a too big population size will lower the efficiency of GAs; on the 

other hand, a too small population size will reduce the search space of GAs. It 

has been shown that increasing population size does not improve the 

performance of GAs after some limit which relies on the solved problem 

(Mitchell, 1998).  

 Crossover probability refers to how many chromosomes will be selected to 

perform crossover. A crossover probability of 0 means all chromosomes in the 

new population are directly copied from the old population. A crossover 

probability of 1 means all chromosomes are generated by crossover. Generally, 

a high crossover probability is recommended. 

 Mutation probability refers to how many bits in a chromosome will be 

mutated. A mutation probability of 0 means chromosomes are not changed at 

all. A mutation probability of 1 means each bit in a chromosome is changed, 

that is, GAs are equivalent to random search in that case. Therfore, a low 

mutation probability is usually recommended. 

 

 

4.3       G-ANMI 

 

G-ANMI uses a basic GA to search for an ANMI based optimal partition. In this 

section, the G-ANMI algorithm and some details of its implementation, including the 

encoding method, fitness function, selection operator, crossover operator, mutation 

operator, and parameters setting are described. 

 

 

 

 



 

 

 

79 

4.3.1 The Description of G-ANMI Algorithm 

 

Initially, the algorithm randomly generates a set of partitions of objects and 

encodes them as chromosomes. These chromosomes form the initial population.  Then, 

ANMI is used to calculate the fitness of each chromosome. Based on the fitness values, 

some genetic operations are employed to generate a new population by changing the 

chromosomes in the current population. The latest chromosomes are expected to be 

more similar to the optimal partition than the previous chromosomes. Repeat the above 

steps until the best fitness has kept invariable in some successive iterations. Figure 4.4 

shows the details of G-ANMI algorithm, where M is the population size, m and r are the 

the mutation and crossover probability, respectively. 

 

initialize the population of genetic algorithm 

while (true) 

         compute the fitness of chromosomes in the population; 

         if (there has been no relative improvement in best fitness value for    

Nmax iterations) 

         then 

                  output the partition of Kbest; 

                  exit; 

          copy fittest (1 − r − m)M chromosomes to new population; 

          select probabilistically max{2, rM} chromosomes to cross over; 

          apply crossover operator to the selected chromosomes 

                 and copy the offspring to the new population; 

          select with uniform probability max{1,mM} chromosomes to mutate; 

          apply mutation operator to the selected chromosomes 

                 and copy the modified chromosomes to the new population; 

          Use the new population  to replace the old one; 

 

Figure 4.4:  The G-ANMI algorithm 

 

 

 



 

 

 

80 

4.3.2 The Encoding Method and Initialization 

 

G-ANMI searches for the optimal partition of objects, thus each chromosome is 

encoded as a partition of objects. If the desired number of clusters is set to k, then each 

chromosome is encoded as a k-partition of objects. In the G-ANMI algorithm, the 

integers from interval [0, k-1] are used as class identifier; therefore, a chromosome is a 

string of integers which are in interval [0, k-1]. For example, suppose the number of 

objects is 20, and k is 4, a possible chromosome is as follows 

1 0 2 0 1 0 3 2 3 1 0 1 2 0 3 2 0 1 1 2 

The initial population consists of a set of randomly generated chromosomes. 

Each location of a chromosome is filled by a random number in interval [0, k-1]. 

 

4.3.3 The Fitness Function 

 

G-ANMI aims to discover the optimal partition which shares most information 

with the partitions defined by attributes. It borrows the concept of ANMI from the 

algorithms ccdByEnsemble and k-ANMI to measure how well a partition summarizes 

the attribute partitions. Given a set of m partitions defined by attributes: 

 = }},...,2,1{|{ )( mqq   and a partition , the average normalized mutual information 

(ANMI) between  and   is defined as follows: 
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where ),( )()( qNMI  denotes the Normalized Mutual Information (NMI) between 

)(q and  . In general, given any two partitions )(a  and )(b , the normalized mutual 

information between them is calculated as follows: 
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where k
(a)

 and k
(b)

 denote the number of clusters in partitions )(a  and )(b , respectively. 

ng is the length of cluster Cg in )(b , n
(h)

 is the length of cluster Ch in )(a ,  )(h

gn  is the 

number of common objects between cluster Cg and Ch. 

ANMI described in Eq. (4.1) is used to evaluate the fitness of each chromosome 

in population (the chromosome is viewed as ). The higher the ANMI of a chromosome 

is, the more suitable the chromosome is. 

 

4.3.4 Selection, Crossover, and Mutation Operators 

 

G-ANMI uses elitism method to do selection. The fittest (1-r-m)M chromosomes 

are copied directly to the new population, ensuring that current population always has 

the best chromosomes from the old population. Next, a number of max{2, rM} 

chromosomes from the old generation are selected probabilistically to be used in the 

generation of the new offspring by crossover. The selection method used is roulette 

wheel strategy introduced in Section 4.2.5. 

The classical single point crossover operator is used in G-ANMI, which is 

similar to the one introduced in Section 4.2.6 for binary encoding. Starting from two 

chromosomes, a random crossing point is selected as a number l between 1 and N (N is 

the length of a chromosome). The offspring will contain the first 1 to l positions from 

the first parent and the last l+1 to N positions from the second parent and vice versa. 

G-ANMI uses the classical mutation operator which involves changing 

randomly a number of max{1, 0.1N} positions in the chromosomes. The new value for 

each chromosome position is chosen randomly from 0 to k-1. 

 

 

4.4      IG-ANMI 

 

IG-ANMI improves G-ANMI by developing a new initialization method. The 

initial set of chromosomes are no longer entirely generated randomly, part of them are 

generated from the partitions defined by attributes instead. The genetic algorithm used 

in IG-ANMI is the same as that in G-ANMI, hence this section mainly describes the 

new initialization algorithm of IG-ANMI and gives an illustrative example. 
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The basic idea of the initialization algorithm is that integrating some equivalence 

classes of the partitions defined by attributes into the generation of initial partitions. 

Two cases are considered: one is the population size is greater than or equal to the 

number of attributes, another is the population size is less than the number of attributes. 

Different strategies are used in the two cases. The basic initialization algorithm of IG-

ANMI is described in Figure 4.5. The algorithm takes M partitions corresponding to M 

attributes, the number of equivalence classes in each partition, and the size of 

population as the input and will terminate when P chromosomes are obtained. Each 

partition partitions[i], i = 0, …, M consists of num_eqc[i] equivalence classes which are 

labeled by 0, 1, …,  num_eqc[i]-1 in turn. Suppose the number of clusters is set to K, 

the algorithm outputs P K-partitions each of which is a string of integer in the interval 

[0, K-1]. 

 

Algorithm: Initialization 

Input:  partitions[i], i=0, …, M          //M partitions corresponding to M attributes,  

             num_eqc[i], i=0, …, M          //The number of equivalence classes in  

                                                            //partitions[i],  

             P   //The size of population.              

Output: chrom[i], i=0, …, P        // P chromosomes (K-partitions)    

Begin  

             if  P >= M 

                     //Generate first M chromosomes from the input M partitions  

                       Generate_from_Partitions(M); 

                     //Randomly generate P-M chromosomes 

                       Randomly_Generate(P-M); 

              else 

                     //Generate P chromosomes from the first P partitions 

                       Generate_from_Partitions(P); 

              Output P chromosomes.         

End. 

 

Figure 4.5: The initialization algorithm of IG_ANMI 
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Generating chromosomes from the input partitions is implemented by a one-one 

way, namely one chromosome is generated by one partition. Generating a chromosome 

from a partition means taking some equivalence classes in the partition as the part of the 

chromosome. How many equivalence classes should be taken depends on the number of 

equivalence classes in the partition and the specified number of clusters. Different 

strategies are employed when the number of equivalence classes in the partition is 

greater than, less than, equals to the specified number of clusters, respectively. The 

details of function Generate_from_Partitions are described in Figure 4.6. 
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Function Generate_from_Partitions (int Num) 

Input:    Num   //The number of chromosomes need to be generated              

Output: chrom[i], i=0, …, Num    //Num chromosomes  

Begin 

        For each of first Num partitions, partitions[i]     // i=0, …, Num 

               if num_eqc[i] equals K 

                      Copy partitions[i] to chrom[i]   

               else 

                      if num_eqc[i] is greater than K 

                             Copy first K equivalence classes of partition[i] to the 

                                 corresponding location in chrom[i]. 

                             Generate a random number in [0, K-1] for each of the remaining 

                                 locations in chrom[i]. 

                      else 

                              Find a highest H which satisfies the following inequation 

                                          N - Sum >= K-H-1    

                              //where N denotes the length of a chromosome, 

                              //Sum is the summation of the size of first H+1 equivalence 

                              //classes of partition[i]. 

                              if such H can not be found 

                                         // randomly generate a K-partition for chrom[i] 

                                         Randomly_Generate(1) 

                              else 

                                         Copy first H+1 equivalence classes of partition[i] to the 

                                               corresponding locations in chrom[i]. 

                                         Generate a random number in [H+1, K-1] for each of the  

                                               remaining locations in chrom[i]. 

End. 

 

                          Figure 4.6: The function of Generate_from_Partitions  
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There are two remarks on the process when num_eqc[i] is less than K: 

(1) When num_eqc[i] is less than K, the original idea is to copy first num_eqc[i]-

1 equivalence classes to chrom[i] at first, and then generate a random number in interval 

[num_eqc[i]-1, K-1] for each of the remaining locations in chrom[i]. However, this 

method can not make sure if the remaining locations are enough for each number in 

interval [num_eqc[i]-1, K-1] appears at least once in chrom[i], namely it can not make 

sure chrom[i] is a K-partition. Thus an appropriate number H have to be found so that 

the remaining locations are enough for each number in interval [H+1, K-1] appears at 

least once in chrom[i] after copying first H+1 (labeled by 0, 1, …, H) equivalence 

classes to chrom[i]. Such H satisfies the inequation N-Sum >= K-H-1, where N-Sum 

denotes the number of remaining locations in chrom[i] after copying first H+1 

equivalence classes to chrom[i], K-H-1 is the length of interval [H+1, K-1]. In order to 

copy as many as possible equivalence classes to chrom[i], the highest H is selected. 

It is possible that any H which satisfies the above inequation can not be found. 

That means the remaining locations are not enough for each number in interval [1, K-1] 

appears at least once in chrom[i] after copying the first (labeled by 0) equivalence class 

to chrom[i]. There are many ways to deal with such case. In our implementation, a K-

partition is randomly generated for chrom[i].  

(2) Even if an appropriate number H is found, the algorithm has to make sure 

each number in interval [H+1, K-1] appears at least once in chrom[i] when generating a 

random number for each of the remaining locations in chrom[i].   

When the population size P is greater than the number of attributes M, the latter 

P-M chromosomes are generated randomly. Each chromosome is a string of integers 

which are in interval [0, K-1]. The details of function Randomly_Generate are described 

in Figure 4.7. Note that the algorithm must make sure all the numbers in interval [0, K-

1] appear at least once in a chromosome, or else the chromosome is not a K-partition. 
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Function Randomly_Generate(int Num) 

Input:    Num   //The number of chromosomes need to be generated              

Output: chrom[i], i=0, …, Num    //Num chromosomes  

Begin 

        i=0 

        while i<Num   

                 for each location of the chrom[i] 

                          Generate a random number in [0, K-1] 

                 if all the numbers in [0, K-1] appear in the chrom[i] 

                           i++                     

End. 

 

                          Figure 4.7: The function of Randomly_Generate  

 

An illustrative example of the IG-ANMI algorithm is as follows. 

 

Example 4.1. Suppose a data set has ten objects with four attributes, namely N=10, 

M=4. Table 4.5 shows the partitions defined by the four attributes. The numbers 0, 1, 2, 

and 3 in the partitions denote different equivalence classes (categories). The algorithm 

IG-ANMI is used to cluster the objects below. The parameter setting includes: the 

number of clusters K=3, the population size P=10, random seed=1, mutation 

probability=0.1, crossover probability=0.8 and Nmax=100.            

                           

Table 4.5:  The example of partitions defined by four attributes 

 

U A0 A1 A2 A3 

O1 0 0 0 0 

O2 1 0 1 1 

O3 0 1 0 0 

O4 0 0 0 0 

O5 1 1 2 2 

O6 1 1 1 2 

O7 2 0 2 3 

O8 2 1 2 1 

O9 1 1 1 2 

O10 2 1 2 3 
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Following the initialization algorithm shown in Figure 4.5, since the population 

size P is greater than the number of attributes M, first four chromosomes are generated 

by using the four partitions associated with the attributes and remaining six 

chromosomes randomly. The partitions defined by the four attributes have 3, 2, 3, and 4 

equivalence classes, respectively. The numbers of equivalence classes in attributes A0 

and A2 equal the specified number of clusters K, so the partitions of attributes A0 and A2 

are directly copied to chrom [0] and chrom [2], respectively. For the attribute A1, the 

number of equivalence classes in its partitions is less than K. According to the function 

shown in Figure 4.6, an appropriate number H should be found first. In this example, 

there is only possible value for H, namely zero. Zero satisfies N - Sum >= K-H-1, thus 

H get the value zero. Next, the first equivalence class is copied to the corresponding 

location in chrom [1]. Table 4.6 shows the status of chrom [1] after copying the first 

equivalence class.  

 

Table 4.6:  The status of chrom [1] after copying the first equivalence class 

 

location 0 1 2 3 4 5 6 7 8 9 

chrom[1] 0 0  0   0    

 

There are still six locations need to be filled in chrom [1]. A random number in 

interval [1, 2] is generated for each of the six locations.  

For the attribute A3, the number of equivalence classes in its partitions is greater 

than K. According to the function Generate_from_Partitions shown in Figure 4.6, first 

three equivalence classes of partitions [3] are copied to the corresponding location in 

chrom [3]. Table 4.7 shows the status of chrom [3] after copying first three equivalence 

classes.  

 

Table 4.7:  The status of chrom [3] after copying first three equivalence classes 

  

location 0 1 2 3 4 5 6 7 8 9 

chrom[3] 0 1 0 0 2 2  1 2  
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There are still two locations need to be filled in chrom [3]. A random number in 

interval [0, 2] is generated for each of the two locations. The first four chromosomes are 

obtained at the end of the function of Generate_from_Partitions and summarized in 

Table 4.8. The numbers in bold style are randomly generated. 

 

Table 4.8:  The first four chromosomes generated from attributes partitions 

 

location chrom[0] chrom[1] chrom[2] chrom[3] 

0 0 0 0 0 

1 1 0 1 1 

2 0 1 0 0 

3 0 0 0 0 

4 1 1 2 2 

5 1 1 1 2 

6 2 0 2 0 

7 2 1 2 1 

8 1 1 1 2 

9 2 2 2 1 

 

Following the initialization algorithm, the remaining six chromosomes will be 

randomly generated. According to the function Randomly_Generate, six chromosomes 

are obtained and summarized in Table 4.9.  
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Table 4.9:  The six chromosomes generated randomly 

 

location chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9] 

0 1 2 1 2 1 1 

1 1 0 1 1 1 2 

2 1 2 0 0 0 0 

3 2 1 1 1 1 0 

4 1 2 1 1 0 2 

5 1 2 1 1 0 0 

6 0 2 2 0 1 0 

7 1 2 2 0 0 1 

8 0 0 1 2 2 2 

9 0 0 2 1 0 0 

 

Note that the equivalence classes in each of the first four chromosomes are 

labeled by order 0, 1, 2.  However, the equivalence classes in each of other six 

chromosomes are labeled unorderly. Actually, the numbers 0, 1, 2 in the partions or 

chromosomes only denote different categories rather than order. That means the order 

of the labels doesn’t affect the computation of fitness of a chromosome. Even if the 

order of the labels is changed in some chromosomes, their fitness values keep invarible. 

For instance, chrom[0] can be changed from {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} to {1, 2, 1, 1, 2, 

2, 0, 0, 2, 0}, chrom[4] can be changed from {1, 1, 1, 2, 1, 1, 0, 1, 0, 0} to {0, 0, 0, 1, 0, 

0, 2, 0, 2, 2}, and so on. 

After the initialization, the next step of IG-ANMI is to compute the fitness for 

chromosomes. Let us take chrom [0] as an example. First, the NMI between chrom [0] 

and the attributes are calculated by using Eq. (4.2). The calculation of NMI between 

chrom [0] and attribute A0 is as follows. 

Let the partition defined by chrom [0] be )(a , the partition defined by A0 be 

)(b . As mentioned above, chrom [0] is a copy of the partition defined by A0, that is, 

)(a = )(b = {{O1, O3, O4}, {O2, O5, O6, O9}, {O7, O8, O10}}. Therefore, k
(a)

 = k
(b)

 = 3, 

n
(1)

 =3, n
(2)

 =4, n
(3)

 =3, n1=3, n2=4, n3=3, )1(

1n =3, )1(

2n =0, )1(

3n =0, )2(

1n =0, )2(

2n =4, )2(

3n =0, 

)3(

1n =0, )3(

2n =0, )3(

3n =3, and n=10. Take these values into Eq. (4.2).  
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baNMI  = 0.991159 

That is, the NMI between chrom [0] and attribute A0 is 0.991159. With the same 

process, the NMI between chrom [0] and other three attribute are obtained. The NMI 

between chrom [0] and A1, A2, A3 are 0.073859, 0.786416 and 0.764834, respectively. 

Next, using the Eq. (4.1), the ANMI between chrom [0] and attribute partitions is 

calculated as follows 

                     )764834.0786416.0073859.0991159.0(
4

1
 = 0.654067 

That is, the fitness of chrom [0] is 0.654067. Repeating the above process on other 

chromosomes, their fitnesses are obtained as is shown in Table 4.10.     

 

                   Table 4.10:  The fitness of initial chromosomes of IG-ANMI 

 

fitness[i] fitness value average 

fitness[0] 0.654067 

0.53927 
fitness[1] 0.361562 

fitness[2] 0.615644 

fitness[3] 0.525807 

fitness[4] 0.252361 

0.265807 

fitness[5] 0.196573 

fitness[6] 0.403407 

fitness[7] 0.166014 

fitness[8] 0.323139 

fitness[9] 0.253349 

average 0.375192  

 

It can be seen from Table 4.10 that the first four chromosomes has higher 

average fitness value compared with other six chromosomes, which indicates that the 

chromosomes generated from the partitions associated with attributes are closer to the 

optimal partition than that generated randomly. With these fitness values, the algorithm 

IG-ANMI continues to generate new population, namely modify the chromosomes in 

the current population by using crossover and mutation as genetic operators. Table 4.11 
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shows the first new population after initial population. Chrom [0] has the highest fitness 

in the initial population. From the Table 4.11, it can be seen that several chromosomes 

which are dissimilar to chrom [0] in the initial population are very close to chrom [0] in 

the new population, such as chrom [5], chrom [6], and chrom [8]. Table 4.12 shows the 

fitness values of the chromosomes in the new population. The average fitness of the 

new chromosomes is obviously higher than that of initial chromosomes. After five 

iterations, all the chromosomes are the same, namely {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} and 

have the same fitness 0.654067. Since the best fitness keep invariable during 100 

successive iterations, the algorithm IG-ANMI ends after the 100
th

 iteration. Finally, IG-

ANMI produces the optimal 3-partition {0, 1, 0, 0, 1, 1, 2, 2, 1, 2}.        



 

 

              

Table 4.11:  The first new population after initial population in IG-ANMI 

 

location chrom[0] chrom[1] chrom[2] chrom[3] chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9] 

0 0 1 0 0 1 0 0 1 0 0 

1 1 1 1 1 2 1 1 1 1 0 

2 0 0 0 0 0 0 0 0 0 1 

3 0 0 1 0 0 0 0 1 0 0 

4 1 1 0 2 2 1 2 1 2 1 

5 1 1 0 0 1 1 1 2 1 1 

6 2 2 1 0 2 2 2 0 2 0 

7 2 2 0 1 2 2 2 1 2 1 

8 1 1 2 2 1 1 1 2 1 1 

9 2 2 0 0 2 2 2 1 2 2 
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          Table 4.12:  The fitness values of the chromosomes in the first new population 

 

fitness[i] fitness value 

fitness[0] 0.654067 

fitness[1] 0.473318 

fitness[2] 0.217901 

fitness[3] 0.310606 

fitness[4] 0.407429 

fitness[5] 0.654067 

fitness[6] 0.615644 

fitness[7] 0.263929 

fitness[8] 0.615644 

fitness[9] 0.361562 

average 0.457417 

 

 

G-ANMI is used to cluster the same data set below. The parameter setting of G-

ANMI is as the same as the parameter setting of IG-ANMI. Firstly, G-ANMI randomly 

generates P chromosomes as shown in Table 4.13. Table 4.14 shows the fitness values 

of the chromosomes in the initial population. Obviously, the average fitness as well as 

the best fitness of the chromosomes is less than that in the initial population generated 

by algorithm IG-ANMI. After 27 iterations, the best fitness reaches 0.654067, which 

equals the best fitness of the initial population generated by algorithm IG-ANMI. Since 

the best fitness keep invariable during the subsequent 99 successive iterations, the 

algorithm G-ANMI ends after the 127
th

 iterations. G-ANMI requires 27 more iterations 

than IG-ANMI due to the randomly generated initial population.   

 

 

 

 

 

 



 

 

Table 4.13:  The initial population of G-ANMI 

 

location chrom[0] chrom[1] chrom[2] chrom[3] chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9] 

0 1 1 2 0 0 0 0 0 2 2 

1 1 2 1 1 2 1 1 0 1 1 

2 2 1 2 1 2 1 0 2 1 0 

3 1 1 2 1 0 1 0 0 2 1 

4 1 0 2 2 0 0 1 0 2 2 

5 1 1 2 2 0 0 0 1 1 1 

6 0 0 0 1 2 2 2 2 2 2 

7 1 0 0 2 0 1 0 0 0 1 

8 1 2 1 0 2 1 2 1 1 2 

9 1 0 1 0 1 1 1 1 0 0 
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Table 4.14: The fitness values of the chromosomes in the initial population of G-ANMI 

 

fitness[i] fitness value 

fitness[0] 0.211672 

fitness[1] 0.469059 

fitness[2] 0.338877 

fitness[3] 0.227614 

fitness[4] 0.139958 

fitness[5] 0.181013 

fitness[6] 0.216344 

fitness[7] 0.263182 

fitness[8] 0.377376 

fitness[9] 0.166627 

average 0.259172 

 

 

4.5      SUMMARY 

 

This chapter introduces the basic genetic algorithm, analyzes the reason for the 

low efficiency of G-ANMI algorithm and proposes an improved genetic clustering 

algorithm named IG-ANMI for categorical data. An attribute-oriented initialization 

method is used in IG-ANMI, in which attributes partitions are integrated into the 

generation of initial chromosomes. The example illustrates that IG-ANMI converges 

faster than G-ANMI, which implies that IG-ANMI has higher efficiency than G-ANMI. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 5 

 

 

EXPERIMENTAL RESULTS 

 

 

5.1      INTRODUCTION 

 

A set of experiments are performed to evaluate clustering performance, 

clustering efficiency and scalability of MGR and IG-ANMI algorithms. In this chapter, 

the details of these experiments and the corresponding results are presented, and MGR 

and IG-ANMI algorithms are compared with MMR, k-ANMI, G-ANMI, and 

COOLCAT algorithms in terms of clustering performance and efficiency. The chapter 

is structured as follows: 

 

 Section 5.2 introduces the experiments design, including algorithms used for 

comparison, data sets, parameters setting, and the platform for conducting 

experiments. 

 Section 5.3 describes the performance analysis and comparison of six 

algorithms on four real-life data sets.  

 Section 5.4 describes the efficiency analysis and comparison of six 

algorithms on ten synthetic data sets. 

 Section 5.5 describes the running results of MGR algorithm without 

specifying the number of clusters. 

 Section 5.6 describes the scalability of MGR and IG-ANMI algorithms. 

 Section 5.7 describes the comparison between IG-ANMI and G-ANMI. 
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5.2      EXPERIMENT DESIGN  

             

5.2.1 Algorithms Used for Comparison 

 

Besides our algorithms MGR and IG-ANMI, other four algorithms including 

MMR, k-ANMI, G-ANMI, and COOLCAT are repeated for comparing MGR and IG-

ANMI with them. Choosing these algorithms for comparison is based on the following 

consideration:  

 

 MMR is the most similar work to our MGR algorithm among all existing 

algorithms for categorical data clustering. 

 IG-ANMI improves G-ANMI by proposing a new initialization method. 

 COOLCAT, k-ANMI, and G-ANMI, are also based on information theory. 

 k-ANMI and G-ANMI also explore the relation between the partitions 

although the scopes of partitions they use are much larger than that MGR 

uses. 

 

5.2.2 Data Sets Used in Experiments 

 

i. Real life data sets 

 

Four real-life data sets derived from the UCI Machine Learning Repository 

(http://www.ics.uci.edu_/mlearn/MLRepository.html) are employed to appraise the 

clustering performance, including the Zoo data set, the Congressional Votes data set 

(Votes for short), the Wisconsin Breast Cancer data set (Breast Cancer for short), and 

the Mushroom data set. The reason for choosing these four datasets is that they are also 

partially or completely used in MMR, k-ANMI, G-ANMI, and COOLCAT algorithms 

for evaluation. A brief introduction about these data sets is given as follows. 

 

 Zoo data set 

There are 101 instances of animals in the Zoo data set. Each animal is 

characterized by 17 attributes, where the first attribute denotes the name of animals 

(does not participate in the clustering), 15 Boolean attributes denote the presence of 
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some characters such as fins, feathers and so on, 1 non-Boolean attribute represents the 

number of legs. These animals can be categorized into 7 classes, that is, fish, mammal, 

bird, invertebrate, insect, reptile, and amphibian. 

 

 Congressional Votes data set  

The data set contains the Congressional Voting Records of United States in 

1984. Each record (a vote) is characterized by 16 Boolean attributes. Each record is 

classified into two classes: Republican and Democrat. There are 435 records in this data 

set including 267 Democrats and 168 Republicans. 

 

 Wisconsin Breast Cancer data set  

The data set derived from the University Medical Center, Institute of Oncology, 

Ljubljana, Yugoslavia. There are 699 instances in this data set, each of which is 

described by 9 attributes. Each instance is classified into two classes: Benign (458 

instances) and Malignant (241 instances). 

 

 Mushroom data set  

There are 8124 instances in this data set, each of which represents a mushroom. 

The physical characters of each mushroom are described by 22 categorical attributes. 

Each mushroom is classified into two classes: poisonous (3916 instances) and edible 

(4208 instances). 

The basic information about these data sets is summarized in Table 5.1. 

 

Table 5.1: The basic information about the four data sets 

 

Data set  Number of objects Number of Attributes Number of classes 

Zoo  101 16 7 

Votes 435 16 2 

Breast Cancer 699 9 2 

Mushroom 8124 22 2 

 

Except for the Zoo data set, there are missing values in other three data sets. 

Since algorithms k-ANMI and G-ANMI delete the objects with missing value in the 
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Breast Cancer data, the same process is performed on the Breast Cancer data set in our 

experiment for a fair comparison between them and other algorithms. Thus, the Breast 

Cancer data set used in our experiments contains 683 objects with 444 Benign and 239 

Malignant. For the Votes and Mushroom data sets, missing values are considered as 

particular categories.  

 

ii.  Synthetically generated data sets 

 

Using the method proposed by Cristofor and Simovici (2002) for synthetically 

generating dataset, 10 categorical datasets are created to evaluate the efficiency and test 

the scalability of MGR and IG-ANMI algorithms. The generation of these data sets 

follows the pattern: for each object number objectid   [0, N-1], a number i  [0, K-1] is 

randomly generated and saved at position objectid in the reference partition (reference 

partition is regarded as real clusters of the objects) and in all attribute partitions, but 

one. The exception attribute aA, randomly chosen, receives at position objectid a 

different value j [0, K-1], j i. To ensure that the reference and attribute partitions 

have exactly K classes, the first values for i are 0, 1, …, K-1. These ten datasets contain 

10,000, 20,000 through 100,000 instances, respectively. The number of attributes and 

classes are set to be 10 and 10 separately. These datasets are named by R1, R2 through 

R10.  

 

5.2.3 Parameters Setting 

 

Six algorithms are sequentially run on all the data sets. Each algorithm has some 

parameters which need to be set before running.  

MMR, k-ANMI, G-ANMI, IG-ANMI, and COOLCAT have a common input 

parameter, namely the number of clusters. It is set to be as the same as the number of 

classes provided with the data set in our experiments. For example there are 7 classes in 

the Zoo data set, so the number of clusters in these algorithms is set to 7. As mentioned 

in Chapter 3, MGR algorithm can be run with specifying the number of clusters as well 

as without specifying the number of clusters. For the comparison purpose, MGR is 

assigned as the same number of clusters as that for other five algorithms (Section 5.5 

describes the experimental results of MGR without specifying the number of clusters).  
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In all the experiments, the threshold of the size of the splitting equivalence class 

in MGR algorithm is set to be 3% of the number of objects in data set. 

All the parameters required by G-ANMI and IG-ANMI are set to be default as in 

G-ANMI. Concretely, the parameter setteing includes: random seed=1, mutation 

probability=0.1, crossover probability=0.8 and Nmax=100. Moreover, population size 

greatly affects the quality of clustering in these two algorithms. Therefore, the 

population size is varied from 50 to 500 on each data set (from 50 to 200 on Mushroom 

data set because G-ANMI and IG-ANMI are very time-consuming on Mushroom data 

set when the population size is greater than 200) to calculate the average performance 

and efficiency for comparison to other algorithms as well as comparison between IG-

ANMI and G-ANMI. 

Besides the number of clusters, COOLCAT has two other parameters: buffer 

size and the percent of reprocess. Since each dataset has different number of objects, 

different buffer size is specified for each dataset. The buffer size is set to be 30, 100, 

100, and 200 for Zoo, Votes, Breast Cancer, and Mushroom data sets, respectively. The 

buffer size is set to be 2% of the number of objects for each synthetically generated data 

set. The percent of reprocess greatly affects the quality of clustering in COOLCAT. In 

our implementation, the percent of reprocess is set to 0, 10%, 20%, and 40% 

respectively to calculate the average performance and efficiency. 

 

5.2.4 Language and Platform for Implementation 

 

All the algorithms are coded in C language and compiled on the Borland C++ 

version 5.02. All experiments are conducted on a machine with Intel Core2 Duo CPU 

T7250 @ 2.00GHz, 1.99 GB of RAM, running Microsoft Windows XP Professional. 

 

 

5.3       PERFORMANCE ANALYSIS 

 

5.3.1 Evaluation Method 

 

It is an important task to validate clustering results (He et al., 2008). One of the 

commonly used ways to appraise the results of clustering algorithms is clustering 
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accuracy (Huang, 1998), also named clustering purity. This method needs external class 

labels to compute the best matches between the clusters produced by clustering 

algorithms and the true clusters. Given the true class labels, clustering accuracy is 

formally defined as follows: 

 

                                       Clustering accuracy = 
n

a
k

i i 1                                         (5.1) 

 

where k denotes the specified number of clusters, ai is size of the class having the most 

objects in the i
th

 cluster, n denotes the number of instances in the used data set. 

According to this measure, a clustering accuracy of 1 means the objects in each cluster 

have the same class label, which is an expected result. Hence, the higher the clustering 

accuracy is, the better the clustering result (He et al., 2008).  

Note that the clustering error defined as 
n

a
k

i i  11 is also used in many 

literatures. It is essentially the same as clustering accuracy. In addition, some famous 

clustering evaluation methods are described in the literature (Mali and Mitra, 2003). As 

pointed out by He et al. (2008), these methods coincide with clustering accuracy (error). 

Thus, only clustering accuracy is used in our experiments to appraise the algorithms’ 

performance. 

Based on the evaluation measure of clustering accuracy, the performance of 

algorithms MGR and IG-ANMI and their comparison with other algorithms on four real 

life data sets are presented as follows. 

 

5.3.2 Zoo Data Set 

 

The results of MGR, MMR and k-ANMI algorithms on Zoo data set are shown 

in Tables 5.2-5.4, respectively.  
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Table 5.2: The results of MGR algorithm on the Zoo data set 

 

No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 41 0 0 0 0 0 0 41 

0.931 

2 0 13 0 0 0 0 0 13 

3 0 0 20 0 0 0 0 20 

4 0 0 0 0 4 0 0 4 

5 0 0 0 0 0 4 5 5 

6 0 0 0 7 0 0 0 7 

7 0 0 0 3 4 0 0 4 

 

 

 

Table 5.3: The results of MMR algorithm on the Zoo data set 

 

No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 39 0 0 0 0 0 0 39 

0.911 

2 0 0 20 0 0 0 0 20 

3 2 0 0 0 6 0 0 6 

4 0 0 0 10 2 0 0 10 

5 0 13 0 0 0 0 1 13 

6 0 0 0 0 0 1 1 1 

7 0 0 0 0 0 3 3 3 

 

 

Table 5.4: The results of k-ANMI algorithm on the Zoo data set 

 

No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 5 0 0 0 0 0 0 5 

0.733 

2 6 0 0 0 0 0 0 6 

3 0 13 0 8 0 4 4 13 

4 15 0 0 0 0 0 0 15 

5 4 0 0 0 0 0 0 4 

6 11 0 0 0 0 0 0 11 

7 0 0 20 2 8 0 1 20 
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The clustering accuracy of MGR is 0.931, which means 93.1% of animals have 

the dominant class label of the cluster in which they are grouped. The clustering 

accuracy of MMR and k-ANMI are 0.911 and 0.733, respectively.  

The clustering accuracy of G-ANMI and IG-ANMI vary with different 

population sizes. Tables 5.5 and 5.6 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.7 and Table 5.8 

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the 

population size is increased from 50 with step 50 up to 500. 

 

Table 5.5: The results of G-ANMI algorithm on the Zoo data set when the population 

size is set to 50 

 
No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 18 0 0 0 0 0 0 18 

0.832 

2 18 0 0 0 0 0 0 18 

3 0 13 0 0 0 0 1 13 

4 0 0 4 4 8 0 1 8 

5 0 0 0 6 0 2 3 6 

6 0 0 16 0 0 0 0 16 

7 5 0 0 0 0 2 0 5 

 

 

Table 5.6: The results of IG-ANMI algorithm on the Zoo data set when the population 

size is set to 50 

 
No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 12 0 0 0 0 0 0 12 

0.881 

2 26 0 0 0 0 0 0 26 

3 3 13 0 0 0 1 4 13 

4 0 0 20 0 0 0 0 20 

5 0 0 0 5 0 0 1 5 

6 0 0 0 5 0 3 0 5 

7 0 0 0 0 8 0 0 8 
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Table 5.7: The clustering accuracy of G-ANMI on the Zoo data set with the increase of 

the population size 

 

Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.832 0.851 0.911 0.881 0.861 0.891 0.931 0.812 0.851 0.921 0.874 

 

 

 

Table 5.8: The clustering accuracy of IG-ANMI on the Zoo data set with the increase 

of the population size  

 

Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.881 0.911 0.901 0.911 0.921 0.921 0.921 0.931 0.931 0.931 0.916 

 

 

The clustering accuracy of COOLCAT varies with different percent of 

reprocess. Table 5.9 shows the clustering results of COOLCAT when percent of 

reprocess is set to 10%. Table 5.10 summarizes the clustering accuracy of COOLCAT 

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.  

 

 

Table 5.9: The results of COOLCAT algorithm on the Zoo data set when the percent of 

reprocess is set to 10% 

 

No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 11 0 1 0 1 0 0 11 

0.792 

2 0 0 0 5 2 1 0 5 

3 0 0 18 1 1 0 2 18 

4 1 13 1 0 1 1 2 13 

5 17 0 0 0 1 0 1 17 

6 0 0 0 4 1 1 0 4 

7 12 0 0 0 1 1 0 12 
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Table 5.10: The clustering accuracy of COOLCAT on the Zoo data set when the 

percent of reprocess are 0, 10%, 20%, and 40% 

 

Percent of reprocess 0 10% 20% 40% Average 

Accuracy 0.792 0.792 0.772 0.782 0.785 

 

 

5.3.3 Votes Data Set 

 

The results of MGR, MMR and k-ANMI algorithms on Votes data set are shown 

in Tables 5.11-5.13, respectively.  

 

Table 5.11: The results of MGR algorithm on the Votes data set 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 208 8 200 200 
0.828 

2 227 160 67 160 

 

 

Table 5.12: The results of MMR algorithm on the Votes data set 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 236 134 102 134 
0.687 

2 199 34 165 165 

 

 

Table 5.13: The results of k-ANMI algorithm on the Votes data set 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 207 159 48 159 
0.869 

2 228 9 219 219 
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The clustering accuracy of G-ANMI and IG-ANMI vary with different 

population sizes. Tables 5.14 and 5.15 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.16 and Table 5.17 

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the 

population size is increased from 50 with step 50 up to 500. 

 

Table 5.14: The results of G-ANMI algorithm on the Votes data set when the 

population size is set to 50 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 205 159 46 159 
0.874 

2 230 9 221 221 

 

 

Table 5.15: The results of IG-ANMI algorithm on the Votes data set when the 

population size is set to 50 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 190 144 46 144 
0.839 

2 245 24 221 221 

 

 

Table 5.16: The clustering accuracy of G-ANMI on the Votes data set with the increase 

of the population size  

 

Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.874 0.862 0.876 0.864 0.88 0.874 0.869 0.864 0.876 0.874 0.871 
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Table 5.17: The clustering accuracy of IG-ANMI on the Votes data set with the 

increase of the population size  

 
Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.839 0.86 0.88 0.862 0.867 0.869 0.876 0.876 0.871 0.878 0.868 

 

 

The clustering accuracy of COOLCAT varies with different percent of 

reprocess. Table 5.18 shows the clustering results of COOLCAT when the percent of 

reprocess is set to 10%. Table 5.19 summarizes the clustering accuracy of COOLCAT 

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.  

 

Table 5.18: The results of COOLCAT algorithm on the Votes data set when the percent 

of reprocess is set to 10% 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 216 160 56 160 
0.853 

2 219 8 211 211 

 

 

Table 5.19: The clustering accuracy of COOLCAT on the Votes data set when the 

percent of reprocess are 0, 10%, 20%, and 40% 

 

Percent of reprocess 0 10% 20% 40% Average 

Accuracy 0.809 0.853 0.853 0.839 0.839 

 

 

5.3.4 Breast Cancer Data Set 

 

The results of MGR, MMR and k-ANMI algorithms on Breast Cancer data set 

are shown in Tables 5.20-5.22, respectively.  
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Table 5.20: The results of MGR algorithm on the Breast Cancer data set 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 373 369 4 369 
0.884 

2 310 75 235 235 

 

 

Table 5.21: The results of MMR algorithm on the Breast Cancer data set 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 13 0 13 13 
0.669 

2 670 444 226 444 

 

 

Table 5.22: The results of k-ANMI algorithm on the Breast Cancer data set 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 433 431 2 431 
0.978 

2 250 13 237 237 

 

 

The clustering accuracy of G-ANMI and IG-ANMI vary with different 

population sizes. Tables 5.23 and 5.24 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.25 and Table 5.26 

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the 

population size is increased from 50 with step 50 up to 500. 

 

Table 5.23: The results of G-ANMI algorithm on the Breast Cancer data set when the 

population size is set to 50 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 404 398 6 398 
0.924 

2 279 46 233 233 
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Table 5.24: The results of IG-ANMI algorithm on the Breast Cancer data set when the 

population size is set to 50 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 438 419 19 419 
0.936 

2 245 25 220 220 

 

 

Table 5.25: The clustering accuracy of G-ANMI on the Breast Cancer data set with the 

increase of the population size  

 
Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.924 0.962 0.96 0.963 0.972 0.975 0.975 0.975 0.977 0.978 0.966 

 

 

Table 5.26: The clustering accuracy of IG-ANMI on the Breast Cancer data set with the 

increase of the population size  

 
Population 

size 

50 100 150 200 250 300 350 400 450 500 Average 

Accuracy 0.936 0.966 0.965 0.969 0.971 0.977 0.975 0.977 0.972 0.978 0.969 

 

 

The clustering accuracy of COOLCAT varies with different percent of 

reprocess. Table 5.27 shows the clustering results of COOLCAT when the percent of 

reprocess is set to 10%. Table 5.28 summarizes the clustering accuracy of COOLCAT 

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.  

 

Table 5.27: The results of COOLCAT algorithm on the Breast Cancer data set when the 

percent of reprocess is set to 10% 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 149 83 66 83 
0.65 

2 534 361 173 361 
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Table 5.28: The clustering accuracy of COOLCAT on the Breast Cancer data set when 

the percent of reprocess are 0, 10%, 20%, and 40% 

 

Percent of reprocess 0 10% 20% 40% Average 

Accuracy 0.65 0.65 0.65 0.65 0.65 

 

 

5.3.5 Mushroom Data Set 

 

The results of MGR, MMR and k-ANMI algorithms on Mushroom data set are 

shown in Table 5.29-5.31, respectively.  

 

Table 5.29: The results of MGR algorithm on the Mushroom data set 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 1296 1296 0 1296 
0.677 

2 6828 2620 4208 4208 

 

 

Table 5.30: The results of MMR algorithm on the Mushroom data set 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 7914 3898 4016 4016 
0.518 

2 210 18 192 192 

 

 

Table 5.31: The results of k-ANMI algorithm on the Mushroom data set 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 3184 1872 1312 1872 
0.587 

2 4940 2044 2896 2896 

 

 

The clustering accuracy of G-ANMI and IG-ANMI vary with different 

population sizes. Tables 5.32 and 5.33 show the clustering results of G-ANMI and IG-
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ANMI respectively when the population size is set to 50. Table 5.34 and Table 5.35 

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the 

population size is increased from 50 with step 50 up to 200. 

 

Table 5.32: The results of G-ANMI algorithm on the Mushroom data set when the  

population size is set to 50 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 3780 2008 1772 2008 
0.547 

2 4344 1908 2436    2436    

 

 

Table 5.33: The results of IG-ANMI algorithm on the Mushroom data set when the  

population size is set to 50 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 3376 624 2752 2752 
0.744 

2 4748 3292 1456 3292 

 

 

Table 5.34: The clustering accuracy of G-ANMI on the Mushroom data set with the 

increase of the population size  

 

Population size 50 100 150 200 Average 

Accuracy 0.547 0.568 0.546 0.538 0.55 

 

 

Table 5.35: The clustering accuracy of IG-ANMI on the Mushroom data set with the 

increase of the population size  

 

Population size 50 100 150 200 Average 

Accuracy 0.744 0.902 0.847 0.901 0.849 

 

 

The clustering accuracy of COOLCAT varies with different percent of 

reprocess. Table 5.36 shows the clustering results of COOLCAT when the percent of 
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reprocess is set to 10%. Table 5.37 summarizes the clustering accuracy of COOLCAT 

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.  

 

Table 5.36: The results of COOLCAT algorithm on the Mushroom data set when the 

percent of reprocess is set to 10% 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 4253 1813 2440 2440 
0.559 

2 3871 2103 1768 2103 

 

 

Table 5.37: The clustering accuracy of COOLCAT on the Mushroom data set when the 

percent of reprocess are 0, 10%, 20%, and 40% 

 

Percent of reprocess 0 10% 20% 40% Average 

Accuracy 0.518 0.559 0.518 0.53 0.531 

 

 

5.3.6 Comparison and Discussion 

 

The clustering accuracies of these six algorithms are summarized in Table 5.38, 

where G-ANMI and IG-ANMI use the average clustering accuracy of different 

population sizes. The last column of the table shows the average clustering accuracy of 

each algorithm on four data sets. Figure 5.1 illustrates their comparison. 

 

Table 5.38: The accuracy of six algorithms on four data sets 

 

Algorithms Zoo Vote Cancer Mushroom Average 

MMR 0.911 0.687 0.669 0.518 0.696 

MGR 0.931 0.828 0.884 0.677 0.83 

k-ANMI 0.733 0.869 0.978 0.587 0.792 

G-ANMI 0.874 0.871 0.966 0.55 0.815 

COOLCAT 0.785 0.839 0.65 0.531 0.701 

IG-ANMI 0.916 0.868 0.969 0.849 0.901 
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Figure 5.1: Clustering accuracy of six algorithms on four data sets 

 

 

Some significant conclusions are obtained from Table 5.38 and Figure 5.1 and 

summarized as follows: 

 IG-ANMI algorithm has the highest average clustering accuracy. MGR has 

the second highest average clustering accuracy. 

 IG-ANMI algorithm outperforms MMR and COOLCAT on all of four data 

sets, outperforms G-ANMI and MGR on three data sets, and outperforms k-

ANMI on two data sets. Although k-ANMI performs better than IG-ANMI 

on Votes and Cancer data sets, obviously, there exists only a very slight 

difference between them. 

 MGR algorithm outperforms MMR on all of four data sets, outperforms 

COOLCAT on three data sets, outperforms G-ANMI and k-ANMI on two 

data sets, and outperforms IG-ANMI on one data set. 

 MGR improves the average clustering accuracy by 19% (from 0.696 to 0.83) 

as compared with MMR.  

 IG-ANMI performs much better than other five algorithms on the Mushroom 

data set, which indicates IG-ANMI has the performance advantage on large 

data sets.  

 The Zoo data set has unbalanced class distribution and the most number of 

clusters. An important observation is that MGR has the highest accuracy and 

IG-ANMI has the second highest accuracy on the Zoo data set, which shows 

the advantage of attribute-oriented clustering algorithms on such data sets. 
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 k-ANMI performs better than MGR and IG-ANMI on Votes and Cancer data 

sets, however, the algorithm is not stable enough. It can be observed that k-

ANMI has the highest accuracy on Breast Cancer data set and the second 

highest accuracy on Votes data set while has the lowest accuracy on Zoo data 

set. Compared to k-ANMI, MGR and IG-ANMI have higher stability. 

 

 

5.4       EFFICIENCY ANALYSIS 

 

Ten large synthetically generated datasets R1, R2 through R10 are used to 

evaluate the efficiency of MGR and IG-ANMI algorithms. The running time of 

algorithms is used as the criteria for evaluation. G-ANMI is very time-consuming, for 

instance, it takes 20759 seconds to mine two clusters from Mushroom data set when the 

population size is set to 50. Thus this section mainly compares the running time of other 

five algorithms. The efficiencies of G-ANMI and IG-ANMI on four real-life data sets 

will be compared in Section 5.7. Five algorithms are sequentially applied to ten data 

sets. For fair comparison purpose, the average running time of each algorithm on a data 

set is obtained by using ten times run. The running time of COOLCAT varies with 

different percent of reprocess. Thus COOLCAT is run ten times with each percent of 

reprocess, and then the average running time is calculated. For IG-ANMI, the 

population size is set to 50. The running times in seconds of five algorithms on ten data 

sets are summarized in Table 5.39. Figure 5.2 illustrates the comparisons of running 

time among these five algorithms. 

It can be seen from Table 5.39 and Figure 5.2, IG-ANMI takes the most time on 

all ten data sets and has the highest average running time, which indicates IG-ANMI has 

the lowest efficiency. Reversely, MGR algorithm takes the least time on all ten data sets 

and has the lowest average running time, which indicates MGR has the highest 

efficiency. The efficiency of MMR and COOLCAT are close to MGR. k-ANMI has the 

second highest average running time. Note that COOLCAT has the lower average 

running time than MMR. That is because the average running time of COOLCAT with 

different percent of reprocess is used. COOLCAT will have the higher average running 

time than MMR if only the running time of COOLCAT with 40% of reprocess is used. 

 



 

 

Table 5.39: The running time in seconds of five algorithms on ten data sets 

 

Algorithms R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average 

MMR 2.836 5.672 8.992 12.453 17.547 22.117 27.109 31.93 38.219 43.102 20.998 

MGR 0.805 1.656 2.649 3.782 5.141 6.711 8.376 10.196 12.367 15.024 6.671 

k-ANMI 23.992 47.852 71.68 95.867 119.758 144.578 169.765 193.656 219.766 244.672 133.159 

COOLCAT 1.918 3.695 5.77 7.609 9.906 12.059 14.254 15.778 18.922 20.992 11.09 

IG-ANMI 78.688 143.375 219.25 295.453 457.796 437.25 509.375 591.843 671.657 756.954 416.164 
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Figure 5.2: Running time of five algorithms on ten data sets 
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5.5       RUNNING MGR WITHOUT SPECIFYING THE NUMBER OF 

CLUSTERS 

 

Different from other five algorithms, MGR algorithm can be run without 

specifying the desired number of clusters and end automatically. MGR algorithm is 

called Auto MGR for short in such case; correspondingly, the previous MGR algorithm 

is called Specified MGR for short. In this section, Auto MGR is applied on four real life 

data sets and ten synthetically generated data sets, respectively. Tables 5.40-5.43 show 

the clustering result of Auto MGR on four real life data sets. The accuracy values in 

these tables are obtained by using Eq. (5.1).  

 

Table 5.40: The results of Auto MGR algorithm on the Zoo data set 

 

No. of 

Cluster  

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max 

Number 

Accuracy 

1 41 0 0 0 0 0 0 41 

0.931 

2 0 13 0 0 0 0 0 13 

3 0 0 20 0 0 0 0 20 

4 0 0 0 0 4 0 0 4 

5 0 0 0 0 0 4 5 5 

6 0 0 0 7 0 0 0 7 

7 0 0 0 2 3 0 0 3 

8 0 0 0 1 1 0 0 1 

 

 

Table 5.41: The results of Auto MGR algorithm on the Votes data set 

 

No. of Cluster Votes Republicans Democrats Max Number Accuracy 

1 208 8 200 200 

0.848 2 212 157 55 157 

3 15 3 12 12 
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Table 5.42: The results of Auto MGR algorithm on the Breast Cancer data set 

 

No. of Cluster Instances Benign Malignant Max Number Accuracy 

1 373 369 4 369 

0.93 

2 45 37 8 37 

3 52 27 25 27 

4 27 0 27 27 

5 24 1 23 23 

6 29 7 22 22 

7 49 0 49 49 

8 84 3 81 81 

 

Table 5.43: The results of Auto MGR algorithm on the Mushroom data set 

 

No. of Cluster Instances Poisonous Edible Max Number Accuracy 

1 1296 1296 0 1296 

0.865 

2 556 44 512 512 

3 1120 256 864 864 

4 2000 1760 240 1760 

5 2432 560 1872 1872 

6 288 0 288 288 

7 432 0 432 432 

 

Table 5.44 summarizes the number of clusters and accuracy produced by Auto 

MGR on four real life data sets, the real number of clusters, and the accuracy produced 

by Specified MGR (obtained from Table 5.38). It can be seen that the numbers of 

clusters on Zoo and Votes data sets are very close to the real numbers of clusters. 

Although the numbers of clusters on Cancer and Mushroom data sets are greater than 

the real numbers of clusters, they are at an acceptable level. Figure 5.3 illustrates the 

comparison of the accuracies produced by Auto MGR and Specified MGR, 

respectively. Table 5.44 and Figure 5.3 show that Auto MGR has higher accuracies on 

Vote, Cancer, and Mushroom data sets than Specified MGR. The accuracies of 

Specified MGR are improved by 2.4% (from 0.828 to 0.848) on Vote data set, by 5.2% 
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(from 0.884 to 0.93) on Cancer data set, and by 27.8% (from 0.677 to 0.865) on 

Mushroom data set. 

 

Table 5.44: The summary of the results of Auto MGR on four real life data sets  

 

Data sets Real number 

of clusters 

Number of 

clusters 

Accuracy of 

Auto MGR 

Accuracy of     

Specified MGR 

Zoo 7 8 0.931 0.931 

Vote 2 3 0.848 0.828 

Cancer 2 8 0.93 0.884 

Mushroom 2 7 0.865 0.677 
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Figure 5.3: The comparison of the accuracies obtained by Auto MGR and 

Speicfied MGR 

 

Table 5.45 summarizes the number of clusters and the running time in seconds 

produced by Auto MGR on ten synthetically generated data sets, the real number of 

clusters, and the running time taken by Specified MGR (obtained from Table 5.39). 

Figure 5.4 illustrates the comparison of the running times taken by Auto MGR and 

Specified MGR, respectively. 

Table 5.45 shows that the numbers of clusters on all ten data sets are the same, 

i.e. 11. It is very close to the real numbers of clusters 10. Table 5.45 and Figure 5.4 

show that the running time of Auto MGR on each data set is a little higher than that of 

Specified MGR. Such a little increase of running time is acceptable.  
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Table 5.45: The summary of the results of Auto MGR on R1-R10 data sets 

 

Data sets Real number of 

clusters 

Number of 

clusters 

Running time of 

Auto MGR 

Running time of 

Specified MGR 

R1 10 11 0.906 0.805 

R2 10 11 1.703 1.656 

R3 10 11 2.807 2.649 

R4 10 11 3.968 3.782 

R5 10 11 5.438 5.141 

R6 10 11 6.99 6.711 

R7 10 11 8.729 8.376 

R8 10 11 10.714 10.196 

R9 10 11 13.036 12.367 

R10 10 11 15.87 15.024 
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Figure 5.4: The comparison of the running times taken by Auto MGR and  

Specified MGR 

 

 

 

5.6       SCALABILITY TEST 

 

5.6.1 Scalability of MGR 

 

The scalability of an algorithm refers to the ability of the algorithm for fitting 

the variances of the parameters related to data set or the algorithm itself. It is usually 
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measured by the variance of running time of the algorithm with respect to some 

parameter. Two kinds of scalability of MGR algorithm are tested on ten synthetically 

generated data sets R1 through R10. One is the scalability with respect to these ten 

datasets when the number of clusters is fixed. The other is the scalability with respect to 

the number of clusters on dataset R10. Figure 5.5 shows the running time of using MGR 

program to find ten clusters in different datasets. Figure 5.6 shows the running time on 

R10 as number of clusters varies from 2 to 10.  

It can be observed from Figure 5.5 that the running time of MGR algorithm 

tends to vary linearly with the increase of the number of objects, which is desired in 

practical applications. It can be observed from Figure 5.6 that the running times of 

MGR algorithm also vary linearly with respect to the number of clusters. 
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Figure 5.5: Scalability of MGR to the number of objects 
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Figure 5.6: Scalability of MGR to the number of clusters 
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5.6.2 Scalability of IG-ANMI 

 

Three kinds of scalability of IG-ANMI algorithm are tested on ten synthetically 

generated data sets and Mushroom data set. The first one is the scalability with respect 

to ten datasets R1-R10 when the number of clusters and population size are fixed, the 

second is the scalability with respect to the population size on Mushroom data set when 

the number of clusters is fixed, and the third is the scalability with respect to the number 

of clusters on Mushroom data set when population size is fixed. Figure 5.7 shows the 

running time of using IG-ANMI program to find two clusters from different datasets 

when population size is set to 50. Figure 5.8 shows the running time of mining two 

clusters on Mushroom as population size varies from 50 to 500. Given population size 

50, Figure 5.9 shows the running time of IG-ANMI on Mushroom as number of clusters 

varies from 2 to 10. 

It can be observed from Figure 5.7 that the running time of IG-ANMI algorithm 

tends to vary linearly with the increase of the number of objects, which is desired in 

practical applications. It can be observed from Figure 5.8 that the running times of IG-

ANMI algorithm increase with the increase of population size. The value varies acutely 

at some population size. However, the scalability is at an acceptable level on the whole. 

From Figure 5.9, it can be seen that the running times of IG-ANMI maintain between 

interval [200, 300], which indicates the running times vary lightly with the increase of 

number of clusters. 

 

                        
 

    Figure 5.7: Scalability of IG-ANMI to the number of objects 
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Figure 5.8: Scalability of IG-ANMI to the population size 
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    Figure 5.9: Scalability of IG-ANMI to the number of clusters 

 

 

5.7       COMPARISON BETWEEN G-ANMI AND IG-ANMI 

 

IG-ANMI improves G-ANMI by using a new initialization method. In order to 

appraise the influence of new initialization method on G-ANMI algorithm, the 

comparison between IG-ANMI and G-ANMI is performed on four real-life data sets. 

 

5.7.1 Comparison on Efficiency  

 

In this experiment, the number of iterations and running time of algorithms are 

used as the criteria for efficiency evaluation. Figures 5.10-5.13 plot the number of 
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iterations of G-ANMI and IG-ANMI on four data sets as population size varies. It can 

be seen that IG-ANMI uses less iterations than G-ANMI. One exception is on the Zoo 

data set when population size is 500. On the Zoo, Votes, and Breast Cancer data sets, 

the smaller the population size is the bigger the difference between the numbers of 

iterations of these two algorithms. It is worth noting that there is a very large difference 

between G-ANMI and IG-ANMI on the Mushroom data set, which shows the greater 

advantage of IG-ANMI when larger data sets are processed. 

Figures 5.14-5.17 plot the running time of G-ANMI and IG-ANMI on four data 

sets as population size varies. Since the running time is in proportion to the number of 

iterations, IG-ANMI takes less running time than G-ANMI except for on the Zoo data 

set when population size is 500. IG-ANMI greatly improves the efficiency of G-ANMI. 

Concretely, it is improved by 31% on the Zoo data set, 74% on the Votes data set, 59% 

on the Breast Cancer data set, and 3428% on the Mushroom data set. There is a very 

large difference between G-ANMI and IG-ANMI on the Mushroom data set, which 

indicates IG-ANMI can save much time when larger data sets are processed. Table 5.46 

shows the concrete values of numbers of iterations and running time of G-ANMI and 

IG-ANMI on the Mushroom data set. When the population size is set to 200, G-ANMI 

takes 190998.485 seconds (53 hours) while IG-ANMI only take 1351.594 seconds 

(0.375 hour). 
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Figure 5.10: Number of iterations vs. population size on the Zoo data set 
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Figure 5.11: Number of iterations vs. population size on the Votes data set 
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Figure 5.12: Number of iterations vs. population size on the Breast Cancer data set 
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Figure 5.13: Number of iterations vs. population size on the Mushroom data set 
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Figure 5.14: Running time vs. population size on the Zoo data set 
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Figure 5.15: Running time vs. population size on the Votes data set 
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Figure 5.16: Running time vs. population size on the Breast Cancer data set 
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Figure 5.17: Running time vs. population size on the Mushroom data set 

 

 

Table 5.46: The numbers of iterations and running time of G-ANMI and IG-ANMI on 

the Mushroom data set 

 

Population 

Size 

Number of iterations Running time (s) 

G-ANMI IG-ANMI G-ANMI IG-ANMI 

50 10845 100 20759.969 201.25 

100 14453 145 63574.047 606.312 

150 13944 144 94324.032 880.875 

200 17916 158 190998.485 1351.594 

 

 

5.7.2 Comparison on Performance  

 

Clustering accuracy of algorithms is used as the criteria for performance 

evaluation. The clustering accuracies of these two algorithms on four real life data sets 

have been listed separately in Section 5.3. Table 5.47 summarizes the clustering 

accuracies of these two algorithms. From the average accuracies, it can be seen that IG-

ANMI has higher clustering accuracy on the Zoo, Breast Cancer, and Mushroom data 

sets. One exception is on the Votes data set, the clustering accuracy of G-ANMI is 

slightly higher than that of IG-ANMI. The average clustering accuracy of G-ANMI on 

the four data sets is improved by 10.6%, from 0.815 of G-ANMI to 0.901 of IG-ANMI. 

It is worth noting that IG-ANMI improves clustering accuracy greatly on the Mushroom 

data set. 



 

 

Table 5.47: The clustering accuracies of G-ANMI and IG-ANMI on four data sets 

 

Data set Algorithms 50 100 150 200 250 300 350 400 450 500 Average 

Zoo 
G-ANMI 0.832 0.851 0.911 0.881 0.861 0.891 0.931 0.812 0.851 0.921 0.874 

IG-ANMI 0.881 0.911 0.901 0.911 0.921 0.921 0.921 0.931 0.931 0.931 0.916 

Votes 
G-ANMI 0.874 0.862 0.876 0.864 0.880 0.874 0.869 0.864 0.876 0.874 0.871 

IG-ANMI 0.839 0.860 0.880 0.862 0.867 0.869 0.876 0.876 0.871 0.878 0.868 

Breast Cancer 
G-ANMI 0.924 0.962 0.960 0.963 0.972 0.975 0.975 0.975 0.977 0.978 0.966 

IG-ANMI 0.936 0.966 0.965 0.969 0.971 0.977 0.975 0.977 0.972 0.978 0.969 

Mushroom 

G-ANMI 0.547 0.568 0.546 0.538 - - - - - - 0.55 

IG-ANMI 0.744 0.902 0.847 0.901 - - - - - - 0.849 
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5.8       SUMMARY 

 

A set of experiments are performed to appraise the clustering performance, 

clustering efficiency and scalability of MGR and IG-ANMI algorithms, and compare 

them with other four algorithms. The experimental results show that MGR improves the 

average clustering accuracy by 19% (from 0.696 to 0.83) as compared with MMR, at 

the same time maintains the highest efficiency among the existing algorithms for 

categorical data clustering. IG-ANMI greatly improves the efficiency of G-ANMI. 

Concretely, it is improved by 31% on the Zoo data set, 74% on the Votes data set, 59% 

on the Breast Cancer data set, and 3428% on the Mushroom data set. At the same time 

IG-ANMI maintains the highest clustering accuracy among the existing algorithms for 

categorical data clustering. IG-ANMI has obvious advantage against G-ANMI on large 

data sets in terms of clustering efficiency as well as clustering accuracy. MGR can be 

run without specifying the number of clusters (Auto MGR for short). The clustering 

accuracy produced by Auto MGR is higher than Specified MGR; the number of clusters 

produced by Auto MGR and the running time taken by Auto MGR are all at acceptable 

level. In addition, both of MGR and IG-ANMI have good scalability. The running time 

of MGR and IG-ANMI algorithms tend to vary linearly with the increase of the number 

of objects as well as the number of clusters. 

 

 

 



 

 

 

 

CHAPTER 6 

 

 

CONCLUSIONS 

 

 

6.1       INTRODUCTION 

 

This chapter consists of section 6.2 that summarizes the contributions and 

limitations of the thesis. Section 6.3 describes the future work based on the outcome of 

this thesis. 

 

6.2       CONTRIBUTIONS AND LIMITATIONS 

             

Corresponding to the objectives proposed in Chapter 1 (Section 1.3), the 

contributions of this research are summarized as follows: 

 

 The limitations of algorithm MMR are investigated and a novel attribute-

oriented hierarchical divisive clustering algorithm for categorical data termed 

MGR is developed. MGR overcomes the limitations of MMR using the 

information theory based concepts. MGR achieves higher clustering accuracy 

as compared with algorithm MMR (the average clustering accuracy on four 

real-life UCI data sets is improved by 19%, from 0.696 to 0.83), at the same 

time maintains the highest efficiency (the average running time on ten 

synthetic data sets is 6.671 seconds). 

 The limitations of algorithm G-ANMI are investigated and an improved 

genetic clustering algorithm for categorical data termed IG-ANMI is 

developed. IG-ANMI algorithm improves G-ANMI by developing a new 

attribute-oriented initialization method. IG-ANMI greatly improves the 

efficiency of G-ANMI (improved by 31% on the Zoo data set, 74% on the 
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Votes data set, 59% on the Breast Cancer data set, and 3428% on the 

Mushroom data set) as well as the clustering accuracy of G-ANMI (the 

average clustering accuracy on four real-life UCI data sets is improved by 

10.6%, from 0.815 to 0.901), at the same time maintains the highest clustering 

accuracy.  

 One of the advantages of MGR is that it can be run without specifying the 

number of clusters. Clustering is an example of unsupervised learning, thus 

this is a better way than specifying the number of clusters especially when 

user experiences difficulties in specifying the number of clusters.   

 The proposed algorithms MGR and IG-ANMI are evaluated on four real-life 

data sets obtained from UCI and ten synthetically generated data sets. Other 

four algorithms are used to compare with MGR and IG-ANMI algorithms. 

Experimental results show that both of MGR and IG-ANMI have good 

scalability, that is, they can be applied on small categorical data sets as well as 

large categorical data sets. They can be applied on the data sets which have 

balanced class distribution, such as Votes and Breast Cancer data sets, as well 

as the data sets which have unbalanced class distribution like Zoo data set. In 

addition, IG-ANMI has obvious advantage against G-ANMI on large data sets 

in terms of clustering efficiency as well as clustering accuracy. 

 

To sum up, all the objectives proposed in Chapter 1 has been finished.  

The proposed algorithms MGR and IG-ANMI produce good results. However, 

both of them have some of limitations as listed below: 

 

 It has been pointed out that hierarchical clustering methods are not able to 

conduct adjustment when an opreation has been performed. In other words, if 

there are some problems in the process of clustering, these methods can not 

correct it (Han and Kamber, 2006). MGR also suffers from this problem.  

 MGR may not generate good clusters when every attribute is uniformly 

distributed across all other attributes. In such case, the real clusters are not 

sufficiently distinguishable from each other. All the attributes have the very 

close (even the same) MGR values, however, the partitions they define are 

distinct. Therefore, it is possible that the equivalence classes in the partition 
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defined by the selected clustering attribute are dissimilar to the real clusters, 

which finally result in the clustering result is very dissimilar to the real 

clustering. 

 The number of clusters is required to input in IG-ANMI. For user, however, 

sometimes it is difficult to know the number of clusters ahead. 

 Both of MGR and IG-ANMI focus on categorical data clustering. At present, 

there also exist many databases with mixed numeric and categorical data. 

MGR and IG-ANMI cannot be applied on such databases. 

 

6.3       FUTURE WORK 

 

Further improvements can be made based on the outcomes from this thesis. 

Below are some possible future works: 

 

 As mentioned in the last section, MGR algorithm is not able to conduct 

adjustment when an opreation has been performed. Therefore, a reprocess 

procedure like the iterative relocation process in the k-ANMI algorithm will 

be introduced to adjust the clustering results obtained by MGR algorithm for 

further improving the clustering accuracy. 

 Experimental results show that the number of clusters obtained by MGR when 

it is run without specifying the number of clusters is usually greater than the 

real number of clusters. Therefore, a reprocess procedure will be introduced to 

combine some of the clusters produced by MGR. It can be implemented by 

first computing the similarity between the clusters based on a defined 

similarity measure, and then the clusters with the highest similarity are 

combined. Repeat these two steps until some conditions are satisfied. 

 In the initial population produced by the initialization method of IG-ANMI, a 

part of chromosomes are generated by using the attributes partitions while the 

rest of chromosomes are generated randomly. More complicated initialization 

methods will be developed so that more equivalence classes of attributes 

partitions are integrated into the initial chromosomes. The efficiency of IG-

ANMI is expected to be further improved by using such complicated 

initialization methods.  
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 Similar to most clustering algorithms for categorical data, IG-ANMI requires 

the number of clusters to be specified ahead. For user, however, sometimes it 

is difficult to know the number of clusters ahead. Thus, new approach will be 

developed to discover the number of clusters ahead and integrated into IG-

ANMI. 

 Recently, Particle Swarm Optimization (Kennedy and Eberhart, 1995; Kao et 

al., 2008) method has attracted much attention in the field of data mining. This 

method will be investigated and introduced into the problem of categorical 

data clustering.  
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APPENDIX B1 

 

CODE LISTING FOR MGR ALGORITHM 

 

 

There are six files in the source code of MGR. 
 

1. header.h 
 
# include "stdio.h" 

# include "time.h" 

# include "math.h" 

# include "string.h" 

# include "stdlib.h" 

# define N  8       //Number of objects               

# define M  7       //Number of attributes               

# define MAX_LEN_OF_STR 20    //Max length of an attribute value   

//Max size of the domain of an attribute 

# define MAX_NUM_OF_EQUI_CLASS 15   

# define MAX_NUM_OF_REAL_CLASS  15   //Max number of real clusters  

# define PERCENT_THRESHOLD  0.03    

 

2. main.c 
 
# include "header.h" 

int readdata_with_class(int data[][M], char filename[], int ObjClass[], 

char ClassName[][MAX_LEN_OF_STR], int * NumOfClass); 

void IGR_with_class(int OriginalData[][M], int RequNumOfCluster, int 

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass); 

 

int main() 

{    

   int OriginalData[N][M];     

   char filename[30]; 

   int RequNumOfCluster;  //Desired number of clusters 

   int ObjClass[N]; 

   char ClassName[MAX_NUM_OF_REAL_CLASS][MAX_LEN_OF_STR]; 

   int NumOfClass;  

   clock_t begin, end; 

   double duration; 

 

   printf("Please input the name of data file:"); 

   scanf("%s",filename); 

   printf("\nPlease input the required number of clusters:"); 

   scanf("%d",&RequNumOfCluster); 

   begin = clock(); 

 

   if(readdata_with_class(OriginalData, filename, ObjClass,  

ClassName,&NumOfClass)==0)        

    exit(0); 

 

   IGR_with_class(OriginalData, RequNumOfCluster, ObjClass, 

ClassName,NumOfClass); 

   end = clock(); 

   duration = (double)(end - begin)/CLOCKS_PER_SEC; 

   printf("\nThe running time: %lf seconds\n",duration); 
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   getchar(); 

   return 0; 

} 

 

3. input.c 
 
# include "header.h" 

int readdata_with_class(int data[][M], char filename[], int 

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int * NumOfClass) 

{ 

    int  n, m; 

    int  i,j,k,s; 

    int  cnt[M];  //Store the current number of value in a column  

    char value_column[M][MAX_NUM_OF_EQUI_CLASS][MAX_LEN_OF_STR]; 

    char tempc; 

    char tem[MAX_LEN_OF_STR]; 

    char pathin[50]= {".\\data\\"}; 

    char pathout[50]= {".\\data\\Cluster_Reslut\\"}; 

 

    strcat(strcat(pathin,filename),".data"); 

    if(freopen(pathin,"r", stdin)== NULL) 

        return 0; 

    strcat(strcat(pathout,filename),".out"); 

    if(freopen(pathout,"w", stdout)== NULL) 

        return 0; 

    scanf("%d,%d",&n,&m); 

    getchar();  

    for(j=0;j<m;j++) 

       cnt[j] = 0; 

    for(i=0;i<n;i++) 

    { 

           for(j=0;j<m;j++) 

           { 

                 k=0; 

                 scanf("%c",&tempc); 

                 while(tempc != ',' && tempc != 10 && tempc != '.') 

                 { 

                   tem[k]=tempc; 

                        k++; 

                        scanf("%c",&tempc); 

                 } 

                 tem[k]='\0'; 

                 //Finished reading an attribute value 

 

                 if(i==0)  

                 { 

                         strcpy(value_column[j][0],tem); 

                         cnt[j]++; 

                         data[i][j]= 0; 

                 } 

                 else 

                 { 

                         for(s=0;s<cnt[j];s++) 

                               if(strcmp(tem,value_column[j][s])==0) 

                               { 

                                     data[i][j] = s; 

                                     break; 
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                               } 

                         if(s == cnt[j]) 

                         { 

                               strcpy(value_column[j][cnt[j]],tem); 

                               data[i][j]= cnt[j] ; 

                               cnt[j]++; 

                         } 

                 } 

           } 

           //Finished reading an object 

 

           //Read the class of the object 

           scanf("%c",&tempc); 

           if(tempc == '\'') 

           { 

                   k = 0; 

                   do 

                   { 

                          scanf("%c",&tempc); 

                          tem[k] = tempc; 

                          k++; 

                   } 

                   while(tempc != '\''); 

                   tem[k-1] = '\0'; 

                   while(tempc != 10 && tempc != '.')         

                      scanf("%c",&tempc); 

            } 

            else 

            { 

                    k = 0; 

                    do 

                    { 

                           tem[k] = tempc; 

                           k++; 

                           scanf("%c",&tempc); 

                    } 

                    while(tempc != 10 && tempc != '.');      

                    tem[k] = '\0'; 

             } 

             if(i==0) 

             { 

                    strcpy(ClassName[0],tem); 

                    ObjClass[0]= 0; 

                    *NumOfClass = 1; 

             } 

             else 

             { 

                    for(k= 0; k< *NumOfClass; k++) 

                           if(strcmp(tem,ClassName[k])==0) 

                           { 

                                   ObjClass[i]= k; 

                                   break; 

                           } 

                    if(k == *NumOfClass) 

                    { 

                           strcpy(ClassName[k],tem); 

                           ObjClass[i]= k; 
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                           (*NumOfClass) ++; 

                    } 

              } 

    } 

    return 1; 

} 

 

4. my_algorithm.c 
 
# include "header.h" 

void GainOfDataset_ratio(int A[][M+1], int n, int m, int selectedAttr[]); 

int EntropySplit(int selectedattr, int data[][M+1], int n, int 

leafnode1[N+1], int leafnode2[N+1]); 

 

void IGR_with_class(int OriginalData[][M], int RequNumOfCluster, int 

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass) 

{ 

   int RemainData[N][M+1]; //Current data set 

   int n,m;     

   int i,j,k; 

   int CurrNumOfCluster = 1; 

   int selectedAttr[M];  

   //Store the results of binary splitting 

   int leafnode1[N+1],leafnode2[N+1];  

   int num_of_each_real_class[MAX_NUM_OF_REAL_CLASS];        

   float percent_of_each_real_class[MAX_NUM_OF_REAL_CLASS]; 

   int  max_num_of_each_real_class;     

   int  total_max_num_of_each_real_class = 0;      

   float accuracy;    

 

   //Copy the initial data to current data 

   for(i=0;i<N;i++) 

   { 

        for(j=0;j<M;j++) 

              RemainData[i][j]=OriginalData[i][j]; 

        RemainData[i][M]= i;   

   } 

   n = N; 

   m = M; 

 

   while(CurrNumOfCluster < RequNumOfCluster) 

   { 

        GainOfDataset_ratio(RemainData, n, m, selectedAttr); 

        for(i=0; i<M; i++) 

        { 

            if(EntropySplit(selectedAttr[i], RemainData, n,  

leafnode1, leafnode2)==1)   

             break; 

        } 

        if(i==M)   

        { 

         printf("Can not continue!!!\n"); 

            //Output current data as the last cluster  

            for(j=0; j<MAX_NUM_OF_REAL_CLASS; j++) 

            { 

             num_of_each_real_class[j]= 0; 

                  percent_of_each_real_class[j]= 0.0; 
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            } 

    printf("The %dth cluster has %d objects:",  

                    CurrNumOfCluster,n ); 

            for(j=0; j<n; j++) 

            { 

             k = ObjClass[RemainData[j][M]]; 

                  num_of_each_real_class[k]++; 

                  printf("%d, ",RemainData[j][M]); 

            } 

            printf("where\n\n"); 

            max_num_of_each_real_class = 0; 

            for(j=0; j<NumOfClass; j++) 

            { 

                  if(num_of_each_real_class[j]> 

max_num_of_each_real_class) 

                     max_num_of_each_real_class =  

num_of_each_real_class[j]; 

                  percent_of_each_real_class[j]=                               

(float)num_of_each_real_class[j]/(float)n; 

                  printf("%-5d  %-s  (%.1f%%)\n",   

num_of_each_real_class[j],ClassName[j], 

percent_of_each_real_class[j]*100 ); 

            } 

            total_max_num_of_each_real_class +=                                              

max_num_of_each_real_class; 

            accuracy = 

(float)total_max_num_of_each_real_class/(float)N; 

            accuracy = (int)(accuracy*1000+0.5)/1000.0; 

            printf("\n\nThe accuracy of clustering is:  %.1f%%", 

                   accuracy*100); 

            return;                 

       } 

       for(i=0;i<MAX_NUM_OF_REAL_CLASS;i++) 

       { 

        num_of_each_real_class[i]= 0; 

            percent_of_each_real_class[i]= 0.0; 

       } 

       //Output leafnode1 as a cluster 

       printf("The %dth cluster has %d objects:\n ", 

CurrNumOfCluster,leafnode1[N]); 

       for(i=0; i<leafnode1[N]; i++) 

       { 

        j = ObjClass[leafnode1[i]]; 

            num_of_each_real_class[j]++; 

      printf("%d, ",leafnode1[i]); 

       } 

       printf("where\n\n"); 

       max_num_of_each_real_class = 0; 

       for(i=0; i<NumOfClass; i++) 

       { 

            if(num_of_each_real_class[i] > max_num_of_each_real_class) 

               max_num_of_each_real_class = num_of_each_real_class[i]; 

            percent_of_each_real_class[i]=                    

(float)num_of_each_real_class[i]/(float)leafnode1[N]; 

            printf("%-5d  %-s  (%.1f%%)\n", 

num_of_each_real_class[i],ClassName[i], 

percent_of_each_real_class[i]*100 ); 
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       } 

       total_max_num_of_each_real_class += max_num_of_each_real_class; 

       printf("\n\n"); 

       CurrNumOfCluster++; 

 

       //Rebuild current data using leafnode2 

       for(i=0; i<leafnode2[N]; i++) 

       { 

        for(j=0; j<M; j++) 

            { 

             RemainData[i][j] = OriginalData[leafnode2[i]][j]; 

            } 

            RemainData[i][M] = leafnode2[i]; 

       } 

       n = leafnode2[N]; 

   } //end of while 

 

   //Output current data as the last cluster when the number of 

   //clusters equals the desired number of clusters 

   for(i=0; i<MAX_NUM_OF_REAL_CLASS; i++) 

   { 

        num_of_each_real_class[i]= 0; 

        percent_of_each_real_class[i]= 0.0; 

   } 

   printf("The %dth cluster has %d objects: ", CurrNumOfCluster,n ); 

   for(i=0; i<n; i++) 

   { 

        j = ObjClass[RemainData[i][M]]; 

        num_of_each_real_class[j]++; 

        printf("%d, ",RemainData[i][M]); 

   } 

   printf("where\n\n"); 

   max_num_of_each_real_class = 0; 

   for(i=0; i<NumOfClass; i++) 

   { 

        if(num_of_each_real_class[i] > max_num_of_each_real_class) 

             max_num_of_each_real_class = num_of_each_real_class[i]; 

        percent_of_each_real_class[i]=                               

(float)num_of_each_real_class[i]/(float)n; 

        printf("%-5d  %-s  (%.1f%%)\n",num_of_each_real_class[i], 

               ClassName[i], percent_of_each_real_class[i]*100 ); 

   } 

   total_max_num_of_each_real_class += max_num_of_each_real_class; 

   accuracy = (float)total_max_num_of_each_real_class / (float)N; 

   accuracy = (int)(accuracy*1000+0.5)/1000.0; 

   printf("\n\nThe accuracy of clustering is:  %.1f%%", accuracy*100); 

} 

 

5. entropy_gainratio.c 
 
# include "header.h" 

void sort(float A[],int m, int order[]); 

 

//Calculate the entropy of an attribute 

float entropyA(int A[],int num) 

{ 

   int i,j,classnumber; 
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   int numofeachclass[N+1]={0},valofeachclass[N+1]={0}; 

   float sum=0.0,temp; 

 

   //Count the number of category in an attribute 

   classnumber=1; 

   valofeachclass[1]=A[0]; 

   numofeachclass[1]=1; 

   for(i=1;i<num;i++) 

   { 

       for(j=1;j<=classnumber;j++) 

        if (A[i]==valofeachclass[j]) 

            { 

             numofeachclass[j]++; 

              break; 

           } 

       if(j>classnumber) 

       { 

        classnumber++; 

        numofeachclass[classnumber]++; 

        valofeachclass[classnumber]=A[i]; 

       } 

   } 

   //Calculate the entropy 

   for(i=1;i<=classnumber;i++) 

   { 

   temp=(float)numofeachclass[i]/(float)num; 

         sum=sum+(-temp*log(temp)/log(2)); 

   } 

   return sum; 

} 

 

//Calculate the entropy of an equivalence class of attribute B with  

//respect to attribute A 

static float entro_1ofB_A(int A[],int B[],int numoftheclass) 

{ 

   int i,j; 

   int classnumofB; 

   int numofeachclassB[N+1]={0},valofeachclassB[N+1]={0}; 

   float sum=0.0,temp; 

   

   classnumofB=1; 

   valofeachclassB[1] = A[B[0]]; 

   numofeachclassB[1] = 1; 

   for(i=1;i<numoftheclass;i++) 

   { 

       for(j=1;j<=classnumofB;j++) 

        if (A[B[i]]==valofeachclassB[j]) 

           { 

             numofeachclassB[j]++; 

             break; 

            } 

       if(j>classnumofB) 

       { 

        classnumofB++; 

        numofeachclassB[classnumofB]++; 

        valofeachclassB[classnumofB]=A[B[i]]; 

       } 
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   } 

   for(i=1;i<=classnumofB;i++) 

   { 

     temp=(float)numofeachclassB[i]/(float)numoftheclass; 

       sum=sum+(-temp*log(temp)/log(2)); 

   } 

   return sum; 

} 

 

static float entropyBA(int A[],int B[],int num) 

{ 

   int i,j,k; 

   int classnumofB; 

   int numofeachclassB[N+1]={0},valofeachclassB[N+1]={0}; 

   int oneclassofB[N]; 

   float sum=0.0,temp; 

    

   classnumofB=1; 

   valofeachclassB[1]=B[0]; 

   numofeachclassB[1]=1; 

   for(i=1;i<num;i++) 

   { 

     for(j=1;j<=classnumofB;j++) 

        if(B[i]==valofeachclassB[j]) 

            { 

             numofeachclassB[j]++; 

             break; 

            } 

       if(j>classnumofB) 

       { 

        classnumofB++; 

        numofeachclassB[classnumofB]++; 

        valofeachclassB[classnumofB]=B[i]; 

       } 

   } 

   for(i=1;i<=classnumofB;i++) 

   { 

     k=0; 

       for(j=0;j<num;j++) 

        if(B[j]==valofeachclassB[i]) 

            { 

             oneclassofB[k]=j; 

             k++; 

          } 

       temp= entro_1ofB_A(A,oneclassofB,k); 

       sum=sum+ (float)numofeachclassB[i]/(float)num *temp; 

   } 

   return sum; 

} 

 

void GainOfDataset_ratio(int A[][M+1], int n, int m, int 

selectedAttr[]) 

{ 

   int i,j,k; 

   int attrA[N]={0},attrB[N]={0}; 

   float entroA, sum, gain, temp_entropyBA; 

   float gain_ratio[M]; 
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   for(j=0;j<m;j++) 

   { 

        sum=0.0; 

        for(i=0;i<n;i++) 

         attrA[i]=A[i][j]; 

        entroA= entropyA(attrA,n); 

        for(i=0;i<m;i++) 

        { 

         if(i!=j) 

            { 

             for(k=0;k<n;k++) 

                   attrB[k]=A[k][i]; 

                  temp_entropyBA = entropyBA(attrA,attrB,n); 

                  sum=sum+ temp_entropyBA; 

            }             

        } 

        gain=entroA*(m-1)-sum; 

        if(fabs(entroA)>1e-6) 

         gain_ratio[j] = gain/entroA; 

        else 

            gain_ratio[j] =0.0; 

    } 

    sort(gain_ratio, M, selectedAttr); 

} 

 

6. binary_split.c 
 
# include "header.h" 

float entropyA(int A[],int num); 

static int elementinset(int e,int A[],int lenA); 

static void sort(float A[],int m, int order[]); 

 

int EntropySplit(int selectedattr, int data[][M+1], int n, int 

leafnode1[N+1], int leafnode2[N+1]) 

{ 

     int i,j; 

     int NumOfEquiClass; 

     int EquiClasses[MAX_NUM_OF_EQUI_CLASS][N];   

     int NumOfEachEquiClass[MAX_NUM_OF_EQUI_CLASS];  

     float EntropyOfEachEquiClass[MAX_NUM_OF_EQUI_CLASS];  

     int flag[N];      

     int k1,k2; 

     int order[MAX_NUM_OF_EQUI_CLASS];  

     float percent; 

     int k, tempA[N]; 

     float attrEntropy; 

 

     NumOfEquiClass = 0;      

     for(i=0;i<N;i++) 

         flag[i]= -1;    

     for(i=0;i<n;i++) 

     { 

         if(flag[i]==-1) 

         { 

         flag[i]=NumOfEquiClass; 

              for(j=i+1;j<n;j++) 



 

 

 

149 

              { 

                   if(data[j][selectedattr] == data[i][selectedattr]) 

                        flag[j]= NumOfEquiClass; 

              } 

              NumOfEquiClass++; 

         } 

     } 

     for(i=0; i<NumOfEquiClass; i++) 

     { 

          NumOfEachEquiClass[i]=0; 

          for(j=0;j<n;j++) 

          { 

               if(flag[j]==i) 

               { 

                    EquiClasses[i][NumOfEachEquiClass[i]]= j; 

                    NumOfEachEquiClass[i]++; 

               } 

          } 

          EntropyOfEachEquiClass[i] = 0; 

          //Calculate the entropy of equivalence classes 

          for(j=0; j<M; j++) 

          { 

               for(k = 0; k<NumOfEachEquiClass[i]; k++) 

                    tempA[k]= data[EquiClasses[i][k]][j]; 

 

               attrEntropy = entropyA(tempA, NumOfEachEquiClass[i]); 

               EntropyOfEachEquiClass[i] += attrEntropy;   

          } 

 

      } 

      sort(EntropyOfEachEquiClass, NumOfEquiClass, order);   

      for(i=0; i< NumOfEquiClass-1; i++) 

      { 

       percent = (float)NumOfEachEquiClass[order[i]]/(float)N; 

            percent = (int)(percent*100+0.5)/100.0;    

            if(percent - PERCENT_THRESHOLD > 1e-6) 

             break; 

      } 

      if(i == NumOfEquiClass-1)  

            return 0; 

      k1 = 0; 

      k2 = 0; 

      for(j=0; j<n; j++) 

      { 

       if(elementinset(j,EquiClasses[order[i]],  

                            NumOfEachEquiClass[order[i]])) 

            { 

             leafnode1[k1] =  data[j][M]; 

                  k1++; 

            } 

            else 

            { 

             leafnode2[k2] =  data[j][M]; 

                  k2++; 

            } 

      } 

      leafnode1[N] = k1; 
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      leafnode2[N] = k2;  

      return 1; 

} 

 

static int elementinset(int e,int A[],int lenA) 

{ 

      int i; 

      for(i=0;i<lenA;i++) 

        if(e==A[i]) 

               return 1; 

      return 0; 

} 

 

static void sort(float A[],int m, int order[])   

{ 

int i,j; 

      float temp; 

 

      for(i=0; i<m; i++) 

       order[i] = i; 

      for(i=1; i<m ;i++)                

      { 

         for(j=0;j<m-i;j++) 

            { 

             if((A[j]-A[j+1])>1e-6) 

                  { 

                   temp = A[j+1]; 

                        A[j+1]= A[j]; 

                        A[j]= temp; 

                        temp = order[j+1]; 

                        order[j+1]= order[j]; 

                        order[j]= temp; 

                  } 

            } 

      } 

} 
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APPENDIX B2 

 

CODE LISTING FOR IG-ANMI ALGORITHM 

 

 

There are seven files in the source code of IG-ANMI. 
 

1. header.h 
 
# include "stdio.h" 

# include "string.h" 

# include "stdlib.h" 

# include "time.h" 

# include "math.h" 

 

# define N 10       //Number of objects 

# define M 4        //Number of attributes 

# define K 3        //Number of clusters 

# define P 10       //Population size 

 

# define CR 0.8     //Percent of chromes that are used for crossover 

# define MU 0.1     //Percent of chromes that undergo a mutation 

//Threshold for no relative improvement 

# define IMPROVEMENT_THRESHOLD 1e-6  

//Maximum number of consecutive iterations without improvement     

# define MAX_ITERATION 100                               

# define MAX_LEN_OF_STR 20   //Max length of an attribute value 

//Max size of domain of an attribute 

# define MAX_NUM_OF_EQUI_CLASS 15   

# define MAX_NUM_OF_REAL_CLASS 15  //Max number of real clusters 

 

//The basic structure for computing ANMI 

struct Node_of_histogram 

{ 

 char category_value[MAX_LEN_OF_STR]; 

      int num; 

}; 

 

2. g_anmi.c 
 
# include "header.h" 

void read_data(int, int cnt[M], struct Node_of_histogram 

AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[], int ObjClass[], char 

ClassName[][MAX_LEN_OF_STR], int * NumOfClass); 

void initialization(int population[P][N], int data [N][M], int 

num_of_eq_class[M]); 

void compute_fitness(FILE * fp, int population[P][N], float fitness[P], 

struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[]); 

void generate_new_population(int population[P][N], float fitness[P]); 

void output(int ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass, 

int clusters[K][N], int len_of_clusters[]); 

 
int main() 

{ 

      FILE *  fp; 

 int     i,j; 
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      int     population[P][N];   //Store population with P chromes 

      float   fitness[P];         //Store fitness value 

      float   best_fitness_value; 

      int     id_of_best_fitness_value; 

      float   current_best_fitness_value; 

      int     cnt_without_improvement;   

      struct Node_of_histogram AH[M][MAX_NUM_OF_EQUI_CLASS]; 

      int len_of_AH[M];  

      int clusters[K][N];      //Store K clusters 

      int len_of_clusters[K];  //Store the length of K clusters 

      int value[K]; 

      int cnt; 

      //The following 3 variables are for computing accuracy 

      int ObjClass[N];     //The real classes of objects 

    char ClassName[MAX_NUM_OF_REAL_CLASS][MAX_LEN_OF_STR];  

   int NumOfClass;  

      char filename[30]; 

      char path_data[50]= {".\\data\\"}; 

     char path_result[50]= {".\\data\\Cluster_Result\\"}; 

      //The following 3 variables are for computing running time 

      clock_t begin, end; 

      double duration; 

      int iteration_times = 0; //Store number of iterations 

      int data[N][M];    //Initial data (converted to integers) 

      int num_of_eq_class[M];    //Number of equivalence classes in 

                                 //each attribute 

      srand(1);     //Set random seed 

      //Open the input and output files 

      printf("Please input the name of data file:"); 

    scanf("%s",filename); 

      begin = clock();  //Get initial time 

      strcat(strcat(path_data,filename),".data"); 

      fp = freopen(path_data,"r", stdin); 

      strcat(strcat(path_result,filename),".out"); 

    freopen(path_result,"w", stdout); 

 

      for(j=0;j<M;j++) 

  num_of_eq_class[j] = 0; 

      //Read data from file, build histograms for attributes, and  

      //store real classes of objects. 

      read_data(data, num_of_eq_class, AH, len_of_AH, ObjClass, 

                ClassName, &NumOfClass); 

 

      //Generate initial population 

      initialization(population, data, num_of_eq_class);  

      current_best_fitness_value = -1; 

      cnt_without_improvement = 0; 

 

      while(1)   

      { 

       //compute fitness of each chromosome 

         compute_fitness(fp, population, fitness, AH, len_of_AH); 

            //search for the best fitness value 

            best_fitness_value = fitness[0]; 

            id_of_best_fitness_value = 0; 

            for(i=1; i<P; i++) 

            {                     
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             if(fitness[i] - best_fitness_value > 1e-6) 

                  { 

                        best_fitness_value = fitness[i]; 

                        id_of_best_fitness_value = i; 

                  } 

            }               

            //There exists improvement on the best fitness value 

            if(best_fitness_value - current_best_fitness_value >  

               IMPROVEMENT_THRESHOLD) 

            { 

                 current_best_fitness_value = best_fitness_value; 

                  cnt_without_improvement = 0; 

            } 

            else 

                  cnt_without_improvement ++;               

            if(cnt_without_improvement >= MAX_ITERATION) 

            { 

            for(i=0; i<K; i++) 

            len_of_clusters[i] = 0;                          

                  value[0]= population[id_of_best_fitness_value][0]; 

                  cnt = 1;                         

                  for(i=1; i<N; i++) 

                  { 

                        for(j = 0; j<cnt; j++)                           

                     if(population[id_of_best_fitness_value][i]  

                             == value[j]) 

                              break; 

                        if(j == cnt) 

                        { 

                          value[cnt]=                               

population[id_of_best_fitness_value][i]; 

                          cnt++; 

                        } 

                        if(cnt == K) 

                          break; 

                  } 

                  for(i=0; i<K; i++) 

                  { 

                   for(j=0; j<N; j++) 

                        {                                      

                          if(population[id_of_best_fitness_value][j] 

                             == value[i]) 

                          {                                               

                             clusters[i][len_of_clusters[i]] = j; 

                             len_of_clusters[i] ++; 

                          } 

                        } 

                  }                       

                  output(ObjClass, ClassName, NumOfClass, clusters,  

                         len_of_clusters); 

                  break; 

            }               

            generate_new_population(population, fitness);              

            iteration_times++; 

      } 

      printf("\nIteration times: %d\n", iteration_times); 

      end = clock(); 
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    duration = (double)(end - begin)/CLOCKS_PER_SEC; 

    printf("\nThe running time: %lf seconds\n",duration); 

      getchar(); 

      return 0; 

} 

 

void output(int ObjClass[], char ClassName[][MAX_LEN_OF_STR], int  

            NumOfClass, int clusters[K][N], int len_of_clusters[]) 

{ 

 int i,j,s;          

      int num_of_each_real_class[MAX_NUM_OF_REAL_CLASS];        

    float percent_of_each_real_class[MAX_NUM_OF_REAL_CLASS];  

    int  max_num_of_each_real_class;     

      int  total_max_num_of_each_real_class = 0;     Í 

    float accuracy;     

 

      for(i=0; i<K; i++) 

      {                 

       for(j=0; j<MAX_NUM_OF_REAL_CLASS; j++) 

     { 

             num_of_each_real_class[j]= 0; 

             percent_of_each_real_class[j]= 0.0; 

     } 

            printf("\n\nThe %dth cluster has %d objects: ",  

                   i,len_of_clusters[i]); 

  for(j=0; j<len_of_clusters[i]; j++) 

  { 

             s = ObjClass[clusters[i][j]]; 

        num_of_each_real_class[s]++; 

             printf("%d, ",clusters[i][j]); 

  } 

            printf("where\n\n"); 

            max_num_of_each_real_class = 0; 

     for(j=0; j<NumOfClass; j++) 

     { 

                  if(num_of_each_real_class[j]>  

max_num_of_each_real_class)                   

max_num_of_each_real_class= 

num_of_each_real_class[j]; 

                 percent_of_each_real_class[j]=        

                  (float)num_of_each_real_class[j]/  

(float)len_of_clusters[i]; 

                  printf("%-5d  %-s (%.1f%%)\n", 

num_of_each_real_class[j],ClassName[j], 

percent_of_each_real_class[j]*100 ); 

            } 

            total_max_num_of_each_real_class +=  

            max_num_of_each_real_class; 

      }         

 accuracy = (float)total_max_num_of_each_real_class / (float)N; 

 accuracy = (int)(accuracy*1000+0.5)/1000.0;    

      printf("\n\nThe accuracy of clustering is:   

%.1f%%",accuracy*100); 

} 
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3. read_data.c 
 
# include "header.h" 

 

// This function reads data from file, creats histograms for  

// attributes, and store the real classes of objects 

void read_data(int data [N][M], int cnt[M], struct Node_of_histogram  

       AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[], int ObjClass[], 

char ClassName[][MAX_LEN_OF_STR], int * NumOfClass) 

{ 

 int obj_i,i,j,k; 

      char tempc; 

      char tem[MAX_LEN_OF_STR]; 

      char object[M][MAX_LEN_OF_STR]; 

      char value_column[M][MAX_NUM_OF_EQUI_CLASS][MAX_LEN_OF_STR];  

      int s;      

                

      for(i=0; i<M; i++) 

       len_of_AH[i] = 0; 

      for(obj_i=0; obj_i<N; obj_i++)    

      {                 

       for(i=0; i<M; i++) 

            { 

             j=0; 

             scanf("%c",&tempc); 

               while(tempc != ',' && tempc != 10 && tempc != '.') 

                 { 

                  object[i][j]=tempc; 

              j++; 

                  scanf("%c",&tempc); 

                  } 

               object[i][j]='\0';                         

                  if(obj_i==0)  

                  { 

                   strcpy(value_column[i][0], object[i]); 

                        cnt[i]++; 

                        data[obj_i][i]= 0; 

                  } 

                  else 

                  { 

                        for(s=0;s<cnt[i];s++)                       

if(strcmp(object[i],value_column[i][s])==0) 

                     { 

                       data[obj_i][i] = s; 

                            break; 

                     } 

                      if(s == cnt[i]) 

                       {                                       

                     strcpy(value_column[i][cnt[i]],object[i]); 

                          data[obj_i][i]= cnt[i] ; 

                        cnt[i]++; 

                   } 

                  } 

            }             

          scanf("%c",&tempc); 

         if(tempc == '\'') 

           { 
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             k = 0; 

                 do 

                 { 

                        scanf("%c",&tempc); 

                        tem[k] = tempc; 

                        k++; 

                 } 

                  while(tempc != '\''); 

                  tem[k-1] = '\0'; 

                  while(tempc != 10 && tempc != '.')     

                   scanf("%c",&tempc); 

            } 

            else 

            { 

                  k = 0; 

                  do 

                 { 

                   tem[k] = tempc; 

                        k++; 

                        scanf("%c",&tempc); 

                  } 

                  while(tempc != 10 && tempc != '.');      

                    tem[k] = '\0'; 

             } 

             if(obj_i==0) 

             { 

                 strcpy(ClassName[0],tem); 

                 ObjClass[0]= 0; 

                 *NumOfClass = 1; 

             } 

             else 

             { 

                 for(k = 0; k< *NumOfClass; k++) 

                   if(strcmp(tem,ClassName[k])==0) 

                        { 

                         ObjClass[obj_i]= k; 

                              break; 

                        } 

                  if(k == * NumOfClass) 

                  { 

                        strcpy(ClassName[k],tem); 

                        ObjClass[obj_i]= k; 

                        (* NumOfClass) ++; 

                  } 

             } 

             //Build or update Histogram for each attribute 

             for(i=0; i<M; i++) 

             { 

              for(j=0; j<len_of_AH[i]; j++) 

                    if(strcmp(object[i],AH[i][j].category_value)==0) 

                    { 

                        AH[i][j].num++; 

                        break; 

                    } 

                  if(j == len_of_AH[i]) 

                  { 

                   strcpy(AH[i][j].category_value,object[i]); 
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                        AH[i][j].num = 1; 

                        len_of_AH[i]++; 

                  } 

             }                 

 } //end for(obj_i=0; obj_i<N; obj_i++)   

} 

 

4. initialization.c 
 
# include "header.h" 

//Generate the initial population including P chroms 

void initialization(int population[P][N], int data [N][M], int 

                    num_of_eq_class[M]) 

{ 

        int i,j,temp; 

        int flag[K]; 

        int partition_tmp[N]; 

        int tmp[N]; 

        int tmp_flag[K]; 

        int s,q; 

        int sum; 

 

        for(i=0; i<M; i++) 

        { 

          for(j=0; j<N; j++) 

             partition_tmp[j] = -1;          

             if(num_of_eq_class[i] == K) 

             {                         

             for(j=0; j<N; j++) 

                   partition_tmp[j] = data[j][i]; 

             } 

             else  

             { 

                  if(num_of_eq_class[i] > K) 

                 {                          

                  for(j=0; j<N; j++) 

                        { 

                         if(data[j][i] < K) 

                          partition_tmp[j] = data[j][i]; 

                        }                          

                        for(j=0; j<N; j++) 

                        { 

                         if(partition_tmp[j] == -1) 

                               partition_tmp[j] = rand()% K; 

                        } 

                 }                  

                 else 

                 { 

                  q = num_of_eq_class[i]; 

                       for(j=q-2; j>=0; j--) 

                       {                                  

                         sum = 0; 

                              for(s=0; s<N; s++) 

                          if(data[s][i] <= j) 

                                  sum += 1; 

                         if((N-sum) >= (K-j-1)) 

                                 break; 
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                        } 

                        if(j == -1)  

                        { 

                              while(1) 

            { 

             for(s=0; s<K; s++) 

              flag[s] = 0; 

             for(s=0; s<N; s++) 

             { 

              temp = rand()% K; 

                     flag[temp] = 1; 

                     partition_tmp[s]= temp; 

             } 

             for(s=0; s<K; s++) 

              if(flag[s]==0) 

                      break; 

             if(s == K) 

              break; 

                              } 

                        } 

                        else 

                        {                                                           

                    for(s=0; s<N; s++) 

                              { 

                               if(data[s][i] <= j) 

                             partition_tmp[s] = data[s][i]; 

                         }                                                                

 while(1) 

                         { 

                                 for(s=0; s<(K-j-1); s++) 

                                  tmp_flag[s] = 0; 

                          for(s=0; s<N-sum; s++) 

                                 { 

                                  tmp[s] = rand()%(K-j-1); 

                                         tmp_flag[tmp[s]] = 1; 

                                         tmp[s]= tmp[s]+(j+1); 

                                 } 

                                 for(s=0; s<(K-j-1); s++) 

                                  if(tmp_flag[s]==0) 

                                          break; 

                                 if(s == (K-j-1)) 

                                  break; 

                         } 

                         q=0; 

                         for(s=0; s<N; s++) 

                         if(partition_tmp[s] == -1) 

                                 { 

                                  partition_tmp[s] = tmp[q]; 

                                         q++; 

                                 }                                         

                        } //end else 

                 } //end else 

              } // end else  

              for(j=0; j<N; j++) 

               population[i][j] = partition_tmp[j];                 

        } //end for(i=0; i<M; i++) 
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        //Randomly generate P-M chroms 

        for(i=M; i<P; )    

        { 

         for(j=0; j<K; j++) 

        flag[j] = 0; 

         for(j=0; j<N; j++) 

            { 

             temp = rand()% K; 

                  flag[temp] = 1; 

                 population[i][j]= temp; 

            } 

            for(j=0; j<K; j++) 

             if(flag[j]==0) 

                   break; 

            if(j == K) 

             i++; 

 } 

} 

 

 

5. fitness.c 
 
# include "header.h" 

float Compute_ANMI(struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int 

len_of_AH[], struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS], int 

len_of_CAH[][M], int len_of_clusters[]); 

 

void compute_fitness(FILE * fp, int population[P][N], float 

fitness[P], struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int 

len_of_AH[]) 

{ 

        int i,j,k,obj_i; 

        char tempc; 

        char object[M][MAX_LEN_OF_STR]; 

   //Histograms for K clusters 

        struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS];    

        int len_of_CAH[K][M];     

        int id; 

 

        int len_of_clusters[K];   

        //compute fitness for each chrom 

        for(i=0; i<P; i++) 

        { 

         //set the length of clusters and CAH 0 

         for(j=0; j<K; j++) 

         { 

                 len_of_clusters[j] = 0; 

                 for(k=0; k<M; k++) 

           len_of_CAH[j][k] = 0; 

       }                

       rewind(fp); 

            for(obj_i=0; obj_i<N; obj_i++)   

        { 

                 //Read an object 

          for(j=0; j<M; j++) 

                 { 

                  k=0; 
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                  scanf("%c",&tempc); 

                     while(tempc!=','&& tempc!= 10&& tempc!= '.') 

                       { 

                   object[j][k]=tempc; 

                   k++; 

                   scanf("%c",&tempc); 

                   } 

                     object[j][k]='\0'; 

                 } 

                  while(tempc != 10 && tempc != '.') 

                        scanf("%c",&tempc); 

                  //Build Histograms 

                  id = population[i][obj_i];   

                  len_of_clusters[id]++; 

                  for(j=0; j<M; j++) 

                  { 

                         for(k=0; k<len_of_CAH[id][j]; k++)             

if(strcmp(object[j],              

CAH[id][j][k].category_value)==0) 

                             { 

                                  CAH[id][j][k].num++; 

                                  break; 

                             } 

                        if(k == len_of_CAH[id][j]) 

                        {                        

strcpy(CAH[id][j][k].category_value,  

object[j]); 

                             CAH[id][j][k].num = 1; 

                             len_of_CAH[id][j]++; 

                        } 

                  } 

  } //for(obj_i=0; obj_i<N; obj_i++) 

            fitness[i] = Compute_ANMI(AH, len_of_AH, CAH, len_of_CAH, 

len_of_clusters); 

        }//for(i=0; i<P; i++) 

} 

 

 

6. compute_anmi.c 
 
# include "header.h" 

float Compute_ANMI(struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int 

len_of_AH[], struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS], int 

len_of_CAH[][M], int len_of_clusters[]) 

{ 

   int b,h,g;  

        int i; 

        int ngh;    

        int nh;     

        int ng;      

        float sum = 0.0; 

        float sh; 

        float sg; 

        float NMI; 

        float log_tmp1,log_tmp2; 

        char str_tmp[MAX_LEN_OF_STR]; 
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      //Compute ANMI between a partition and M attributes partitions 

        for(b=0; b<M; b++) 

        { 

         sh = 0.0; 

            for(h = 0; h<K; h++)       //k(a)=K 

            { 

             sg = 0.0; 

                  for(g=0; g< len_of_AH[b]; g++) //k(b)=len_of_AH[b] 

                  { 

                   //Compute ng(h) 

                        strcpy(str_tmp, AH[b][g].category_value); 

                        for(i=0; i<len_of_CAH[h][b]; i++) 

                           if(strcmp(str_tmp,                                        

CAH[h][b][i].category_value)==0) 

                           { 

                              ngh = CAH[h][b][i].num; 

                              break; 

                           } 

                        if(i == len_of_CAH[h][b]) 

                           ngh = 0;                                         

                        if(ngh != 0) 

                        {                          

                      nh = len_of_clusters[h];  //n(h)        

                      ng = AH[b][g].num;  //ng 

                           log_tmp1 = (float)(ngh*N)/(float)(nh*ng); 

                           log_tmp2 = (float)(K*len_of_AH[b]); 

                           sg+= ngh * (log(log_tmp1)/log(log_tmp2)); 

                        } 

                  } 

                  sh = sh + sg; 

            } 

            //NMI between a partition and attribute b 

            NMI = ((float)2/(float)N) * sh; 

         sum = sum + NMI; 

        } 

        //Return ANMI 

        return sum/M; 

} 

 

7. generate_new_population.c 
 
# include "header.h" 

void sort(float A[],int m, int order[]); 

 

void generate_new_population(int population[P][N], float fitness[P]) 

{ 

   int i,j; 

   int new_population[P][N]; 

        float fitness_copy[P]; 

        int order[P]; 

        float temp; 

        int num_of_fittest; 

        int num_of_crossover; 

        //Probability of being selected of a chrom 

        float selection_prob[P];  

        float sum_of_fitness = 0.0; 

        float rand_num;   //A number between [0,1] 
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        int index[P];      

        int id; 

        int id1,id2; 

        int flag[P]; 

        int k; 

        int crosspoint; 

        int num_of_mutation; 

        int num_of_mutation_point; 

        int flag_mutation_point[N];  

         

        for(i=0; i<P; i++) 

         fitness_copy[i] = fitness[i]; 

        sort(fitness_copy, P, order); 

        temp = (1-CR-MU)*P; 

        num_of_fittest = floor(temp); 

        //copy fittest (1-r-m)M chroms to new population 

        for(i=0; i<num_of_fittest; i++) 

        { 

         for(j=0; j<N; j++) 

                { 

                   new_population[i][j] = population[order[i]][j]; 

                } 

        } 

        //crossover       

        for(i=0; i<P; i++) 

         sum_of_fitness += fitness[i]; 

        for(i=0; i<P; i++) 

            selection_prob[i] = fitness[i]/sum_of_fitness; 

        for(i=1; i<P; i++) 

            selection_prob[i]=selection_prob[i-1]+selection_prob[i]; 

   //Roulette wheel algorithm 

        temp = CR*P; 

        num_of_crossover = floor(temp); 

        for(i=0; i<num_of_crossover; i++) 

        { 

         rand_num = rand()%1000/1000.0; 

            id = 0; 

            while(rand_num - selection_prob[id] > 1e-6) 

             id++; 

            index[i] = id; 

        }         

        k = num_of_fittest; 

        for(i=0; i<num_of_crossover; i++) 

         flag[i] = 0; 

        for(i=0; i<num_of_crossover/2; i++)     

        { 

         //Randomly select id1 and id2 to perform crossover 

            do 

            { 

             id1 = rand()% num_of_crossover; 

            } 

            while(flag[id1]==1); 

            flag[id1] = 1; 

            do 

            { 

          id2 = rand()% num_of_crossover; 

            } 
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            while(flag[id2]==1); 

            flag[id2] = 1;                 

            crosspoint = rand()% N; 

            for(j=0; j<=crosspoint; j++) 

            { 

             new_population[k][j]= population[index[id1]][j]; 

                  new_population[k+1][j]= population[index[id2]][j]; 

            } 

            for(j=crosspoint+1; j<N; j++) 

            { 

                 new_population[k][j]= population[index[id2]][j]; 

                  new_population[k+1][j]= population[index[id1]][j]; 

            } 

            k = k+2; 

        } 

 

        //mutation 

        for(i=0; i<P; i++) 

         flag[i] = 0; 

        temp = MU*P; 

        num_of_mutation = floor(temp); 

        temp = 0.1*N; 

        num_of_mutation_point = floor(temp); 

        if(num_of_mutation_point == 0) 

         num_of_mutation_point = 1; 

        for(i=0; i<num_of_mutation; i++) 

        { 

         do 

            { 

             id = rand()%P; 

            } 

            while(flag[id]==1); 

            flag[id] = 1; 

            for(j=0; j<N; j++) 

             new_population[k][j] = population[id][j];    

            for(j=0; j<N; j++) 

          flag_mutation_point[j] = 0; 

            for(j=0; j<num_of_mutation_point; j++) 

            { 

                 do 

                  { 

                   id1 = rand()%N; 

                  } 

                  while(flag_mutation_point[id1]==1); 

                  flag_mutation_point[id1] = 1; 

                  new_population[k][id1] = rand()% K; 

            } 

            k++; 

        } 

 

        //Copy newpopulation to population 

        for(i=0; i<P; i++) 

        { 

         for(j=0; j<N; j++) 

            { 

                 population[i][j] = new_population[i][j]; 

            } 
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        } 

} 

 

void sort(float A[],int m, int order[])   

{ 

   int i,j; 

        float temp; 

        for(i=0; i<m; i++) 

            order[i] = i; 

        for(i=1; i<m ;i++)                

        { 

         for(j=0;j<m-i;j++) 

            { 

             if((A[j]-A[j+1])<-1e-6) 

                  { 

                   temp = A[j+1]; 

                        A[j+1]= A[j]; 

                        A[j]= temp; 

                        temp = order[j+1]; 

                        order[j+1]= order[j]; 

                        order[j]= temp; 

                  } 

            } 

        } 

} 

 

 


