

THE NEW EFFICIENT AND ACCURATE ATTRIBUTE-ORIENTED CLUSTERING

ALGORITHMS FOR CATEGORICAL DATA

QIN HONGWU

Thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

AUGUST 2012

ii

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor

of Philosophy (Computer Science).

iii

SUPERVISORS’ DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Doctor of

Philosophy in Computer Science.

Signature

Name of Supervisor: Professor Dr. Jasni Mohamad Zain

Position: Dean of Faculty of Computer Systems and Software Engineering

Date:

Signature

Name of Co-supervisor: Dr. Tutut Herawan

Position: Lecturer

Date:

iv

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for the quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for the award of any other degree.

Signature:

Name : QIN HONGWU

ID Number : PCC09002

Date :

v

Dedicated to my wife and daughter for accompanying me all the time

vi

ACKNOWLEDGEMENTS

My most gratitude to Allah SWT, the Almighty for giving me this great chance

to enhance my knowledge and to complete this research. May the peace and blessings

be upon Prophet Muhammad SAW.

I am very grateful to University Malaysia Pahang for the research funding and

opportunity, I will treasure all the time when I was in the University Malaysia Pahang.

I sincerely thank my respected supervisors, Prof Dr. Jasni Mohamad Zain and

Dr. Tutut Herawan, for their helpful advice, effective encouragement and constructive

guidance throughout this research.

My sincere thanks to my wife for her support and understanding as well as her

endless love. To my lovely princess, thank you for the source of motivations and

inspirations. Special thanks to my parents, brother and sister for their support and

assistance.

I would also like to thank all postgraduate members, all staff in Faculty of

Computer Systems and Software Engineering and the CGS staff for their support,

cooperation and contribution all the way.

Finally, again I would like to express my thanks to all who involve in

completing this research. Only Allah will reciprocate your goodness.

vii

ABSTRACT

Categorical data clustering has attracted much attention recently due to the fact that

much of the data contained in today’s databases is categorical in nature. Many

algorithms for clustering categorical data have been proposed, in which attribute-

oriented hierarchical divisive clustering algorithm Min-Min Roughness (MMR) has the

highest efficiency among these algorithms with low clustering accuracy, conversely,

genetic clustering algorithm Genetic-Average Normalized Mutual Information (G-

ANMI) has the highest clustering accuracy among these algorithms with low clustering

efficiency. This work firstly reveals the significance of attributes in categorical data

clustering, and then investigates the limitations of algorithms MMR and G-ANMI

respectively, and correspondingly proposes a new attribute-oriented hierarchical

divisive clustering algorithm termed Mean Gain Ratio (MGR) and an improved genetic

clustering algorithm termed Improved G-ANMI (IG-ANMI) for categorical data. MGR

includes two steps: selecting clustering attribute and selecting equivalence class on the

clustering attribute. Information theory based concepts of mean gain ratio and entropy

of clusters are used to implement these two steps, respectively. MGR can be run with or

without specifying the number of clusters while few existing clustering algorithms for

categorical data can be run without specifying the number of clusters. IG-ANMI

algorithm improves G-ANMI by developing a new attribute-oriented initialization

method in which part of initial chromosomes is generated by using the attributes

partitions. Four real-life data sets obtained from University of California Irvine (UCI)

machine learning repository and ten synthetically generated data sets are used to

evaluate MGR and IG-ANMI algorithms, and other four algorithms are used to compare

with these two algorithms. The experimental results show that MGR overcomes the

limitations of MMR and the average clustering accuracy is improved by 19% (from

0.696 to 0.83), at the same time maintains the highest efficiency. IG-ANMI greatly

improves the efficiency of G-ANMI (improved by 31% on the Zoo data set, 74% on the

Votes data set, 59% on the Breast Cancer data set, and 3428% on the Mushroom data

set) as well as the clustering accuracy of G-ANMI (the average clustering accuracy on

four UCI data sets is improved by 10.6%, from 0.815 to 0.901), at the same time

maintains the highest clustering accuracy. IG-ANMI has obvious advantage against G-

ANMI on large data sets in terms of clustering efficiency as well as clustering accuracy.

In addition, both of MGR and IG-ANMI have good scalability. The running time of

MGR and IG-ANMI algorithms tend to vary linearly with the increase of the number of

objects as well as the number of clusters.

viii

ABSTRAK

Pengelompokan data kategori telah menarik banyak perhatian baru-baru ini disebabkan

kebanyakan data yang terkandung di dalam pangkalan data hari ini adalah data kategori

dalam alam semula jadi. Algoritma untuk mengelompokkan data kategori telah banyak

dicadangkan, di mana algoritma pengelompokan hierarki berorientasikan sifat, Min-Min

Roughness (MMR) mempunyai kecekapan tertinggi tetapi mempunyai ketepatan

pengelompokan yang rendah, sebaliknya, algoritma pengelompokan genetik Genetic-

Average Normalized Mutual Information (G-ANMI) mempunyai ketepatan tertinggi

dalam pengelompokan, manakala kecekapan kelompok yang rendah. Tesis ini

mendedahkan kepentingan ciri-ciri dalam pengelompokan data kategori, dan kemudian

menyiasat batasan algoritma MMR dan G-ANMI, seterusnya mencadangkan algoritma

baru pengelompokan berorientasikan sifat memecah-belahkan hierarki dipanggil Mean

Gain Ratio (MGR) dan algoritma pengelompokan genetik yang lebih baik dipanggil

Improved G-ANMI (IG-ANMI) bagi data kategori. MGR mengandungi dua langkah

iaitu memilih sifat kelompok dan memilih kelas kesetaraan pada sifat kelompok.

Konsep teori maklumat berdasarkan purata nisbah keuntungan dan entropi kelompok

digunakan untuk melaksanakan kedua-dua langkah ini. MGR boleh dijalankan dengan

atau tanpa menyatakan bilangan kelompok, manakala beberapa algoritma kelompok

yang sedia ada bagi data kategori hanya boleh dijalankan tanpa menyatakan bilangan

kelompok. Algoritma IG-ANMI meningkatkan prestasi G-ANMI dengan

membangunkan satu sifat pengawalan baru yang berorientasikan kaedah di mana

sebahagian daripada kromosom awal dijana dengan menggunakan pembahagian sifat.

Empat set data sebenar yang diperolehi dari UCI dan sepuluh sintetik set data yang

dihasilkan sendiri digunakan untuk menilai algoritma MGR dan algoritma IG-ANMI,

dan empat algoritma lain digunakan untuk membandingkan dengan kedua-dua

algoritma tersebut. Keputusan eksperimen menunjukkan bahawa MGR mengatasi

batasan MMR dan purata ketepatan pengelompokan meningkat sebanyak 19% (0,696-

0,83), pada masa yang sama mengekalkan kecekapan yang tertinggi. IG-ANMI

memperbaiki kecekapan G-ANMI (bertambah baik sebanyak 31% ke atas set data Zoo,

74% ke atas set data Votes, 59% ke atas data Kanser Payudara, dan 3428% ke atas set

data Mushroom) dan juga pada ketepatan kelompokan G-ANMI (purata ketepatan

kelompokan pada empat data UCI dipertingkatkan sebanyak 10.6%, daripada 0.815 ke

0.901), pada pada masa yang sama mengekalkan kelompok ketepatan tertinggi. IG-

ANMI mempunyai kelebihan yang jelas terhadap G-ANMI pada set data yang besar

dari segi kecekapan kelompok serta ketepatan pengelompokan. Di samping itu, kedua-

dua MGR dan IG-ANMI mempunyai penskalaan yang baik. Masa larian untuk MGR

dan IG-ANMI berubah selari dengan pertambahan bilangan objek dan juga kelompok.

ix

TABLE OF CONTENTS

 Page

STATEMENT OF AWARD FOR DEGREE ii

SUPERVISOR’S DECLARATION iii

STUDENT’S DECLARATION iv

DEDICATION v

ACKNOWLEDGEMENTS vi

ABSTRACT vii

ABSTRAK viii

TABLE OF CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xix

CHAPTER 1 INTRODUCTION

1.1 Background 1

 1.1.1 KDD 1

 1.1.2 Data Mining 3

 1.1.3 Clustering 5

1.2 Problems Statement 6

1.3 Research Objectives and Scope 9

1.4 Research Outcomes 9

1.5 Thesis Organization 10

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 11

2.2 Clustering 11

 2.2.1 Basic Steps in Clustering Process 11

 2.2.2 Data Types 12

 2.2.3 Dissimilarity Measures 13

 2.2.4 Objective Functions 16

 2.2.5 Membership 16

x

 2.2.6 Categorization of Clustering Methods 17

2.3 Algorithms for Categorical Data Clustering 18

 2.3.1 k-means, k-modes and Fuzzy k-modes Algorithms 20

 2.3.2 ROCK and QROCK 24

 2.3.3 STIRR 28

 2.3.4 CACTUS 29

 2.3.5 Entropy Based Algorithms 29

 2.3.6 k-ANMI 33

 2.3.7 Genetic Clustering Algorithms 35

 2.3.8 MMR 38

 2.3.9 MDA 41

 2.3.10 Squeezer 42

 2.3.11 Discussion 43

CHAPTER 3 MGR: A NEW ATTRIBUTE-ORIENTED HIERARCHICAL

DIVISIVE CLUSTERING ALGORITHM FOR

CATEGORICAL DATA USING INFORMATION THEORY

3.1 Introduction 45

3.2 The Space of Attributes Partitions 45

3.3 MGR Technique 47

 3.3.1 Basic Idea of MGR 47

 3.3.2 Information System 49

 3.3.3 Information Theory 50

3.4 MGR Algorithm 54

3.5 MGR Computational Complexity 60

3.6 Comparisons with MMR 61

 3.6.1 Limitations of MMR 61

 3.6.2 Comparison Between MGR and MMR 67

3.7 Summary 70

CHAPTER 4 IG-ANMI: AN IMPROVED GENETIC CLUSTERING

ALGORITHM FOR CATEGORICAL DATA

4.1 Introduction 71

4.2 Genetic Algorithms 72

 4.2.1 Biological Background 72

 4.2.2 The Outline of Basic GAs 73

xi

 4.2.3 Encoding of Chromosomes 74

 4.2.4 Fitness Function 75

 4.2.5 Selection Operators 75

 4.2.6 Crossover Operators 76

 4.2.7 Mutation Operators 77

 4.2.8 Parameters of GAs 78

4.3 G-ANMI 78

 4.3.1 The Description of G-ANMI Algorithm 79

 4.3.2 The Encoding Method and Initialization 80

 4.3.3 The Fitness Function 80

 4.3.4 Selection, Crossover, and Mutation Operators 81

4.4 IG-ANMI 81

4.5 Summary 95

CHAPTER 5 EXPERIMENTAL RESULTS

5.1 Introduction 96

5.2 Experiment Design 97

 5.2.1 Algorithms Used for Comparison 97

 5.2.2 Data Sets Used in Experiments 97

 5.2.3 Parameters Setting 99

 5.2.4 Language and Platform for Implementation 100

5.3 Performance Analysis 100

 5.3.1 Evaluation Method 100

 5.3.2 Zoo Data Set 101

 5.3.3 Votes Data Set 105

 5.3.4 Breast Cancer Data Set 107

 5.3.5 Mushroom Data Set 110

 5.3.6 Comparison and Discussion 112

5.4 Efficiency Analysis 114

5.5 Running MGR without Specifying the Number of Clusters 116

5.6 Scalability Test 119

 5.6.1 Scalability of MGR 119

 5.6.2 Scalability of IG-ANMI 121

5.7 Comparison between G-ANMI and IG-ANMI 122

 5.7.1 Comparison on Efficiency 122

 5.7.2 Comparison on Performance 126

5.8 Summary 128

xii

CHAPTER 6 CONCLUSIONS

6.1 Introduction 129

6.2 Contributions and Limitations 129

6.3 Future Work 131

 REFERENCES 133

 APPENDICES

A Publications 139

B1 Code Listing for MGR Algorithm 140

B2 Code Listing for IG-ANMI Algorithm 151

xiii

LIST OF TABLES

Table No. Title Page

1.1 An instance of categorical data set

6

2.1 An example of membership matrix

16

3.1 Example data set with ten objects and five attributes

46

3.2 Example data set with six objects and three attributes

47

3.3 An information system

50

3.4 An information system of student’s enrollment qualification

57

3.5 GR and MGR of all attributes in Table 3.3

59

3.6 Example data set with five objects and four attributes

64

3.7 Example data set with five objects and five attributes

65

3.8 The numbers of the objects in each equivalence class

65

3.9 The animal dataset

66

3.10 Gain Ratio of all attributes in Table 3.7

68

3.11 Gain Ratio of all attributes in Table 3.9 in the first iteration

69

3.12 Gain Ratio of all attributes in Table 3.9 in the second

iteration

69

4.1 The example of chromosomes with binary encoding

74

4.2 The example of chromosomes with value encoding

74

4.3 Single point crossover for binary encoding

77

4.4 Mutation for binary encoding

77

4.5 The example of partitions defined by four attributes

86

4.6 The status of chrom [1] after copying the first equivalence

class

87

4.7 The status of chrom [3] after copying first three equivalence

classes

87

xiv

4.8 The first four chromosomes generated from attributes

partitions

88

4.9 The six chromosomes generated randomly

89

4.10 The fitness of initial chromosomes of IG-ANMI

90

4.11 The first new population after initial population in IG-

ANMI

92

4.12 The fitness values of the chromosomes in the first new

population

93

4.13 The initial population of G-ANMI

94

4.14 The fitness values of the chromosomes in the initial

population of G-ANMI

95

5.1 The basic information about the four data sets

98

5.2 The results of MGR algorithm on the Zoo data set

102

5.3 The results of MMR algorithm on the Zoo data set

102

5.4 The results of k-ANMI algorithm on the Zoo data set

102

5.5 The results of G-ANMI algorithm on the Zoo data set when

the population size is set to 50

103

5.6 The results of IG-ANMI algorithm on the Zoo data set when

the population size is set to 50

103

5.7 The clustering accuracy of G-ANMI on the Zoo data set

with the increase of the population size

104

5.8 The clustering accuracy of IG-ANMI on the Zoo data set

with the increase of the population size

104

5.9 The results of COOLCAT algorithm on the Zoo data set

when the percent of reprocess is set to 10%

104

5.10 The clustering accuracy of COOLCAT on the Zoo data set

when the percent of reprocess are 0, 10%, 20%, and 40%

105

5.11 The results of MGR algorithm on the Votes data set

105

5.12 The results of MMR algorithm on the Votes data set

105

5.13 The results of k-ANMI algorithm on the Votes data set 105

xv

5.14 The results of G-ANMI algorithm on the Votes data set

when the population size is set to 50

106

5.15 The results of IG-ANMI algorithm on the Votes data set

when the population size is set to 50

106

5.16 The clustering accuracy of G-ANMI on the Votes data set

with the increase of the population size

106

5.17 The clustering accuracy of IG-ANMI on the Votes data set

with the increase of the population size

107

5.18 The results of COOLCAT algorithm on the Votes data set

when the percent of reprocess is set to 10%

107

5.19 The clustering accuracy of COOLCAT on the Votes data set

when the percent of reprocess are 0, 10%, 20%, and 40%

107

5.20 The results of MGR algorithm on the Breast Cancer data set

108

5.21 The results of MMR algorithm on the Breast Cancer data set

108

5.22 The results of k-ANMI algorithm on the Breast Cancer data

set

108

5.23 The results of G-ANMI algorithm on the Breast Cancer data

set when the population size is set to 50

108

5.24 The results of IG-ANMI algorithm on the Breast Cancer

data set when the population size is set to 50

109

5.25 The clustering accuracy of G-ANMI on the Breast Cancer

data set with the increase of the population size

109

5.26 The clustering accuracy of IG-ANMI on the Breast Cancer

data set with the increase of the population size

109

5.27 The results of COOLCAT algorithm on the Breast Cancer

data set when the percent of reprocess is set to 10%

109

5.28 The clustering accuracy of COOLCAT on the Breast Cancer

data set when the percent of reprocess are 0, 10%, 20%, and

40%

110

5.29 The results of MGR algorithm on the Mushroom data set

110

5.30 The results of MMR algorithm on the Mushroom data set

110

xvi

5.31 The results of k-ANMI algorithm on the Mushroom data set

110

5.32 The results of G-ANMI algorithm on the Mushroom data set

when the population size is set to 50

111

5.33 The results of IG-ANMI algorithm on the Mushroom data

set when the population size is set to 50

111

5.34 The clustering accuracy of G-ANMI on the Mushroom data

set with the increase of the population size

111

5.35 The clustering accuracy of IG-ANMI on the Mushroom data

set with the increase of the population size

111

5.36 The results of COOLCAT algorithm on the Mushroom data

set when the percent of reprocess is set to 10%

112

5.37 The clustering accuracy of COOLCAT on the Mushroom

data set when the percent of reprocess are 0, 10%, 20%, and

40%

112

5.38 The accuracy of six algorithms on four data sets

112

5.39 The running time in seconds of five algorithms on ten data

sets

115

5.40 The results of Auto MGR algorithm on the Zoo data set

116

5.41 The results of Auto MGR algorithm on the Votes data set

116

5.42 The results of Auto MGR algorithm on the Breast Cancer

data set

117

5.43 The results of Auto MGR algorithm on the Mushroom data

set

117

5.44 The summary of the results of Auto MGR on four real life

data sets

118

5.45 The summary of the results of Auto MGR on R1-R10 data

sets

119

5.46 The numbers of iterations and running time of G-ANMI and

IG-ANMI on the Mushroom data set

126

5.47 The clustering accuracies of G-ANMI and IG-ANMI on

four data sets

127

xvii

LIST OF FIGURES

Figure No. Title

Page

1.1 The relation between KDD, Data Mining and Clustering

1

1.2 The process of KDD

2

2.1 The k-modes algorithm

22

2.2 The ROCK algorithm

25

2.3 The QROCK algorithm

27

2.4 Incremental step of COOLCAT algorithm

31

2.5 The k-ANMI algorithm

35

2.6 The pseudo code of the ALG-RAND algorithm

37

2.7 The MMR algorithm

40

2.8 The MDA algorithm

42

3.1 The basic steps of MGR technique

48

3.2 MGR algorithm

55

3.3 The procedure of calculating MGR)(ia

56

3.4 The procedure of selecting the equivalence class

56

4.1 The outline of basic GAs

73

4.2 The mapping of chromosomes onto a roulette wheel

76

4.3 The algorithm of roulette wheel selection

76

4.4 The G-ANMI algorithm

79

4.5 The initialization algorithm of IG_ANMI

82

4.6 The function of Generate_from_Partitions

84

4.7 The function of Randomly_Generate

86

5.1 Clustering accuracy of six algorithms on four data sets

113

xviii

5.2 Running time of five algorithms on ten data sets

115

5.3 The comparison of the accuracies obtained by Auto MGR and

Speicfied MGR

118

5.4 The comparison of the running times taken by Auto MGR and

Specified MGR

119

5.5 Scalability of MGR to the number of objects

120

5.6 Scalability of MGR to the number of clusters

120

5.7 Scalability of IG-ANMI to the number of objects

121

5.8 Scalability of IG-ANMI to the population size

122

5.9 Scalability of IG-ANMI to the number of clusters

122

5.10 Number of iterations vs. population size on the Zoo data set

123

5.11 Number of iterations vs. population size on the Votes data set

124

5.12 Number of iterations vs. population size on the Breast Cancer

data set

124

5.13 Number of iterations vs. population size on the Mushroom data

set

124

5.14 Running time vs. population size on the Zoo data set

125

5.15 Running time vs. population size on the Votes data set

125

5.16 Running time vs. population size on the Breast Cancer data set

125

5.17 Running time vs. population size on the Mushroom data set

126

xix

LIST OF ABBREVIATIONS

AIB Agglomerative Information Bottleneck

ANMI Average Normalized Mutual Information

CACTUS CAtegorical ClusTering Using Summaries

CE

Conditional Entropy

CNC

Current Number of Clusters

CORE

CORrelated-Force Ensemble

DCF Distribution Cluster Feature

G-ANMI

Genetic-Average Normalized Mutual Information

GA Genetic Algorithm

GR

Gain Ratio

IB Information Bottleneck

IG

Information Gain

IG-ANMI

Improved Genetic-Average Normalized Mutual Information

KDD Knowledge Discovery in Databases

MDA

Maximum Dependency Attributes

MGR Mean Gain Ratio

MMR Min-Min-Roughness

ROCK RObust Clustering using linKs

SOM Self-Organizing Map

SSE Sum of the Squares of Error

STIRR Sieving Through Iterated Relational Reinforcement

TCSOM

Transactions Clustering using Self-Organizing Map

UCI

University of California Irvine

CHAPTER 1

INTRODUCTION

In this chapter, the background of the research is outlined, followed by problems

statement, research objectives, research outcomes, and lastly, the thesis organization.

1.1 BACKGROUND

In this section, three terms related to our research are briefly described,

including Knowledge Discovery in Databases (KDD), Data Mining, and Clustering.

Figure 1.1 illustrates the relation between them.

Figure 1.1: The relation between KDD, Data Mining and Clustering

1.1.1 KDD

With the rapid development of information and communication technology,

human beings have accumulated tremendous amounts of data. Contributing factors

include popular use of internet, ubiquitous data collection and storage devices including

2

digital camera, mobile phone, bar code scanner, and various inexpensive disks with size

of gigabytes or terabytes, and the computerization of many fields such as industry,

scientific, medicine, business, education, and so on. The explosive growth of data has

generated a big challenge to data processing techniques: how to extract useful

information and knowledge from the vast amounts of data (Han and Kamber, 2006).

This leads to a significant research on the field of information processing, that is, KDD

(Piatesky-Shapiro et al., 1996; Sever, 1998; Duntsch and Gediga, 2000; Atkinson-

Abutridy et al., 2004). KDD aims to discover some novel, valid, useful, and

understandable rules or patterns in large data sets (Piatesky-Shapiro et al., 1996). The

process of KDD consists of a series of transformation steps, as is shown in Figure 1.2.

Figure 1.2: The process of KDD

Adapted from: Tan et al. (2006)

First, data preprocessing transforms the original data into an appropriate form

according to the need of following processes. The steps involved in data preprocessing

include:

 Clean Data: This step removes noise in the raw data.

 Integrate Data: This step fuses data from multiple sources.

 Select Data: This step selects data related to the knowledge discovery task

from the database.

 Transform Data: This step transforms or consolidates data into appropriate

format for mining by summarizing or aggregating data. Data reduction may

Input

Data

Data

Preprocessing

Data

Mining

Data

Postprocessing

Information

 Clean Data

 Integrate Data

 Select Data

 Transform Data

 Evaluate Patterns

 Represent Knowledge

3

also be performed to gain a subset of the original data without sacrificing its

integrity.

After the preprocessing, some data mining methods are employed to extract

potential data patterns. The choice of methods usually depends upon the goal of the

KDD task. The selection of algorithms generally depends upon the type of the data set

and the attribute values.

Generally, a specific user is only interested in a small part of the patterns

produced by the data mining methods. Thus, a postprocessing procedure is required.

The steps involved in postprocessing include:

 Evaluate patterns: This step indentifies the valid and useful patterns according

to some measures given by user.

 Represent Knowledge: The mined knowledge is represented to the user by

using some information representation and visualization techniques.

1.1.2 Data Mining

Data mining (Han and Kamber, 2006; Tan et al., 2006; Han et al., 2011; Fu,

2011; Liao et al., 2012) is the process of mining potential rules or patterns in vast

amount of data stored in data warehouses, large databases, or other knowledge

repositories. There are two categories of tasks in data mining: descriptive mining task

and predictive mining task. The former reveals the general character of the data in the

database. The latter builds inference model and conducts prediction on the current data

(Han and Kamber, 2006). Concretely, four of the core data mining tasks are described

below.

i. Classification

The process of data classification consists of two steps. The first step builds a

model, which is usually called classifier by applying some classification algorithm on a

training data set with the known class labels. Classifier characterizes data classes and

distinguishes them. Classification is a typical supervised learning process because the

class label of each training data is previously known. There are many methods for

4

constructing classifier, such as decision tree, k-nearest neighbor classification, Bayesian

classification, artificial neural network, and support vector machines. The second step

uses the derived classfier to predict the class of current data whose class label is

unknown.

ii. Association analysis

Association analysis is used to discover interesting relationships concealed in

large databases. The discovered relationships are typically represented as association

rules. Association analysis consists of two steps. The first step finds all the itemsets

whose frequence is equal to or greater than the predefined support count threshold.

These itemsets are called frequent itemsets. The second step produces strong association

rules in terms of the found frequent itemsets which satisfy minimum support threshold

as well as minimum confidence threshold. Association analysis can be applied to many

fields such as market basket transactions, web mining bioinformatics, medical

diagnoses, and so on.

iii. Cluster analysis

Unlike classification which analyzes class-labeled data objects, clustering is a

typical unsupervised learning process, that is, the class labels of data objects involved in

clustering are previously unknown when the clustering algorithm is being executed;

even in most cases the number of clusters is also unknown in advance. The data objects

are clustered in terms of the rule of making the intracluster similarity (the similarity

between the objects in the identical cluster) maximum and making the intercluster

similarity (the similarity between the objects in the different clusters) minimum (He et

al., 2005a). In other words, an object is much more similar to the objects in the identical

cluster than to the objects in other clusters. Clustering has been used to group sets of

related customers, documents, genes, communities in social network and so on.

iv. Outlier detection

Outlier detection is the task of identifying data objects whose characteristics are

significantly different from the rest of the data objects. Such data objects are known as

outliers. Outliers usually are simply considered as noise data to be discarded in many

data mining algorithms. Nevertheless, the unusual events might be more significant than

5

the more usually appearing ones in some specific applications such as deceit detection.

The goal of outlier detection is to discover the real outliers and avoid falsely labeling

normal objects as anomalies. Outlier detection has been widely applied to the detection

of deceit (Ngai et al., 2011), network intrusions, and unusual patterns of disease.

1.1.3 Clustering

As mentioned in Section 1.1.2, clustering is one of the core tasks of data mining.

It can reveal the potential patterns and distributions in the objective data by grouping

the similar objects together. Clustering plays a very important role in many data

processing tasks, for example large data sets segmentation, summarize data,

unsupervised classification, and so on (Halkidi et al., 2001).

Clustering techniques have been applied to many domains such as gene data

analysis, mobile computing, social networks, medicine, document analysis, security

assessment in power systems, management, and image and video anlysis. For example,

Hung and Peng (2011) developed algorithm Time Clustering to cluster call detail

records for mining mobile user movement patterns. Jiang et al. (2004) analyzed many

clustering methods for complicated gene related data. Zhao and Zhang (2011)

introduced a new clustering method for extracting community structure from social

networks. Wong et al. (2002) proposed a clustering method which can be applied on

tissues segmentation in a medical imaging approach. Kalogeratos and Likas (2011)

proposed a robust clustering method called k-synthetic prototypes to implement

document clustering. Feng et al. (2011) proposed a graph based model to cluster

Chinese blogs by using embedded sentiments. Saglam et al. (2006) developed a

clustering method to segment customers of a company based on the customer and

transaction attributes. Kalyani and Swarup (2011) introduced K-means clustering

approach into the evaluation of power system. Given operating condition and

contingency, the state of a power system is classified to secure or insecure. Cheng and

Leu (2009) proposed a k-prototypes clustering algorithm to handle the classification

problems of construction management. Based on cluster analysis, Mathieu and Gibson

(2004) proposed a method for large scale research and development planning. Cheng et

al. (2011) applied spectral clustering into 3D human posture segmentation with surface

normal constraint. Vretos et al. (2011) proposed a face clustering algorithm based on

6

mutual information to analyze movie contents. Huang et al. (2011) proposed a robust

clustering algorithm to do image segmentation in L∗a∗b∗ color space.

1.2 PROBLEMS STATEMENT

Most of aforementioned clustering algorithms only can be applied on numerical

data. A common way to measure the similarity between numerical data points is to

define distance functions by employing the inherent geometric attributes in numerical

data. Nevertheless, there exists a lot of categorical data in the databases (Parmar et al.,

2007) which is usually characterized by a set of descriptive attributes. There is no order

between the attribute values on these descriptive attributes. Therefore, distance measure

can not be defined between categorical data values. For example, suppose a data set

which stores some information about customers is considered. As is shown in Table 1.1,

each customer is described by the attributes “age”, “sex”, “income”, and “investments”.

Obviousy, it is difficult to define the distance or similarity between the values “youth”

and “senior”, or between the customers 3 and 4. Therefore, those clustering algorithms

dealing with numerical data can not be directly employed to categorical data clustering.

Recently, researchers have paid much attention on categorical data clustering.

Table 1.1: An instance of categorical data set

ID Age Sex Income Investments

1 youth male high stocks

2 middle-aged female high stocks

3 youth female medium stocks

4 senior male medium bonds

5 middle-aged male low bonds

6 senior female medium bonds

Formally, the problem of categorical data clustering is defined as follows. Given

a data set D containing objects O1, …, ON, every object Oj (j = 1…N) is described by d

categorical attributes, that is, Oj is a d-dimensions vector),...,(1 d

jjj OOO . With a

specified integer k, the objects are broken into k groups G1, …, Gk, toward the goal of

7

the minimization/maximization of a criterion (objective function). That is, the problem

of categorical data clustering is an optimization problem. Unfortunately, this

optimization problem is NP-complete (Barbara et al., 2002). Therefore most researchers

resort to heuristic methods to solve it, such as k-modes (Huang, 1998), CAtegorical

ClusTering Using Summaries (CACTUS) (Ganti et al., 1999), RObust Clustering using

linKs (ROCK) (Guha et al., 2000), COOLCAT (Barbara et al., 2002), Squeezer (He et

al., 2002), Transactions Clustering using Self-Organizing Map (TCSOM) (He et al.,

2005b), ccdByEnsemble (He et al., 2005a), MMR (Parmar et al., 2007), k-Average

Normalized Mutual Information (k-ANMI) (He et al., 2008) and so on. Heuristic

methods tend to find local optimal clustering (Deng et al., 2010), thus a few researchers

try to solve the problem of categorical data clustering by direct optimization, such as

genetic clustering algorithms ALG-RAND (Cristofor and Simovici, 2002) and G-ANMI

(Deng et al., 2010), both of them use genetic algorithm (GA) to find globally optimal

clustering.

Evaluating these clustering algorithms for categorical data is a non-trivial task

(He et al., 2008). At present, the most widely used criteria for evaluation include

clustering accuracy (Huang, 1998) and clustering efficiency. Clustering accuracy

measures the quality of the results of clustering algorithms. It has been pointed out aht

the higher the value of clustering accuracy, the better the results of clustering (He et al.,

2008). Clustering efficiency is usally measured by the running time of an algorithm.

Obviously, the more running time an algorithm takes on a data set, the lower efficiency

it has. Experimental results (Guha et al., 2000; Cristofor and Simovici, 2002; Parmar et

al., 2007; Deng et al., 2010) have shown that heuristic algorithms have low clustering

accuracy while have high efficiency in comparison with direct optimization based

algorithms, conversely, direct optimization based algorithms have high clustering

accuracy while have low efficiency in comparison with heuristic algorithms. Hence,

new clustering algorithms for categorical data with high efficiency as well as high

clustering accuracy are needed.

One of the heuristic algorithms is MMR (Parmar et al., 2007). MMR is based on

the rough set theory. It first chooses a partitioning attribute with MMR value, and then

split the set of objects into two clusters on the selected partitioning attribute. Repeat the

above process on the current longest clusters until reaching the specified number of

clusters (The details of MMR algorithm are described in Section 2.3.8). The above

8

clustering procedure can be organized top-down as a tree structure; hence MMR

belongs to hierarchical divisive algorithm. In addition, all the partition operations are

performed on the attribute; therefore, inherently MMR is an attribute-oriented

hierarchical divisive algorithm. MMR is one of the most efficient algorithms among the

aforementioned algorithms; however, it has some inherent limitations. First, it is biased

toward the attribute with the smallest value domain size or with the most unbalanced

partition as determining the partitioning attributes. Second, it selects the longest cluster

to split in each iteration. However, the real clusters are not always embedded in the

attribute with the smallest value domain size or with the most unbalanced partition, and

selecting the longest cluster to split is not always consistent with the natural distribution

of clusters. Therefore, these limitations result in low clustering accuracy of MMR

algorithm. On the contrary, G-ANMI, one of the direct optimization based algorithms,

has the highest clustering accuracy among the existing algorithms for categorical data

clustering; however, it has very low efficiency. Inherently, G-ANMI is a genetic

clustering algorithm, that is, genetic algorithm is used to find globally optimal

clustering in this algorithm. The low efficiency of G-ANMI is mainly caused by genetic

algorithm in which lots of iterations are needed to find globally optimal clustering

(Deng et al., 2010).

Based on the drawbacks of MMR and G-ANMI algorithms, there is a need for

improving these two algorithms. Therefore, two research questions have been proposed:

 How to develop an attribute-oriented hierarchical divisive algorithm to cluster

categorical data that attains high clustering accuracy, at the same time

maintains the highest efficiency among the existing algorithms for categorical

data clustering?

 How to develop a genetic algorithm to cluster categorical data that attains high

efficiency, at the same time maintains the highest clustering accuracy among

the existing algorithms for categorical data clustering?

In addition, for existing algorithms for categorical data clustering, users have to

specify the cluster number before running them. However, it is a difficult task for user

to know the exact number of clusters in a data set in advance. Hence, the third research

question is:

9

 How to develop categorical data clustering algorithms which can be run

without specifying the number of clusters?

1.3 RESEARCH OBJECTIVES AND SCOPE

This research embarks on the following objectives:

i. To develop an attribute-oriented hierarchical divisive algorithm to

cluster categorical data that attains high clustering accuracy, at the same

time maintains the highest efficiency among the existing algorithms for

categorical data clustering, and can be run without specifying the

number of clusters.

ii. To develop a genetic algorithm to cluster categorical data that attains

high efficiency, at the same time maintains the highest clustering

accuracy among the existing algorithms for categorical data clustering.

iii. To evaluate the proposed algorithms on some real-life data sets and

some synthetically generated data sets as well, and to do a comparison

between the proposed algorithms with the baseline algorithms in terms

of the clustering accuracy and efficiency.

The scope of this research falls within categorical data clustering using

attribute-oriented methods.

1.4 RESEARCH OUTCOMES

The following are the research outcomes:

i. The design and development of a novel attribute-oriented hierarchical

divisive algorithm for categorical data clustering.

ii. The design and development of an improved genetic algorithm for

categorical data clustering.

10

1.5 THESIS ORGANIZATION

The rest of this thesis is divided into 5 chapters and organised as follows:

Chapter 2: The basic knowledge about clustering and existing literatures about

categorical data clustering are reviewed in this chapter. It covers the

components needed in the design of clustering algorithms, some earlier

clustering algorithms, entropy based algorithms, k-means like

algorithms, and optimization based algorithms.

Chapter 3: This chapter analyzes the significance of attributes in categorical data

clustering, and proposes a novel attribute-oriented hierarchical divisive

clustering algorithm for categorical data using information theory,

termed MGR. An illustrative example is described to show how MGR

algorithm works. Finally, it analyzes the limitations of MMR algorithm,

conducts the comparison between MGR and MMR, and presents the

advantage of MGR over MMR algorithm.

Chapter 4: This chapter analyzes the reason for low efficiency of G-ANMI

algorithm, and proposes an improved genetic clustering algorithm for

categorical data, termed IG-ANMI. A new attribute-oriented

initialization method of IG-ANMI algorithm is described and an

illustrative example is described to show how it works.

Chapter 5: This chapter describes the experiments design and experimental results

of MGR and IG-ANMI algorithms including the clustering accuracy,

clustering efficiency, scalability, and the running results of MGR

algorithm without specifying the number of clusters, and compares them

with other four algorithms in terms of clustering performance and

efficiency.

Chapter 6: This chapter describes the conclusions and future work.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter introduces the basic knowledge about clustering and several

popular clustering algorithms for categorical data. The chapter is organized as follows:

 Section 2.2 introduces some basic steps to develop clustering process and the

components needed in the design of clustering algorithms.

 Section 2.3 describes several popular clustering algorithms for categorical

data.

2.2 CLUSTERING

Before describing particular clustering algorithms for categorical data, the basic

steps to develop clustering process and the components needed in the design of

clustering algorithms including data types, dissimilarity measures, objective functions,

membership and the categorization of clustering methods are briefly discussed.

2.2.1 Basic Steps in Clustering Process

Generally, developing a clustering process includes the following basic steps

(Piatesky-Shapiro et al., 1996):

 Preprocessing. It is necessary to preprocess the raw data before using them in

clustering task, such as feature selection, handling missing value.

 Clustering algorithm selection. Select or design a clustering algorithm

12

appropriate for the objective data set.

 Evaluation of clustering results. Employing some mostly-used criteria or

measurements to evaluate the clustering results, such as clustering error,

adjusted rand index, clustering efficiency and so on. These criteria or

measurements should be irrespective of specific clustering algorithms

(Rezaee, Lelieveldt and Reiber, 1998).

 Interpret clustering results. In most cases, the domain experts are needed to

give a meaningful interpretation of the clustering results. This process is

usually accomplished with the help of other experimental analysis.

2.2.2 Data Types

The data processed by cluster analysis probably derive from various

applications. Each object usually is characterized by m attributes, that is, each object is a

m-dimensional vector. Thus, data type refers to the type of attribute value. In general,

there are the below five types of attribute value:

 Numerical

 Numerical data can either be continuous or discrete. There exists a natural

order between two numerical values on the same attributes such that distance

measures based on geometric attributes can be defined. Length, temperature,

pressure, velocity and weight are typical examples of numerical data.

 Binary

 A binary attribute takes on values either 1 or 0. Value 1 indicates the presence

of the attribute, while value 0 indicates the absence of the attribute. For

example, an animal has value 1 on binary attribute feather means that the

animal has feather, has value 0 means that the animal has not feather.

 Categorical

 Categorical attribute is usally regarded as the generalization of binary

attribute which can take on more than two values. There is no inherent order

or similarity between the multiple values of an attribute. Let us take color as

an example, which is a categorical attribute that might take four values: black,

white, green, and blue. Words, integers (Notice that such integers do not

13

represent any specific ordering), and symbols can be used to denote

categorical attribute values.

 Ordinal

 Ordinal data can either be continuous or discrete. Ordinal attributes focus on

the relative ordering of the values rather than the actual magnitude. For

example, in a sports game the relative ranks (e.g. champion, runner-up) are

usually cared much more than the actual score of an athlete.

 Mixed

 In some real-life data sets, objects might be characterized by attributes with

different data types. Generally, a data set can include all of the

aforementioned four data types. For example, the profile of customers

consists of categorical attributes such as nationality and education background

as well as numerical attributes like income.

2.2.3 Dissimilarity Measures

Many clustering algorithms require the definition of dissimilarity measure,

which examines the closeness between the data objects. Many methods have been

proposed to define dissimilarity measures. For different dissimilarity measures, the

clustering results may be different. It depends on one’s motivation and data types to

choose the appropriate measure. For some algorithms, a dissimilarity matrix is

constructed to store the similarities of all pairs of data objects. In this section, some

commonly used dissimilarity measures will be discussed.

i. Dissimilarity Metrics for Numerical Data

The dissimilarity between two numerical data objects is usually calculated in

terms of the distance between them. Euclidean distance is the most widely-used distance

measure whose definition is as follows.

n

i

ii tsTSdis
1

2)(),((2.1)

14

where S = (s1, s2, …, sn) and T = (t1, t2, …, tn) are two n-dimensions objects.

Manhattan distance is also a widely-used measure, which is defined as

 dis(S, T) = |s1-t1| + |s2-t2| + … + |sn-tn| (2.2)

ii. Dissimilarity Metrics for Binary Data

There are two types of binary attributes, symmetric and asymmetric. If two

values are equally important for a binary attribute, namely they have the same weight,

the binary attribute is symmetric. For example, attribute gender is symmetric since

values male and female have the same weight. For the objects S and T with symmetric

attributes, a simple mismatch coefficient can be used to assess the dissimilarity between

them.

wvur

vu
TSdis

),((2.3)

where r, u, v, and w are defined as follows:

 w: the number of attributes on which objects S and T have value 0.

 r: the number of attributes on which objects S and T have value 1.

 v: the number of attributes on which object S has value 0 and object T have 1.

 u: the number of attributes on which object S has value 1 and object T have 0.

If two values have different weight for a binary attribute, the binary attribute is

asymmetric. For example, negative and positive results of a medical diagnosis have

different influences on the disease verification. For asymmetric attribute, positive

matches (two 1s) are usually regarded more important than negative matches (two 0s).

Thus, the number of negative matches, w, can be excluded in the calculation. Jaccard

coefficient is the most popular measure which examines the proximity between two data

objects. Its definition is as follows:

vur

r
TSJ

),((2.4)

15

iii. Dissimilarity Metrics for Categorical Data

The dissimilarity between two categorical data S and T is usually calculated as

the proportion of mismatches:

n

q
TSdis),((2.5)

where n is the number of attributes and q is the number of attributes on which S and T

have the distinct value, that is, the number of mismatches.

Converting the categorical attributes to binary attributes is an alternative

method. Concretely, each of the values in an attribute is set as a new binary attribute.

Then the dissimilarity measures for categorical data discussed above can be used.

iv. Dissimilarity Metrics for Ordinal Data

The way of calculating the dissimilarity between objects with ordinal attributes

is similar to that of calculating the dissimilarity between objects with numerical

attributes. First, the range of each attribute is mapped onto [0.0, 1.0] ([m, n] denotes an

interval, including all the values between m and n) to make each attribute has the same

weight, and then dissimilarity is computed using any of the distance measure for

numerical data.

v. Dissimilarity Metrics for Mixed Data

For mixed data, a desirable approach is to perform a single clustering,

processing all data types together. First, the dissimilarities between the objects S and T

on each type of attribute are computed according to the corresponding dissimilarities

measures discussed above, and then map the dissimilarities onto the same interval [0.0,

1.0]. Finally, the average of the normalized dissimilarities is calculated as the

dissimilarity between the objects S and T.

16

2.2.4 Objective Functions

For many clustering algorithms, clustering is treated as an optimization problem

whose aim is to make an objective function minimization or maximization. The

definitions of objective function vary with algorithms. For example, some algorithms

use the sum of the squares of error (SSE) as objective function (Huang, 1998 and San et

al., 2004). Some graph based clustering algorithms define an objective function relavant

to the Normalized Cut in a graph (Shi and Malik, 2000 and Flake et al., 2004).

Information-theoretic algorithms usually define an objective function based on the

entropy of clusters (Barbara et al., 2002; Andritsos, 2004 and Andritsos et al., 2004),

conditional entropy of partitions (Cristofor et al., 2002) or maximize the average

normalized mutual information (He et al., 2008 and Deng et al., 2010). Some algorithms

use the links between data objects to define an objective function (Guha et al., 1999).

2.2.5 Membership

In general, clustering algorithms assume that objects belong to one single cluster

only, however, in some cases, different clusters may overlap each other, and hence

some objects may have multiple memberships. Many fuzzy theory based algorithms

have been proposed to handle the problem (Huang and Ng, 1999; Kim et al., 2004 and

Gan et al., 2009). In the framework of fuzzy clustering each object belongs to multiple

clusters with different memberships rather than exactly belonging to one cluster. The

membership is usually defined as a function of dissimilarities. For each object,

memberships among different clusters must sum to 1. For example, a data set of 4

objects is partitioned into 3 clusters using some fuzzy theory based clustering algorithm

and a membership matrix W = {wij} is obtained as is shown in Table 2.1, where wij

denotes the membership of the object Oi to cluster Cj.

17

Table 2.1: An example of membership matrix

wij C1 C2 C3

O1 0.65 0.10 0.25

O2 0.20 0.65 0.15

O3 0.70 0.10 0.20

O4 0.05 0.10 0.85

From Table 2.1, it can be seen that object O1 has membership degrees 0.65, 0.10 and

0.25 to clusters C1, C2, and C3, respectively. Since object O1 has the highest degree of

membership to cluster C1, then object O1 should belong to cluster C1. Similarly, objects

O2, O3, and O4 should belong to cluster C2, C1, and C3, respectively.

2.2.6 Categorization of Clustering Methods

In general, clustering algorithms can be classified as follows (Jain et al., 1999):

 Hierarchical clustering. These types of algorithms hierarchically decompose

the given data set. There are two ways to implement hierarchical methods:

agglomerative or divisive. The agglomerative approach is a kind of bottom-up

approach. Each object is regarded as a cluster at the beginning, and then the

clusters that are close to each other are merged consecutively, until the

termination condition is satisfied. The hierarchical divisive approach is a kind

of top-down approach. All of the objects are considered in one cluster at the

beginning, and then iteratively select a cluster and divide it into some smaller

clusters, until the termination condition is satisfied.

 Partitional clustering. These types of algorithms try to directly divide the data

set into a group of disjoint clusters. The algorithm requires users to specify the

number of clusters at first, and then an initial partition is created by using a

partitional approach, next, a relocation process based on the objective criterion

is performed to improve the partition successively until there is no

improvement in the value of the objective criterion.

 Grid-based clustering. Object space, in this type of methods, is quantized into

a grid structure which consists of many cells. Then the whole clustering

process is conducted on the grid structure.

18

 Density-based clustering. This type of clustering is implemented in such a

way that extending a given cluster continuously if the density (number of

objects) in the neighborhood is greater than the predefined threshold. By using

density-based clustering method, clusters with arbitrary shape can be

discovered.

2.3 ALGORITHMS FOR CATEGORICAL DATA CLUSTERING

Many algorithms have been proposed for categorical data clustering.

Ralambondrainy (1995) proposes a method in which category attributes is converted

into binary attributes, that is, each of the categories in an attribute is set as a new binary

attribute. These binary attributes is regarded as numeric and handled by k-means

(MacQueen, 1967) algorithm. Huang (1997 and 1998) proposed k-modes algorithm to

extend the k-means algorithm to categorical data. A new cocept of modes is used to

replace the means of clusters in k-means. Subsequently, based on k-modes, many

algorithms are proposed including fuzzy k-modes (Huang and Ng, 1999), adapted

mixture model (Jollois and Nadif, 2002), tabu search technique (Ng and Wong, 2002),

improved initial points determination algorithm for k-modes algorithm (Sun et al.,

2002), an extension of k-modes algorithm to transactional data (Giannotti et al., 2002),

fuzzy centroids (Kim et al., 2004), initialization methods for k-modes and fuzzy k-

modes (Cao et al., 2009 and Bai et al., 2011), attribute value weighting in k-modes (He

et al., 2011), a dissimilarity measure for k-modes (Cao et al., 2012), and genetic fuzzy

k-modes (Gan et al., 2009). ROCK (Guha et al., 2000) is a hierarchical agglomerative

clustering algorithm in which the notion of “links” is defined to measure the closeness

between clusters. QROCK (Dutta et al, 2005) improves the efficiency of ROCK

algorichm. Sieving Through Iterated Relational Reinforcement) (STIRR) (Gibson et al.,

2000) introduces the concept of non-linear dynamic system into categorical data

clustering. The objects can be clustered if the dynamic system converges. CACTUS

(Ganti et al., 1999) constructs summary information from the data set and uses this

summarization to discover clusters. Based on information theory, several algorithms are

proposed. COOLCAT (Barbara et al., 2002) explores the connection between clustering

and entropy. LIMBO (Andritsos et al., 2004) applies the Information Bottleneck (IB)

method to the problem of clustering categorical data. “Best K” (Chen and Liu, 2005)

19

proposes a BkPlot method for determining the best K number of clusters in a categorical

data set. The method is implemented with a hierarchical clustering algorithm HierEntro.

Recently, several works try to cluster categorical data by using cluster ensemble

technique. He et al. (2005a) investigate the commonalities between cluster ensemble

and categorical data clustering, and employ some cluster ensemble algorithms to cluster

categorical data. Subsequently, the same authors propose k-ANMI (He et al., 2008),

which optimizes Average Normalized Mutual Information (ANMI) in a k-means

framework. Gionis et al. (2005) cluster categorical data by employing a cluster

ensemble algorithm which is based on disagreement measure. MMR (Parmar et al.,

2007) applies rough set theory to categorical data clustering. To improve the accuracy

and efficiency of clustering, Herawan et al. (2010) propose a rough set based method

named Maximum Dependency Attributes (MDA) for selecting clustering attribute. A

few researchers try to cluster categorical data by direct optimization. ALG-RAND

(Cristofor and Simovici, 2002) and G-ANMI (Deng et al., 2010) employ genetic

algorithm to cluster categorical data. TCSOM (He et al, 2005b) algorithm extends

traditional Self-Organizing Map (SOM) to cluster binary data. The same authors also

propose Squeezer (He et al., 2002) algorithm. Squeezer can be used to cluster

categorical data streams since it sequentially deal with each input data object and group

it in an appropriate cluster. Chen and Chuang (2004) investigate the correlation between

attribute values and propose algorithm CORrelated-Force Ensemble (CORE) based on

correlated-force ensemble. There also exist some algorithms focusing on transaction

data clustering. Wang et al. (1999) propose the notion of large item and utilize it to

cluster transactions. Similarly, another notion named the small-large ratio is presented

and used to cluster market basket data (Yun et al., 2001). Yun et al. (2002) apply the

item taxonomy to clustering process. Xu and Sung explore the purchase features of

customers and propose a caucus based algorithm. Cao and Liang (2011) propose a data

labeling method to allocate unlabeled objects into proper clusters.

The following sections will describe the details of some popular algorithms

among the above algorithms.

20

2.3.1 k-means, k-modes and Fuzzy k-modes Algorithms

i. k-means algorithm

k-means (MacQueen, 1967) is a typical partitional clustering algorithm. It has

been widely used since proposed. The algorithm starts with the selection of initial

cluster center, k objects is randomly selected as the initial cluster center or mean. Then

each of of the rest objects is grouped into the cluster which is the closest to it, in terms

of the distance between the cluster center and the object. Next, the new center of each

cluster is recomputed. Repeat this procedure until the within-clusters SSE converges.

The clustering process can be formulated as follows (Bobrowski and Bezdek, 1991 and

Huang 1998):

 Minimize

k

j

n

i
jiji QXdwQWP

1 1
,),(),((2.6)

 subject to 1
1

,

k

j
jiw , ni 1

 }1,0{, jiw , ni 1 , kj 1 (2.7)

where k is the specified number of clusters, n is the number of objects, Xi is a data

object, Q={Q1, Q2, …, Qk} is a matrix of cluster centers, W is an nk partition matrix,

and d(.,.) is the square Euclidean distance between two data objects.

The optimization problem can be solved by iteratively solving the following two

minimization problems:

 Problem P1: Set QQ ˆ and solve the smaller problem)ˆ,(QWP .

 Problem P2: Set WW ˆ and solve the smaller problem),ˆ(QWP .

Problem P1 is solved by

 1, jiw if d(Xi, Qj) d(Xi, Qt), for kt 1

 0, tiw for jt (2.8)

21

Let Qj = (qj,1, …, qj,m), problem P2 is solved by

n

i ji

n

i siji

sj
w

xw
q

1 ,

1 ,,

, (2.9)

for ms 1 , and kj 1 .

ii. k-modes

The k-means algorithm can only be used to cluster numerical data since the

similarity between data objects and cluster centers is measured by Euclidean distance.

To extend the k-means algorithm to categorical data, Huang (1998) proposed the k-

modes algorithm in which Euclidean distance is replaced with a simple matching

dissimilarity measure, and the means of clusters are replaced with modes.

 Dissimilarity measure

Given two objects X, Y, suppose they are characterized by m categorical

attributes, k-modes algorithm counts the total mismatches of the corresponding attribute

values of the two objects as the dissimilarity measure between X and Y, which is

denoted as),(YXdc and defined as follows,

m

l
llc yxYXd

1

),(),((2.10)

where

)(1

)(0
),(

ll

ll

ll
yx

yx
yx

　　

　　
 (2.11)

 Mode of a Set

Given a set of categorical objects X = {X1, X2, …, Xn}, each of which is

characterized by m categorical attributes. The vector Q = [q1, q2, …, qm] that minimize

22

n

i
ic QXdQXD

1

),(),((2.12)

is called the mode of X. It has been proved that each element in the mode takes the most

frequent value of the corresponding attribute in the set.

 Algorithm

Replacing the Euclidean distance in Equation (2.6) with the dissimilarity

measure defined in Equation (2.10), the new objective function is obtained.

k

j

n

i

m

l
ljliji qxwQWP

1 1 1
,,,),(),((2.13)

Accordingly, problem P1 is solved by using the new dissimilarity measure,

problem P2 is solved by using modes of clusters. Figure 2.1 lists the steps of k-modes

algorithm in detail.

 Figure 2.1: The k-modes algorithm

23

iii. Fuzzy k-modes

Following the fuzzy k-means-type process, k-modes algorithm can be extended

to fuzzy k-modes. The objective of the fuzzy k-modes clustering is to find W and Q that

minimize

k

j

n

i
jicij QXdwQWP

1 1
,),(),((2.14)

subject to Eq.(2.7), where 1 is the weighting exponent, (.,.)cd is defined in

Eq.(2.10), W = (wji) is the nk fuzzy membership matrix, and Q ={Q1, Q2, …, Qk} is

the set of cluster centers. Note that 1 gives the hard k-modes clustering, i.e., the k-

modes algorithm.

Let Q ={Q1, Q2, …, Qk} be fixed, then the fuzzy membership matrix W is

updated by

otherwise

QXd

QXd

jhQXif

QXif

w

k

h
hic

jic

hi

ji

ij

　

　　　　　　　　

　　　　　　　

1

1

1

,

),(

),(

1

;, 0

; 1

 (2.15)

for ni 1 , kj 1 .

Given the estimate of W, the cluster centers is updated as

)(, llrlj ADOMaQ (2.16)

for kj 1 , ml 1 , where m is the number of attributes, DOM(Al) is the domain of

attribute Al, ,

ltill axi

ji
nt

wr
,1

maxarg .

24

2.3.2 ROCK and QROCK

i. ROCK

ROCK (Guha et al., 2000) is a hierarchical agglomerative clustering algorithm

for categorical data. Traditional agglomerative clustering algorithms only examine the

similarity between data objects when objects are considered to be merged into a single

cluster. Experiments have shown that traditional methods tend to make errors. ROCK

proposes the notions of neighbours and links for categorical data and considers the

neighbourhoods of two objects when they are considered to be merged. Two objects can

be merged if they have similar neighbourhoods.

 Neighbours and links

ROCK first defines the concept of neighbours. Given a similarity function s(Oi,

Oj) that measures how close objects Oi and Oj are, Oi and Oj are called neighbours each

other if the below inequation holds

),(ji OOs (2.17)

where is a predefined threshold.

The number of common neighbours between objects Oi and Oj is named the

number of links between Oi and Oj, and denoted by link(Oi, Oj). The larger the number

of links between two objects, the higher possibility the two objects belong to the same

cluster.

 Criterion function and goodness measure

ROCK aims to maximize the intra-cluster summation of links, and meanwhile

minimize the inter-cluster summation of links. The criterion function is defined as

follows:

25

k

i Cpp
f

i

rq

i

irq
n

pplink
nE

1 ,
)(21

),(

 (2.18)

where Ci refers to i
th

 cluster, ni is the size of i
th

 cluster,)(21 f

in denotes the expected

number of links between objects pairs in Ci.

In order to find a good clustering that maximizes the objective function, ROCK

algorithm also define a measure, named goodness measure, to determine the best cluster

pair to merge at each step, which is defined as follows.

)(21)(21)(21)(

],[
),(

 f

j

f

i

f

ji

ji

ji
nnnn

CClink
CCg

 (2.19)

where link[Ci, Cj] denotes the number of cross links between clusters Ci and Cj, ni =|Ci|

and nj=|Cj|. The value)(21)(21)(21)(f

j

f

i

f

ji nnnn denotes the expected number of

cross links between objects pairs in clusters Ci and Cj.

 Algorithm

The algorithm starts with calculating the number of links between objects. At the

beginning, each object forms a single cluster. The algorithm builds a local heap L[i] for

each cluster i and a global heap G. Each local heap L[i] contains every cluster which has

non-zero links with cluster i. The clusters j in L[i] are ordered in descending order of

g(i, j). G contains all the clusters which are ordered in descending order of the max

element in each cluster. At each step, select first cluster j in G and the first cluster in

L[j] as the best clusters pair to be merged. The related elements in local heap and global

heap need to be updated once two clusters are merged. The process iterates until only

desired number of clusters left in G. Figure 2.2 describes the ROCK algorithm in detail.

26

Figure 2.2: The ROCK algorithm

ii. QROCK

QROCK (Dutta et al, 2005) improves the efficiency of ROCK algorichm. The

authors define the notion of link graph and further explore the relationship between the

link graph and clustering. Based on the relationship, a quick version of ROCK is

proposed.

 Link graph

 Given a set S of objects, the link graph G for S is builded in such a way that S is

regarded as the set of vertices, and there is an edge between two vertices if they have

non-zero links.

27

 The relationship between link graph and the final clusters

 Based on the concept of link graph, the authors prove that the clusters produced

by ROCK algorithm are equivalent to the connected components in the link graph G if

inter-cluster links equal to zero.

 The algorithm

The QROCK algorithm starts with the computing of nblist[i] for each object i.

nblist[i] stores the neighbours of data object i. Next, repeat the following process on

every nblist[i]: the algorithm take an object w from nblist[i] and merge the connected

component containing w with the connected components of all other objects in nblist[i].

Figure 2.3 shows the QROCK algorithm.

 Figure 2.3: The QROCK algorithm

In the above algorithm, the procedure initialization(i) creates a connected

component that contains only the object i, find_component(w) returns the connected

component which contains object w, and merge(U, V) calculates the union of connected

components U and V.

28

Compared with ROCK, QROCK algorithm need not to compute the links, build

local and global heaps, and sort the heaps, which leads to QROCK are more efficient

than ROCK. However, QROCK can not replace ROCK completely because of the

different termination condition. ROCK terminates either when k clusters are generated

or when inter-cluster links equal to zero, however, QROCK terminates only when inter-

cluster links equal to zero. Both algorithms produce the same results when ROCK

terminates since inter-cluster links equal to zero, but different results when ROCK

terminates since the desired number of clusters is reached. Although the authors argue

that specifying the desired number of clusters is less practical than specifying the

similarity threshold, it can not be guaranteed that the results of QROCK are more

meaningful than that of ROCK.

2.3.3 STIRR

Gibson et al. (2000) introduce non-linear dynamical systems into categorical

data clustering and propose algorithm STIRR (Sieving Through Iterated Relational

Reinforcement). Each attribute category is represented as a weighted vertex in a graph.

The set of weights of all the nodes is called a configuration. The initial configuration

can be either chose uniformly (e.g. all weights set to 1) or, randomly (e.g. each weight

set to an independently chosen random value in [0, 1]). The algorithm iteratively

updates weight of any single node to change the configuration. The weight of node v is

updated by applying a combiner function chosen in advance separately to the members

of all tuples that contain v, and adding the results. Authors’ potential choices for

combiner function are product operator and addition operator. The dynamical system

finally iterates to a stable state called as basin.

The algorithm maintains multiple copies of the configuration, w1, …, wm for

clustering the set of objects. The configuration w1 iterates to a basin, called principal

basin. The basins correspond to other configurations are called non-principal basins.

The weights in non-principal basins will divide the attribute values of each attribute into

two groups when the fixed point is reached. One group has positive weights and the

other has negative weights. Intuitively, these groups correspond to projections of

clusters on the attribute. However, a non-trivial post-processing step is required to

automatically identify the final clusters, which was not solved in STIRR.

29

2.3.4 CACTUS

CACTUS (Ganti et al., 1999) constructs summary information from categorcial

data set and uses the summarization to discover clusters. By generalizing the definition

of a cluster for numerical data, the authors introduce a new definition of a cluster for

categorical data. Several basic concepts are defined as follows. Given attribute value ai

in attribute Ai and attribute value aj in attribute Aj, the number of tuples that have these

two values is called Support of values pair (ai, aj). If their support is greater than a

threshold, attribute value pair (ai, aj) are said to be strongly connected. A cluster

consists of a set of attribute values each of which is strongly connected to all other

attribute values in the cluster. The attribute value pair containing two values from the

same attribute is measured by Similarity. Given attribute values a1 and a2 in attribute Ai,

Similarity between a1 and a2 is defined as the number of such attribute values in other

attributes that are strongly connected with a1 as well as a2.

CACTUS defines intra-attribute and inter-attribute summaries based on the

notions of support and similarity. The similarities between attribute values of the same

attribute constitute the intra-attribute summaries. All strongly connected attribute value

pairs each of which has attribute values from different attributes constitute the inter-

attribute summaries.

The CACTUS algorithm first calculates all intra-attributes and inter-attributes

summaries, which is called summarization phase. Then candidate clusters are generated

by extending 2-clusters to 3-clusters and so on, which is called clustering phase. The

candidate clusters generated in clustering phase need to be validated. In the validation

phase, the support of each candidate cluster is calculated. Only clusters whose support

passes the threshold requirement are retained.

2.3.5 Entropy Based Algorithms

COOLCAT and LIMBO are typical entropy based clustering algorithms for

categorical data. They are introduced in this section.

30

i. COOLCAT

COOLCAT (Barbara et al., 2002) first explores the relationship between

information entropy and clustering: the entropy of clusters consisting of similar objects

is lower than that of clusters consisting of dissimilar ones. The algorithm clusters

objects towards the goal of making the expected entropy of the clusters minimization.

 Problem formulation

Let D be a data set containing N objects p1, p2, …, pN, where each point is

described by M categorical attributes x1, x2, …, xM, and given an integer k, the points

would be separated into k groups G1, G2,…,Gk , or clusters which have the minimum

expected entropy. The algorithm defines the expected entropy of the clusters as follows.

k

i

i

i
GE

D

G
GE

1

))(()((2.20)

where G = {G1, G2, …, Gk} represents the clustering. DGi , with the property that

 ji GG , for all i, j =1, …, k, i j. E(Gi) represents the entropy of the ith cluster.

To simplify the calculation, independence of the attributes of the record is assumed,

thus, the entropy of the ith cluster is calculated as follows.

)(...)()()(21 MGGGi xExExEGE
iii

 (2.21)

where,)(jG xE
i

, j=1,…, M, is the entropy of the attribute xj about the cluster Gi.

Unfortunately, the problem is NP-Complete, therefore a heuristic based algorithm is

proposed.

 Algorithm

The algorithm starts with an initialization step which discovers a set of clusters

in a sample set Q taken from original data set D (|Q| << N). The initialization step is

31

implemented by finding the k most “dissimilar” objects from the sample set Q.

Concretely, the algorithm first finds two points
1sp ,

2sp that have maximum expected

entropy E(
1sp ,

2sp) and places them in two clusters G1, G2, respectively. From there,

proceeding incrementally, an unprocessed object
jsp that maximizes min i=1… j-

1(E(
isp ,

jsp)) is chose for the j-th cluster.

Next, an incremental step is performed to place the rest of the objects in sample

data set Q and the remaining objects in data set (D - Q), in the clusters produced in

initialization step. For each of the remaining objects, the algorithm tries to place it in

each of the clusters and calculate the corresponding expected entropy, then selects the

cluster corresponding to the minimum expected entropy as the final cluster of the

objects. Figure 2.4 lists the details of the procedure.

Figure 2.4: Incremental step of COOLCAT algorithm

ii. LIMBO

LIMBO (Andritsos et al., 2004) algorithm is an extension of the Agglomerative

Information Bottleneck (AIB) (Solnim and Tishby, 1999) algorithm.

32

 AIB algorithm

Let D be a data set containing n objects with m attributes, Gk = {g1, g2, …, gk}

be a disjoint k-partition (k-clustering) of the objects in D.

AIB is a hierarchical agglomerative clustering algorithm. At the beginning of the

algorithm, each object Dd forms a single cluster. Then the algorithm interates n-k

steps to reduce the number of the clusters. Suppose the algorithm is at step n-s+1 with s-

partition Gs, two clusters gi, gj are selected and merged into a single cluster to generate a

new partition Gs-1. The selection of clusters gi and gj at each step follows the principle

that the information loss in transfering from partition Gl to partition Gl-1 is minimized.

The information loss can also be viewed as the increase in the uncertainty. Thus, the

objective of AIB algorithm is to minimize the entropy of the clustering, which is the

same as the objective function of COOLCAT.

 Distribution Cluster Feature

High computational complexity of the AIB algorithm makes it unsuitable for

dealing with large data sets (Andritsos et al., 2004). LIMBO proposes a model named

Distribution Cluster Feature (DCF) which summarizes information about the clusters

for dealing with large data sets. Given a cluster g, the conditional probability of the

attribute value, p(V | g), and the probability of cluster g, p(g), its DCF is defined as

follows:

 DCF(g) = (p(g), p(V | g)) (2.22)

DCF is organized as a B-tree in which the leaves denote a clustering of the data

set.

 Algorithm

The LIMBO algorithm starts with calculating a DCF for each object, and then

constructs the DCF tree to summarize the data by inserting these DCFs into it. The next

step of the algorithm is to the cluster the objects on DCF tree. The DCFs of the tree

33

leaves are merged by employing the AIB algorithm to generate a specified number of

clusters. The authors of LIMBO claim that other clustering algorithm can also be

employed in the step. Finally, a scan is performed over the objects and each object is

grouped to the cluster whose center is most similar to this object.

2.3.6 k-ANMI

k-ANMI (He et al., 2008) clusters categorical data in a k-means framework. It

uses average normalized mutual information as the objective function. In order to

efficiently implement the algorithm, the concept of histogram of attribute is defined and

multiple hash tables (each hash table denotes a histogram) are employed.

 Objective function

The mutual information based criterion used in k-ANMI borrows from cluster

ensemble methods (Strehl and Ghosh, 2002). Given r groupings with the qth grouping

)(q having k(q) clusters, the [0,1]-normalized mutual information criteria between

grouping)(a and)(b is computed as follows:

)()(

)()(

1 1
)(

)(

)()()()(log
2

),(

a b

ba

k

h

k

g g

h

h

g

kk

h

g

baNMI

nn

nn
n

n
 (2.23)

where ng is the length of cluster Cg in grouping)(b , n
(h)

 is the length of cluster Ch in

grouping)(a ,)(h

gn is the number of objects in cluster Ch according to)(a as well as in

cluster Cg according to)(b .

Given a labeling , and a set of r labelings, , the ANMI between and is

calculated as follows:

r

q

qNMIANMI

r 1

)()()(),(
1

),((2.24)

Given the desired number of clusters, k, the optimal k-clustering)(optk should

be the clustering that has the highest ANMI with r labelings, , that is,

34

r

q

qNMIoptk

1

)()()(),(maxarg

 (2.25)

where goes through all possible k-partitions.

 Data structure

The main data structure used in k-ANMI algorithm is the histograms of

attributes. Suppose D is a set of n objects characterized by r categorical attributes A1,

…, Ar. Vi denotes the value set of attribute Ai. qa denotes the frequency of attribute value

iVa , that is, the number of objects DO with O.Ai = a. If attribute Ai has pi distinct

attribute values, the histogram of Ai is defined as the set of pairs: hi = {(a1, q1), (a2, q2),

…, (api, qpi)}. The histogram of dataset D is defined as H = {h1, h2, …, hr}. k-ANMI

uses (k+1)r histograms as basic data structure totally, where r histograms are

constructed for r attributes, rk histograms for label vector .

 Algorithm

The k-ANMI algorithm starts with an initialization procedure. Each object is put

into the closest cluster according to the dissimilarity measure which is calculated as the

average distance between this object and the objects in cluster. Next, an iteration phase

is performed; each object t is moved to an existing cluster to maximize ANMI until

there is no improvement in ANMI for one iteration. Figure 2.5 shows the k-ANMI

algorithm.

35

Algorithm k-ANMI

Input: D // the categorical database

 k // the number of desired clusters

Output: clusterings of D

/* Phase 1-Initialization */

01 Begin

02 foreach object t in D

03 counter++

04 update histograms for each attribute

05 if counter<=k then

06 put t into cluster Ci where i = counter

07 else

08 put t into cluster Ci to which t has the smallest distance

09 write <t, i>

/* Phase 2-Iteration */

10 Repeat

11 not_moved =true

12 while not end of the database do

13 read next object < t, Ci >

14 moving t to an existing cluster Cj to maximize ANMI

15 if Ci != Cj then

16 write <t, j>

17 not_moved =false

18 Until not_moved

19 End

Figure 2.5: The k-ANMI algorithm

2.3.7 Genetic Clustering Algorithms

In this section, two genetic algorithm based methods for categorical data

clustering are described, namely ALG-RAND (Cristofor and Simovici, 2002) and G-

ANMI (Deng et al., 2010). These two algorithms use genetic algorithm to search the

optimal partition of the objects.

i. ALG-RAND

ALG-RAND tries to find a median partition over the space of all partitions of

the data objects of the database, which is most similar to all the partitions defined by the

attributes of the data set. The algorithm generalizes the concept of classical conditional

entropy to evaluate the dissimilarity between two partitions. Since finding the median

36

partition is an NP-complete problem, ALG-RAND uses a genetic algorithm to find an

approximative solution.

 Generalized conditional entropy

Let f be a generator, R be the set of rows of a table T, and let },...,{ 1 nBB ,

},...,{ 1 mCC be two partitions of R. The f-conditional entropy of relative to is

defined as

n

i j

ji
m

j
j

f

C

CB
fC

R
H

11 ||

||
||

||

1
)|((2.26)

Three functions can be used as generator in ALG-RAND, that is, fgini (p) = p-p2

(the Gini index), fent (p) = -plogp (the Shannon entropy), and fpeak (given by fpeak(p) = p

for 5.00 p and fpeak (p) = 1-p for 15.0 p).

 Dissimilarity measure

Let PART(R) denotes the set of partitions of a set R. If f is a generator, ,

PART(R), then the mapping d
f
: PART(R) PART(R) R given by

)|()|(),(fff HHd (2.27)

is a definite dissimilarity on PART(R). When is close to , meaning that their classes

have many elements in common, then both)|(fH and)|(fH are close to 0, so

),(fd is close to 0.

 Genetic algorithm

Let T be a table with rows (objects) set R and attributes set H, k be the desired

number of clusters. The objective of ALG-RAND algorithm is to search for the median

37

partition, that is a partition such that k|| , and minimizes the sum

 HA A

fd),(.

A k-chromosome on a table T is function K: R{1, …, k}. An element of the

set {1, …, k} is called a class identifier. The partition K of the set of rows R

determined by the k-chromosome K is K = {C1, …, Ck}, where Cj = {rR| K(r) = j}

for kj 1 . The chromosomial population consists of k-chromosomes, K1, K2, …, KM,

where each k-chromosome Ki can be regarded as a sequence of length N=|R|

representing a possible assignment of the rows of the table T to the k classes of the

partition
iK . Initially, the chromosomes K1, K2, …, KM are generated using random

values between 1 and k.

The idea of the genetic evolution is to modify the chromosomes in the current

population by using mutation and crossover as genetic operators such that in the new

population chromosomes will be increasingly closer to the median partition, that is, they

will summarize better and better the columns of the table T. Figure 2.6 shows the the

algorithm in detail.

initialize the population of genetic algorithm

while (true)

 compute the fitness of chromosomes in the population;

 if (there has been no relative improvement in best fitness value for

Nmax iterations)

 then

 output the partition of Kbest;

 exit;

 copy fittest (1 − r − m)M chromosomes to new population;

 select probabilistically max{2, rM} chromosomes to cross over;

 apply crossover operator to the selected chromosomes

 and copy the offspring to the new population;

 select with uniform probability max{1,mM} chromosomes to mutate;

 apply mutation operator to the selected chromosomes

 and copy the modified chromosomes to the new population;

 Use the new population to replace the old one;

Figure 2.6: The pseudo code of the ALG-RAND algorithm

38

ii. G-ANMI

From the perspective of objective function and searching method, G-ANMI can

be considered as a combination of ALG-RAND and k-ANMI algorithms. It uses ANMI,

the same one in k-ANMI, as the objective function, and a basic genetic algorithm which

works in the same way as the one in ALG-RAND to search globally optimal partition

measured by ANMI.

Initially, the algorithm generates a group of partitions of objects and encodes

them as chromosomes. These chromosomes form the initial population. Then, ANMI

described in Eq. (2.24) is used to calculate the fitness of each chromosome. Based on

the fitness values, some genetic operations are employed to generate a new population

by changing the chromosomes in the current population. The latest chromosomes are

expected to be more similar to the optimal partition than the previous chromosomes.

Repeat the above steps until the best fitness has kept invariable in some successive

iterations.

2.3.8 MMR

MMR (Parmar et al., 2007) is a rough set based attribute-oriented hierachical

divisive clustering algorithm.

 Definitions

Given objects set U, attributes set A, suppose V is the set of all attribute values,

Q is a subset of A and f: U×A→V is an information function. Q defines an

indiscernibility relation IND(Q) on U as

 })),(),(,()),((),{()(qvfqufQqUUvuvuQIND (2.28)

Let U/Q denote the partition of U induced by IND(Q) and [u]Q denote the

equivalence class containing Uu in partition U/Q. Given a set of objects UT , the

lower approximation and upper approximation of T with respect to Q are defined

respectively as

39

)}]([)(|{ TuUuuT QQ (2.29)

)}]([)(|{ TuUuuT QQ (2.30)

Given attributes Aaa ji , (ji aa), let)(iaT denote the subset of objects

which have attribute value on attribute ia ,)(ia aT
j

 and)(ia aT
j

 denote the

lower approximation and upper approximation of)(iaT with regard to ja ,

respectively, the roughness of)(iaT with regard to ja is defined as

)(

)(
1)(

ia

ia

ia
aT

aT
aTR

j

j

j
 (2.31)

Given attribute Aaa ji , , let },...,,{ 21 kai
V , where ||

iaVk , the mean

roughness on attributes ia with respect to ja is defined as

k

aTR

aRough

k

h

hia

ia

j

j

 1

)(

)(

 (2.32)

Given m attributes, the minimum of the mean roughness on attributes

)(Aaa ii with respect to ja (mj 1 , ij), is called min-roughness of attribute ia ,

and defined as,

))(),...,(),...,(()(
1 iaiaiai aRoughaRoughaRoughMinaMR

mj
 (2.33)

Given m attributes, the minimum of min-moughness of these m attributes is

called the Min-Min-Roughness (MMR), and defined as,

))(),...,(),...,((1 mi aMRaMRaMRMinMMR (2.34)

40

 Algorithm

MMR first chooses a partitioning attribute with MMR value, and then split the

set of objects into two clusters on the selected partitioning attribute. Iteratively repeat

the process on the current longest clusters until reaching the specified number of

clusters. Figure 2.7 describes the details of MMR algorithm.

Algorithm: MMR

Input: Data set U, and required number of clusters k

Output: k clusters on U

Begin

Step 1: Set Longest_Cluster = U (In the following step, clustering will be

conducted on the Longest_Cluster),

Set Current Number of Clusters (CNC) = 1.

Step 2: For each attribute ia , calculate Min-Roughness MR)(ia .

Step 3: Calculate the Min-Min-Roughness MMR.

Step 4: Select attribute with the MMR as partitioning attribute.

Step 5: From the partition defined by partitioning attribute, select the

equivalence class with the minimum roughness as the splitting

equivalence class.

Step 6: Split Longest_Cluster into two clusters: the objects correspond to the

splitting equivalence class, and the rest objects in Longest_Cluster.

Store them into Clusters_Table.

Step 7: Find the current longest cluster in Clusters_Table and assign it to

Longest_Cluster. Delete the longest cluster from Clusters_Table.

Step 8: CNC = CNC+1, if CNC < k, then go to Step 2, else output the

clusters in Clusters_Table.

End.

 Figure 2.7: The MMR algorithm

41

2.3.9 MDA

MDA (Herawan et al., 2010) is a rough set based method for selecting clustering

attribute in categorical data set. It employs the dependency between attributes of the

data set to select clustering attribute instead of the roughness between attributes.

 Definitions

In information system S = (U, A, V, f), given any two attributes ia , Aa j , the

dependency of ia with respect to ja is denoted by)(ia ak
j

and defined as follows

U

Xa
ak

i

j

aUX j

ia

/
)(

)((2.35)

Next, given m attributes, max-dependency of attribute)(Aaa ii is defined as

))(),...,(),...,(()(
1 iaiaiai akakakMaxaMD

mj
 (2.36)

where ji aa , mji ,1 .

After obtaining the m values of)(iaMD , mi ,...,2,1 . MDA method selects the

attribute with the maximum value of max-dependency as clustering attribute, i.e.

))(),...,(),...,((1 mi aMDaMDaMDMaxMDA (2.37)

Based on the dependency of attributes in the rough set theory in information

systems, MDA algorithm is given as follows.

42

 Algorithm

Algorithm: MDA

Input: Data set U

Output: Clustering attribute

Begin

Step 1: For each attribute Aai , perform Steps 2 - 4.

Step 2: Determine the equivalence classes of ai.

Step 3: Calculate)(ia ak
j

, ij aa , mj 1 .

Step 4: Calculate MD(ai).

Step 5: Calculate MDA.

Step 6: Select attribute with MDA as clustering attribute.

End.

 Figure 2.8: The MDA algorithm

2.3.10 Squeezer

Squeezer (He et al., 2002) sequentially reads each object from a data set and

places it in an appropriate cluster. Since each object is visited once during the whole

process, Squeezer can be used to cluster categorical data streams. The algorithm defines

a similarity measure between an object and a cluster to determine the final cluster for an

object being handed. The similarity measure between a given object u and a cluster G is

computed as:

m

i

i

G

a
GuS

1 ||

)sup(
),((2.38)

where ai is the value of i
th

 attribute of object u, m is the number of attributes, sup(ai)

denotes the number of value ai appears in the ith attribute of cluster G.

 For the first object, it forms a single cluster. For the consequent each object, the

algorithm first calculate the similarities between the object and the existing clusters, and

43

then selects out the largest value of similarity. If the largest value exceeds the

predefined threshold s, the object is placed into the cluster corresponding to the largest

similarity; else this object forms a new cluster alone. The algorithm halts when all

objects in the data set are clustered.

2.3.11 Discussion

k-means like algorithms including k-modes and various variants of k-modes,

have the identical advantage with the k-means algorithm, namely they have high

efficiency as they handle large data sets. However, they also have the identical

disadvantage with the k-means algorithm, that is, the clustering results might vary with

different initial values of modes (Parmar et al., 2007).

It has been shown that many algorithms such as COOLCAT, LIMBO, and

MMR outperform algorithm ROCK. The limitations of ROCK have been pointed out in

these works. Firstly, the number of clusters generated by ROCK might exceed the

number specified by user. Secondly, ROCK might create a large cluster including

objects from many classes. Thirdly, the clustering results produced by ROCK

significantly vary with the predefined threshold.

For algorithm STIRR, the data set can be clustered only as the mapped dynamic

system converges. Moreover, a non-trivial post-processing step is required to

automatically identify sets of closely related attribute values and final clusters, which

was not solved in STIRR. Finally, there are many choices of combiner functions;

however, STIRR can not guarantee the performance of the system for any combiner

function. Rigorous experiments are needed to generate a meaningful clustering.

CACTUS introduces a new definition of a cluster for categorical attributes. A

cluster is considered as a high-density node set in which each node pair is strongly

connected. The advantage of CACTUS is that it can conduct a subspace clustering since

it discovers clusters in subsets of the attributes. Experimental results on synthetic data

sets show that CACTUS has better efficiency and scalability than STIRR. However,

such a cluster definition requires every node pair to be strongly connected in a cluster.

Consequentely, a large number of clusters are likely to be generated and the cluster

number may not be close to the desired one in the user perspective (Chen and Chuang,

2004).

44

Information entropy based algorithms COOLCAT and LIMBO have the same

objective function. COOLCAT uses sampling to construct the initial clusters; hence, the

clustering results may be affected by the size of sample and the distribution of the real

clusters. In addition, the order of processing objects also influences the clustering

results so that the authors have to introduce a re-processing phase. The comparative

analysis conducted by authors of LIMBO shows that the clustering performance and

parameter stability of LIMBO are better than that of STIRR and ROCK.

ALG-RAND, k-ANMI, and G-ANMI define the problem of categorical data

clustering as optimization problem. On the one hand, the objective functions of these

three algorithms are all based on information theory, where ALG-RAND uses

conditional entropy while k-ANMI and G-ANMI use normalized mutual information.

On the other hand, k-ANMI works in a k-means framework, while ALG-RAND and G-

ANMI uses genetic algorithm to find the optimal partition. k-ANMI tends to discover

local optimal partition, ALG-RAND and G-ANMI try to discover globally optimal

partition instead. The authors of k-ANMI and G-ANMI have conducted comparative

analysis with ALG-RAND and showed that k-ANMI and G-ANMI outperform it on

clustering accuracy. The authors of k-ANMI assert that their algorithm beats other

algorithms including k-modes, ccdByEnsemble, and Squeezer. While G-ANMI

improved clustering accuracy in comparison with heuristic algorithms, low efficiency

caused by genetic algorithm is still a large obstacle before it can be widely used.

MMR algorithm has high efficiency due to the fact that it split the objects from

the viewpoint of attributes. However, it has some limitations, which will be analyzed in

Chapter 3. MDA algorithm improves the accuracy and efficiency of selecting clustering

attribute by using the dependency between attributes. However, it can only be used to

select clustering attribute rather than to cluster the data set.

Squeezer is suitable for clustering data streams since it scans each tuple only

once. However, each dataset need a different threshold makes the selection of threshold

a difficult work for users. Although the authors proposed a sampling technique to

generate the threshold, it is not necessarily suitable for various datasets (e.g. some

datasets are unbalanced). In addition, the algorithm usually produces more clusters in

comparison to other algorithms, which probably results in meaningless clusters. For

example, the algorithm generates 28 clusters on Congressional Votes dataset;

nevertheless, there exists only two real clusters in the dataset.

CHAPTER 3

MGR: A NEW ATTRIBUTE-ORIENTED HIERARCHICAL DIVISIVE

CLUSTERING ALGORITHM FOR CATEGORICAL DATA USING

INFORMATION THEORY

3.1 INTRODUCTION

In this chapter, a novel hierarchical divisive clustering algorithm for categorical

data, named MGR is proposed, which implements clustering from the viewpoint of

attributes. The significance of attributes in categorical data clustering is analyzed first,

followed by the description of MGR technique, the pseudocode of MGR algorithm, an

illustrative example, and comparison with MMR algorithm. The chapter is structured as

follows:

 Section 3.2 analyzes the significance of attributes in categorical data

clustering.

 Section 3.3 describes the details of MGR technique.

 Section 3.4 describes the MGR algorithm and gives an illustrative example.

 Section 3.5 compares MGR algorithm with MMR algorithm.

3.2 THE SPACE OF ATTRIBUTES PARTITIONS

Most existing clustering algorithms for categorical data focus on the relation

between the objects or the relation between an object and clusters during the process of

clustering. These relations are usually measured by similarity or dissimilarity. It can be

said that these methods are object-oriented. In fact, a data set consists of two elements:

objects and attributes. Therefore, besides objects, the attribute is also an important

aspect deserving to be considered for clustering. In a categorical data set, each attribute

46

defines a partition of the set of objects, each partition consists of some equivalence

classes (an equivalence class is a set of objects which has the same value on an

attribute). All the partitions form the space of attributes partitions.

Let us first look at an example. Table 3.1 shows a categorical data set with ten

objects and five attributes. The column of real classes implies that the set of objects can

be partitioned into three classes. Suppose that the objects in each class are the same

while completely distinct from the objects in other classes. Ai, Bi, Ci (i=1,...,5) denote

different categories on the ith attribute. The requirement now is to cluster the data set

without knowing the real classes in advance. Using the object-oriented methods like k-

modes, k-ANMI, the number of clusters has to be specified first and then the processes

of initialization, iteration are conducted. Specifying the number of clusters in advance is

difficult. Suppose the number of clusters is set to two in this example, the accuracy of

clustering would be affected. In fact, from the viewpoint of attributes, it can be seen that

each attribute partition the data set in the same way. If such relation between the

attributes can be found, a perfect clustering of the data set including three clusters will

be obtained by using the partition defined by any attribute without specifying the

number of clusters in advance. Therefore, using attribute to cluster the data set in this

example is a better way than using the object-oriented methods. The example reveals

the potential of the space of attributes partitions for categorical data clustering.

Table 3.1: Example data set with ten objects and five attributes

Objects Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Real classes

O1 A1 A2 A3 A4 A5 1

O2 B1 B2 B3 B4 B5 2

O3 B1 B2 B3 B4 B5 2

O4 C1 C2 C3 C4 C5 3

O5 A1 A2 A3 A4 A5 1

O6 B1 B2 B3 B4 B5 2

O7 A1 A2 A3 A4 A5 1

O8 C1 C2 C3 C4 C5 3

O9 B1 B2 B3 B4 B5 2

O10 C1 C2 C3 C4 C5 3

47

In a real-life categorical data set, the partitions defined by attributes are not as

perfect as that in the above example (i.e. the partitions defined by attributes are not

always completely same); however, if the real classes are sufficiently distinguishable

from each other, the objects in the same real classes have distinct value on some

attributes from the objects in the other real classes, consequently, there exist some

partitions defined by attributes which are similar to the real clustering of objects; at

least, there exist some equivalence classes in these partitions which are similar to the

real classes. Table 3.2 shows a simple example of such case. In Table 3.2, the partitions

defined by attributes are not completely same, however, there are some equivalence

classes (in the circles) in these partitions are as the same as the real classes. Our goal is

to find such partitions and equivalence classes from the space of attributes partitions to

construct the clustering of the objects.

Table 3.2: Example data set with six objects and three attributes

Objects Attribute 1 Attribute 2 Attribute 3 Real classes

O1 A1 A2 A3 1

O2 A1 A2 A3 1

O3 B1 B2 A3 2

O4 B1 B2 A3 2

O5 B1 C2 B3 3

O6 B1 C2 B3 3

In addition, the number of attributes is usually less than the number of objects in

a data set, thus it is possible to improve the clustering efficiency if the space of

attributes partitions is employed for clustering.

3.3 MGR TECHNIQUE

3.3.1 Basic Idea of MGR

A good clustering of the objects should share as much information as possible

with the partitions defined by each attribute (attributes partitions for short) (He et al.,

48

2005a; He et al., 2008; Cristofor and Simovici, 2002; Deng et al., 2010). The aim of

MGR algorithm is to search some equivalence classes from attributes partitions to form

such a clustering of the objects that share as much information as possible with the

attributes partitions. Concretely, MGR first selects a clustering attribute whose partition

shares the most information with the partitions defined by other attributes, and then on

the clustering attribute, the equivalence class with the highest intra-class similarity is

output as a cluster, and the rest of the objects form the new current data set. Repeat the

above two steps on the new current data set until all the objects are output. Figure 3.1

illustrates the basic steps of MGR technique.

Figure 3.1: The basic steps of MGR technique

 Determining Clustering Attribute

Two partitions share much information implies that the equivalence classes

contained in these two partitions are similar to each other. For example, given six

objects {1, 2, 3, 4, 5, 6} and three partitions on them, P1 = {{1, 2}, {3, 4}, {5, 6}}, P2 =

{{1, 2}, {3, 4}, {5}, {6}}, P3 = {{1}, {2, 3}, {4, 5, 6}}. It is obvious that P1 and P2

49

share more information than P1 and P3 or P2 and P3 because the equivalence classes

contained in P1 and P2 are more similar (two equivalence classes are the same). That is,

two partitions share much information means that they are similar (or close) to each

other. Therefore, among the attributes partitions, the partition defined by the clustering

attribute should be the most similar one to the partitions defined by all other attributes.

In decision tree classification algorithms C4.5(Quinlan, 1993), the information

theory based concept of gain ratio is used as the similarity measure of the partition

defined by an attribute with respect to the partition defined by class label attribute. In

MGR algorithm, the definition of gain ratio is extended to mean gain ratio (MGR) to

measure the similarity between the partition defined by an attribute and the partitions

defined by all other attributes. In algorithms C4.5, the higher an attribute’s gain ratio is,

the more similar the attribute to the partition defined by class label attribute.

Consequently, the higher an attribute’s MGR is, the closer the partition defined by the

attribute to the partitions defined by all other attributes. Thus, the attribute with the

highest MGR is selected as the clustering attribute.

 Selecting Equivalence Class

Clusters of similar data objects have lower entropy than those of dissimilar ones

(Barbara et al., 2002). In MGR algorithm, the entropy of cluster is used to select

equivalence class from the partition defined by clustering attribute. The lower the

entropy of a cluster is, the more similar the objects in the cluster. Thus, the equivalence

class with the lowest entropy is selected as the splitting equivalence class and output as

a cluster.

3.3.2 Information System

The data objects in a categorical data set are characterized by a set of categorical

attributes. The concept of information system gives a formal description of objects in

terms of their attribute values. Thus, a categorical data set can be formally described

using an information system. The discussion about MGR in this chapter will be based

on the notion of information system.

An information system is defined as a quadruple S = (U, A, V, f), where:

50

 },...,,{ 21 nxxxU is a set of n data objects, called a universe.

 },...,,{ 21 maaaA is a set of m attributes.

ja

m

j VV 1 ,
jaV is the domain of attribute aj.

 f:U×A→V is an information (knowledge) function such that
jaji Vaxf),(,

for every AUax ji),(, mj 1 and ni 1 .

An information system can be represented as an information table which

consists of attribute-value pairs. Table 3.3 shows such an information table.

Table 3.3: An information system

U a1 a2 ak am

x1 f(x1, a1) f(x1, a2) f(x1, ak) f(x1, am)

x2 f(x2, a1) f(x2, a2) f(x2, ak) f(x2, am)

xn f(xn, a1) f(xn, a2) f(xn, ak) f(xn, am)

The notion of information system can be regarded as a generalization of the

concept of relational database table by labeling the rows of database table with the

objects and labeling the columns with the attributes. Note that two different objects can

have the same description, namely redundant tuples in an information table; However,

in a relational database table it is not allowed.

3.3.3 Information Theory

Claude Shannon’s paper, “A Mathematical Theory of Communication”,

published in the Bell System Technical Journal in 1948, is universally acknowledged as

the beginning of information theory. This paper generated a profound influence on

communication technology and attracted many researchers from a variety of

backgrounds to contribute to the subject and expand it to many applications.

Information theory has become an interdiscipline of electronic engineering, computer

http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/Bell_System_Technical_Journal

51

science, physics, statistics, and applied mathematics. It has been widely applied to

numerous areas, such as communication networks, internet, cryptography, data

compression, artificial intelligence, natural language processing, and so on.

The theoretical basis of Information theory includes probability theory and

statistics. The most important concept in information theory is entropy, which is used to

measure the amount of uncertainty related to a random variable. The higher the

uncertainty is, the higher the entropy. Suppose X is a discrete random variable, D is the

value set of X, and P(x) is the probability of x given some Dx , the entropy of X is

defined as follows,

Dx

xPxPXH)(log)()((3.1)

There are two remarks about this definition. First, the base of the logarithmic is not

specified. The base of the logarithmic determines the unit of information entropy. Base-

2 unit called bit, is the most commonly used unit of information entropy. Other units

include base-10 (common logarithm) and base-e (natural logarithm). Second, if P(x) =0,

the term P(x) log P(x) is defined to be 0.

For a categorical data set represented by an information system S = (U, A, V, f),

each attribute Aai can be regarded as a random variable, and each category of

attribute ai is regarded as a value of the random variable. Therefore, the above definition

can be easily mapped onto a categorical data set. Let U/ai ={X1,…,Xj,…, Xh} denote the

partition on U defined by ai where UX j denotes an equivalence class (namely the

block of objects which have the same value on ai), and base-2 unit be the unit of

information entropy, the Eq. (3.1) can be mapped onto a categorical data set as follows.

Definition 3.1. Given attribute Aai , suppose ai defines partition U/ai ={X1, X2, …,

Xh}, the entropy of ai about the partition is defined as

h

s

ssi XPXPaE
1

2))((log)()((3.2)

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Common_logarithm
http://en.wikipedia.org/wiki/Natural_logarithm

52

where h is the domain size of ai, UX s is an equivalence class,
U

X
XP

s

s)(, s =1,

2,…, h.

Another important concept in information theory is conditional entropy. Given

two random variables X and Y, the conditional entropy of X given Y is used to measure

the uncertainty about X after observing Y, and defined as follows.

Yy Xx

yxPyxPyPYXH)|(log)|()()|((3.3)

Replacing the random variables X and Y with attributes, Eq. (3.3) can be mapped

onto a categorical data set as follows.

Definition 3.2. Given attributes Aaa ji , , suppose ai, aj define partitions U/ai ={X1,

X2, …, Xh}, U/aj ={Y1, Y2, …, Yg}, the conditional entropy (CE) of ai with respect to aj

is defined as

h

s

tsts

g

t

tia YXPYXPYPaCE
j

1

2

1

))((log)()()((3.4)

where UYX ts , ,
U

Y
YP

t

t)(,
t

st

ts
Y

XY
YXP

)(, s =1, 2, …, h and t =1, 2, ..., g.

Now that H(X) stands for the information about X before Y is known, and H(X|Y)

stands for the information about X given Y, the difference H(X)-H(X|Y) must represent

the amount of information provided about X by Y. This quantity is called information

gain, and defined as

 I(X ; Y) = H(X) - H(X | Y) (3.5)

Similarly, Eq. (3.5) can be mapped onto a categorical data set as follows.

53

Definition 3.3. Given attributes Aaa ji , , the information gain (IG)of ai with respect

to aj is defined as

)()()(iaiia aCEaEaIG
jj

 (3.6)

Based on the concepts of entropy and information gain, algorithm C4.5

(Quinlan, 1993) defines the concept of gain ratio as follows.

Definition 3.4. Given attributes Aaa ji , , the gain ratio(GR)of ai with respect to aj is

defined as

)(

)(
)(

i

ia

ia
aE

aIG
aGR j

j
 (3.7)

As mentioned in Section 3.3.1, MGR algorithm extends the definition of gain

ratio to mean gain ratio to measure the similarity between the partition defined by an

attribute and the partitions defined by all other attributes. It is defined as follows.

Definition 3.5. Given attribute Aai , the mean of gain ratio(MGR) of ai is defined as

1

)(

)(
,1

A

aGR

aMGR

A

ijj

ia

i

j

 (3.8)

In addition, MGR algorithm uses the notion of entropy of cluster to select

equivalence class from the partition defined by clustering attribute. Entropy of cluster is

defined as follows.

Definition 3.6. Assume the attributes in A are independent from each other, given a

cluster UC , the entropy of C is defined as

)(...)()()(21 mCCC aEaEaECEntropy (3.9)

54

where,)(iC aE , i=1, 2, …, m denotes the entropy of attribute ai about the partition

defined by ai on C, which is calculated by Eq. (3.2).

3.4 MGR ALGORITHM

Figure 3.2 shows the MGR algorithm in details.

55

Algorithm: MGR

Input: U //the set of objects

 A //the set of attributes

 k //the desired number of clusters

Output: clustering of U

01 Begin

02 Current_Dataset = U

03 CNC = 1. // set current number of clusters

04 Repeat

05 for each attribute Aai

06 Calculate_MGR(ai)

07 end for

08 // the attribute with the highest MGR is selected as clustering attribute

09 a = Select_attribute(A, MGR(ai))

10 p = U/a //get the partition defined by a

11 for each equivalence class ei in p

12 Calculate_Entropy(ei) //using Eq. (3.9)

13 end for

14 // the equivalence class with the lowest entropy in p is selected as the

15 // splitting equivalence class.

16 e = Select_equivalence_class (p, Entropy(ei))

17 print(e) //output e as a cluster

18 CNC = CNC+1

19 Current_Dataset = Current_Dataset - e

20 Until CNC==k or |Current_Dataset /ai| = =1 for each attribute ai

21 print (Current_Dataset) //output Current_Dataset as the last cluster

22 End

 Figure 3.2: MGR algorithm

The function of Calculate_MGR(ai) is implemented by using Eq. (3.2), Eq.

(3.4), Eq. (3.6), Eq. (3.7), and Eq. (3.8), the details are described in Figure 3.3.

56

01 Begin

02 Determine equivalence classes in the partition Current_Dataset /ai

03 Calculate E(ai)

04 for each attribute Aa j (ij)

05 Calculate)(ia aCE
j

06 Calculate)(ia aIG
j

07 Calculate)(ia aGR
j

08 end for

09 Calculate)(iaMGR

10 End

Figure 3.3: The procedure of calculating MGR)(ia

In view of the size of some selected equivalence classes might be very small,

they are regarded as outlier. If the size of the equivalence class with the lowest entropy

is less than a specified threshold, the equivalence class with the next lowest entropy will

be checked until the size of an equivalence class is greater than the threshold. Thus, the

procedure of selecting the equivalence class (Line 16 in Figure 3.2) is fined as is shown

in Figure 3.4.

01 Begin

02 Size_flag = true

03 Repeat

04 e = Select_equivalence_class (p, Entropy(ei))

05 if |e| < threshold

06 Size_flag = false

07 p = p-e

08 else

09 Size_flag = true

10 Until Size_flag==true

11 End

Figure 3.4: The procedure of selecting the equivalence class

57

It is possible that the sizes of all first |V(a)-1| equivalence classes are less than

the threshold. In that case, the clustering attribute a is gave up and the attribute with the

next highest MGR will be checked.

There is a remark about the termination of MGR algorithm. It is not necessarily

to specify the number of clusters k for the algorithm. If the number of clusters is not

specified, the algorithm will terminate as each attribute in the current dataset only has

one equivalence class. This is a more natural way than specifying the number of clusters

especially when user experiences difficulties in specifying the number of clusters.

Next, an illustrative example of the MGR algorithm is presented.

Example 3.1. Table 3.4 shows a data set of students’ enrollment qualification used to

illustrate the application of the MGR algorithm. There are eight objects with seven

categorical attributes. The number of clusters is set to 3.

Table 3.4: An information system of student’s enrollment qualification

Source: Herawan et al. (2010)

First, the mean of gain ratio of each attribute is calculated. Let us take attribute

“Degree” as an example. Following the algorithm shown in Figure 3.3, the mean gain

ratio of attribute “Degree” is calculated as follows.

Attribute “Degree” defines the partition

U/ Degree = {{1, 2}, {3, 4, 5, 6}, {7, 8}}.

Using Eq. (3.2), the entropy of attribute “Degree” is calculated as follows

58

E(Degree) = 4

1

2
2

1

2
4

1

2 log
4

1
log

2

1
log

4

1
 = 1.5

Next, for each attribute aj (aj ai = Degree),)(ia aCE
j

,)(ia aIG
j

, and)(ia aGR
j

are calculated, respectively. Let us take attribute “English” as an example.

Attribute “English” defines the partition

U/ English = {{1}, {2, 3, 4, 5, 6, 7}, {8}}.

 Using Eq. (3.4), the conditional entropy of attribute “Degree” with respect to

attribute “English” is calculated as follows

CEEnglish(Degree) =)0
8

1
)log

6

1
log

3

2
log

6

1
(

4

3
0

8

1
(6

1

2
3

2

2
6

1

2

 = 0.939

Using Eq. (3.6), the information gain of attribute “Degree” with respect to

attribute “English” is calculated as follows

IGEnglish(Degree) = 1.5 - 0.939 =0.561

Finally, the gain ratio of attribute “Degree” with respect to attribute “English” is

obtained by using Eq. (3.7)

GREnglish(Degree) =
5.1

561.0
=0.374.

 With the same process, the gain ratios of attribute “Degree” with respect to

other attributes are obtained,

GRExperience(Degree) = 0.541,

GRIT(Degree) = 0.667,

GRMathematics(Degree) = 0.333,

GRProgramming(Degree) = 0.333,

GRStatistics(Degree) = 0.230.

Consequently, according to Eq. (3.8), the mean gain ratio of attribute “Degree”

is obtained,

 MGR(Degree) =
6

23.0333.0333.0667.0541.0374.0
 = 0.413.

Following the same procedure, the mean gain ratios of other attributes are

calculated. The results of gain ratio and mean gain ratio are summarized in Table 3.5.

59

Table 3.5: GR and MGR of all attributes in Table 3.4

Attribute

(with respect to)

Degree English Experience IT Math Programming Statistics MGR

Degree - 0.374 0.541 0.667 0.333 0.333 0.230 0.413

English 0.529 - 0.305 0.293 0.236 0.236 0.293 0.315

Experience 1.000 0.399 - 0.384 0.384 0.384 0.000 0.425

IT 1.000 0.311 0.311 - 0.000 0.000 0.189 0.302

Mathematics 0.500 0.250 0.311 0.000 - 1.000 0.189 0.375

Programming 0.500 0.250 0.311 0.000 1.000 - 0.189 0.375

Statistics 0.344 0.311 0.000 0.189 0.189 0.189 - 0.204

Second, the clustering attribute with the highest MGR is chose. Table 3.5 shows

that attribute “Experience” has the highest MGR, thereby, it is chose as clustering

attribute.

Third, the splitting equivalence class with the minimum entropy is determined.

Attribute “Experience” defines a partition {{1, 2, 3, 4, 5, 6}, {7, 8}}. C1 and C2 are used

to denote {1, 2, 3, 4, 5, 6} and {7, 8}, respectively. According to the Definition 3.6, the

entropies are calculated as follows

 Entropy(C1) =
1CE (Degree) +

1CE (English) +
1CE (Experience) +

1CE (IT)

+
1CE (Math) +

1CE (Programming) +
1CE (Statistics)

 = (3

2

2
3

1

2 log
3

2
log

3

1
) + (6

5

2
6

1

2 log
6

5
log

6

1
) + 0

 + (3

2

2
3

1

2 log
3

2
log

3

1
) + (3

2

2
3

1

2 log
3

2
log

3

1
)

 + (3

2

2
3

1

2 log
3

2
log

3

1
) + 1

 = 5.323

 Entropy(C2) =
2CE (Degree) +

2CE (English) +
2CE (Experience) +

2CE (IT)

+
2CE (Math) +

2CE (Programming) +
2CE (Statistics)

 = 0 + 1 + 0 + 0 + 0 + 0 + 1

 = 2

60

 In this example, the threshold of the size of splitting equivalence class is set to

be 3% of the number of data set, that is, threshold = 0.03*8 = 0.24 < 1. Obviously, set

{7, 8} has the lowest entropy and its size is greater than threshold. Hence, set {7, 8} is

selected as splitting equivalence class.

Finally, splitting equivalence class {7, 8} is output as a cluster, equivalence class

{1, 2, 3, 4, 5, 6} is regarded as the new current dataset to further process.

Over the new current dataset, the above procedure is repeated. This time,

attribute “Degree” is chose as clustering attribute and {1, 2, 3, 4, 5, 6} is partitioned to

two clusters {1, 2} and {3, 4, 5, 6}. Subsequently, set {1, 2} is selected as the splitting

equivalence class since it has the lowest entropy, and output as a cluster. Set {3, 4, 5, 6}

becomes the new current data set. Since the current number of clusters reaches 3 so far,

the procedure of iteration stops. The current dataset is output as the final cluster. In the

end, the data set is partitioned to three clusters, C1 = {7, 8}, C2 = {1, 2}, C3 = {3, 4, 5,

6}.

3.5 MGR COMPUTATIONAL COMPLEXITY

Given a data set, assume n is the number of objects, m is the number of

attributes, l is the maximum number of values in the attribute domains and k is the

required number of clusters. To achieve k clusters, the algorithm has to runs k-

1iterations. In each iteration, the time to determine equivalence classes for each attribute

is mn, the time to compute the entropy of attributes is ml, the time to calculate the

conditional entropy is m
2
l, the time to calculate the IG and GR is 2m

2
, the time to

calculate MGR is m, the time to determine the clustering attribute is m, the time to

compute the entropy of the equivalence classes on the clustering attribute is ml
2
. The

whole time for k-1iterations is km
2
(2+l)+km(n+l+l

2
+2). Generally, l << n, thus, the

computational complexity is O(km
2
l + kmn), which is polynomial time.

61

3.6 COMPARISONS WITH MMR

3.6.1 Limitations of MMR

In this section, the limitations of MMR algorithm are analyzed and illustrated

with some examples.

i. MMR algorithm is biased toward the attribute with the smallest value domain

size or with the most unbalanced partition as determining the partitioning

attribute (Step 4 in Figure 2.7).

There are two reasons for this limitation. First, MMR has two properties as

follows.

Proposition 3.1. Given an information system S = (U, A, V, f), if an attribute defines an

one-equivalence-class partition, then the attribute has minimum Min-Roughness, i.e.

MMR.

Proof. Suppose attribute Aai defines a one-equivalence-class partition, which means

all the objects in U have the same value on attribute ia . Suppose the same value is ,

for any attribute Aa j (ij), the lower approximation and upper approximation of

)(iaT with regard to ja are calculated as follows

UaTaT iaia jj
)()(

 Then, using Eq. (2.31), the roughness of)(iaT with regard to ja is obtained

 0
)(

)(
1)(

ia

ia

ia

aT

aT
aTR

j

j

j

62

Using Eq. (2.32) and Eq. (2.33), the mean roughness and Min-Roughness of

attribute ia are obtained

0)(ia aRough
j

, and 0)(iaMR .

From the definitions in Section 2.3.8, it is easy to get that 0)(aMR for each

Aa . Hence, attribute ia has minimum Min-Roughness, i.e. MMR. □

Proposition 3.2. Given an information system S = (U, A, V, f), if an attribute defines a

partition with one-element equivalence classes , then the attribute has maximum Min-

Roughness in A.

Proof. Suppose attribute Aai defines a partition with one-element equivalence

classes, which means each object in U has a different value on attribute ia .

For any attribute Aa j (ij), suppose there are
1j

N one-element equivalence

classes,
2j

N non one-element equivalence classes in the partition jaU / . Using the Eq.

(2.31), the following two conclusions are obtained.

(1) There are
1j

N equivalence classes in the partition iaU / whose roughness

equal 0 with respect to attribute ja .

(2) There are
1j

NU equivalence classes in the partition iaU / whose

roughness equal 1 with respect to attribute ja .

Thereby, using Eq. (2.32), the mean roughness on attributes ia with respect to ja is

calculated as follows

U

NU
aRough

j

ia j

1)(

Conversely, the roughness of all equivalence classes in the partition jaU / with

respect to attribute ia equal 0, hence the mean roughness on attributes ja with respect to

ia equal 0, that is

63

 0)(ja aRough
i

Finally, the following formula is obtained by using Eq. (2.33).

 0)(
},,...,1,min{

)(1

 j

j

i aMR
U

ijmjNU
aMR

0)()(ji aMRaMR when there exists an attribute ja with 0
1
 jNU , which

means attribute ja also defines a partition with one-element equivalence classes.

Hence, if an attribute defines a partition with one-element equivalence classes, then the

attribute has maximum Min-Roughness in A. □

In the following discussion, the attribute that defines a one-equivalence-class

partition is called P1-type attribute, the attribute defines a partition with one-element

equivalence classes is called P2-type attribute. Further, let us give a deep insight into

these two types attributes. A P1-type attribute has two properties: (1) it has the smallest

value domain size; (2) it has the most unbalanced partition. Reversely, for a P2-type

attribute, (1) it has the biggest value domain size; (2) it has the most balanced partition.

The two propositions imply that the attribute with the smaller value domain size

or with the more unbalanced partition usually has lower Min-Roughness, which means

MMR algorithm prefers to select such attribute as the partition attribute. For example, if

a partitioning attribute is required to be selected (Step 4 in Figure 2.7) from an attribute

set which includes a P1-type attribute, according to MMR algorithm, the P1-type

attribute will be selected since it has MMR value, while it is impossible to be selected

for a P2-type attribute because of its maximum MR value. This finally results in the

extreme selection of MMR algorithm as determining the partitioning attribute, namely,

MMR algorithm is biased toward the attribute with the smallest value domain size or

with the most unbalanced partition (although P1-type attribute is excluded when the

algorithm is implemented).

Second, from the definition of roughness (Eq.(2.31)), it can be seen that the

formula only focuses on the precision of X with respect to aj, regardless of the size of X

64

and the distribution of attribute ai. This also contributes to the extreme selection as

determining the partitioning attribute.

Determining partitioning attribute is the key of MMR algorithm. Such extreme

selections will decrease the clustering accuracy of MMR algorithm; after all, the real

clusters are not always embedded in such attributes. The following examples illustrate

these two cases.

Example 3.2. There are five objects in a small data set as is shown in Table 3.6. Each

object has four categorical attributes: Size, Material, Shape, and Colour. The domain

sizes of these four attributes are 2, 3, 4, and 5, respectively.

Table 3.6: Example data set with five objects and four attributes

U Size Material Shape Colour

1 Big Wood Circle Red

2 Small Plastic Square Green

3 Big Wood Ellipse Yellow

4 Small Plastic Circle White

5 Small Metal Triangle Black

Following MMR algorithm, attribute “Size”, which has the smallest domain

size, is selected to split the dataset in the first selection. Suppose three clusters are

required, attribute “Material” will be selected in the second selection (iteration) to split

objects set {2, 4, 5}. Note that attribute “Material” also has the smallest domain size

except for single-value attribute “Size” (excluded) when objects set is {2, 4, 5}.

Example 3.3. Using a data generator (Cristofor et al., 2002), a data set of 5 objects with

5 attributes a1, a2, ..., a5 is generated as is shown in Table 3.7.

65

Table 3.7: Example data set with five objects and five attributes

U a1 a2 a3 a4 a5

1 0 0 1 0 0

2 0 1 1 1 1

3 1 1 0 1 1

4 0 1 0 0 0

5 0 0 0 1 0

The data generator sets value 0 on most attributes (four out of five) for objects 1,

4, and 5, and sets value 1 on most attributes (four out of five) for objects 2 and 3, that is,

the reference partition is {0, 1, 1, 0, 0}. The real clusters can be obtained from this

reference partition, namely {{1, 4, 5}, {2, 3}}. Following MMR algorithm, attribute a1

is selected as the partition attribute. Thereby, the clustering result is {{3}, {1, 2, 4, 5}}.

Note that, MMR algorithm selects the attribute with the most unbalanced

partitions among all attributes in this example. In the above dataset, each attribute has

the same number of equivalence classes, i.e. 2. The numbers of the objects in each

equivalence class are listed in Table 3.8. Values 0 and 1 in Table 3.7 denote different

categories of an attribute regardless of order, therefore, class 1 in Table 3.8 denotes the

equivalence class that includes object 1, and class 2 denotes the other equivalence class.

It is obvious that attribute a1 has the most unbalanced partitions.

Table 3.8: The numbers of the objects in each equivalence class

Equivalence classes a1 a2 a3 a4 a5

class 1 4 2 2 2 3

class 2 1 3 3 3 2

ii. Selecting the current longest cluster to further binary split (Step 7 in Figure

2.7) is not always consistent with the natural distribution of clusters.

66

For unsupervised learning, the length of the clusters is not known in advance.

There exist some clusters with longer length in data sets. Therefore, using the length of

clusters as the criterion is not natural, that is, it is not always consistent with the natural

distribution of clusters. The following example illustrates the view.

Example 3.4. Table 3.9 shows an animal world data set which is modified from (Hu,

1995). There are seven objects with seven categorical attributes: Hair, Teeth, Feet, Eat,

Milk, Fly, and Swim. The attribute “Type” shows the real classes of the animals, i.e.

{mammal, bird, reptile}. Note, attribute “Type” does not participate in the process of

clustering.

Table 3.9: The animal dataset

Animal Hair Teeth Feet Eat Milk Fly Swim Type

Tiger Y pointed claw meat Y N Y mammal

Cheetah Y pointed claw meat Y N Y mammal

Giraffe Y blunt hoof grass Y N N mammal

Zebra Y blunt hoof grass Y N N mammal

Albatross N N claw grain N Y Y bird

Eagle N N claw meat N Y N bird

Viper N pointed N meat N N N reptile

Following MMR algorithm, first, attribute “Hair” is selected to split the dataset.

With attribute “Hair”, two clusters are obtained, i.e. P1 = {Tiger, Cheetah, Giraffe,

Zebra} and P2 = {Albatross, Eagle, Viper}. Next, cluster P1 is selected to be further split

because P1 is the current longest node among all the clusters. This time, attribute

“Teeth” is chose as partition attribute. With attribute “Teeth”, two clusters are obtained,

i.e. P11 = {Tiger, Cheetah} and P12 = {Giraffe, Zebra}. Finally, three clusters are

obtained, C1 = {Tiger, Cheetah}, C2 = {Giraffe, Zebra}, and C3 = {Albatross, Eagle,

Viper}. However, in terms of attribute “Type”, the real clusters are C1 = {Tiger,

Cheetah, Giraffe, Zebra}, C2 = {Albatross, Eagle}, and C3 = {Viper}.

Assuming partition P2 was selected to be further processed instead of the longest

node P1 after splitting by attribute “Hair”, obviously, the clustering results will be the

67

same as the real clusters. Therefore, selecting the longest node is not always consistent

with the natural distribution of clusters.

iii. MMR algorithm has to store all clusters produced during the execution of

program

In order to select the current longest clusters for the further process, MMR

algorithm has to store all clusters produced during the execution of program, which is

space consuming. All clusters correspond to all objects, suppose there are n objects in

dataset and only store the ID of the objects in clusters, then at least n space nodes are

required to store them, that is, the extra space complexity is O(n).

3.6.2 Comparison Between MGR and MMR

MGR algorithm can overcome the above limitations of MMR algorithm well.

Corresponding to those limitations, MGR algorithm has the following advantages:

i. MGR algorithm is not biased toward extreme selections.

There are two reasons for this view. First, it can not be confirmed that P1-type

and P2-type attributes have the maximum or minimum of mean gain ratio. Thus, they

are not necessarily selected as clustering attribute.

Second, in the decision tree learning algorithm C4.5, the reason for using gain

ratio measure is to avoid extreme selection caused by information gain measure. The

mean gain ratio used in MGR algorithm has the same principle, thus it can avoid

extreme selections.

Example 3.5. Let us reconsider the clustering of the data set in Example 3.3. Here the

data set is reclustered using MGR algorithm.

Following MGR algorithm, the results of gain ratio and mean gain ratio are

summarized in Table 3.10.

68

Table 3.10: Gain Ratio of all attributes in Table 3.7

Attribute

(with respect to)
a1 a2 a3 a4 a5 MGR

a1 - 0.237 0.237 0.237 0.446 0.289

a2 0.176 - 0.021 0.021 0.433 0.162

a3 0.176 0.021 - 0.021 0.021 0.059

a4 0.176 0.021 0.021 - 0.433 0.162

a5 0.332 0.433 0.021 0.433 - 0.304

Table 3.10 shows that attribute a5 has the highest MGR. Therefore, according to

MGR algorithm, attribute a5 is chosen as the clustering attribute. Attribute a5 partitions

the data set shown in Table 3.7 into two clusters, that is {{1, 4, 5}, {2, 3}}. It has been

mentioned in Example 3.3 that the data generator set the real clusters as {{1, 4, 5}, {2,

3}}. Thereby, the clustering result generated by MGR algorithm on this data set is the

same as the real clusters.

ii. In each iteration, MGR algorithm output the cluster found regardless of its

length and perform binary split on the remaining objects.

The way of MGR algorithm is more natural than that of MMR algorithm, that is,

it is more consistent with the real distribution of clusters. The following example

illustrates the view.

Example 3.6. Let us reconsider the clustering of the data set in Example 3.4. Here the

data set is reclustered using MGR algorithm.

Following MGR algorithm, two iterations are needed to obtain three clusters

from the data set. The results of gain ratio and mean gain ratio in the first iteration are

summarized in Table 3.11 which shows the one-to-one relationship between attributes

by using the same attributes for both axes. Each cell (except for the cells in the last

column) of Table 3.11 gives the gain ratio value of an attribute with respect to another

attribute and the last column gives the MGR value of each attribute.

69

Table 3.11: Gain Ratio of all attributes in Table 3.9 in the first iteration

Attribute

(with respect to)
Hair Teeth Feet Eat Milk Fly Swim MGR

Hair - 0.601 0.420 0.420 1.000 0.477 0.021 0.490

Teeth 0.380 - 0.633 0.702 0.380 0.554 0.197 0.474

Feet 0.300 0.715 - 0.664 0.300 0.212 0.378 0.428

Eat 0.300 0.793 0.664 - 0.300 0.290 0.300 0.441

Milk 1.000 0.601 0.420 0.420 - 0.477 0.021 0.490

Fly 0.544 1.000 0.338 0.463 0.544 - 0.007 0.483

Swim 0.021 0.311 0.529 0.420 0.021 0.006 - 0.218

Attribute “Hair” has the highest MGR among all the attributes, thus it is chosen

as clustering attribute. Two clusters are obtained by attribute “Hair”, i.e. T1 = {Tiger,

Cheetah, Giraffe, Zebra} and T2 = {Albatross, Eagle, Viper}. Next, cluster T1 is output

since it has the lowest entropy and cluster T2 is to be further split in the second iteration.

The results of gain ratio and mean gain ratio in the second iteration are summarized in

Table 3.12.

Table 3.12: Gain Ratio of all attributes in Table 3.9 in the second iteration

Attribute

(with respect to)
Hair Teeth Feet Eat Milk Fly Swim MGR

Hair - 0 0 0 0 0 0 0

Teeth 0 - 1 0.274 0 1 0.274 0.425

Feet 0 1 - 0.274 0 1 0.274 0.425

Eat 0 0.274 0.274 - 0 0.274 1 0.304

Milk 0 0 0 0 - 0 0 0

Fly 0 1 1 0.274 0 - 0.274 0.425

Swim 0 0.274 0.274 1 0 0.274 - 0.304

In the second iteration, attribute “Teeth” is the first attribute that has the highest

MGR. Therefore, it is selected as clustering attribute. Two clusters are obtained by

attribute “Teeth”, i.e. T21 = {Albatross, Eagle} and T22 = {Viper}. Finally, three clusters

70

are obtained, i.e. C1 = {Tiger, Cheetah, Giraffe, Zebra}, C2 = {Albatross, Eagle}, and C3

= {Viper}, which is the same as the real clusters.

The example illustrates that the way of MGR algorithm is more natural than that

of MMR algorithm.

iii. For MGR algorithm, there is no need of storing all clusters produced

during the execution of program.

In each iteration, MGR first selects a clustering attribute, and then selects an

equivalence class on the clustering attribute, finally outputs the seleted equivalence

class as a cluster (Line 17 in Figure 3.2). In other words, all the clusters produced in the

iterations are directly printed rather than stored in memory, thus, there is no need of

extra space for storing all clusters during the execution of program.

3.7 SUMMARY

This chapter reveals the significance of attributes for categorical data clustering

and proposes a novel attribute-oriented hierarchical divisive clustering algorithm named

MGR for categorical data. Mean gain ratio and entropy of clusters, two information

theory based concepts, are introduced in the implementation of MGR algorithm. From

the analysis of the limitations of MMR algorithm and the comparison between MGR

and MMR, it can be seen that MGR can overcome the limitations of MMR algorithm.

The polynomial computational complexity implies that MGR still maintains high

efficiency.

CHAPTER 4

IG-ANMI: AN IMPROVED GENETIC CLUSTERING ALGORITHM FOR

CATEGORICAL DATA

4.1 INTRODUCTION

Deng et al. (2010) propose G-ANMI, which is an ANMI based genetic

clustering algorithm for categorical data. It has been demonstrated that G-ANMI

algorithm is superior or comparable to existing clustering algorithms for categorical

data including ALG-RAND, ccdByEnsemble, k-ANMI, k-modes, TCSOM, and

Squeezer, according to clustering accuracy. However, the low efficiency of G-ANMI is

a considerable obstacle before it can be widely used in practice. The low efficiency of

the algorithm is mainly contributed by genetic algorithm in which lots of iterations are

needed to find globally optimal solution (Deng et al., 2010). Especially when a big

population size is used, each iteration will take much time. Hence, new methods which

can reduce the number of iterations of genetic algorithm in G-ANMI are desired.

G-ANMI algorithm first randomly generates a set of partitions of objects which

form a population. These randomly generated partitions are far from the distribution of

the real classes in the processed data set. The farther these partitions are from the

distribution of the real classes, the more iteration G-ANMI needs to reach the optimal

solution. Thus, improve the initial population is a possible method to reduce the number

of iteration of G-ANMI. As described in the last chapter, MGR algorithm implements

clustering from the viewpoint of the attribute, in which the partitions defined by

attributes and the equivalence classes in these partitions are used to build the clustering

of the objects. Inspired by the idea of MGR, the space of attributes partitions are tried to

be used to construct the initial population of G-ANMI. In this chapter, an improved

genetic clustering algorithm for categorical data is proposed, termed IG-ANMI. Based

on G-ANMI, IG-ANMI improves the method of initialization. Prior to the description of

72

the algorithm, the preliminary knowledge about genetic algorithms (GAs) and algorithm

G-ANMI are introduced. The chapter is structured as follows:

 Section 4.2 introduces GAs.

 Section 4.3 describes the algorithm G-ANMI.

 Section 4.4 describes the algorithm IG-ANMI.

4.2 GENETIC ALGORITHMS

GAs (Holland, 1992; Mitchell, 1998; Man et al., 2001) are a part of evolutionary

computing, which is a rapidly growing area of artificial intelligence. GAs were invented

by Holland (1992) and developed by him and his students and colleagues.

4.2.1 Biological Background

Cell is the basic component of an organism. In the nucleus of each cell there is a

set of threadlike linear strand of DNA called chromosomes. Chromosomes carry the

hereditary information which are encoded and stored in the hereditary units called genes.

Each gene has a particular location in a chromosome and represents a particular

characteristic of an organism, such as the number of legs, intelligence and so on. Each

characteristic has some different settings, for instance, the number of leges may be 2, 4,

6, etc. All the hereditary information carried by chromosomes in a cell's nucleus is

referred to genome. Specific set of genes of an organism and their settings are called the

organism's genotype.

When sexual reproduction takes place between two organisms, two

chromosomes from parent will recombine by performing crossover to produce two new

chromosomes. There might exsit some mistakes during cell's reproduction, that is, some

genes might be mutated. It is possible that the mutated genes express completely new

characteristics. These basic processes including natural selction, mutation and

recombination enable the life on earth continuously evolve.

73

4.2.2 The Outline of Basic GAs

The first step of GAs is to generate a set of chromosomes called initial

population, which are generated randomly in most cases. Each chromosome in current

population is then evaluated and assigned a fitness value. Based on these fitness values,

some chromosomes in current population are chose and used to generate new

population. In general, the higher the fitness value a chromosome has, the more chances

it has to be selected. Repeat the above steps on the new generated population until the

best fitness vaule or the number of iterations exceeds the predefined threshold. Figure

4.1 shows the steps of basic GAs.

 Figure 4.1: The outline of basic GAs

When the Basic GAs is used in practice, the implementation of some steps

varies with the different applications, including encoding of chromosomes, how to

select parent chromosomes, and what types of crossover and mutation are used. These

problems will be discussed in the following sections, respectively.

74

4.2.3 Encoding of Chromosomes

When GA is being used to solve a problem, the possible solutions of this

problem have to be encoded as chromosomes. The encoding varies with the problems.

There are several successfully used ways of encoding for a chromosome, such as binary

encoding, permutation encoding, value encoding, and tree encoding. The mostly used

binary encoding and value encoding are introduced below.

 Binary Encoding

 Each chromosome is encoded as a strand of 1 or 0. Table 4.1 shows the

example of chromosomes with binary encoding.

Table 4.1: The example of chromosomes with binary encoding

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

 Value Encoding

It is possibly difficult using binary encoding to solve some special problems

in which some complex values are involved. Each chromosome in value

encoding is encoded as a strand of some values. Values depend on the

problem, they might be characters, real numbers, words, or some complex

objects. Such encoding method is suitable to solve some particular problems;

however, new mutation and crossover methods special for these problems are

usually required. Table 4.2 shows the example of chromosomes with value

encoding.

 Table 4.2: The example of chromosomes with value encoding

Chromosome A white, yellow, red, pink, blue, green

Chromosome B 3.19 8.45 2.37 6.23 9.77 11.55

Chromosome C UYTORSVNYPLKWAHJBQWIMS

75

4.2.4 Fitness Function

During the evolution of population, each chromosome has to be evaluated how

fit it is to be a solution of the problem. Such evaluation is performed by the fitness

function. The return value of fitness function named fitness value usually is a positive

number. The higher the fitness value is, the fitter the chromosome to the solved problem

(Man et al., 2001).

The fitness function is usally defined by transforming the objective function. For

instance, ffi / is one of commonly used definitions of fitness function, where if

denotes the evaluation of i
th

 chromosome and can be calculated by using objective

function, and f denotes the average evaluation of all the chromosomes. Moreover, a

chromosome’s rank in the population can also be used to compute the fitness value.

4.2.5 Selection Operators

Selection refers to selecting some chromosomes in the population to create new

offspring according to chromosomes’ fitness. In GA, the selection operation complies

with Darwin's evolution theory, that is, the fittest ones should be selected. There are a

number of ways to do selection, such as elitism, roulette wheel selection, rank selection,

tournament selection, and Boltzman selection (Mitchell, 1998). The most commonly

used methods including roulette wheel selection and elitism are introduced below.

i. Roulette Wheel Selection

In this method, the chromosomes are mapped onto a roulette wheel, where each

chromosome occupies a piece of space whose area is proportion to its fitness value.

Figure 4.2 shows an example of such mapping.

76

Figure 4.2: The mapping of chromosomes onto a roulette wheel

Imaging a die is thrown on the roulette wheel; the chromosome which finally

contains the die will be selected. Obviously, the bigger the area of a chromosome is, the

more times it is selected. The algorithm shown in Figure 4.3 simulates the process.

 Figure 4.3: The algorithm of roulette wheel selection

ii. Elitism

Elitism guarantees some best first chromosomes survive in the new population

by directly copying them to new population. Elitism is usually followed by other

selection methods which are used to deal with the rest chromosomes. Since elitism

preserves the fittest solution, it can speed the convergence of GA.

4.2.6 Crossover Operators

Crossover is a process of recombining chromosomes to create new offsprings,

which has a great impact on the performance of GAs. Crossover can be implemented in

many ways including single point crossover, two point crossover, uniform crossover,

77

and arithmetic crossover. The selection of the method for crossover relies on the way of

encoding as well as the solved problem. In this section, single point crossover for binary

encoding is described.

For example, single point crossover is performed on two chromosomes

0010110011010010 and 1111111100000000. First, generate a random number as

crossover point denoted by |, and then exchange the corresponding bits in two

chromosomes after the crossover point. The process is shown in Table 4.3.

Table 4.3: Single point crossover for binary encoding

Chromosome 1 0010 | 110011010010

Chromosome 2 1111 | 111100000000

Offspring 1 0010 | 111100000000

Offspring 2 1111 | 110011010010

4.2.7 Mutation Operators

Mutation is a process of randomly changing a few parts of the new offspring

generated by crossover operation, which prevents the solutions of the solved problem

being local optimal solutions. The way of encoding usually determines the method of

mutation. For a chromosome with binary encoding, first randomly choose some bits,

and then switch them to 1 or 0. Table 4.4 shows the mutation operation performed on

the offsprings in Table 4.3, where the mutated bit is in bold style.

Table 4.4: Mutation for binary encoding

Offspring 1 0010111100000000

Offspring 2 1111110011010010

Mutated 1 0000111100001000

Mutated 2 1111010011010011

78

4.2.8 Parameters of GAs

The settings of some important parameters including population size, crossover

probability, and mutation probability usually influence the performance of GAs.

 Population size refers to the number of chromosomes in population.

Generally, a too big population size will lower the efficiency of GAs; on the

other hand, a too small population size will reduce the search space of GAs. It

has been shown that increasing population size does not improve the

performance of GAs after some limit which relies on the solved problem

(Mitchell, 1998).

 Crossover probability refers to how many chromosomes will be selected to

perform crossover. A crossover probability of 0 means all chromosomes in the

new population are directly copied from the old population. A crossover

probability of 1 means all chromosomes are generated by crossover. Generally,

a high crossover probability is recommended.

 Mutation probability refers to how many bits in a chromosome will be

mutated. A mutation probability of 0 means chromosomes are not changed at

all. A mutation probability of 1 means each bit in a chromosome is changed,

that is, GAs are equivalent to random search in that case. Therfore, a low

mutation probability is usually recommended.

4.3 G-ANMI

G-ANMI uses a basic GA to search for an ANMI based optimal partition. In this

section, the G-ANMI algorithm and some details of its implementation, including the

encoding method, fitness function, selection operator, crossover operator, mutation

operator, and parameters setting are described.

79

4.3.1 The Description of G-ANMI Algorithm

Initially, the algorithm randomly generates a set of partitions of objects and

encodes them as chromosomes. These chromosomes form the initial population. Then,

ANMI is used to calculate the fitness of each chromosome. Based on the fitness values,

some genetic operations are employed to generate a new population by changing the

chromosomes in the current population. The latest chromosomes are expected to be

more similar to the optimal partition than the previous chromosomes. Repeat the above

steps until the best fitness has kept invariable in some successive iterations. Figure 4.4

shows the details of G-ANMI algorithm, where M is the population size, m and r are the

the mutation and crossover probability, respectively.

initialize the population of genetic algorithm

while (true)

 compute the fitness of chromosomes in the population;

 if (there has been no relative improvement in best fitness value for

Nmax iterations)

 then

 output the partition of Kbest;

 exit;

 copy fittest (1 − r − m)M chromosomes to new population;

 select probabilistically max{2, rM} chromosomes to cross over;

 apply crossover operator to the selected chromosomes

 and copy the offspring to the new population;

 select with uniform probability max{1,mM} chromosomes to mutate;

 apply mutation operator to the selected chromosomes

 and copy the modified chromosomes to the new population;

 Use the new population to replace the old one;

Figure 4.4: The G-ANMI algorithm

80

4.3.2 The Encoding Method and Initialization

G-ANMI searches for the optimal partition of objects, thus each chromosome is

encoded as a partition of objects. If the desired number of clusters is set to k, then each

chromosome is encoded as a k-partition of objects. In the G-ANMI algorithm, the

integers from interval [0, k-1] are used as class identifier; therefore, a chromosome is a

string of integers which are in interval [0, k-1]. For example, suppose the number of

objects is 20, and k is 4, a possible chromosome is as follows

1 0 2 0 1 0 3 2 3 1 0 1 2 0 3 2 0 1 1 2

The initial population consists of a set of randomly generated chromosomes.

Each location of a chromosome is filled by a random number in interval [0, k-1].

4.3.3 The Fitness Function

G-ANMI aims to discover the optimal partition which shares most information

with the partitions defined by attributes. It borrows the concept of ANMI from the

algorithms ccdByEnsemble and k-ANMI to measure how well a partition summarizes

the attribute partitions. Given a set of m partitions defined by attributes:

 = }},...,2,1{|{)(mqq and a partition , the average normalized mutual information

(ANMI) between and is defined as follows:

m

q

qNMIANMI

m 1

)()()(),(
1

),((4.1)

where),()()(qNMI denotes the Normalized Mutual Information (NMI) between

)(q and . In general, given any two partitions)(a and)(b , the normalized mutual

information between them is calculated as follows:

)()(

)()(

1 1
)(

)(

)()()()(log
2

),(

a b

ba

k

h

k

g g

h

h

g

kk

h

g

baNMI

nn

nn
n

n
 (4.2)

81

where k
(a)

 and k
(b)

 denote the number of clusters in partitions)(a and)(b , respectively.

ng is the length of cluster Cg in)(b , n
(h)

 is the length of cluster Ch in)(a ,)(h

gn is the

number of common objects between cluster Cg and Ch.

ANMI described in Eq. (4.1) is used to evaluate the fitness of each chromosome

in population (the chromosome is viewed as). The higher the ANMI of a chromosome

is, the more suitable the chromosome is.

4.3.4 Selection, Crossover, and Mutation Operators

G-ANMI uses elitism method to do selection. The fittest (1-r-m)M chromosomes

are copied directly to the new population, ensuring that current population always has

the best chromosomes from the old population. Next, a number of max{2, rM}

chromosomes from the old generation are selected probabilistically to be used in the

generation of the new offspring by crossover. The selection method used is roulette

wheel strategy introduced in Section 4.2.5.

The classical single point crossover operator is used in G-ANMI, which is

similar to the one introduced in Section 4.2.6 for binary encoding. Starting from two

chromosomes, a random crossing point is selected as a number l between 1 and N (N is

the length of a chromosome). The offspring will contain the first 1 to l positions from

the first parent and the last l+1 to N positions from the second parent and vice versa.

G-ANMI uses the classical mutation operator which involves changing

randomly a number of max{1, 0.1N} positions in the chromosomes. The new value for

each chromosome position is chosen randomly from 0 to k-1.

4.4 IG-ANMI

IG-ANMI improves G-ANMI by developing a new initialization method. The

initial set of chromosomes are no longer entirely generated randomly, part of them are

generated from the partitions defined by attributes instead. The genetic algorithm used

in IG-ANMI is the same as that in G-ANMI, hence this section mainly describes the

new initialization algorithm of IG-ANMI and gives an illustrative example.

82

The basic idea of the initialization algorithm is that integrating some equivalence

classes of the partitions defined by attributes into the generation of initial partitions.

Two cases are considered: one is the population size is greater than or equal to the

number of attributes, another is the population size is less than the number of attributes.

Different strategies are used in the two cases. The basic initialization algorithm of IG-

ANMI is described in Figure 4.5. The algorithm takes M partitions corresponding to M

attributes, the number of equivalence classes in each partition, and the size of

population as the input and will terminate when P chromosomes are obtained. Each

partition partitions[i], i = 0, …, M consists of num_eqc[i] equivalence classes which are

labeled by 0, 1, …, num_eqc[i]-1 in turn. Suppose the number of clusters is set to K,

the algorithm outputs P K-partitions each of which is a string of integer in the interval

[0, K-1].

Algorithm: Initialization

Input: partitions[i], i=0, …, M //M partitions corresponding to M attributes,

 num_eqc[i], i=0, …, M //The number of equivalence classes in

 //partitions[i],

 P //The size of population.

Output: chrom[i], i=0, …, P // P chromosomes (K-partitions)

Begin

 if P >= M

 //Generate first M chromosomes from the input M partitions

 Generate_from_Partitions(M);

 //Randomly generate P-M chromosomes

 Randomly_Generate(P-M);

 else

 //Generate P chromosomes from the first P partitions

 Generate_from_Partitions(P);

 Output P chromosomes.

End.

Figure 4.5: The initialization algorithm of IG_ANMI

83

Generating chromosomes from the input partitions is implemented by a one-one

way, namely one chromosome is generated by one partition. Generating a chromosome

from a partition means taking some equivalence classes in the partition as the part of the

chromosome. How many equivalence classes should be taken depends on the number of

equivalence classes in the partition and the specified number of clusters. Different

strategies are employed when the number of equivalence classes in the partition is

greater than, less than, equals to the specified number of clusters, respectively. The

details of function Generate_from_Partitions are described in Figure 4.6.

84

Function Generate_from_Partitions (int Num)

Input: Num //The number of chromosomes need to be generated

Output: chrom[i], i=0, …, Num //Num chromosomes

Begin

 For each of first Num partitions, partitions[i] // i=0, …, Num

 if num_eqc[i] equals K

 Copy partitions[i] to chrom[i]

 else

 if num_eqc[i] is greater than K

 Copy first K equivalence classes of partition[i] to the

 corresponding location in chrom[i].

 Generate a random number in [0, K-1] for each of the remaining

 locations in chrom[i].

 else

 Find a highest H which satisfies the following inequation

 N - Sum >= K-H-1

 //where N denotes the length of a chromosome,

 //Sum is the summation of the size of first H+1 equivalence

 //classes of partition[i].

 if such H can not be found

 // randomly generate a K-partition for chrom[i]

 Randomly_Generate(1)

 else

 Copy first H+1 equivalence classes of partition[i] to the

 corresponding locations in chrom[i].

 Generate a random number in [H+1, K-1] for each of the

 remaining locations in chrom[i].

End.

 Figure 4.6: The function of Generate_from_Partitions

85

There are two remarks on the process when num_eqc[i] is less than K:

(1) When num_eqc[i] is less than K, the original idea is to copy first num_eqc[i]-

1 equivalence classes to chrom[i] at first, and then generate a random number in interval

[num_eqc[i]-1, K-1] for each of the remaining locations in chrom[i]. However, this

method can not make sure if the remaining locations are enough for each number in

interval [num_eqc[i]-1, K-1] appears at least once in chrom[i], namely it can not make

sure chrom[i] is a K-partition. Thus an appropriate number H have to be found so that

the remaining locations are enough for each number in interval [H+1, K-1] appears at

least once in chrom[i] after copying first H+1 (labeled by 0, 1, …, H) equivalence

classes to chrom[i]. Such H satisfies the inequation N-Sum >= K-H-1, where N-Sum

denotes the number of remaining locations in chrom[i] after copying first H+1

equivalence classes to chrom[i], K-H-1 is the length of interval [H+1, K-1]. In order to

copy as many as possible equivalence classes to chrom[i], the highest H is selected.

It is possible that any H which satisfies the above inequation can not be found.

That means the remaining locations are not enough for each number in interval [1, K-1]

appears at least once in chrom[i] after copying the first (labeled by 0) equivalence class

to chrom[i]. There are many ways to deal with such case. In our implementation, a K-

partition is randomly generated for chrom[i].

(2) Even if an appropriate number H is found, the algorithm has to make sure

each number in interval [H+1, K-1] appears at least once in chrom[i] when generating a

random number for each of the remaining locations in chrom[i].

When the population size P is greater than the number of attributes M, the latter

P-M chromosomes are generated randomly. Each chromosome is a string of integers

which are in interval [0, K-1]. The details of function Randomly_Generate are described

in Figure 4.7. Note that the algorithm must make sure all the numbers in interval [0, K-

1] appear at least once in a chromosome, or else the chromosome is not a K-partition.

86

Function Randomly_Generate(int Num)

Input: Num //The number of chromosomes need to be generated

Output: chrom[i], i=0, …, Num //Num chromosomes

Begin

 i=0

 while i<Num

 for each location of the chrom[i]

 Generate a random number in [0, K-1]

 if all the numbers in [0, K-1] appear in the chrom[i]

 i++

End.

 Figure 4.7: The function of Randomly_Generate

An illustrative example of the IG-ANMI algorithm is as follows.

Example 4.1. Suppose a data set has ten objects with four attributes, namely N=10,

M=4. Table 4.5 shows the partitions defined by the four attributes. The numbers 0, 1, 2,

and 3 in the partitions denote different equivalence classes (categories). The algorithm

IG-ANMI is used to cluster the objects below. The parameter setting includes: the

number of clusters K=3, the population size P=10, random seed=1, mutation

probability=0.1, crossover probability=0.8 and Nmax=100.

Table 4.5: The example of partitions defined by four attributes

U A0 A1 A2 A3

O1 0 0 0 0

O2 1 0 1 1

O3 0 1 0 0

O4 0 0 0 0

O5 1 1 2 2

O6 1 1 1 2

O7 2 0 2 3

O8 2 1 2 1

O9 1 1 1 2

O10 2 1 2 3

87

Following the initialization algorithm shown in Figure 4.5, since the population

size P is greater than the number of attributes M, first four chromosomes are generated

by using the four partitions associated with the attributes and remaining six

chromosomes randomly. The partitions defined by the four attributes have 3, 2, 3, and 4

equivalence classes, respectively. The numbers of equivalence classes in attributes A0

and A2 equal the specified number of clusters K, so the partitions of attributes A0 and A2

are directly copied to chrom [0] and chrom [2], respectively. For the attribute A1, the

number of equivalence classes in its partitions is less than K. According to the function

shown in Figure 4.6, an appropriate number H should be found first. In this example,

there is only possible value for H, namely zero. Zero satisfies N - Sum >= K-H-1, thus

H get the value zero. Next, the first equivalence class is copied to the corresponding

location in chrom [1]. Table 4.6 shows the status of chrom [1] after copying the first

equivalence class.

Table 4.6: The status of chrom [1] after copying the first equivalence class

location 0 1 2 3 4 5 6 7 8 9

chrom[1] 0 0 0 0

There are still six locations need to be filled in chrom [1]. A random number in

interval [1, 2] is generated for each of the six locations.

For the attribute A3, the number of equivalence classes in its partitions is greater

than K. According to the function Generate_from_Partitions shown in Figure 4.6, first

three equivalence classes of partitions [3] are copied to the corresponding location in

chrom [3]. Table 4.7 shows the status of chrom [3] after copying first three equivalence

classes.

Table 4.7: The status of chrom [3] after copying first three equivalence classes

location 0 1 2 3 4 5 6 7 8 9

chrom[3] 0 1 0 0 2 2 1 2

88

There are still two locations need to be filled in chrom [3]. A random number in

interval [0, 2] is generated for each of the two locations. The first four chromosomes are

obtained at the end of the function of Generate_from_Partitions and summarized in

Table 4.8. The numbers in bold style are randomly generated.

Table 4.8: The first four chromosomes generated from attributes partitions

location chrom[0] chrom[1] chrom[2] chrom[3]

0 0 0 0 0

1 1 0 1 1

2 0 1 0 0

3 0 0 0 0

4 1 1 2 2

5 1 1 1 2

6 2 0 2 0

7 2 1 2 1

8 1 1 1 2

9 2 2 2 1

Following the initialization algorithm, the remaining six chromosomes will be

randomly generated. According to the function Randomly_Generate, six chromosomes

are obtained and summarized in Table 4.9.

89

Table 4.9: The six chromosomes generated randomly

location chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9]

0 1 2 1 2 1 1

1 1 0 1 1 1 2

2 1 2 0 0 0 0

3 2 1 1 1 1 0

4 1 2 1 1 0 2

5 1 2 1 1 0 0

6 0 2 2 0 1 0

7 1 2 2 0 0 1

8 0 0 1 2 2 2

9 0 0 2 1 0 0

Note that the equivalence classes in each of the first four chromosomes are

labeled by order 0, 1, 2. However, the equivalence classes in each of other six

chromosomes are labeled unorderly. Actually, the numbers 0, 1, 2 in the partions or

chromosomes only denote different categories rather than order. That means the order

of the labels doesn’t affect the computation of fitness of a chromosome. Even if the

order of the labels is changed in some chromosomes, their fitness values keep invarible.

For instance, chrom[0] can be changed from {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} to {1, 2, 1, 1, 2,

2, 0, 0, 2, 0}, chrom[4] can be changed from {1, 1, 1, 2, 1, 1, 0, 1, 0, 0} to {0, 0, 0, 1, 0,

0, 2, 0, 2, 2}, and so on.

After the initialization, the next step of IG-ANMI is to compute the fitness for

chromosomes. Let us take chrom [0] as an example. First, the NMI between chrom [0]

and the attributes are calculated by using Eq. (4.2). The calculation of NMI between

chrom [0] and attribute A0 is as follows.

Let the partition defined by chrom [0] be)(a , the partition defined by A0 be

)(b . As mentioned above, chrom [0] is a copy of the partition defined by A0, that is,

)(a =)(b = {{O1, O3, O4}, {O2, O5, O6, O9}, {O7, O8, O10}}. Therefore, k
(a)

 = k
(b)

 = 3,

n
(1)

 =3, n
(2)

 =4, n
(3)

 =3, n1=3, n2=4, n3=3,)1(

1n =3,)1(

2n =0,)1(

3n =0,)2(

1n =0,)2(

2n =4,)2(

3n =0,

)3(

1n =0,)3(

2n =0,)3(

3n =3, and n=10. Take these values into Eq. (4.2).

90

)log3log4log3(
10

2
),(33

103

9
44

104

9
33

103

9

)()()(

baNMI = 0.991159

That is, the NMI between chrom [0] and attribute A0 is 0.991159. With the same

process, the NMI between chrom [0] and other three attribute are obtained. The NMI

between chrom [0] and A1, A2, A3 are 0.073859, 0.786416 and 0.764834, respectively.

Next, using the Eq. (4.1), the ANMI between chrom [0] and attribute partitions is

calculated as follows

)764834.0786416.0073859.0991159.0(
4

1
 = 0.654067

That is, the fitness of chrom [0] is 0.654067. Repeating the above process on other

chromosomes, their fitnesses are obtained as is shown in Table 4.10.

 Table 4.10: The fitness of initial chromosomes of IG-ANMI

fitness[i] fitness value average

fitness[0] 0.654067

0.53927
fitness[1] 0.361562

fitness[2] 0.615644

fitness[3] 0.525807

fitness[4] 0.252361

0.265807

fitness[5] 0.196573

fitness[6] 0.403407

fitness[7] 0.166014

fitness[8] 0.323139

fitness[9] 0.253349

average 0.375192

It can be seen from Table 4.10 that the first four chromosomes has higher

average fitness value compared with other six chromosomes, which indicates that the

chromosomes generated from the partitions associated with attributes are closer to the

optimal partition than that generated randomly. With these fitness values, the algorithm

IG-ANMI continues to generate new population, namely modify the chromosomes in

the current population by using crossover and mutation as genetic operators. Table 4.11

91

shows the first new population after initial population. Chrom [0] has the highest fitness

in the initial population. From the Table 4.11, it can be seen that several chromosomes

which are dissimilar to chrom [0] in the initial population are very close to chrom [0] in

the new population, such as chrom [5], chrom [6], and chrom [8]. Table 4.12 shows the

fitness values of the chromosomes in the new population. The average fitness of the

new chromosomes is obviously higher than that of initial chromosomes. After five

iterations, all the chromosomes are the same, namely {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} and

have the same fitness 0.654067. Since the best fitness keep invariable during 100

successive iterations, the algorithm IG-ANMI ends after the 100
th

 iteration. Finally, IG-

ANMI produces the optimal 3-partition {0, 1, 0, 0, 1, 1, 2, 2, 1, 2}.

Table 4.11: The first new population after initial population in IG-ANMI

location chrom[0] chrom[1] chrom[2] chrom[3] chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9]

0 0 1 0 0 1 0 0 1 0 0

1 1 1 1 1 2 1 1 1 1 0

2 0 0 0 0 0 0 0 0 0 1

3 0 0 1 0 0 0 0 1 0 0

4 1 1 0 2 2 1 2 1 2 1

5 1 1 0 0 1 1 1 2 1 1

6 2 2 1 0 2 2 2 0 2 0

7 2 2 0 1 2 2 2 1 2 1

8 1 1 2 2 1 1 1 2 1 1

9 2 2 0 0 2 2 2 1 2 2

 9
2

93

 Table 4.12: The fitness values of the chromosomes in the first new population

fitness[i] fitness value

fitness[0] 0.654067

fitness[1] 0.473318

fitness[2] 0.217901

fitness[3] 0.310606

fitness[4] 0.407429

fitness[5] 0.654067

fitness[6] 0.615644

fitness[7] 0.263929

fitness[8] 0.615644

fitness[9] 0.361562

average 0.457417

G-ANMI is used to cluster the same data set below. The parameter setting of G-

ANMI is as the same as the parameter setting of IG-ANMI. Firstly, G-ANMI randomly

generates P chromosomes as shown in Table 4.13. Table 4.14 shows the fitness values

of the chromosomes in the initial population. Obviously, the average fitness as well as

the best fitness of the chromosomes is less than that in the initial population generated

by algorithm IG-ANMI. After 27 iterations, the best fitness reaches 0.654067, which

equals the best fitness of the initial population generated by algorithm IG-ANMI. Since

the best fitness keep invariable during the subsequent 99 successive iterations, the

algorithm G-ANMI ends after the 127
th

 iterations. G-ANMI requires 27 more iterations

than IG-ANMI due to the randomly generated initial population.

Table 4.13: The initial population of G-ANMI

location chrom[0] chrom[1] chrom[2] chrom[3] chrom[4] chrom[5] chrom[6] chrom[7] chrom[8] chrom[9]

0 1 1 2 0 0 0 0 0 2 2

1 1 2 1 1 2 1 1 0 1 1

2 2 1 2 1 2 1 0 2 1 0

3 1 1 2 1 0 1 0 0 2 1

4 1 0 2 2 0 0 1 0 2 2

5 1 1 2 2 0 0 0 1 1 1

6 0 0 0 1 2 2 2 2 2 2

7 1 0 0 2 0 1 0 0 0 1

8 1 2 1 0 2 1 2 1 1 2

9 1 0 1 0 1 1 1 1 0 0

 9
4

95

Table 4.14: The fitness values of the chromosomes in the initial population of G-ANMI

fitness[i] fitness value

fitness[0] 0.211672

fitness[1] 0.469059

fitness[2] 0.338877

fitness[3] 0.227614

fitness[4] 0.139958

fitness[5] 0.181013

fitness[6] 0.216344

fitness[7] 0.263182

fitness[8] 0.377376

fitness[9] 0.166627

average 0.259172

4.5 SUMMARY

This chapter introduces the basic genetic algorithm, analyzes the reason for the

low efficiency of G-ANMI algorithm and proposes an improved genetic clustering

algorithm named IG-ANMI for categorical data. An attribute-oriented initialization

method is used in IG-ANMI, in which attributes partitions are integrated into the

generation of initial chromosomes. The example illustrates that IG-ANMI converges

faster than G-ANMI, which implies that IG-ANMI has higher efficiency than G-ANMI.

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 INTRODUCTION

A set of experiments are performed to evaluate clustering performance,

clustering efficiency and scalability of MGR and IG-ANMI algorithms. In this chapter,

the details of these experiments and the corresponding results are presented, and MGR

and IG-ANMI algorithms are compared with MMR, k-ANMI, G-ANMI, and

COOLCAT algorithms in terms of clustering performance and efficiency. The chapter

is structured as follows:

 Section 5.2 introduces the experiments design, including algorithms used for

comparison, data sets, parameters setting, and the platform for conducting

experiments.

 Section 5.3 describes the performance analysis and comparison of six

algorithms on four real-life data sets.

 Section 5.4 describes the efficiency analysis and comparison of six

algorithms on ten synthetic data sets.

 Section 5.5 describes the running results of MGR algorithm without

specifying the number of clusters.

 Section 5.6 describes the scalability of MGR and IG-ANMI algorithms.

 Section 5.7 describes the comparison between IG-ANMI and G-ANMI.

97

5.2 EXPERIMENT DESIGN

5.2.1 Algorithms Used for Comparison

Besides our algorithms MGR and IG-ANMI, other four algorithms including

MMR, k-ANMI, G-ANMI, and COOLCAT are repeated for comparing MGR and IG-

ANMI with them. Choosing these algorithms for comparison is based on the following

consideration:

 MMR is the most similar work to our MGR algorithm among all existing

algorithms for categorical data clustering.

 IG-ANMI improves G-ANMI by proposing a new initialization method.

 COOLCAT, k-ANMI, and G-ANMI, are also based on information theory.

 k-ANMI and G-ANMI also explore the relation between the partitions

although the scopes of partitions they use are much larger than that MGR

uses.

5.2.2 Data Sets Used in Experiments

i. Real life data sets

Four real-life data sets derived from the UCI Machine Learning Repository

(http://www.ics.uci.edu_/mlearn/MLRepository.html) are employed to appraise the

clustering performance, including the Zoo data set, the Congressional Votes data set

(Votes for short), the Wisconsin Breast Cancer data set (Breast Cancer for short), and

the Mushroom data set. The reason for choosing these four datasets is that they are also

partially or completely used in MMR, k-ANMI, G-ANMI, and COOLCAT algorithms

for evaluation. A brief introduction about these data sets is given as follows.

 Zoo data set

There are 101 instances of animals in the Zoo data set. Each animal is

characterized by 17 attributes, where the first attribute denotes the name of animals

(does not participate in the clustering), 15 Boolean attributes denote the presence of

98

some characters such as fins, feathers and so on, 1 non-Boolean attribute represents the

number of legs. These animals can be categorized into 7 classes, that is, fish, mammal,

bird, invertebrate, insect, reptile, and amphibian.

 Congressional Votes data set

The data set contains the Congressional Voting Records of United States in

1984. Each record (a vote) is characterized by 16 Boolean attributes. Each record is

classified into two classes: Republican and Democrat. There are 435 records in this data

set including 267 Democrats and 168 Republicans.

 Wisconsin Breast Cancer data set

The data set derived from the University Medical Center, Institute of Oncology,

Ljubljana, Yugoslavia. There are 699 instances in this data set, each of which is

described by 9 attributes. Each instance is classified into two classes: Benign (458

instances) and Malignant (241 instances).

 Mushroom data set

There are 8124 instances in this data set, each of which represents a mushroom.

The physical characters of each mushroom are described by 22 categorical attributes.

Each mushroom is classified into two classes: poisonous (3916 instances) and edible

(4208 instances).

The basic information about these data sets is summarized in Table 5.1.

Table 5.1: The basic information about the four data sets

Data set Number of objects Number of Attributes Number of classes

Zoo 101 16 7

Votes 435 16 2

Breast Cancer 699 9 2

Mushroom 8124 22 2

Except for the Zoo data set, there are missing values in other three data sets.

Since algorithms k-ANMI and G-ANMI delete the objects with missing value in the

99

Breast Cancer data, the same process is performed on the Breast Cancer data set in our

experiment for a fair comparison between them and other algorithms. Thus, the Breast

Cancer data set used in our experiments contains 683 objects with 444 Benign and 239

Malignant. For the Votes and Mushroom data sets, missing values are considered as

particular categories.

ii. Synthetically generated data sets

Using the method proposed by Cristofor and Simovici (2002) for synthetically

generating dataset, 10 categorical datasets are created to evaluate the efficiency and test

the scalability of MGR and IG-ANMI algorithms. The generation of these data sets

follows the pattern: for each object number objectid [0, N-1], a number i [0, K-1] is

randomly generated and saved at position objectid in the reference partition (reference

partition is regarded as real clusters of the objects) and in all attribute partitions, but

one. The exception attribute aA, randomly chosen, receives at position objectid a

different value j [0, K-1], j i. To ensure that the reference and attribute partitions

have exactly K classes, the first values for i are 0, 1, …, K-1. These ten datasets contain

10,000, 20,000 through 100,000 instances, respectively. The number of attributes and

classes are set to be 10 and 10 separately. These datasets are named by R1, R2 through

R10.

5.2.3 Parameters Setting

Six algorithms are sequentially run on all the data sets. Each algorithm has some

parameters which need to be set before running.

MMR, k-ANMI, G-ANMI, IG-ANMI, and COOLCAT have a common input

parameter, namely the number of clusters. It is set to be as the same as the number of

classes provided with the data set in our experiments. For example there are 7 classes in

the Zoo data set, so the number of clusters in these algorithms is set to 7. As mentioned

in Chapter 3, MGR algorithm can be run with specifying the number of clusters as well

as without specifying the number of clusters. For the comparison purpose, MGR is

assigned as the same number of clusters as that for other five algorithms (Section 5.5

describes the experimental results of MGR without specifying the number of clusters).

100

In all the experiments, the threshold of the size of the splitting equivalence class

in MGR algorithm is set to be 3% of the number of objects in data set.

All the parameters required by G-ANMI and IG-ANMI are set to be default as in

G-ANMI. Concretely, the parameter setteing includes: random seed=1, mutation

probability=0.1, crossover probability=0.8 and Nmax=100. Moreover, population size

greatly affects the quality of clustering in these two algorithms. Therefore, the

population size is varied from 50 to 500 on each data set (from 50 to 200 on Mushroom

data set because G-ANMI and IG-ANMI are very time-consuming on Mushroom data

set when the population size is greater than 200) to calculate the average performance

and efficiency for comparison to other algorithms as well as comparison between IG-

ANMI and G-ANMI.

Besides the number of clusters, COOLCAT has two other parameters: buffer

size and the percent of reprocess. Since each dataset has different number of objects,

different buffer size is specified for each dataset. The buffer size is set to be 30, 100,

100, and 200 for Zoo, Votes, Breast Cancer, and Mushroom data sets, respectively. The

buffer size is set to be 2% of the number of objects for each synthetically generated data

set. The percent of reprocess greatly affects the quality of clustering in COOLCAT. In

our implementation, the percent of reprocess is set to 0, 10%, 20%, and 40%

respectively to calculate the average performance and efficiency.

5.2.4 Language and Platform for Implementation

All the algorithms are coded in C language and compiled on the Borland C++

version 5.02. All experiments are conducted on a machine with Intel Core2 Duo CPU

T7250 @ 2.00GHz, 1.99 GB of RAM, running Microsoft Windows XP Professional.

5.3 PERFORMANCE ANALYSIS

5.3.1 Evaluation Method

It is an important task to validate clustering results (He et al., 2008). One of the

commonly used ways to appraise the results of clustering algorithms is clustering

101

accuracy (Huang, 1998), also named clustering purity. This method needs external class

labels to compute the best matches between the clusters produced by clustering

algorithms and the true clusters. Given the true class labels, clustering accuracy is

formally defined as follows:

 Clustering accuracy =
n

a
k

i i 1 (5.1)

where k denotes the specified number of clusters, ai is size of the class having the most

objects in the i
th

 cluster, n denotes the number of instances in the used data set.

According to this measure, a clustering accuracy of 1 means the objects in each cluster

have the same class label, which is an expected result. Hence, the higher the clustering

accuracy is, the better the clustering result (He et al., 2008).

Note that the clustering error defined as
n

a
k

i i 11 is also used in many

literatures. It is essentially the same as clustering accuracy. In addition, some famous

clustering evaluation methods are described in the literature (Mali and Mitra, 2003). As

pointed out by He et al. (2008), these methods coincide with clustering accuracy (error).

Thus, only clustering accuracy is used in our experiments to appraise the algorithms’

performance.

Based on the evaluation measure of clustering accuracy, the performance of

algorithms MGR and IG-ANMI and their comparison with other algorithms on four real

life data sets are presented as follows.

5.3.2 Zoo Data Set

The results of MGR, MMR and k-ANMI algorithms on Zoo data set are shown

in Tables 5.2-5.4, respectively.

102

Table 5.2: The results of MGR algorithm on the Zoo data set

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 41 0 0 0 0 0 0 41

0.931

2 0 13 0 0 0 0 0 13

3 0 0 20 0 0 0 0 20

4 0 0 0 0 4 0 0 4

5 0 0 0 0 0 4 5 5

6 0 0 0 7 0 0 0 7

7 0 0 0 3 4 0 0 4

Table 5.3: The results of MMR algorithm on the Zoo data set

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 39 0 0 0 0 0 0 39

0.911

2 0 0 20 0 0 0 0 20

3 2 0 0 0 6 0 0 6

4 0 0 0 10 2 0 0 10

5 0 13 0 0 0 0 1 13

6 0 0 0 0 0 1 1 1

7 0 0 0 0 0 3 3 3

Table 5.4: The results of k-ANMI algorithm on the Zoo data set

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 5 0 0 0 0 0 0 5

0.733

2 6 0 0 0 0 0 0 6

3 0 13 0 8 0 4 4 13

4 15 0 0 0 0 0 0 15

5 4 0 0 0 0 0 0 4

6 11 0 0 0 0 0 0 11

7 0 0 20 2 8 0 1 20

103

The clustering accuracy of MGR is 0.931, which means 93.1% of animals have

the dominant class label of the cluster in which they are grouped. The clustering

accuracy of MMR and k-ANMI are 0.911 and 0.733, respectively.

The clustering accuracy of G-ANMI and IG-ANMI vary with different

population sizes. Tables 5.5 and 5.6 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.7 and Table 5.8

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the

population size is increased from 50 with step 50 up to 500.

Table 5.5: The results of G-ANMI algorithm on the Zoo data set when the population

size is set to 50

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 18 0 0 0 0 0 0 18

0.832

2 18 0 0 0 0 0 0 18

3 0 13 0 0 0 0 1 13

4 0 0 4 4 8 0 1 8

5 0 0 0 6 0 2 3 6

6 0 0 16 0 0 0 0 16

7 5 0 0 0 0 2 0 5

Table 5.6: The results of IG-ANMI algorithm on the Zoo data set when the population

size is set to 50

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 12 0 0 0 0 0 0 12

0.881

2 26 0 0 0 0 0 0 26

3 3 13 0 0 0 1 4 13

4 0 0 20 0 0 0 0 20

5 0 0 0 5 0 0 1 5

6 0 0 0 5 0 3 0 5

7 0 0 0 0 8 0 0 8

104

Table 5.7: The clustering accuracy of G-ANMI on the Zoo data set with the increase of

the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.832 0.851 0.911 0.881 0.861 0.891 0.931 0.812 0.851 0.921 0.874

Table 5.8: The clustering accuracy of IG-ANMI on the Zoo data set with the increase

of the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.881 0.911 0.901 0.911 0.921 0.921 0.921 0.931 0.931 0.931 0.916

The clustering accuracy of COOLCAT varies with different percent of

reprocess. Table 5.9 shows the clustering results of COOLCAT when percent of

reprocess is set to 10%. Table 5.10 summarizes the clustering accuracy of COOLCAT

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.

Table 5.9: The results of COOLCAT algorithm on the Zoo data set when the percent of

reprocess is set to 10%

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 11 0 1 0 1 0 0 11

0.792

2 0 0 0 5 2 1 0 5

3 0 0 18 1 1 0 2 18

4 1 13 1 0 1 1 2 13

5 17 0 0 0 1 0 1 17

6 0 0 0 4 1 1 0 4

7 12 0 0 0 1 1 0 12

105

Table 5.10: The clustering accuracy of COOLCAT on the Zoo data set when the

percent of reprocess are 0, 10%, 20%, and 40%

Percent of reprocess 0 10% 20% 40% Average

Accuracy 0.792 0.792 0.772 0.782 0.785

5.3.3 Votes Data Set

The results of MGR, MMR and k-ANMI algorithms on Votes data set are shown

in Tables 5.11-5.13, respectively.

Table 5.11: The results of MGR algorithm on the Votes data set

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 208 8 200 200
0.828

2 227 160 67 160

Table 5.12: The results of MMR algorithm on the Votes data set

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 236 134 102 134
0.687

2 199 34 165 165

Table 5.13: The results of k-ANMI algorithm on the Votes data set

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 207 159 48 159
0.869

2 228 9 219 219

106

The clustering accuracy of G-ANMI and IG-ANMI vary with different

population sizes. Tables 5.14 and 5.15 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.16 and Table 5.17

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the

population size is increased from 50 with step 50 up to 500.

Table 5.14: The results of G-ANMI algorithm on the Votes data set when the

population size is set to 50

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 205 159 46 159
0.874

2 230 9 221 221

Table 5.15: The results of IG-ANMI algorithm on the Votes data set when the

population size is set to 50

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 190 144 46 144
0.839

2 245 24 221 221

Table 5.16: The clustering accuracy of G-ANMI on the Votes data set with the increase

of the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.874 0.862 0.876 0.864 0.88 0.874 0.869 0.864 0.876 0.874 0.871

107

Table 5.17: The clustering accuracy of IG-ANMI on the Votes data set with the

increase of the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.839 0.86 0.88 0.862 0.867 0.869 0.876 0.876 0.871 0.878 0.868

The clustering accuracy of COOLCAT varies with different percent of

reprocess. Table 5.18 shows the clustering results of COOLCAT when the percent of

reprocess is set to 10%. Table 5.19 summarizes the clustering accuracy of COOLCAT

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.

Table 5.18: The results of COOLCAT algorithm on the Votes data set when the percent

of reprocess is set to 10%

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 216 160 56 160
0.853

2 219 8 211 211

Table 5.19: The clustering accuracy of COOLCAT on the Votes data set when the

percent of reprocess are 0, 10%, 20%, and 40%

Percent of reprocess 0 10% 20% 40% Average

Accuracy 0.809 0.853 0.853 0.839 0.839

5.3.4 Breast Cancer Data Set

The results of MGR, MMR and k-ANMI algorithms on Breast Cancer data set

are shown in Tables 5.20-5.22, respectively.

108

Table 5.20: The results of MGR algorithm on the Breast Cancer data set

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 373 369 4 369
0.884

2 310 75 235 235

Table 5.21: The results of MMR algorithm on the Breast Cancer data set

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 13 0 13 13
0.669

2 670 444 226 444

Table 5.22: The results of k-ANMI algorithm on the Breast Cancer data set

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 433 431 2 431
0.978

2 250 13 237 237

The clustering accuracy of G-ANMI and IG-ANMI vary with different

population sizes. Tables 5.23 and 5.24 show the clustering results of G-ANMI and IG-

ANMI respectively when the population size is set to 50. Table 5.25 and Table 5.26

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the

population size is increased from 50 with step 50 up to 500.

Table 5.23: The results of G-ANMI algorithm on the Breast Cancer data set when the

population size is set to 50

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 404 398 6 398
0.924

2 279 46 233 233

109

Table 5.24: The results of IG-ANMI algorithm on the Breast Cancer data set when the

population size is set to 50

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 438 419 19 419
0.936

2 245 25 220 220

Table 5.25: The clustering accuracy of G-ANMI on the Breast Cancer data set with the

increase of the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.924 0.962 0.96 0.963 0.972 0.975 0.975 0.975 0.977 0.978 0.966

Table 5.26: The clustering accuracy of IG-ANMI on the Breast Cancer data set with the

increase of the population size

Population

size

50 100 150 200 250 300 350 400 450 500 Average

Accuracy 0.936 0.966 0.965 0.969 0.971 0.977 0.975 0.977 0.972 0.978 0.969

The clustering accuracy of COOLCAT varies with different percent of

reprocess. Table 5.27 shows the clustering results of COOLCAT when the percent of

reprocess is set to 10%. Table 5.28 summarizes the clustering accuracy of COOLCAT

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.

Table 5.27: The results of COOLCAT algorithm on the Breast Cancer data set when the

percent of reprocess is set to 10%

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 149 83 66 83
0.65

2 534 361 173 361

110

Table 5.28: The clustering accuracy of COOLCAT on the Breast Cancer data set when

the percent of reprocess are 0, 10%, 20%, and 40%

Percent of reprocess 0 10% 20% 40% Average

Accuracy 0.65 0.65 0.65 0.65 0.65

5.3.5 Mushroom Data Set

The results of MGR, MMR and k-ANMI algorithms on Mushroom data set are

shown in Table 5.29-5.31, respectively.

Table 5.29: The results of MGR algorithm on the Mushroom data set

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 1296 1296 0 1296
0.677

2 6828 2620 4208 4208

Table 5.30: The results of MMR algorithm on the Mushroom data set

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 7914 3898 4016 4016
0.518

2 210 18 192 192

Table 5.31: The results of k-ANMI algorithm on the Mushroom data set

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 3184 1872 1312 1872
0.587

2 4940 2044 2896 2896

The clustering accuracy of G-ANMI and IG-ANMI vary with different

population sizes. Tables 5.32 and 5.33 show the clustering results of G-ANMI and IG-

111

ANMI respectively when the population size is set to 50. Table 5.34 and Table 5.35

summarize the clustering accuracy of G-ANMI and IG-ANMI respectively as the

population size is increased from 50 with step 50 up to 200.

Table 5.32: The results of G-ANMI algorithm on the Mushroom data set when the

population size is set to 50

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 3780 2008 1772 2008
0.547

2 4344 1908 2436 2436

Table 5.33: The results of IG-ANMI algorithm on the Mushroom data set when the

population size is set to 50

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 3376 624 2752 2752
0.744

2 4748 3292 1456 3292

Table 5.34: The clustering accuracy of G-ANMI on the Mushroom data set with the

increase of the population size

Population size 50 100 150 200 Average

Accuracy 0.547 0.568 0.546 0.538 0.55

Table 5.35: The clustering accuracy of IG-ANMI on the Mushroom data set with the

increase of the population size

Population size 50 100 150 200 Average

Accuracy 0.744 0.902 0.847 0.901 0.849

The clustering accuracy of COOLCAT varies with different percent of

reprocess. Table 5.36 shows the clustering results of COOLCAT when the percent of

112

reprocess is set to 10%. Table 5.37 summarizes the clustering accuracy of COOLCAT

when the percent of reprocess are 0, 10%, 20%, and 40%, respectively.

Table 5.36: The results of COOLCAT algorithm on the Mushroom data set when the

percent of reprocess is set to 10%

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 4253 1813 2440 2440
0.559

2 3871 2103 1768 2103

Table 5.37: The clustering accuracy of COOLCAT on the Mushroom data set when the

percent of reprocess are 0, 10%, 20%, and 40%

Percent of reprocess 0 10% 20% 40% Average

Accuracy 0.518 0.559 0.518 0.53 0.531

5.3.6 Comparison and Discussion

The clustering accuracies of these six algorithms are summarized in Table 5.38,

where G-ANMI and IG-ANMI use the average clustering accuracy of different

population sizes. The last column of the table shows the average clustering accuracy of

each algorithm on four data sets. Figure 5.1 illustrates their comparison.

Table 5.38: The accuracy of six algorithms on four data sets

Algorithms Zoo Vote Cancer Mushroom Average

MMR 0.911 0.687 0.669 0.518 0.696

MGR 0.931 0.828 0.884 0.677 0.83

k-ANMI 0.733 0.869 0.978 0.587 0.792

G-ANMI 0.874 0.871 0.966 0.55 0.815

COOLCAT 0.785 0.839 0.65 0.531 0.701

IG-ANMI 0.916 0.868 0.969 0.849 0.901

113

0

0.2

0.4

0.6

0.8

1

1.2

Zoo Vote Cancer Mushroom

Data sets

A
c
c

u
ra

c
y

MMR

MGR

k-ANMI

G-ANMI

COOLCAT

IG-ANMI

Figure 5.1: Clustering accuracy of six algorithms on four data sets

Some significant conclusions are obtained from Table 5.38 and Figure 5.1 and

summarized as follows:

 IG-ANMI algorithm has the highest average clustering accuracy. MGR has

the second highest average clustering accuracy.

 IG-ANMI algorithm outperforms MMR and COOLCAT on all of four data

sets, outperforms G-ANMI and MGR on three data sets, and outperforms k-

ANMI on two data sets. Although k-ANMI performs better than IG-ANMI

on Votes and Cancer data sets, obviously, there exists only a very slight

difference between them.

 MGR algorithm outperforms MMR on all of four data sets, outperforms

COOLCAT on three data sets, outperforms G-ANMI and k-ANMI on two

data sets, and outperforms IG-ANMI on one data set.

 MGR improves the average clustering accuracy by 19% (from 0.696 to 0.83)

as compared with MMR.

 IG-ANMI performs much better than other five algorithms on the Mushroom

data set, which indicates IG-ANMI has the performance advantage on large

data sets.

 The Zoo data set has unbalanced class distribution and the most number of

clusters. An important observation is that MGR has the highest accuracy and

IG-ANMI has the second highest accuracy on the Zoo data set, which shows

the advantage of attribute-oriented clustering algorithms on such data sets.

114

 k-ANMI performs better than MGR and IG-ANMI on Votes and Cancer data

sets, however, the algorithm is not stable enough. It can be observed that k-

ANMI has the highest accuracy on Breast Cancer data set and the second

highest accuracy on Votes data set while has the lowest accuracy on Zoo data

set. Compared to k-ANMI, MGR and IG-ANMI have higher stability.

5.4 EFFICIENCY ANALYSIS

Ten large synthetically generated datasets R1, R2 through R10 are used to

evaluate the efficiency of MGR and IG-ANMI algorithms. The running time of

algorithms is used as the criteria for evaluation. G-ANMI is very time-consuming, for

instance, it takes 20759 seconds to mine two clusters from Mushroom data set when the

population size is set to 50. Thus this section mainly compares the running time of other

five algorithms. The efficiencies of G-ANMI and IG-ANMI on four real-life data sets

will be compared in Section 5.7. Five algorithms are sequentially applied to ten data

sets. For fair comparison purpose, the average running time of each algorithm on a data

set is obtained by using ten times run. The running time of COOLCAT varies with

different percent of reprocess. Thus COOLCAT is run ten times with each percent of

reprocess, and then the average running time is calculated. For IG-ANMI, the

population size is set to 50. The running times in seconds of five algorithms on ten data

sets are summarized in Table 5.39. Figure 5.2 illustrates the comparisons of running

time among these five algorithms.

It can be seen from Table 5.39 and Figure 5.2, IG-ANMI takes the most time on

all ten data sets and has the highest average running time, which indicates IG-ANMI has

the lowest efficiency. Reversely, MGR algorithm takes the least time on all ten data sets

and has the lowest average running time, which indicates MGR has the highest

efficiency. The efficiency of MMR and COOLCAT are close to MGR. k-ANMI has the

second highest average running time. Note that COOLCAT has the lower average

running time than MMR. That is because the average running time of COOLCAT with

different percent of reprocess is used. COOLCAT will have the higher average running

time than MMR if only the running time of COOLCAT with 40% of reprocess is used.

Table 5.39: The running time in seconds of five algorithms on ten data sets

Algorithms R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

MMR 2.836 5.672 8.992 12.453 17.547 22.117 27.109 31.93 38.219 43.102 20.998

MGR 0.805 1.656 2.649 3.782 5.141 6.711 8.376 10.196 12.367 15.024 6.671

k-ANMI 23.992 47.852 71.68 95.867 119.758 144.578 169.765 193.656 219.766 244.672 133.159

COOLCAT 1.918 3.695 5.77 7.609 9.906 12.059 14.254 15.778 18.922 20.992 11.09

IG-ANMI 78.688 143.375 219.25 295.453 457.796 437.25 509.375 591.843 671.657 756.954 416.164

0

100

200

300

400

500

600

700

800

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Synthetically generated data sets

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

MMR

MGR

k-ANMI

COOLCAT

IG-ANMI

Figure 5.2: Running time of five algorithms on ten data sets

 1
1
5

116

5.5 RUNNING MGR WITHOUT SPECIFYING THE NUMBER OF

CLUSTERS

Different from other five algorithms, MGR algorithm can be run without

specifying the desired number of clusters and end automatically. MGR algorithm is

called Auto MGR for short in such case; correspondingly, the previous MGR algorithm

is called Specified MGR for short. In this section, Auto MGR is applied on four real life

data sets and ten synthetically generated data sets, respectively. Tables 5.40-5.43 show

the clustering result of Auto MGR on four real life data sets. The accuracy values in

these tables are obtained by using Eq. (5.1).

Table 5.40: The results of Auto MGR algorithm on the Zoo data set

No. of

Cluster

Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max

Number

Accuracy

1 41 0 0 0 0 0 0 41

0.931

2 0 13 0 0 0 0 0 13

3 0 0 20 0 0 0 0 20

4 0 0 0 0 4 0 0 4

5 0 0 0 0 0 4 5 5

6 0 0 0 7 0 0 0 7

7 0 0 0 2 3 0 0 3

8 0 0 0 1 1 0 0 1

Table 5.41: The results of Auto MGR algorithm on the Votes data set

No. of Cluster Votes Republicans Democrats Max Number Accuracy

1 208 8 200 200

0.848 2 212 157 55 157

3 15 3 12 12

117

Table 5.42: The results of Auto MGR algorithm on the Breast Cancer data set

No. of Cluster Instances Benign Malignant Max Number Accuracy

1 373 369 4 369

0.93

2 45 37 8 37

3 52 27 25 27

4 27 0 27 27

5 24 1 23 23

6 29 7 22 22

7 49 0 49 49

8 84 3 81 81

Table 5.43: The results of Auto MGR algorithm on the Mushroom data set

No. of Cluster Instances Poisonous Edible Max Number Accuracy

1 1296 1296 0 1296

0.865

2 556 44 512 512

3 1120 256 864 864

4 2000 1760 240 1760

5 2432 560 1872 1872

6 288 0 288 288

7 432 0 432 432

Table 5.44 summarizes the number of clusters and accuracy produced by Auto

MGR on four real life data sets, the real number of clusters, and the accuracy produced

by Specified MGR (obtained from Table 5.38). It can be seen that the numbers of

clusters on Zoo and Votes data sets are very close to the real numbers of clusters.

Although the numbers of clusters on Cancer and Mushroom data sets are greater than

the real numbers of clusters, they are at an acceptable level. Figure 5.3 illustrates the

comparison of the accuracies produced by Auto MGR and Specified MGR,

respectively. Table 5.44 and Figure 5.3 show that Auto MGR has higher accuracies on

Vote, Cancer, and Mushroom data sets than Specified MGR. The accuracies of

Specified MGR are improved by 2.4% (from 0.828 to 0.848) on Vote data set, by 5.2%

118

(from 0.884 to 0.93) on Cancer data set, and by 27.8% (from 0.677 to 0.865) on

Mushroom data set.

Table 5.44: The summary of the results of Auto MGR on four real life data sets

Data sets Real number

of clusters

Number of

clusters

Accuracy of

Auto MGR

Accuracy of

Specified MGR

Zoo 7 8 0.931 0.931

Vote 2 3 0.848 0.828

Cancer 2 8 0.93 0.884

Mushroom 2 7 0.865 0.677

0

0.2

0.4

0.6

0.8

1

Zoo Vote Cancer Mushroom

Data sets

C
lu

s
te

ri
n

g
 A

c
c
u

ra
c

y

Auto

Specified

Figure 5.3: The comparison of the accuracies obtained by Auto MGR and

Speicfied MGR

Table 5.45 summarizes the number of clusters and the running time in seconds

produced by Auto MGR on ten synthetically generated data sets, the real number of

clusters, and the running time taken by Specified MGR (obtained from Table 5.39).

Figure 5.4 illustrates the comparison of the running times taken by Auto MGR and

Specified MGR, respectively.

Table 5.45 shows that the numbers of clusters on all ten data sets are the same,

i.e. 11. It is very close to the real numbers of clusters 10. Table 5.45 and Figure 5.4

show that the running time of Auto MGR on each data set is a little higher than that of

Specified MGR. Such a little increase of running time is acceptable.

119

Table 5.45: The summary of the results of Auto MGR on R1-R10 data sets

Data sets Real number of

clusters

Number of

clusters

Running time of

Auto MGR

Running time of

Specified MGR

R1 10 11 0.906 0.805

R2 10 11 1.703 1.656

R3 10 11 2.807 2.649

R4 10 11 3.968 3.782

R5 10 11 5.438 5.141

R6 10 11 6.99 6.711

R7 10 11 8.729 8.376

R8 10 11 10.714 10.196

R9 10 11 13.036 12.367

R10 10 11 15.87 15.024

0

5

10

15

20

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Synthetically generated data sets

R
u

n
n

in
g

 t
im

e

Auto

Specified

Figure 5.4: The comparison of the running times taken by Auto MGR and

Specified MGR

5.6 SCALABILITY TEST

5.6.1 Scalability of MGR

The scalability of an algorithm refers to the ability of the algorithm for fitting

the variances of the parameters related to data set or the algorithm itself. It is usually

120

measured by the variance of running time of the algorithm with respect to some

parameter. Two kinds of scalability of MGR algorithm are tested on ten synthetically

generated data sets R1 through R10. One is the scalability with respect to these ten

datasets when the number of clusters is fixed. The other is the scalability with respect to

the number of clusters on dataset R10. Figure 5.5 shows the running time of using MGR

program to find ten clusters in different datasets. Figure 5.6 shows the running time on

R10 as number of clusters varies from 2 to 10.

It can be observed from Figure 5.5 that the running time of MGR algorithm

tends to vary linearly with the increase of the number of objects, which is desired in

practical applications. It can be observed from Figure 5.6 that the running times of

MGR algorithm also vary linearly with respect to the number of clusters.

0

2

4

6

8

10

12

14

16

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Synthetically generated data sets

R
u

n
n

in
g

 t
im

e
 i

n
 s

e
c
o

n
d

s

Figure 5.5: Scalability of MGR to the number of objects

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10

Number of clusters

R
u

n
n

in
g

 t
im

e
 i

n
 s

e
c
o

n
d

s

Figure 5.6: Scalability of MGR to the number of clusters

121

5.6.2 Scalability of IG-ANMI

Three kinds of scalability of IG-ANMI algorithm are tested on ten synthetically

generated data sets and Mushroom data set. The first one is the scalability with respect

to ten datasets R1-R10 when the number of clusters and population size are fixed, the

second is the scalability with respect to the population size on Mushroom data set when

the number of clusters is fixed, and the third is the scalability with respect to the number

of clusters on Mushroom data set when population size is fixed. Figure 5.7 shows the

running time of using IG-ANMI program to find two clusters from different datasets

when population size is set to 50. Figure 5.8 shows the running time of mining two

clusters on Mushroom as population size varies from 50 to 500. Given population size

50, Figure 5.9 shows the running time of IG-ANMI on Mushroom as number of clusters

varies from 2 to 10.

It can be observed from Figure 5.7 that the running time of IG-ANMI algorithm

tends to vary linearly with the increase of the number of objects, which is desired in

practical applications. It can be observed from Figure 5.8 that the running times of IG-

ANMI algorithm increase with the increase of population size. The value varies acutely

at some population size. However, the scalability is at an acceptable level on the whole.

From Figure 5.9, it can be seen that the running times of IG-ANMI maintain between

interval [200, 300], which indicates the running times vary lightly with the increase of

number of clusters.

 Figure 5.7: Scalability of IG-ANMI to the number of objects

122

0

1000

2000

3000

4000

5000

6000

7000

8000

50 100 150 200 250 300 350 400 450 500

Population Size

R
u

n
n

in
g

 t
im

e
 i
n

 s
e
c
o

n
d

s

Figure 5.8: Scalability of IG-ANMI to the population size

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

Number of Clusters

R
u

n
n

in
g

 t
im

e
 i
n

 s
e
c
o

n
d

s

 Figure 5.9: Scalability of IG-ANMI to the number of clusters

5.7 COMPARISON BETWEEN G-ANMI AND IG-ANMI

IG-ANMI improves G-ANMI by using a new initialization method. In order to

appraise the influence of new initialization method on G-ANMI algorithm, the

comparison between IG-ANMI and G-ANMI is performed on four real-life data sets.

5.7.1 Comparison on Efficiency

In this experiment, the number of iterations and running time of algorithms are

used as the criteria for efficiency evaluation. Figures 5.10-5.13 plot the number of

123

iterations of G-ANMI and IG-ANMI on four data sets as population size varies. It can

be seen that IG-ANMI uses less iterations than G-ANMI. One exception is on the Zoo

data set when population size is 500. On the Zoo, Votes, and Breast Cancer data sets,

the smaller the population size is the bigger the difference between the numbers of

iterations of these two algorithms. It is worth noting that there is a very large difference

between G-ANMI and IG-ANMI on the Mushroom data set, which shows the greater

advantage of IG-ANMI when larger data sets are processed.

Figures 5.14-5.17 plot the running time of G-ANMI and IG-ANMI on four data

sets as population size varies. Since the running time is in proportion to the number of

iterations, IG-ANMI takes less running time than G-ANMI except for on the Zoo data

set when population size is 500. IG-ANMI greatly improves the efficiency of G-ANMI.

Concretely, it is improved by 31% on the Zoo data set, 74% on the Votes data set, 59%

on the Breast Cancer data set, and 3428% on the Mushroom data set. There is a very

large difference between G-ANMI and IG-ANMI on the Mushroom data set, which

indicates IG-ANMI can save much time when larger data sets are processed. Table 5.46

shows the concrete values of numbers of iterations and running time of G-ANMI and

IG-ANMI on the Mushroom data set. When the population size is set to 200, G-ANMI

takes 190998.485 seconds (53 hours) while IG-ANMI only take 1351.594 seconds

(0.375 hour).

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

Population Size

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

G-ANMI

IG-ANMI

Figure 5.10: Number of iterations vs. population size on the Zoo data set

124

0

200

400

600

800

1000

1200

1400

1600

50 100 150 200 250 300 350 400 450 500

Population Size

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s
G-ANMI

IG-ANMI

Figure 5.11: Number of iterations vs. population size on the Votes data set

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350 400 450 500

Population Size

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

G-ANMI

IG-ANMI

Figure 5.12: Number of iterations vs. population size on the Breast Cancer data set

0

5000

10000

15000

20000

50 100 150 200

Population Size

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

G-ANMI

IG-ANMI

Figure 5.13: Number of iterations vs. population size on the Mushroom data set

125

0

50

100

150

200

50 100 150 200 250 300 350 400 450 500

Population Size

R
u

n
n

in
g

 T
im

e
(s

)
G-ANMI

IG-ANMI

Figure 5.14: Running time vs. population size on the Zoo data set

0

100

200

300

400

500

600

700

800

50 100 150 200 250 300 350 400 450 500

Population Size

R
u

n
n

in
g

 T
im

e
(s

)

G-ANMI

IG-ANMI

Figure 5.15: Running time vs. population size on the Votes data set

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500

Population Size

R
u

n
n

in
g

 T
im

e
(s

)

G-ANMI

IG-ANMI

Figure 5.16: Running time vs. population size on the Breast Cancer data set

126

0

50000

100000

150000

200000

250000

50 100 150 200

Population Size

R
u

n
n

in
g

 T
im

e
(s

)
G-ANMI

IG-ANMI

Figure 5.17: Running time vs. population size on the Mushroom data set

Table 5.46: The numbers of iterations and running time of G-ANMI and IG-ANMI on

the Mushroom data set

Population

Size

Number of iterations Running time (s)

G-ANMI IG-ANMI G-ANMI IG-ANMI

50 10845 100 20759.969 201.25

100 14453 145 63574.047 606.312

150 13944 144 94324.032 880.875

200 17916 158 190998.485 1351.594

5.7.2 Comparison on Performance

Clustering accuracy of algorithms is used as the criteria for performance

evaluation. The clustering accuracies of these two algorithms on four real life data sets

have been listed separately in Section 5.3. Table 5.47 summarizes the clustering

accuracies of these two algorithms. From the average accuracies, it can be seen that IG-

ANMI has higher clustering accuracy on the Zoo, Breast Cancer, and Mushroom data

sets. One exception is on the Votes data set, the clustering accuracy of G-ANMI is

slightly higher than that of IG-ANMI. The average clustering accuracy of G-ANMI on

the four data sets is improved by 10.6%, from 0.815 of G-ANMI to 0.901 of IG-ANMI.

It is worth noting that IG-ANMI improves clustering accuracy greatly on the Mushroom

data set.

Table 5.47: The clustering accuracies of G-ANMI and IG-ANMI on four data sets

Data set Algorithms 50 100 150 200 250 300 350 400 450 500 Average

Zoo
G-ANMI 0.832 0.851 0.911 0.881 0.861 0.891 0.931 0.812 0.851 0.921 0.874

IG-ANMI 0.881 0.911 0.901 0.911 0.921 0.921 0.921 0.931 0.931 0.931 0.916

Votes
G-ANMI 0.874 0.862 0.876 0.864 0.880 0.874 0.869 0.864 0.876 0.874 0.871

IG-ANMI 0.839 0.860 0.880 0.862 0.867 0.869 0.876 0.876 0.871 0.878 0.868

Breast Cancer
G-ANMI 0.924 0.962 0.960 0.963 0.972 0.975 0.975 0.975 0.977 0.978 0.966

IG-ANMI 0.936 0.966 0.965 0.969 0.971 0.977 0.975 0.977 0.972 0.978 0.969

Mushroom

G-ANMI 0.547 0.568 0.546 0.538 - - - - - - 0.55

IG-ANMI 0.744 0.902 0.847 0.901 - - - - - - 0.849

 1
2
7

128

5.8 SUMMARY

A set of experiments are performed to appraise the clustering performance,

clustering efficiency and scalability of MGR and IG-ANMI algorithms, and compare

them with other four algorithms. The experimental results show that MGR improves the

average clustering accuracy by 19% (from 0.696 to 0.83) as compared with MMR, at

the same time maintains the highest efficiency among the existing algorithms for

categorical data clustering. IG-ANMI greatly improves the efficiency of G-ANMI.

Concretely, it is improved by 31% on the Zoo data set, 74% on the Votes data set, 59%

on the Breast Cancer data set, and 3428% on the Mushroom data set. At the same time

IG-ANMI maintains the highest clustering accuracy among the existing algorithms for

categorical data clustering. IG-ANMI has obvious advantage against G-ANMI on large

data sets in terms of clustering efficiency as well as clustering accuracy. MGR can be

run without specifying the number of clusters (Auto MGR for short). The clustering

accuracy produced by Auto MGR is higher than Specified MGR; the number of clusters

produced by Auto MGR and the running time taken by Auto MGR are all at acceptable

level. In addition, both of MGR and IG-ANMI have good scalability. The running time

of MGR and IG-ANMI algorithms tend to vary linearly with the increase of the number

of objects as well as the number of clusters.

CHAPTER 6

CONCLUSIONS

6.1 INTRODUCTION

This chapter consists of section 6.2 that summarizes the contributions and

limitations of the thesis. Section 6.3 describes the future work based on the outcome of

this thesis.

6.2 CONTRIBUTIONS AND LIMITATIONS

Corresponding to the objectives proposed in Chapter 1 (Section 1.3), the

contributions of this research are summarized as follows:

 The limitations of algorithm MMR are investigated and a novel attribute-

oriented hierarchical divisive clustering algorithm for categorical data termed

MGR is developed. MGR overcomes the limitations of MMR using the

information theory based concepts. MGR achieves higher clustering accuracy

as compared with algorithm MMR (the average clustering accuracy on four

real-life UCI data sets is improved by 19%, from 0.696 to 0.83), at the same

time maintains the highest efficiency (the average running time on ten

synthetic data sets is 6.671 seconds).

 The limitations of algorithm G-ANMI are investigated and an improved

genetic clustering algorithm for categorical data termed IG-ANMI is

developed. IG-ANMI algorithm improves G-ANMI by developing a new

attribute-oriented initialization method. IG-ANMI greatly improves the

efficiency of G-ANMI (improved by 31% on the Zoo data set, 74% on the

130

Votes data set, 59% on the Breast Cancer data set, and 3428% on the

Mushroom data set) as well as the clustering accuracy of G-ANMI (the

average clustering accuracy on four real-life UCI data sets is improved by

10.6%, from 0.815 to 0.901), at the same time maintains the highest clustering

accuracy.

 One of the advantages of MGR is that it can be run without specifying the

number of clusters. Clustering is an example of unsupervised learning, thus

this is a better way than specifying the number of clusters especially when

user experiences difficulties in specifying the number of clusters.

 The proposed algorithms MGR and IG-ANMI are evaluated on four real-life

data sets obtained from UCI and ten synthetically generated data sets. Other

four algorithms are used to compare with MGR and IG-ANMI algorithms.

Experimental results show that both of MGR and IG-ANMI have good

scalability, that is, they can be applied on small categorical data sets as well as

large categorical data sets. They can be applied on the data sets which have

balanced class distribution, such as Votes and Breast Cancer data sets, as well

as the data sets which have unbalanced class distribution like Zoo data set. In

addition, IG-ANMI has obvious advantage against G-ANMI on large data sets

in terms of clustering efficiency as well as clustering accuracy.

To sum up, all the objectives proposed in Chapter 1 has been finished.

The proposed algorithms MGR and IG-ANMI produce good results. However,

both of them have some of limitations as listed below:

 It has been pointed out that hierarchical clustering methods are not able to

conduct adjustment when an opreation has been performed. In other words, if

there are some problems in the process of clustering, these methods can not

correct it (Han and Kamber, 2006). MGR also suffers from this problem.

 MGR may not generate good clusters when every attribute is uniformly

distributed across all other attributes. In such case, the real clusters are not

sufficiently distinguishable from each other. All the attributes have the very

close (even the same) MGR values, however, the partitions they define are

distinct. Therefore, it is possible that the equivalence classes in the partition

131

defined by the selected clustering attribute are dissimilar to the real clusters,

which finally result in the clustering result is very dissimilar to the real

clustering.

 The number of clusters is required to input in IG-ANMI. For user, however,

sometimes it is difficult to know the number of clusters ahead.

 Both of MGR and IG-ANMI focus on categorical data clustering. At present,

there also exist many databases with mixed numeric and categorical data.

MGR and IG-ANMI cannot be applied on such databases.

6.3 FUTURE WORK

Further improvements can be made based on the outcomes from this thesis.

Below are some possible future works:

 As mentioned in the last section, MGR algorithm is not able to conduct

adjustment when an opreation has been performed. Therefore, a reprocess

procedure like the iterative relocation process in the k-ANMI algorithm will

be introduced to adjust the clustering results obtained by MGR algorithm for

further improving the clustering accuracy.

 Experimental results show that the number of clusters obtained by MGR when

it is run without specifying the number of clusters is usually greater than the

real number of clusters. Therefore, a reprocess procedure will be introduced to

combine some of the clusters produced by MGR. It can be implemented by

first computing the similarity between the clusters based on a defined

similarity measure, and then the clusters with the highest similarity are

combined. Repeat these two steps until some conditions are satisfied.

 In the initial population produced by the initialization method of IG-ANMI, a

part of chromosomes are generated by using the attributes partitions while the

rest of chromosomes are generated randomly. More complicated initialization

methods will be developed so that more equivalence classes of attributes

partitions are integrated into the initial chromosomes. The efficiency of IG-

ANMI is expected to be further improved by using such complicated

initialization methods.

132

 Similar to most clustering algorithms for categorical data, IG-ANMI requires

the number of clusters to be specified ahead. For user, however, sometimes it

is difficult to know the number of clusters ahead. Thus, new approach will be

developed to discover the number of clusters ahead and integrated into IG-

ANMI.

 Recently, Particle Swarm Optimization (Kennedy and Eberhart, 1995; Kao et

al., 2008) method has attracted much attention in the field of data mining. This

method will be investigated and introduced into the problem of categorical

data clustering.

133

REFERENCES

Andritsos, P. 2004. Scalable clustering of categorical data and applications, Ph.D.

Dissertation. University of Toronto.

Andritsos, P., Tsaparas, P., Miller, R. and Sevcik, K. 2004. LIMBO: scalable clustering

of categorical data, Proceedings of 9th International Conference on Extending

Database Technology, pp. 123-146.

Atkinson-Abutridy, J., Mellish, C. and Aitken, S. 2004. Combining information

extraction with genetic algorithms for text mining. IEEE Intelligent Systems. 19(3): 22-

30.

Bai, L., Liang, J.Y. and Dang, C.Y. 2011. An initialization method to simultaneously

find initial cluster and the number of clusters for clustering categorical data,

Knowledge-Based Systems. 24: 785-795.

Barbara, D., Li, Y. and Couto, J. 2002. COOLCAT: an entropy-based algorithm for

categorical clustering. Proceedings of CIKM’02, pp. 582-589.

Bobrowski, L. and Bezdek, J.C. 1991. c-Means clustering with the l1 and l∞ norms.

IEEE Transactions on Systems, Man and Cybernetics. 21(3): 545-554.

Cao, F.Y. and Liang, J.Y. 2011. A data labeling method for clustering categorical data.

Expert Systems with Applications. 38: 2381-2385.

Cao, F.Y., Liang, J.Y. and Bai, L. 2009. A new initialization method for categorical

data clustering. Expert Systems with Applications. 33(7): 10223-10228.

Cao, F.Y., Liang, J.Y., Li, D., Bai, L. and Dang, C. 2012. A dissimilarity measure for

the k-Modes clustering algorithm. Knowledge-Based Systems. 26: 120-127.

Chen, K. and Liu, L. 2005. The “best k” for entropy-based categorical data clustering.

Proceedings of International Conference on Scientific and Statistical Database

Management.

Chen, M. and Chuang, K. 2004. Clustering categorical data using the correlated-force

ensemble. Proceedings of SDM’04.

Cheng, J., Qiao, M., Bian, W. and Tao, D. 2011. 3D human posture segmentation by

spectral clustering with surface normal constraint. Signal Processing. 91(9): 2204-2212.

Cristofor, D. and Simovici, D. 2002. Finding median partitions using information-

theoretical-based genetic algorithms. Journal of Universal Computer Science. 8(2): 153-

172.

134

Deng, S., He, Z. and Xu, X. 2010. G-ANMI: A mutual information based genetic

clustering algorithm for categorical data. Knowledge-Based Systems. 23: 144-149.

Duntsch, I. and Gediga, G. 2000. Rough set data analysis: A road to non-invasive

knowledge discovery. Bangor: Methodos.

Dutta, M., Mahanta, A.K. and Pujari, A. K. 2005. QROCK: A quick version of the

ROCK algorithm for clustering of categorical data. Pattern Recognition Letters. 26:

2364-2373.

Feng, S., Pang, J., Wang, D., Yu, G., Yang, F. and Xu, D. 2011. A novel approach for

clustering sentiments in Chinese blogs based on graph similarity. Computers &

Mathematics with Applications. 62(7): 2770-2778.

Flake, G., Tarjan R. and Tsioutsiouliklis, k. 2004. Graph clustering and minimum cut

trees. Internet Mathematics. 1(4): 385-408.

Fu, T. 2011. A review on time series data mining. Engineering Applications of Artificial

Intelligence. 24(1): 164-181.

Gan, G., Wu, J. and Yang, Z. 2009. A genetic fuzzy k-modes algorithm for clustering

categorical data. Expert Systems with Applications. 36: 1615-1620.

Ganti, V., Gehrke, J. and Ramakrishnan, R. 1999. CACTUS–clustering categorical data

using summaries. Proceedings of Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 73-83.

Giannotti, F., Gozzi, G. and Manco, G. 2002. Clustering transactional data.

Proceedings of PKDD’02, pp. 175-187.

Gibson, D., Kleinberg, J. and Raghavan, P. 2000. Clustering categorical data: an

approach based on dynamical systems. The Very Large Data Bases Journal. 8(3–4):

222-236.

Gionis, A., Mannila, H. and Tsaparas, P. 2005. Clustering aggregation. Proceedings of

ICDE’05, pp. 341-352.

Guha, S., Rastogi, R. and Shim, K. 2000. ROCK: a robust clustering algorithm for

categorical attributes. Information Systems. 25 (5): 345-366.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M. 2001. On clustering validation

techniques. Journal of Intelligent Information Systems. 17(2-3): 107-145.

Han, J. and Kamber, M. 2006. Data mining: concepts and techniques. 2
nd

 ed.

Amsterdam: Morgan Kaufmann.

Han, J., Kamber, M. and Pei, J. 2011. Data mining: concepts and techniques. 3
rd

 ed.

Morgan Kaufmann.

135

He, Z., Xu, X. and Deng, S. 2002. Squeezer: an efficient algorithm for clustering

categorical data. Journal of Computer Science & Technology. 17(5): 611-624.

He, Z., Xu, X. and Deng, S. 2005a. A cluster ensemble method for clustering

categorical data. Information Fusion. 6(2): 143-151.

He, Z., Xu, X. and Deng, S. 2005b. TCSOM: clustering transactions using self-

organizing map. Neural Processing Letters. 22(3): 249-262.

He, Z., Xu, X. and Deng, S. 2008. k-ANMI: a mutual information based clustering

algorithm for categorical data. Information Fusion. 9(2): 223-233.

He, Z., Xu, X. and Deng, S. 2011. Attribute value weighting in k-modes clustering.

Expert Systems with Applications. 38(12): 15365-15369.

Herawan, T., Deris, M.M. and Abawajy, J.H. 2010. A rough set approach for selecting

clustering attribute. Knowledge-Based Systems. 23: 220-231.

Holland, J.H. 1992. Adaptation in Natural and Artificial Systems. MIT Press.

Hu, X. 1995. Knowledge discovery in databases: an attribute oriented rough set

approach. Ph.D. Dissertation. University of Regina.

Huang, R., Sang, N., Luo, D. and Tang, Q. 2011. Image segmentation via coherent

clustering in L∗a∗b∗ color space. Pattern Recognition Letters. 32(7): 891-902.

Huang, Z. 1997. A fast clustering algorithm to cluster very large categorical data sets in

data mining, Proceedings of 1997 SIGMOD Workshop on Research Issues on Data

Mining and Knowledge Discovery, pp. 1-8.

Huang, Z. 1998. Extensions to the k-means algorithm for clustering large data sets with

categorical values. Data Mining and Knowledge Discovery. 2(3): 283-304.

Huang, Z. and Ng, M.K. 1999. A fuzzy k-modes algorithm for clustering categorical

data. IEEE Transaction on Fuzzy Systems. 7(4): 446-452.

Hung, C. and Peng, W. 2011. A regression-based approach for mining user movement

patterns from random sample data. Data & Knowledge Engineering. 70(1): 1-20.

Jain, A.K., Murty, M.N. and Flyn, P.J. 1999. Data clustering: a review. ACM

Computing Surveys. 31(3): 264-323.

Jiang, D., Tang, C. and Zhang, A. 2004. Cluster analysis for gene expression data: a

survey. IEEE Transactions on Knowledge and Data Engineering. 16(11): 1370-1386.

Jollois, F. and Nadif, M. 2002. Clustering large categorical data. Proceedings of

PAKDD’02, pp. 257-263.

136

Kalogeratos, A. and Likas, A. 2011. Document clustering using synthetic cluster

prototypes. Data & Knowledge Engineering. 70(3): 284-306.

Kalyani, S., Swarup, K.S. 2011. Particle swarm optimization based K-means clustering

approach for security assessment in power systems. Expert Systems with Applications.

38(9): 10839-10846.

Kao, Y., Zahara, E. and Kao, I. 2008. A hybridized approach to data clustering. Expert

Systems with Applications. 34(3): 1754-1762.

Kennedy, J. and Eberhart, R. C. 1995. Particle swarm optimization. Proceedings of

1995 IEEE International Conference In Neural Networks, New Jersey, USA, pp. 1942-

1948.

Kim, D., Lee, K. and Lee, D. 2004. Fuzzy clustering of categorical data using fuzzy

centroids. Pattern Recognition Letters. 25(11): 1263-1271.

Liao, S., Chu, P. and Hsiao, P. 2012. Data mining techniques and applications-A

decade review from 2000 to 2011. Expert Systems with Applications. http://dx.doi.org/

10.1016/j.eswa.2012.02.063.

MacQueen, J. 1967. Some Methods for classification and Analysis of Multivariate

Observations. Proceedings of 5
th

 Berkeley Symposium on Mathematical Statistics and

Probability. 1: 281-297.

Mali, K. and Mitra, S. 2003. Clustering and its validation in a symbolic framework.

Pattern Recognition Letters. 24(14): 2367-2376.

Man, K.F., Tang, K.S. and Kwong, S. 2001. Genetic Algorithms: Concepts and

Designs. 3
rd

 ed. Springer.

Mathieu, R. and Gibson, J. 2004. A methodology for large scale R&D planning based

on cluster analysis. IEEE Transactions on Engineering Management. 40(3): 283-292.

Mitchell, M. 1998. An introduction to genetic algorithms. MIT Press.

Ng, M.K. and Wong, J.C. 2002. Clustering categorical data sets using tabu search

techniques. Pattern Recognition. 35(12): 2783-2790.

Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y. and Sun, X. 2011. The application of data

mining techniques in financial fraud detection: A classification framework and an

academic review of literature. Decision Support Systems. 50(3): 559-569.

Parmar, D., Wu, T. and Blackhurst, J. 2007. MMR: an algorithm for clustering

categorical data using rough set theory. Data and Knowledge Engineering. 63: 879-893.

Piatesky-Shapiro G., Fayyad, U. and Smyth, P. 1996. From data mining to knowledge

discovery: an overview. Advances in Knowledge Discovery and Data Mining.

AAA/MIT Press, 1-34.

137

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning. 1: 81-106.

Quinlan, J.R. 1993. C4.5: Programs for machine learning. Morgan Kaufmann.

Ralambondrainy, H. 1995. A conceptual version of the K-means algorithm. Pattern

Recognition Letters. 16(11): 1147–1157.

Rezaee, R., Lelieveldt, B.P.F. and Reiber, J.H.C. 1998. A new cluster validity index for

the fuzzy c-mean. Pattern Recognition Letters. 19: 237-246.

Saglam, B., Salman, F.S., Sayin, S. and Türkay, M. 2006. A mixed-integer

programming approach to the clustering problem with an application in customer

segmentation. European Journal of Operational Research. 173(3): 866-879

San, O., Huynh V. and Nakamori, Y. 2004. An alternative extension of the k-means

algorithm for clustering categorical data. International Journal of Applied Mathematics,

Computer Science. 14(2): 241-247.

Sever, H. 1998. The status of research on rough sets for knowledge discovery in

databases. Proceedings of the Second International Conference on Nonlinear Problems

in Aviation and Aerospace, 2: 673-680.

Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence. 22(8): 888-905.

Slonim, N. and Tishby, N. 1999. Agglomerative information bottleneck. In NIPS,

Breckenridge.

Strehl, A. and Ghosh, J. 2002. Cluster ensembles – a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research. 3: 583-617.

Sun, Y., Zhu, Q. and Chen, Z. 2002. An iterative initial-points refinement algorithm for

categorical data clustering. Pattern Recognition Letters. 23(7): 875-884.

Tan, P., Steinbach, M. and Kumar, V. 2006. Introduction to data mining. Boston:

Addison Wesley.

UCI Machine Learning Repository. 2011. http://www.ics.uci.edu_/mlearn/

MLRepository.html.

Vretos, N., Solachidis, V. and Pitas, I. 2011. A mutual information based face clustering

algorithm for movie content analysis. Image and Vision Computing. 29(10): 693-705.

Wang, K., Xu, C. and Liu, B. 1999. Clustering transactions using large items,

Proceedings of CIKM’99, pp. 483-490.

Wong, K., Feng, D., Meikle, S. and Fulham, M. 2002. Segmentation of dynamic pet

images using cluster analysis. IEEE Transactions on Nuclear Science. 49(1): 200-207.

138

Xu, J. and Sung, S.Y. 2003. Caucus-based transaction clustering. Proceedings of

DASFAA’03, pp. 81-88.

Yun, C.H., Chuang, K.T. and Chen, M.S. 2001. An efficient clustering algorithm for

market basket data based on small large ratios. Proceedings of COMPSAC’01, pp. 505-

510.

Yun, C.H., Chuang, K.T. and Chen, M.S. 2002. Using category based adherence to

cluster market-basket data. Proceedings of ICDM’02, pp. 546-553.

Zhao, P. and Zhang, C. 2011. A new clustering method and its application in social

networks. Pattern Recognition Letters. 32(15): 2109-2118.

139

 APPENDIX A

PUBLICATIONS

The following publications had been made out of this thesis.

Journals

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain, MGR: An

information theory based hierarchical divisive clustering algorithm for categorical data,

In submission for Knowledge-Based Systems.

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain, An attribute-

oriented initialization method for genetic clustering algorithm for categorical data, In

submission for Expert Systems with Applications.

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain, Mean information

gain based approach for selecting clustering attribute, In submission for International

journal of data warehousing and mining.

Conferences

Hongwu Qin, Xiuqin Ma, Jasni Mohamad Zain, Norrozila Sulaiman and Tutut

Herawan, A mean mutual information based approach for selecting clustering attribute,

Communications in Computer and Information Science, Volume 180, Software

Engineering and Computer Systems, Part 1, Springer Verlag, Pages 1-15, 2011.

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain, An improved

genetic clustering algorithm for categorical data, Accepted for the 2
nd

 PAKDD Doctoral

Symposium on Data Minning (DSDM’12), 29 May-1 June, 2012, Kuala Lumpur,

Malaysia.

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain, A novel attribute-

oriented hierarchical divisive clustering algorithm for categorical data, Accepted for the

3Clust workshop of PAKDD 2012, 29 May-1 June, 2012, Kuala Lumpur, Malaysia.

http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/978-3-642-22190-3/
http://www.springerlink.com/content/978-3-642-22190-3/

140

APPENDIX B1

CODE LISTING FOR MGR ALGORITHM

There are six files in the source code of MGR.

1. header.h

include "stdio.h"

include "time.h"

include "math.h"

include "string.h"

include "stdlib.h"

define N 8 //Number of objects

define M 7 //Number of attributes

define MAX_LEN_OF_STR 20 //Max length of an attribute value

//Max size of the domain of an attribute

define MAX_NUM_OF_EQUI_CLASS 15

define MAX_NUM_OF_REAL_CLASS 15 //Max number of real clusters

define PERCENT_THRESHOLD 0.03

2. main.c

include "header.h"

int readdata_with_class(int data[][M], char filename[], int ObjClass[],

char ClassName[][MAX_LEN_OF_STR], int * NumOfClass);

void IGR_with_class(int OriginalData[][M], int RequNumOfCluster, int

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass);

int main()

{

 int OriginalData[N][M];

 char filename[30];

 int RequNumOfCluster; //Desired number of clusters

 int ObjClass[N];

 char ClassName[MAX_NUM_OF_REAL_CLASS][MAX_LEN_OF_STR];

 int NumOfClass;

 clock_t begin, end;

 double duration;

 printf("Please input the name of data file:");

 scanf("%s",filename);

 printf("\nPlease input the required number of clusters:");

 scanf("%d",&RequNumOfCluster);

 begin = clock();

 if(readdata_with_class(OriginalData, filename, ObjClass,

ClassName,&NumOfClass)==0)

 exit(0);

 IGR_with_class(OriginalData, RequNumOfCluster, ObjClass,

ClassName,NumOfClass);

 end = clock();

 duration = (double)(end - begin)/CLOCKS_PER_SEC;

 printf("\nThe running time: %lf seconds\n",duration);

141

 getchar();

 return 0;

}

3. input.c

include "header.h"

int readdata_with_class(int data[][M], char filename[], int

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int * NumOfClass)

{

 int n, m;

 int i,j,k,s;

 int cnt[M]; //Store the current number of value in a column

 char value_column[M][MAX_NUM_OF_EQUI_CLASS][MAX_LEN_OF_STR];

 char tempc;

 char tem[MAX_LEN_OF_STR];

 char pathin[50]= {".\\data\\"};

 char pathout[50]= {".\\data\\Cluster_Reslut\\"};

 strcat(strcat(pathin,filename),".data");

 if(freopen(pathin,"r", stdin)== NULL)

 return 0;

 strcat(strcat(pathout,filename),".out");

 if(freopen(pathout,"w", stdout)== NULL)

 return 0;

 scanf("%d,%d",&n,&m);

 getchar();

 for(j=0;j<m;j++)

 cnt[j] = 0;

 for(i=0;i<n;i++)

 {

 for(j=0;j<m;j++)

 {

 k=0;

 scanf("%c",&tempc);

 while(tempc != ',' && tempc != 10 && tempc != '.')

 {

 tem[k]=tempc;

 k++;

 scanf("%c",&tempc);

 }

 tem[k]='\0';

 //Finished reading an attribute value

 if(i==0)

 {

 strcpy(value_column[j][0],tem);

 cnt[j]++;

 data[i][j]= 0;

 }

 else

 {

 for(s=0;s<cnt[j];s++)

 if(strcmp(tem,value_column[j][s])==0)

 {

 data[i][j] = s;

 break;

142

 }

 if(s == cnt[j])

 {

 strcpy(value_column[j][cnt[j]],tem);

 data[i][j]= cnt[j] ;

 cnt[j]++;

 }

 }

 }

 //Finished reading an object

 //Read the class of the object

 scanf("%c",&tempc);

 if(tempc == '\'')

 {

 k = 0;

 do

 {

 scanf("%c",&tempc);

 tem[k] = tempc;

 k++;

 }

 while(tempc != '\'');

 tem[k-1] = '\0';

 while(tempc != 10 && tempc != '.')

 scanf("%c",&tempc);

 }

 else

 {

 k = 0;

 do

 {

 tem[k] = tempc;

 k++;

 scanf("%c",&tempc);

 }

 while(tempc != 10 && tempc != '.');

 tem[k] = '\0';

 }

 if(i==0)

 {

 strcpy(ClassName[0],tem);

 ObjClass[0]= 0;

 *NumOfClass = 1;

 }

 else

 {

 for(k= 0; k< *NumOfClass; k++)

 if(strcmp(tem,ClassName[k])==0)

 {

 ObjClass[i]= k;

 break;

 }

 if(k == *NumOfClass)

 {

 strcpy(ClassName[k],tem);

 ObjClass[i]= k;

143

 (*NumOfClass) ++;

 }

 }

 }

 return 1;

}

4. my_algorithm.c

include "header.h"

void GainOfDataset_ratio(int A[][M+1], int n, int m, int selectedAttr[]);

int EntropySplit(int selectedattr, int data[][M+1], int n, int

leafnode1[N+1], int leafnode2[N+1]);

void IGR_with_class(int OriginalData[][M], int RequNumOfCluster, int

ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass)

{

 int RemainData[N][M+1]; //Current data set

 int n,m;

 int i,j,k;

 int CurrNumOfCluster = 1;

 int selectedAttr[M];

 //Store the results of binary splitting

 int leafnode1[N+1],leafnode2[N+1];

 int num_of_each_real_class[MAX_NUM_OF_REAL_CLASS];

 float percent_of_each_real_class[MAX_NUM_OF_REAL_CLASS];

 int max_num_of_each_real_class;

 int total_max_num_of_each_real_class = 0;

 float accuracy;

 //Copy the initial data to current data

 for(i=0;i<N;i++)

 {

 for(j=0;j<M;j++)

 RemainData[i][j]=OriginalData[i][j];

 RemainData[i][M]= i;

 }

 n = N;

 m = M;

 while(CurrNumOfCluster < RequNumOfCluster)

 {

 GainOfDataset_ratio(RemainData, n, m, selectedAttr);

 for(i=0; i<M; i++)

 {

 if(EntropySplit(selectedAttr[i], RemainData, n,

leafnode1, leafnode2)==1)

 break;

 }

 if(i==M)

 {

 printf("Can not continue!!!\n");

 //Output current data as the last cluster

 for(j=0; j<MAX_NUM_OF_REAL_CLASS; j++)

 {

 num_of_each_real_class[j]= 0;

 percent_of_each_real_class[j]= 0.0;

144

 }

 printf("The %dth cluster has %d objects:",

 CurrNumOfCluster,n);

 for(j=0; j<n; j++)

 {

 k = ObjClass[RemainData[j][M]];

 num_of_each_real_class[k]++;

 printf("%d, ",RemainData[j][M]);

 }

 printf("where\n\n");

 max_num_of_each_real_class = 0;

 for(j=0; j<NumOfClass; j++)

 {

 if(num_of_each_real_class[j]>

max_num_of_each_real_class)

 max_num_of_each_real_class =

num_of_each_real_class[j];

 percent_of_each_real_class[j]=

(float)num_of_each_real_class[j]/(float)n;

 printf("%-5d %-s (%.1f%%)\n",

num_of_each_real_class[j],ClassName[j],

percent_of_each_real_class[j]*100);

 }

 total_max_num_of_each_real_class +=

max_num_of_each_real_class;

 accuracy =

(float)total_max_num_of_each_real_class/(float)N;

 accuracy = (int)(accuracy*1000+0.5)/1000.0;

 printf("\n\nThe accuracy of clustering is: %.1f%%",

 accuracy*100);

 return;

 }

 for(i=0;i<MAX_NUM_OF_REAL_CLASS;i++)

 {

 num_of_each_real_class[i]= 0;

 percent_of_each_real_class[i]= 0.0;

 }

 //Output leafnode1 as a cluster

 printf("The %dth cluster has %d objects:\n ",

CurrNumOfCluster,leafnode1[N]);

 for(i=0; i<leafnode1[N]; i++)

 {

 j = ObjClass[leafnode1[i]];

 num_of_each_real_class[j]++;

 printf("%d, ",leafnode1[i]);

 }

 printf("where\n\n");

 max_num_of_each_real_class = 0;

 for(i=0; i<NumOfClass; i++)

 {

 if(num_of_each_real_class[i] > max_num_of_each_real_class)

 max_num_of_each_real_class = num_of_each_real_class[i];

 percent_of_each_real_class[i]=

(float)num_of_each_real_class[i]/(float)leafnode1[N];

 printf("%-5d %-s (%.1f%%)\n",

num_of_each_real_class[i],ClassName[i],

percent_of_each_real_class[i]*100);

145

 }

 total_max_num_of_each_real_class += max_num_of_each_real_class;

 printf("\n\n");

 CurrNumOfCluster++;

 //Rebuild current data using leafnode2

 for(i=0; i<leafnode2[N]; i++)

 {

 for(j=0; j<M; j++)

 {

 RemainData[i][j] = OriginalData[leafnode2[i]][j];

 }

 RemainData[i][M] = leafnode2[i];

 }

 n = leafnode2[N];

 } //end of while

 //Output current data as the last cluster when the number of

 //clusters equals the desired number of clusters

 for(i=0; i<MAX_NUM_OF_REAL_CLASS; i++)

 {

 num_of_each_real_class[i]= 0;

 percent_of_each_real_class[i]= 0.0;

 }

 printf("The %dth cluster has %d objects: ", CurrNumOfCluster,n);

 for(i=0; i<n; i++)

 {

 j = ObjClass[RemainData[i][M]];

 num_of_each_real_class[j]++;

 printf("%d, ",RemainData[i][M]);

 }

 printf("where\n\n");

 max_num_of_each_real_class = 0;

 for(i=0; i<NumOfClass; i++)

 {

 if(num_of_each_real_class[i] > max_num_of_each_real_class)

 max_num_of_each_real_class = num_of_each_real_class[i];

 percent_of_each_real_class[i]=

(float)num_of_each_real_class[i]/(float)n;

 printf("%-5d %-s (%.1f%%)\n",num_of_each_real_class[i],

 ClassName[i], percent_of_each_real_class[i]*100);

 }

 total_max_num_of_each_real_class += max_num_of_each_real_class;

 accuracy = (float)total_max_num_of_each_real_class / (float)N;

 accuracy = (int)(accuracy*1000+0.5)/1000.0;

 printf("\n\nThe accuracy of clustering is: %.1f%%", accuracy*100);

}

5. entropy_gainratio.c

include "header.h"

void sort(float A[],int m, int order[]);

//Calculate the entropy of an attribute

float entropyA(int A[],int num)

{

 int i,j,classnumber;

146

 int numofeachclass[N+1]={0},valofeachclass[N+1]={0};

 float sum=0.0,temp;

 //Count the number of category in an attribute

 classnumber=1;

 valofeachclass[1]=A[0];

 numofeachclass[1]=1;

 for(i=1;i<num;i++)

 {

 for(j=1;j<=classnumber;j++)

 if (A[i]==valofeachclass[j])

 {

 numofeachclass[j]++;

 break;

 }

 if(j>classnumber)

 {

 classnumber++;

 numofeachclass[classnumber]++;

 valofeachclass[classnumber]=A[i];

 }

 }

 //Calculate the entropy

 for(i=1;i<=classnumber;i++)

 {

 temp=(float)numofeachclass[i]/(float)num;

 sum=sum+(-temp*log(temp)/log(2));

 }

 return sum;

}

//Calculate the entropy of an equivalence class of attribute B with

//respect to attribute A

static float entro_1ofB_A(int A[],int B[],int numoftheclass)

{

 int i,j;

 int classnumofB;

 int numofeachclassB[N+1]={0},valofeachclassB[N+1]={0};

 float sum=0.0,temp;

 classnumofB=1;

 valofeachclassB[1] = A[B[0]];

 numofeachclassB[1] = 1;

 for(i=1;i<numoftheclass;i++)

 {

 for(j=1;j<=classnumofB;j++)

 if (A[B[i]]==valofeachclassB[j])

 {

 numofeachclassB[j]++;

 break;

 }

 if(j>classnumofB)

 {

 classnumofB++;

 numofeachclassB[classnumofB]++;

 valofeachclassB[classnumofB]=A[B[i]];

 }

147

 }

 for(i=1;i<=classnumofB;i++)

 {

 temp=(float)numofeachclassB[i]/(float)numoftheclass;

 sum=sum+(-temp*log(temp)/log(2));

 }

 return sum;

}

static float entropyBA(int A[],int B[],int num)

{

 int i,j,k;

 int classnumofB;

 int numofeachclassB[N+1]={0},valofeachclassB[N+1]={0};

 int oneclassofB[N];

 float sum=0.0,temp;

 classnumofB=1;

 valofeachclassB[1]=B[0];

 numofeachclassB[1]=1;

 for(i=1;i<num;i++)

 {

 for(j=1;j<=classnumofB;j++)

 if(B[i]==valofeachclassB[j])

 {

 numofeachclassB[j]++;

 break;

 }

 if(j>classnumofB)

 {

 classnumofB++;

 numofeachclassB[classnumofB]++;

 valofeachclassB[classnumofB]=B[i];

 }

 }

 for(i=1;i<=classnumofB;i++)

 {

 k=0;

 for(j=0;j<num;j++)

 if(B[j]==valofeachclassB[i])

 {

 oneclassofB[k]=j;

 k++;

 }

 temp= entro_1ofB_A(A,oneclassofB,k);

 sum=sum+ (float)numofeachclassB[i]/(float)num *temp;

 }

 return sum;

}

void GainOfDataset_ratio(int A[][M+1], int n, int m, int

selectedAttr[])

{

 int i,j,k;

 int attrA[N]={0},attrB[N]={0};

 float entroA, sum, gain, temp_entropyBA;

 float gain_ratio[M];

148

 for(j=0;j<m;j++)

 {

 sum=0.0;

 for(i=0;i<n;i++)

 attrA[i]=A[i][j];

 entroA= entropyA(attrA,n);

 for(i=0;i<m;i++)

 {

 if(i!=j)

 {

 for(k=0;k<n;k++)

 attrB[k]=A[k][i];

 temp_entropyBA = entropyBA(attrA,attrB,n);

 sum=sum+ temp_entropyBA;

 }

 }

 gain=entroA*(m-1)-sum;

 if(fabs(entroA)>1e-6)

 gain_ratio[j] = gain/entroA;

 else

 gain_ratio[j] =0.0;

 }

 sort(gain_ratio, M, selectedAttr);

}

6. binary_split.c

include "header.h"

float entropyA(int A[],int num);

static int elementinset(int e,int A[],int lenA);

static void sort(float A[],int m, int order[]);

int EntropySplit(int selectedattr, int data[][M+1], int n, int

leafnode1[N+1], int leafnode2[N+1])

{

 int i,j;

 int NumOfEquiClass;

 int EquiClasses[MAX_NUM_OF_EQUI_CLASS][N];

 int NumOfEachEquiClass[MAX_NUM_OF_EQUI_CLASS];

 float EntropyOfEachEquiClass[MAX_NUM_OF_EQUI_CLASS];

 int flag[N];

 int k1,k2;

 int order[MAX_NUM_OF_EQUI_CLASS];

 float percent;

 int k, tempA[N];

 float attrEntropy;

 NumOfEquiClass = 0;

 for(i=0;i<N;i++)

 flag[i]= -1;

 for(i=0;i<n;i++)

 {

 if(flag[i]==-1)

 {

 flag[i]=NumOfEquiClass;

 for(j=i+1;j<n;j++)

149

 {

 if(data[j][selectedattr] == data[i][selectedattr])

 flag[j]= NumOfEquiClass;

 }

 NumOfEquiClass++;

 }

 }

 for(i=0; i<NumOfEquiClass; i++)

 {

 NumOfEachEquiClass[i]=0;

 for(j=0;j<n;j++)

 {

 if(flag[j]==i)

 {

 EquiClasses[i][NumOfEachEquiClass[i]]= j;

 NumOfEachEquiClass[i]++;

 }

 }

 EntropyOfEachEquiClass[i] = 0;

 //Calculate the entropy of equivalence classes

 for(j=0; j<M; j++)

 {

 for(k = 0; k<NumOfEachEquiClass[i]; k++)

 tempA[k]= data[EquiClasses[i][k]][j];

 attrEntropy = entropyA(tempA, NumOfEachEquiClass[i]);

 EntropyOfEachEquiClass[i] += attrEntropy;

 }

 }

 sort(EntropyOfEachEquiClass, NumOfEquiClass, order);

 for(i=0; i< NumOfEquiClass-1; i++)

 {

 percent = (float)NumOfEachEquiClass[order[i]]/(float)N;

 percent = (int)(percent*100+0.5)/100.0;

 if(percent - PERCENT_THRESHOLD > 1e-6)

 break;

 }

 if(i == NumOfEquiClass-1)

 return 0;

 k1 = 0;

 k2 = 0;

 for(j=0; j<n; j++)

 {

 if(elementinset(j,EquiClasses[order[i]],

 NumOfEachEquiClass[order[i]]))

 {

 leafnode1[k1] = data[j][M];

 k1++;

 }

 else

 {

 leafnode2[k2] = data[j][M];

 k2++;

 }

 }

 leafnode1[N] = k1;

150

 leafnode2[N] = k2;

 return 1;

}

static int elementinset(int e,int A[],int lenA)

{

 int i;

 for(i=0;i<lenA;i++)

 if(e==A[i])

 return 1;

 return 0;

}

static void sort(float A[],int m, int order[])

{

int i,j;

 float temp;

 for(i=0; i<m; i++)

 order[i] = i;

 for(i=1; i<m ;i++)

 {

 for(j=0;j<m-i;j++)

 {

 if((A[j]-A[j+1])>1e-6)

 {

 temp = A[j+1];

 A[j+1]= A[j];

 A[j]= temp;

 temp = order[j+1];

 order[j+1]= order[j];

 order[j]= temp;

 }

 }

 }

}

151

APPENDIX B2

CODE LISTING FOR IG-ANMI ALGORITHM

There are seven files in the source code of IG-ANMI.

1. header.h

include "stdio.h"

include "string.h"

include "stdlib.h"

include "time.h"

include "math.h"

define N 10 //Number of objects

define M 4 //Number of attributes

define K 3 //Number of clusters

define P 10 //Population size

define CR 0.8 //Percent of chromes that are used for crossover

define MU 0.1 //Percent of chromes that undergo a mutation

//Threshold for no relative improvement

define IMPROVEMENT_THRESHOLD 1e-6

//Maximum number of consecutive iterations without improvement

define MAX_ITERATION 100

define MAX_LEN_OF_STR 20 //Max length of an attribute value

//Max size of domain of an attribute

define MAX_NUM_OF_EQUI_CLASS 15

define MAX_NUM_OF_REAL_CLASS 15 //Max number of real clusters

//The basic structure for computing ANMI

struct Node_of_histogram

{

 char category_value[MAX_LEN_OF_STR];

 int num;

};

2. g_anmi.c

include "header.h"

void read_data(int, int cnt[M], struct Node_of_histogram

AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[], int ObjClass[], char

ClassName[][MAX_LEN_OF_STR], int * NumOfClass);

void initialization(int population[P][N], int data [N][M], int

num_of_eq_class[M]);

void compute_fitness(FILE * fp, int population[P][N], float fitness[P],

struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[]);

void generate_new_population(int population[P][N], float fitness[P]);

void output(int ObjClass[], char ClassName[][MAX_LEN_OF_STR], int NumOfClass,

int clusters[K][N], int len_of_clusters[]);

int main()

{

 FILE * fp;

 int i,j;

152

 int population[P][N]; //Store population with P chromes

 float fitness[P]; //Store fitness value

 float best_fitness_value;

 int id_of_best_fitness_value;

 float current_best_fitness_value;

 int cnt_without_improvement;

 struct Node_of_histogram AH[M][MAX_NUM_OF_EQUI_CLASS];

 int len_of_AH[M];

 int clusters[K][N]; //Store K clusters

 int len_of_clusters[K]; //Store the length of K clusters

 int value[K];

 int cnt;

 //The following 3 variables are for computing accuracy

 int ObjClass[N]; //The real classes of objects

 char ClassName[MAX_NUM_OF_REAL_CLASS][MAX_LEN_OF_STR];

 int NumOfClass;

 char filename[30];

 char path_data[50]= {".\\data\\"};

 char path_result[50]= {".\\data\\Cluster_Result\\"};

 //The following 3 variables are for computing running time

 clock_t begin, end;

 double duration;

 int iteration_times = 0; //Store number of iterations

 int data[N][M]; //Initial data (converted to integers)

 int num_of_eq_class[M]; //Number of equivalence classes in

 //each attribute

 srand(1); //Set random seed

 //Open the input and output files

 printf("Please input the name of data file:");

 scanf("%s",filename);

 begin = clock(); //Get initial time

 strcat(strcat(path_data,filename),".data");

 fp = freopen(path_data,"r", stdin);

 strcat(strcat(path_result,filename),".out");

 freopen(path_result,"w", stdout);

 for(j=0;j<M;j++)

 num_of_eq_class[j] = 0;

 //Read data from file, build histograms for attributes, and

 //store real classes of objects.

 read_data(data, num_of_eq_class, AH, len_of_AH, ObjClass,

 ClassName, &NumOfClass);

 //Generate initial population

 initialization(population, data, num_of_eq_class);

 current_best_fitness_value = -1;

 cnt_without_improvement = 0;

 while(1)

 {

 //compute fitness of each chromosome

 compute_fitness(fp, population, fitness, AH, len_of_AH);

 //search for the best fitness value

 best_fitness_value = fitness[0];

 id_of_best_fitness_value = 0;

 for(i=1; i<P; i++)

 {

153

 if(fitness[i] - best_fitness_value > 1e-6)

 {

 best_fitness_value = fitness[i];

 id_of_best_fitness_value = i;

 }

 }

 //There exists improvement on the best fitness value

 if(best_fitness_value - current_best_fitness_value >

 IMPROVEMENT_THRESHOLD)

 {

 current_best_fitness_value = best_fitness_value;

 cnt_without_improvement = 0;

 }

 else

 cnt_without_improvement ++;

 if(cnt_without_improvement >= MAX_ITERATION)

 {

 for(i=0; i<K; i++)

 len_of_clusters[i] = 0;

 value[0]= population[id_of_best_fitness_value][0];

 cnt = 1;

 for(i=1; i<N; i++)

 {

 for(j = 0; j<cnt; j++)

 if(population[id_of_best_fitness_value][i]

 == value[j])

 break;

 if(j == cnt)

 {

 value[cnt]=

population[id_of_best_fitness_value][i];

 cnt++;

 }

 if(cnt == K)

 break;

 }

 for(i=0; i<K; i++)

 {

 for(j=0; j<N; j++)

 {

 if(population[id_of_best_fitness_value][j]

 == value[i])

 {

 clusters[i][len_of_clusters[i]] = j;

 len_of_clusters[i] ++;

 }

 }

 }

 output(ObjClass, ClassName, NumOfClass, clusters,

 len_of_clusters);

 break;

 }

 generate_new_population(population, fitness);

 iteration_times++;

 }

 printf("\nIteration times: %d\n", iteration_times);

 end = clock();

154

 duration = (double)(end - begin)/CLOCKS_PER_SEC;

 printf("\nThe running time: %lf seconds\n",duration);

 getchar();

 return 0;

}

void output(int ObjClass[], char ClassName[][MAX_LEN_OF_STR], int

 NumOfClass, int clusters[K][N], int len_of_clusters[])

{

 int i,j,s;

 int num_of_each_real_class[MAX_NUM_OF_REAL_CLASS];

 float percent_of_each_real_class[MAX_NUM_OF_REAL_CLASS];

 int max_num_of_each_real_class;

 int total_max_num_of_each_real_class = 0; Í

 float accuracy;

 for(i=0; i<K; i++)

 {

 for(j=0; j<MAX_NUM_OF_REAL_CLASS; j++)

 {

 num_of_each_real_class[j]= 0;

 percent_of_each_real_class[j]= 0.0;

 }

 printf("\n\nThe %dth cluster has %d objects: ",

 i,len_of_clusters[i]);

 for(j=0; j<len_of_clusters[i]; j++)

 {

 s = ObjClass[clusters[i][j]];

 num_of_each_real_class[s]++;

 printf("%d, ",clusters[i][j]);

 }

 printf("where\n\n");

 max_num_of_each_real_class = 0;

 for(j=0; j<NumOfClass; j++)

 {

 if(num_of_each_real_class[j]>

max_num_of_each_real_class)

max_num_of_each_real_class=

num_of_each_real_class[j];

 percent_of_each_real_class[j]=

 (float)num_of_each_real_class[j]/

(float)len_of_clusters[i];

 printf("%-5d %-s (%.1f%%)\n",

num_of_each_real_class[j],ClassName[j],

percent_of_each_real_class[j]*100);

 }

 total_max_num_of_each_real_class +=

 max_num_of_each_real_class;

 }

 accuracy = (float)total_max_num_of_each_real_class / (float)N;

 accuracy = (int)(accuracy*1000+0.5)/1000.0;

 printf("\n\nThe accuracy of clustering is:

%.1f%%",accuracy*100);

}

155

3. read_data.c

include "header.h"

// This function reads data from file, creats histograms for

// attributes, and store the real classes of objects

void read_data(int data [N][M], int cnt[M], struct Node_of_histogram

 AH[][MAX_NUM_OF_EQUI_CLASS], int len_of_AH[], int ObjClass[],

char ClassName[][MAX_LEN_OF_STR], int * NumOfClass)

{

 int obj_i,i,j,k;

 char tempc;

 char tem[MAX_LEN_OF_STR];

 char object[M][MAX_LEN_OF_STR];

 char value_column[M][MAX_NUM_OF_EQUI_CLASS][MAX_LEN_OF_STR];

 int s;

 for(i=0; i<M; i++)

 len_of_AH[i] = 0;

 for(obj_i=0; obj_i<N; obj_i++)

 {

 for(i=0; i<M; i++)

 {

 j=0;

 scanf("%c",&tempc);

 while(tempc != ',' && tempc != 10 && tempc != '.')

 {

 object[i][j]=tempc;

 j++;

 scanf("%c",&tempc);

 }

 object[i][j]='\0';

 if(obj_i==0)

 {

 strcpy(value_column[i][0], object[i]);

 cnt[i]++;

 data[obj_i][i]= 0;

 }

 else

 {

 for(s=0;s<cnt[i];s++)

if(strcmp(object[i],value_column[i][s])==0)

 {

 data[obj_i][i] = s;

 break;

 }

 if(s == cnt[i])

 {

 strcpy(value_column[i][cnt[i]],object[i]);

 data[obj_i][i]= cnt[i] ;

 cnt[i]++;

 }

 }

 }

 scanf("%c",&tempc);

 if(tempc == '\'')

 {

156

 k = 0;

 do

 {

 scanf("%c",&tempc);

 tem[k] = tempc;

 k++;

 }

 while(tempc != '\'');

 tem[k-1] = '\0';

 while(tempc != 10 && tempc != '.')

 scanf("%c",&tempc);

 }

 else

 {

 k = 0;

 do

 {

 tem[k] = tempc;

 k++;

 scanf("%c",&tempc);

 }

 while(tempc != 10 && tempc != '.');

 tem[k] = '\0';

 }

 if(obj_i==0)

 {

 strcpy(ClassName[0],tem);

 ObjClass[0]= 0;

 *NumOfClass = 1;

 }

 else

 {

 for(k = 0; k< *NumOfClass; k++)

 if(strcmp(tem,ClassName[k])==0)

 {

 ObjClass[obj_i]= k;

 break;

 }

 if(k == * NumOfClass)

 {

 strcpy(ClassName[k],tem);

 ObjClass[obj_i]= k;

 (* NumOfClass) ++;

 }

 }

 //Build or update Histogram for each attribute

 for(i=0; i<M; i++)

 {

 for(j=0; j<len_of_AH[i]; j++)

 if(strcmp(object[i],AH[i][j].category_value)==0)

 {

 AH[i][j].num++;

 break;

 }

 if(j == len_of_AH[i])

 {

 strcpy(AH[i][j].category_value,object[i]);

157

 AH[i][j].num = 1;

 len_of_AH[i]++;

 }

 }

 } //end for(obj_i=0; obj_i<N; obj_i++)

}

4. initialization.c

include "header.h"

//Generate the initial population including P chroms

void initialization(int population[P][N], int data [N][M], int

 num_of_eq_class[M])

{

 int i,j,temp;

 int flag[K];

 int partition_tmp[N];

 int tmp[N];

 int tmp_flag[K];

 int s,q;

 int sum;

 for(i=0; i<M; i++)

 {

 for(j=0; j<N; j++)

 partition_tmp[j] = -1;

 if(num_of_eq_class[i] == K)

 {

 for(j=0; j<N; j++)

 partition_tmp[j] = data[j][i];

 }

 else

 {

 if(num_of_eq_class[i] > K)

 {

 for(j=0; j<N; j++)

 {

 if(data[j][i] < K)

 partition_tmp[j] = data[j][i];

 }

 for(j=0; j<N; j++)

 {

 if(partition_tmp[j] == -1)

 partition_tmp[j] = rand()% K;

 }

 }

 else

 {

 q = num_of_eq_class[i];

 for(j=q-2; j>=0; j--)

 {

 sum = 0;

 for(s=0; s<N; s++)

 if(data[s][i] <= j)

 sum += 1;

 if((N-sum) >= (K-j-1))

 break;

158

 }

 if(j == -1)

 {

 while(1)

 {

 for(s=0; s<K; s++)

 flag[s] = 0;

 for(s=0; s<N; s++)

 {

 temp = rand()% K;

 flag[temp] = 1;

 partition_tmp[s]= temp;

 }

 for(s=0; s<K; s++)

 if(flag[s]==0)

 break;

 if(s == K)

 break;

 }

 }

 else

 {

 for(s=0; s<N; s++)

 {

 if(data[s][i] <= j)

 partition_tmp[s] = data[s][i];

 }

 while(1)

 {

 for(s=0; s<(K-j-1); s++)

 tmp_flag[s] = 0;

 for(s=0; s<N-sum; s++)

 {

 tmp[s] = rand()%(K-j-1);

 tmp_flag[tmp[s]] = 1;

 tmp[s]= tmp[s]+(j+1);

 }

 for(s=0; s<(K-j-1); s++)

 if(tmp_flag[s]==0)

 break;

 if(s == (K-j-1))

 break;

 }

 q=0;

 for(s=0; s<N; s++)

 if(partition_tmp[s] == -1)

 {

 partition_tmp[s] = tmp[q];

 q++;

 }

 } //end else

 } //end else

 } // end else

 for(j=0; j<N; j++)

 population[i][j] = partition_tmp[j];

 } //end for(i=0; i<M; i++)

159

 //Randomly generate P-M chroms

 for(i=M; i<P;)

 {

 for(j=0; j<K; j++)

 flag[j] = 0;

 for(j=0; j<N; j++)

 {

 temp = rand()% K;

 flag[temp] = 1;

 population[i][j]= temp;

 }

 for(j=0; j<K; j++)

 if(flag[j]==0)

 break;

 if(j == K)

 i++;

 }

}

5. fitness.c

include "header.h"

float Compute_ANMI(struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int

len_of_AH[], struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS], int

len_of_CAH[][M], int len_of_clusters[]);

void compute_fitness(FILE * fp, int population[P][N], float

fitness[P], struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int

len_of_AH[])

{

 int i,j,k,obj_i;

 char tempc;

 char object[M][MAX_LEN_OF_STR];

 //Histograms for K clusters

 struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS];

 int len_of_CAH[K][M];

 int id;

 int len_of_clusters[K];

 //compute fitness for each chrom

 for(i=0; i<P; i++)

 {

 //set the length of clusters and CAH 0

 for(j=0; j<K; j++)

 {

 len_of_clusters[j] = 0;

 for(k=0; k<M; k++)

 len_of_CAH[j][k] = 0;

 }

 rewind(fp);

 for(obj_i=0; obj_i<N; obj_i++)

 {

 //Read an object

 for(j=0; j<M; j++)

 {

 k=0;

160

 scanf("%c",&tempc);

 while(tempc!=','&& tempc!= 10&& tempc!= '.')

 {

 object[j][k]=tempc;

 k++;

 scanf("%c",&tempc);

 }

 object[j][k]='\0';

 }

 while(tempc != 10 && tempc != '.')

 scanf("%c",&tempc);

 //Build Histograms

 id = population[i][obj_i];

 len_of_clusters[id]++;

 for(j=0; j<M; j++)

 {

 for(k=0; k<len_of_CAH[id][j]; k++)

if(strcmp(object[j],

CAH[id][j][k].category_value)==0)

 {

 CAH[id][j][k].num++;

 break;

 }

 if(k == len_of_CAH[id][j])

 {

strcpy(CAH[id][j][k].category_value,

object[j]);

 CAH[id][j][k].num = 1;

 len_of_CAH[id][j]++;

 }

 }

 } //for(obj_i=0; obj_i<N; obj_i++)

 fitness[i] = Compute_ANMI(AH, len_of_AH, CAH, len_of_CAH,

len_of_clusters);

 }//for(i=0; i<P; i++)

}

6. compute_anmi.c

include "header.h"

float Compute_ANMI(struct Node_of_histogram AH[][MAX_NUM_OF_EQUI_CLASS], int

len_of_AH[], struct Node_of_histogram CAH[K][M][MAX_NUM_OF_EQUI_CLASS], int

len_of_CAH[][M], int len_of_clusters[])

{

 int b,h,g;

 int i;

 int ngh;

 int nh;

 int ng;

 float sum = 0.0;

 float sh;

 float sg;

 float NMI;

 float log_tmp1,log_tmp2;

 char str_tmp[MAX_LEN_OF_STR];

161

 //Compute ANMI between a partition and M attributes partitions

 for(b=0; b<M; b++)

 {

 sh = 0.0;

 for(h = 0; h<K; h++) //k(a)=K

 {

 sg = 0.0;

 for(g=0; g< len_of_AH[b]; g++) //k(b)=len_of_AH[b]

 {

 //Compute ng(h)

 strcpy(str_tmp, AH[b][g].category_value);

 for(i=0; i<len_of_CAH[h][b]; i++)

 if(strcmp(str_tmp,

CAH[h][b][i].category_value)==0)

 {

 ngh = CAH[h][b][i].num;

 break;

 }

 if(i == len_of_CAH[h][b])

 ngh = 0;

 if(ngh != 0)

 {

 nh = len_of_clusters[h]; //n(h)

 ng = AH[b][g].num; //ng

 log_tmp1 = (float)(ngh*N)/(float)(nh*ng);

 log_tmp2 = (float)(K*len_of_AH[b]);

 sg+= ngh * (log(log_tmp1)/log(log_tmp2));

 }

 }

 sh = sh + sg;

 }

 //NMI between a partition and attribute b

 NMI = ((float)2/(float)N) * sh;

 sum = sum + NMI;

 }

 //Return ANMI

 return sum/M;

}

7. generate_new_population.c

include "header.h"

void sort(float A[],int m, int order[]);

void generate_new_population(int population[P][N], float fitness[P])

{

 int i,j;

 int new_population[P][N];

 float fitness_copy[P];

 int order[P];

 float temp;

 int num_of_fittest;

 int num_of_crossover;

 //Probability of being selected of a chrom

 float selection_prob[P];

 float sum_of_fitness = 0.0;

 float rand_num; //A number between [0,1]

162

 int index[P];

 int id;

 int id1,id2;

 int flag[P];

 int k;

 int crosspoint;

 int num_of_mutation;

 int num_of_mutation_point;

 int flag_mutation_point[N];

 for(i=0; i<P; i++)

 fitness_copy[i] = fitness[i];

 sort(fitness_copy, P, order);

 temp = (1-CR-MU)*P;

 num_of_fittest = floor(temp);

 //copy fittest (1-r-m)M chroms to new population

 for(i=0; i<num_of_fittest; i++)

 {

 for(j=0; j<N; j++)

 {

 new_population[i][j] = population[order[i]][j];

 }

 }

 //crossover

 for(i=0; i<P; i++)

 sum_of_fitness += fitness[i];

 for(i=0; i<P; i++)

 selection_prob[i] = fitness[i]/sum_of_fitness;

 for(i=1; i<P; i++)

 selection_prob[i]=selection_prob[i-1]+selection_prob[i];

 //Roulette wheel algorithm

 temp = CR*P;

 num_of_crossover = floor(temp);

 for(i=0; i<num_of_crossover; i++)

 {

 rand_num = rand()%1000/1000.0;

 id = 0;

 while(rand_num - selection_prob[id] > 1e-6)

 id++;

 index[i] = id;

 }

 k = num_of_fittest;

 for(i=0; i<num_of_crossover; i++)

 flag[i] = 0;

 for(i=0; i<num_of_crossover/2; i++)

 {

 //Randomly select id1 and id2 to perform crossover

 do

 {

 id1 = rand()% num_of_crossover;

 }

 while(flag[id1]==1);

 flag[id1] = 1;

 do

 {

 id2 = rand()% num_of_crossover;

 }

163

 while(flag[id2]==1);

 flag[id2] = 1;

 crosspoint = rand()% N;

 for(j=0; j<=crosspoint; j++)

 {

 new_population[k][j]= population[index[id1]][j];

 new_population[k+1][j]= population[index[id2]][j];

 }

 for(j=crosspoint+1; j<N; j++)

 {

 new_population[k][j]= population[index[id2]][j];

 new_population[k+1][j]= population[index[id1]][j];

 }

 k = k+2;

 }

 //mutation

 for(i=0; i<P; i++)

 flag[i] = 0;

 temp = MU*P;

 num_of_mutation = floor(temp);

 temp = 0.1*N;

 num_of_mutation_point = floor(temp);

 if(num_of_mutation_point == 0)

 num_of_mutation_point = 1;

 for(i=0; i<num_of_mutation; i++)

 {

 do

 {

 id = rand()%P;

 }

 while(flag[id]==1);

 flag[id] = 1;

 for(j=0; j<N; j++)

 new_population[k][j] = population[id][j];

 for(j=0; j<N; j++)

 flag_mutation_point[j] = 0;

 for(j=0; j<num_of_mutation_point; j++)

 {

 do

 {

 id1 = rand()%N;

 }

 while(flag_mutation_point[id1]==1);

 flag_mutation_point[id1] = 1;

 new_population[k][id1] = rand()% K;

 }

 k++;

 }

 //Copy newpopulation to population

 for(i=0; i<P; i++)

 {

 for(j=0; j<N; j++)

 {

 population[i][j] = new_population[i][j];

 }

164

 }

}

void sort(float A[],int m, int order[])

{

 int i,j;

 float temp;

 for(i=0; i<m; i++)

 order[i] = i;

 for(i=1; i<m ;i++)

 {

 for(j=0;j<m-i;j++)

 {

 if((A[j]-A[j+1])<-1e-6)

 {

 temp = A[j+1];

 A[j+1]= A[j];

 A[j]= temp;

 temp = order[j+1];

 order[j+1]= order[j];

 order[j]= temp;

 }

 }

 }

}

