Emission and valve point loading cost using superiority of feasible solutions-moth flame optimization

Mohammad Khurshed Alam^a, Mohd Herwan Sulaiman^a, Md. Shaoran Sayem^b, Shahriar Imtiaz^c, Md Mahfuzer Akter Ringku^d, Rahat Khan^e ^a Universiti Malaysia Pahang (UMP), Faculty of Electrical & Electronics Engineering Technology, Pahang, Pekan, 26600, Malaysia ^b American International University, Faculty of Electrical & Electronics Engineering, Dhaka, Bangladesh ^c North South University, Faculty of Computer Science, Dhaka, 1229, Bangladesh ^d Faculty of Electrical & Electronics Engineering American International, University-Bangladesh, Dhaka, Bangladesh ^e Minnesota State University, Faculty of Electrical Engineering, Mankato, 56001, MN, United

States

ABSTRACT

The optimal power flow (OPF) the most crucial instrument for power facility design and performance is analysis, load scheduling, and cost-effective dispatch. To determine the evidence of a steady state for a power system network, an optimal power flow analysis is required. This study introduces a novel optimization method called Superiority of Feasible Solutions-Moth Flame Optimization (SH-MFO) to answer the optimal power flow problem. As part of the MATLAB development, SH-MFO is implemented on the IEEE-30 bus standard experiment structure network. When compared to the reliable outcomes produced by other algorithms, the current study employing SH-MFO estimates a Generation and Emission Costs 48.6827 /h for minimizing the different fuels, which ultimately proves to be the best value. Analyze the poorest options suggested by the comparison algorithm, it saves money by 0.9873 % per hour. Based on simulation results, the SH-MFO method provides an improved and effective optimization algorithm for optimal power flow problems.

KEYWORDS

Energy Efficiency; Optimal Power Flow; power system optimization; Superiority of Feasible Solutions-Moth Flame Optimization; Valve-point Effect

ACKNOWLEDGEMENTS

Mohammad Khurshed Alam wishes to thank the University Malaysia Pahang (UMP) for their assistance with the Doctoral Research Scheme (DRS) under reference number UMP.20.03/13/13.14