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INTRODUCTION 

Photoplethysmogram (PPG) is a non-invasive periodic but very nearly irregular and random signal. The PPG signals 

are obtained through an optical method by a pulse oximeter. Pulse oximetry device is a small clip-like device, lightweight, 

non-invasive, and painless test. It is standard practice by medical practitioners to determine the blood's oxygen saturation 

level. It is convenient and quickly measures even little changes in blood's oxygen that are being carried from the heart to 

parts of the human, such as a finger, toes, and earlobe. The device can be used to monitor the health of people suffering 

from any condition that can affect blood oxygen levels including various lung diseases, heart failure, and congenital heart 

defects due to non-awareness to monitor the possibility to risk of cardiovascular disease. 

PPG signals contain a wealth of information that can provide significant information about an individual's health and 

risk of cardiovascular disease. In this study, features are extracted related to systolic peak and diastolic point information 

from the PPG waveform in the time domain. In literature, researchers have categorized PPG features based on different 

methods, for example, time-domain [1]–[14] , frequency domain [2], [12], [15]–[17], time-frequency domain [12], [18], 

and others [12], [17], [18]. Example of time-domain PPG-based features including systolic peak and diastolic point 

amplitude, peak to peak interval amplitude and time, pulse width, rising time, crest time, pulse area, rising slope, width 

phase, pulse peak ratio, pulse area ratio, inflection point area ratio, augmentation index, large artery stiffness index, and 

reflection index. Elgendi et al. and Chowdury et al., have also introduced some useful frequency-domain PPG features 

from the derivation of first and second derivative methods related to systolic and diastolic peak information [2], [12]. In 

addition, the time-frequency domain PPG features which are mNPV, percentile, mean absolute deviation (MAD), inter 

quartile range (IQR), skewness, kurtosis, Shannon’s entropy and spectral entropy were also used in estimating SBP and 

DBP [12], [18]. 

The systolic peak and diastolic point can be predicted to occur during the peripheral pulse wave on PPG signals. The 

systolic peak can be described as the outcome of the direct wave of pressure that moves from the left ventricle to the part 

located away from the body core. It also acts as the local maxima of the signals to be related to a diastolic point in 

estimating the vasoconstriction of the subject. Vasoconstriction is a condition where the difference of amplitude between 

systolic and diastolic points. Whereas the diastolic point can be explained to be the outcome of the wave of pressure 
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reflected by arteries located at the lower region of the body [4]. These diastolic points act as local minima of the signals 

and can be used to calculate the inter-beat interval (IBI) data.  

Clinical databases are the collections of observational data on people who meet certain criteria for a patient's or normal 

subject's health. The applications of these databases differ depending on whether the data comes from a single institution, 

many clinical facilities, or a population. Clinical datasets consist of more sensitive information about subjects. In 

literature, different open clinical datasets can be used for benchmarking for example MIMIC [17], MIMIC-I [1], [8], 

MIMIC-II [4], [16], [18], MIMIC-III [11], Aboy et al. [3], [6], [13], D.Liu et al. [7], [9], and the latest one is obtained 

from Liang et al. [12]. All of these datasets can be utilized for investigating systolic peak and diastolic point prediction. 

Some clinical datasets contain abnormal health information of disease, for example, diabetes, stroke, hypertension, 

vertebrobasilar insufficiency, and also have known cardiovascular problems [19], [20]. Normal datasets from healthy 

persons without healthcare issues such as hypertension, irregular cardiac rhythm, heart failure, or coronary heart disease 

are also available [10], [14]. Furthermore, there is a type of dataset that does not have a history of cardiovascular disease, 

neurological or respiratory disease [2], [5]. It can be concluded that every individual dataset has its specific intention. 

The features of PPG signals have been extracted using various approaches. For example, L. Wang et al. [21], in the 

literature, have used 72 subjects from the MIMIC database and then proposed 22 features using a feed-forward artificial 

neural network (FFANN) classifier. Kurylyak et al. [1] and S. Shukla [8] have proposed 21 features and 10 features, 

respectively from database MIMIC-I on 100 subjects. They have implemented a multi-back-propagation artificial neural 

network (MBPANN) and Multi-task Gaussian Processes (MTGPs) classifier. In addition, X. Xing et al. [16], Kachuee et 

al. [4], and Hasanzadeh et al. [18] have implemented database MIMIC II on 1000 subjects as their case study and 

implemented artificial neural network (ANN) and Adaptive Boosting (AdaBoost) algorithm method. Chen et al. [11] also 

have retrieved a clinical database from MIMIC III on 510 subjects, using a support vector machine (SVM) as a classifier. 

Furthermore, different datasets of PPG signals have been utilized such as D. Liu et al. [22] have utilized the vital signs 

dataset on 32 subjects with healthy data-driven from 7 volunteers. S. Khalid et al. have proposed a method using Random 

Forest Regression (RFR), Zhang and Wang [7] have proposed 13 features using geometry algorithm-back propagation 

neural network (GA-BPNN) on this clinical dataset. In addition, Kuntamalla et al. [3], Tee et al. [6] and T.Hann et al. 

[13] have retrieved clinical dataset from Aboy et al. [19]. They have used the neural network with random weights 

(NNRW) method to detect systolic peaks and diastolic points using a clinical database on 47 subjects. Otherwise, 

Chowdhury et al. [12] have extracted 107 features on 126 subjects that from dataset Liang et al. [20] has utilized Gaussian 

Process Regression (GPR) method. 

Next, Gao et al. [5] have proposed healthy data-driven PPG signals based on the camera lens and pulse oximeter with 

an SVM classifier. A novel algorithm proposed by Elgendi [2] can detect accurate systolic peak detection under 

challenging condition subjects where PPG signal is measured after exercise activities. Xu et al. [14] have proposed 15 

features and Cho et al. [10] have extracted 16 features on the subject that from a healthy adult male. They have 

implemented an ANN as a classifier. Other researchers, Zhang and Wang [7] and Chen et al. [11] have used the mean 

impact value (MIV) to determine the impact of features on the classifier to eliminate feature redundancy. 

The major goal of this research is to assess the performance of the NNRW-based approach for systolic-diastolic peak 

prediction from PPG signals. Ten PPG features of systolic and diastolic peaks are generated using an open clinical China 

database by Liang et al. [20]. Furthermore, the NNRW classifier has the potential to be used to classify systolic-diastolic 

points using the China database. The performance of this dataset using NNRW is still opened for investigation. 

The overall performance evaluation of this study is then compared with the results from T. Hann et al. [13] so that can 

guarantee the generalization of method performance. In the next section of the paper, we will explain the material and 

methodology, data collection, validation experiments, and the results and discussions. 

MATERIAL AND METHODOLOGY  

The signal pre-processing strategy, the peaks candidates identification and manual annotation processes, the features 

extraction method, and the NNRW multi-class classification method to predict systolic-diastolic points are all discussed 

in detail in Section 2. 

Figure 1 shows several important steps of an overall multi-class systolic-diastolic classification process. In the 

beginning, PPG signals from the database that is obtained by Liang et al. [20] were first assessed to check signal quality. 

Due to the signals consists of noises, it suggests going through the filtering process to smooth the signals. Next, true peak 

candidate identification is done automatically by our algorithm and manually annotates the true systolic-diastolic peaks 

and points. The data was then distributed into two sets at random for training and testing. The features are extracted based 

on the time domain which is contained a total of 20 features. A new dataset based on the 20 features was generated, and 

the dataset is randomly divided into two sets with 75 and 25 percent of the ratio. 75 % of the dataset is used to evaluate 

the training and validation classification algorithm's accuracy and the remaining 25 % is unseen dataset being used to test 

the algorithm's performance. Both training and testing datasets go through the classification stage using the NNRW 

classifier. 

Dataset 

The dataset applied for this work is produced by Liang et al. [20] and can be retrieved at 

https://doi.org/10.6084/m9.figshare.5459299 [23]. The PPG dataset of 219 subjects were containing 657 data segments 

is recorded over a three-minute duration each. The participants range in age from 20 to 89 years old, and the records 

https://doi.org/10.6084
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include information on cardiovascular diseases. Data for subjects are gathered from the Guilin People's Hospital in Guilin, 

China, and is based on complete clinical data. Furthermore, this dataset can be utilized to conduct research and identify 

PPG signal quality, to discover the relationship between the PPG waveform and cardiovascular disorders such as 

hypertension or diabetes, as well as evaluating latent feature information included in PPG signals.  

This dataset was originally collected at 1000 Hz and had three segments per participant. Every signal has a length of 

2.1 seconds and recorded 2100 data points. It was measured using the Omron HEM-7201 (Omron Company, Kyoto, 

Japan) and the PPG signal was taken at the fingertip of the left index finger while the arterial blood pressure was acquired 

from the right forearm. In addition, the subject's gender, age, height, and weight, as well as heart rate, systolic and diastolic 

pressures, were all also measured during the data collection session. 

Another dataset was collected that contains normal PPG dataset among Universiti Malaysia Pahang (UMP) 

undergraduate students volunteers between range age 20 and 30 years and healthy background. A total of 45 participants 

will be conducted to measuring the PPG signals, blood pressure, pulse oximetry (SpO2), and heart rate using two devices 

which are NONIN AVANT 2120 and OEM III. The PPG signal had to be taken in three segments, every segment recorded 

300 data points with a signal duration of 5 seconds per participant. Table I shows the details of the dataset. 

The data produced by Mateo Aboy et. al [19] was used in a previous paper T. Hann et al. [13] have provided their 

validation dataset is publicly available to retrieve. The dataset was containing PPG signal of intracranial pressure (ICP), 

arterial blood pressure (ABP), and pulse oximetry (SpO2) signals of randomly 210 subjects who had histories admitted 

for traumatic brain injury (60 subjects), sepsis (60 subjects), and cardiac conditions (90 subjects) in Pediatric Intensive 

Care Unit (PICU) at Doernbecher Children’s Hospital, Oregon Health & Science University. A total of 43539 PPG 

waveforms are recorded, then only 60 minutes duration are randomly selected for each subject.  

The dataset consists of two PPG signals with expert annotated detections generated by two different experts (DT and 

JM) was sampled at 125 Hz with a resolution of 8-bits. The first algorithm’s performance assessed using the expert 

manual annotations (DT) on 15866 PPG waveform corresponding to two 60 minute records. While the second 

performance of the algorithm on 2649 PPG waveform randomly selected was assessed against the two expert manual 

annotations (DT and JM). 

Overview of Algorithm 

The raw PPG signals were filtered before this dataset signals were sent for identification of true peak and point. The 

pre-processing signal methodology via the identification of true peaks and points is highlighted in the earlier stage of the 

flowchart in Figure 1, which is the completed phase after manual annotation of systolic-diastolic points for the raw signals. 

To find all variable peak and point candidates, a three-point sliding window approach is used [24]. The annotation 

procedure is then performed manually by an expert to distinguish between true and false peaks in the signals. Our prior 

works can be used to learn more about this methodology. The steps are followed by feature extraction and feature 

classification techniques [13]. 

Before the classification stage, there are two ways for the training and testing sets. In both training and testing, the K-

fold cross validation approach, with K set to 4, is employed. The NNRW classifier is trained using training sets, which 

are then intended at the end to produce the classification’s performance. The testing sets are then used with the trained 

classifier to produce testing results. 

 

 

 

 

Figure 1. The proposed algorithm flowchart for multi-class systolic-diastolic prediction using the NNRW classifier. 
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Figure 2. An example of illustration for manual annotation of raw PPG signals’ systolic-diastolic points. 

 

Table I. Details of Dataset 

 Male Female 
Age Group 

(Years) 

Clinical (219) 105 114 20 to 89 

Normal (45) 30 15 20 to 30 

Total (263) 135 129  

 

Pre-processing Signals 

Before feature extraction, the raw PPG signals were filtered and then go through several stages of pre-processing, 

which are summarised in two parts; 1) peak candidates identification and 2) annotation of systolic-diastolic points. 

Peak candidates identification 

This section discusses the process of identifying systolic-diastolic peaks candidates that are used in the time domain 

of PPG signals. The PPG signals have to be filtered to eliminate noise and unwanted peaks from the signals before 

proceeding to the peak candidates identification stage. Then, using the concept of a peak, peak candidates will be 

determined, with the systolic peak being the local maxima in between two local minima in a waveform and the valley 

being the local minima of the PPG waveform. The procedure is explained in detail in [13]. Then the steps are followed 

by manual annotation for both systolic-diastolic peak points. The manual annotation can let peak detection reduce the 

probability of selecting the false peak. 

Manual Annotation of Systolic-Diastolic Points 

After the systolic-diastolic point candidates are identified, the process proceeds with manual annotation technique in 

which means the identification of the actual location of systolic-diastolic points. In this study, for Liang et. al.’s dataset, 

there are 654 samples of PPG signals from 218 subjects were utilized while for 45 healthy volunteer datasets, there are 

recorded 135 samples of PPG signals. The manual annotation of actual systolic peaks and diastolic point processes are 

performed by an expert who is a knowledgeable person related to PPG signals.  

The raw PPG signals or line plotted shown in Figure 2 is an illustration of the process annotation. The point for the 

systolic candidate is indicated by green color, while for the diastolic candidate is highlighted by red color. Referring to 

Figure 2 there are many systolic-diastolic point candidates have been identified. The annotated systolic-diastolic point 

candidates that are chosen by an expert can be defined as true peaks and points. The remaining systolic-diastolic point 

candidates that are not chosen can be defined as false peaks and points. For Liang et. al.’s dataset, the possible actual 

systolic peaks that have been annotated are 1311 from 3144 candidates. The possible actual diastolic points that have 

been annotated are 1809 from 3144 candidates. Furthermore, for the healthy volunteer dataset, 642 possible actual systolic 
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peaks have been annotated from 1000 peak candidates and 774 possible actual diastolic peaks from 1000 points 

candidates. 

Feature Extraction 

Twenty features in total are extracted from the signals. For systolic peaks, there are 10 extracted features. For diastolic 

points, there are also 10 extracted features. All 20 time-domain features are categorized into three groups as described in 

detail in our previous paper [13]. The three groups are amplitudes, widths, and slopes. Based on seven parameters of peak 

candidate which is emphasized in [6], it is used to calculate all the 20 features. A detailed explanation to find a peak 

candidate and the 20 features can be referred to in [13]. 

K-Fold Cross Validation 

In the total of the PPG signal, only 6288 good qualities signal features and reference BPs were used 4-fold cross 

validation method. The cross validation approach is used to test the algorithm by dividing the original data into many 

partitions. After that, the data have been divided into two sets, such as training and testing sets using NNRW algorithms.  

The PPG data is divided into four partitions for 4-fold, each of which contains training and testing sets. for training 

and validation, a total of 75 percent of data are used, and the remaining 25 percent of the data being used to evaluate the 

model's test accuracy. Furthermore, the training set is split up into validation and training sets at random, resulting in two 

datasets with the same class ratio distribution. The testing set consists of unseen PPG data. 

Three folds were utilized to train an algorithm for each iteration, while the remaining fold was used to test its 

performance. The procedure was repeated until four iterations had been accomplished. Eventually, to obtain the highest 

accuracy for evaluation performance, the process of cross validation method is conducted 50 times. 

The features from the PPG signals dataset were trained with NNRW algorithms using a 4-fold cross validation 

approach. Due to its fast learning capability proposed by Schmidt et al., the NNRW classifier is recognized as a 

generalized classification method [25]. The training for NNRW was used to predict the systolic peak and diastolic points. 

The NNRW model is set up to 3 layered neural networks including input, hidden, and output layers. The layer consists of 

10 nodes for the input layer, 500 nodes for the hidden layer, and only one node for the output layer. The number of nodes 

for the hidden layer is found based on the experiment which is discussed in Section III. 

The NNRW classification method indicates as a variety of linear system that can be modeled as 𝐻𝛽 =
𝑇 mathematically, where H is the output matrix of the hidden layer, β is the output weights with 𝐿 × 𝑚,  as the output 

weights matrix, and T is target yields with 𝑁 × 𝑚 matrix. The equation for β and T matrixes are shown in Equation (1) 

and (2), respectively [10], [11]. The m defines the number of neurons at the output layer. 

 

𝛽 =  [
ℎ(𝑥1)

⋮
ℎ(𝑥𝑁)

]

𝐿𝑥𝑚

 (1) 

  

𝑇 =  [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
]

𝑁𝑥𝑚

 (2) 

 

The NNRW classifier's output function for a given unknown sample, x, is defined as follows: (3). Aside from that, the 

output matrix at the hidden layer, H, is shown in equation form in (4) and (5). 

 

𝑓𝑐(𝑥) = ℎ𝑐(𝑥)𝛽 (3) 

  

𝐻 = 𝛽 = [
ℎ(𝑥1)

⋮
ℎ(𝑥𝑁)

] (4) 
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 𝑔(∑ 𝑎𝑖1𝑥1𝑖

𝑑

𝑖=1
+ 𝑏1) ⋯ 𝑔(∑ 𝑎𝑖𝐿𝑥𝑖1

𝑑

𝑖=1
+ 𝑏𝐿)

⋮ ⋱ ⋮

𝑔(∑ 𝑎𝑖1𝑥𝑁𝑖

𝑑

𝑖=1
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𝑑

𝑖=1
+ 𝑏𝐿)]

 
 
 
 

𝑁𝑥𝐿

     (5) 

 

From equation form in (5), g denoted as the activation function for hidden neurons, a denoted for random input weights 

with 𝑑 × 𝐿  matrix, x denoted as input matrix with  𝑁 × 𝐿  matrix, b denoted as the biases that are randomly generated in 

the hidden layer with 1 × 𝐿 matrix. The matrixes described as N for a random different sample, L is the total of hidden 

neurons, d is the total of neurons in the inputs layer, and I is described as the output for the ith  hidden neuron for (𝑥1 … 𝑥𝑑). 

The sigmoidal function is chosen in this study as an activation function that is utilized for normalization purposes. 

Following the normalization step, a linear function will be assigned to the output layer's neuron. The equation form in (6) 
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demonstrates the minimum-norm least-squares approach, in which β is the linear system of  𝐻𝛽 = 𝑇. While equation 

form in (7) shows the smallest norm least-squares approach, where 𝐻+ denote as Moore-Penrose pseudo-inverse of H. 

 

‖𝐻(𝑎1, ⋯ , 𝑎𝐿, 𝑏1, ⋯ , 𝑏𝐿)𝛽 − 𝑇‖ = ‖𝐻(𝑎1, ⋯ , 𝑎𝐿, 𝑏1, ⋯ , 𝑏𝐿)𝛽 − 𝑇‖𝛽
𝑚𝑖𝑛  (6) 

  

𝛽 = (𝐻𝑇𝐻)−1𝐻𝑇𝑇 = 𝐻+𝑇 (7) 

 

The training of the NNRW classifier can be summarized that contains three important stages in this process. The first 

stage has to generate the random input weights, 𝑎𝑖, and the random biases in the hidden neurons, 𝑏𝑖. Follow the next 

stages by the calculation of the output matrix, H. Finally, the weights are then calculated with 𝛽 = 𝐻+𝑇. 

 

Performance Evaluations 

Evaluation of Peaks Detection Algorithm 

Table II recalls the categorized criteria of the performance evaluation proposed for the systolic-diastolic points 

detection algorithm. To evaluate the performance of the algorithm, four criteria were used in the standard metric for 

evaluation which are the average of value (Mean), the maximum of value (Max), the minimum of value (Min), and 

standard deviation (STD) as shown in Table II. In that table, all equations used Xi as the actual value of peak and n as the 

number of samples. Along with that table emphasize five other evaluation aspects including accuracy (Acc), precision 

(+P), sensitivity (Se), specificity (Sp), and F-score along with equations form and descriptions based on guideline by the 

European Society of Hypertension (ESH) and European Society of Cardiology (ESC) [26]–[28]. 

The accuracy (Acc) is the number of correct predictions made by the model over all kinds of predictions made. In 

addition, precision (+P) measures the proportion of a peak candidate, actually had a correctly true peak. Recall or 

sensitivity (Se) is the measured proportion of a peak candidate by the algorithm as the correctly true peak. While 

specificity (Sp) represents the proportion of occurrences the true non-peak of a peak candidate is accurately detected. Sp 

is the exact opposite of Se. The F-score depends on the relationship between +P and Se. If one number is really small 

between +P and Se, then the F-score kind of raises a flag and also is more closer to the smaller number. 

To evaluate overall results, two measures are used: overall accuracy and Gmean. The equation forms (8) and (9) are 

showed below. Noted that TPR is also denoted for sensitivity (Sei) or True Peak Rate (TPRi), and TNR is denoted for 

specificity (Spi) or True Non-Peak Rate (TNRi). 

 

Evaluation by ESH and ESC 

Another guideline, which is provided jointly by the ESH and ESC, categorizes the measurement of hypertension into 

seven classes of a confusion matrix. Based on this standardization, we assigned the output into four classes which are 

True-Systolic (TSa) as Class 0, False-Systolic (FSb) as Class 1, True-Diastolic (TDc) as Class 2, and False-Diastolic (FDd) 

as Class 3, which are Figure 3 shows that confusion matrix. The goal of utilizing this confusion matrix is to figure out 

what each class's score represents. 

 TSaa is defined as the true peak that correctly detected the apex point of a systolic peak candidate. While FSbb is 

denoted as the true peak that correctly detected the apex point of a false systolic peak candidate. The prediction values of 

(Eba, Eca, Eda) and (Eab, Ecb, Edb) predict the false peak that is incorrectly designated non-peak point of a systolic peak 

candidate and false systolic peak candidate, respectively. While the prediction of (Eab, Eac, Ead) and (Eba, Ebc, Ebd) estimated 

for the false non-peak that is incorrectly detected true peak point of systolic peak candidate and false systolic peak 

candidate, respectively.  

Furthermore, for diastolic point detection, TDcc descript as the true peak that correctly detected the apex point of a 

diastolic point candidate. While the true peak that correctly detected the apex point of a false diastolic point candidate 

denote as FDdd. The prediction values of (Eac, Ebc, Edc) and (Ead, Ebd, Ecd) predict the false peak that is incorrectly 

designated non-peak of a diastolic point candidate and false diastolic point candidate, respectively. While the prediction 

values of (Eca, Ecb, Ecd) and (Eda, Edb, Edc) estimated for the false non-peak that is incorrectly detected true peak of diastolic 

point candidate and false diastolic point candidate, respectively. The result for the confusion matrix along with the five 

evaluation metrics for every individual class is given in Table II. 
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Figure 3. Four Classes Classification of Confusion Matrix. 

 

Table II. Four Classes Classification Results for Clinical Participants. 

Performance 

Evaluation 

Classes 

Classification 

Training Results Testing Results 

Mean  

(%) 

Maximum 

(%) 

Minimum 

(%) 

Standard 

deviation 

Mean   

(%) 

Maximum 

(%) 

Minimum 

(%) 

Standard 

deviation 

Accuracy 

TS 99.03 99.08 98.96 0.03 98.45 98.60 98.32 0.10 

FS 98.98 99.03 98.91 0.05 98.53 98.66 98.30 0.11 

TD 97.10 97.26 96.98 0.08 96.18 96.32 95.93 0.13 

FD 97.08 97.20 96.92 0.08 96.20 96.48 95.92 0.14 

Precision 

TS 97.83 97.96 97.67 0.11 97.12 97.34 96.76 0.22 

FS 98.50 98.83 98.04 0.25 97.44 98.06 96.97 0.33 

TD 95.78 96.38 95.37 0.30 94.16 94.71 93.29 0.56 

FD 94.32 94.79 93.33 0.46 92.29 92.87 91.53 0.46 

Sensitivity 

TS 98.95 99.09 98.80 0.09 97.77 98.15 97.49 0.23 

FS 96.73 97.10 96.43 0.19 95.74 96.18 95.11 0.34 

TD 94.10 94.57 93.85 0.21 92.63 93.06 92.00 0.35 

FD 94.32 94.79 93.33 0.46 92.48 93.08 91.67 0.46 

Specificity 

TS 99.10 99.15 99.03 0.05 98.81 98.90 98.65 0.09 

FS 99.61 99.70 99.49 0.07 99.34 99.50 99.22 0.09 

TD 97.85 98.02 97.76 0.08 97.69 97.93 97.33 0.24 

FD 97.87 97.94 97.78 0.06 97.28 97.47 97.07 0.13 

F-score 

TS 98.39 98.47 98.28 0.06 97.44 97.69 97.23 0.16 

FS 97.61 97.72 97.45 0.11 96.58 96.87 96.03 0.25 

TD 94.94 95.19 94.74 0.13 93.38 93.61 92.98 0.21 

FD 94.32 94.79 93.33 0.46 92.38 92.98 91.60 0.45 

RESULT AND DISCUSSION 

The results of the peak detection algorithm, as well as the NNRW classifier that used in this study, are summarised in 

this section. It can be seen that the final results of systolic-diastolic points using NNRW are conducted into two 

experiments. The first experiment was conducted to measure the performance using the various number of neurons in the 

hidden layer. This experiment also evaluates the algorithm’s performance using the 10 systolic and 10 diastolic features. 

After that, after comparing the results of overall accuracy and Gmean accuracy of training and testing results, the number 

of hidden neurons was chosen as the most optimal. As a result, 500 hidden neurons outperformed compared with all the 

cases. 

Furthermore, the performance of the second investigation was assessed using five assessment metrics: accuracy (Acc), 

precision (+P), sensitivity (Se), specificity (Sp), and F-score. The performance of the NNRW algorithm was also 

estimated using the convincing overall accuracy and Gmean of testing results with 94.86 and 94.74 percent, respectively. 

 

Experiment 1: Performance Evaluation based on Different Hidden Neuron Number from 10 to 1000  

Clinical Data Participants 

This experiment is carried out with two distinct datasets of systolic and diastolic features, as well as their annotated 

peaks and points, respectively. The experiment is repeated ten times and the outcomes for the training and testing 

processes are evaluated using two measurement metrics: overall accuracy and Gmean accuracy. The results also contain 

the percentage of the value for evaluation standard metrics prediction such as the average of value (Mean), maximum 

(Max), and minimum (Min) value, also standard deviation (STD) for comparison purposes. The numbers of hidden 
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neurons are suitable and needed for the NNRW classifier to get greater generalization ability by setting from 10 to 1000 

numbers of hidden neurons. 

Referring to Figure 4, for Liang et. al.’s data, the Gmean accuracy of training and testing sets for 218 clinical PPG 

data participants between the values of a mean percentage to the increment of hidden neuron values. For training results, 

it can be observed that there is an increment in mean percentage achieved above 96 percent with the setting of 500 hidden 

neurons. For the testing results, upon reaching 100 neurons, it can be observed that there is a decrement in mean 

percentage lower than 94 percent. Next, between the ranges of 100 neurons to 500 neurons, the mean percentage stayed 

between the ranges of 94.46 percent to 96.07 percent, below 96.07 percent with 1.61 percent of the difference between 

the lowest to highest the mean value.  

When the 500 to 600 neurons are setting up, the mean percentage show some increment between the ranges of 96.07 

percent to 96.28 percent, with 0.21 percent of the difference from lowest to highest the mean value. When the 600 to 700 

neurons are set up, there is 0.14 percent of the difference, the mean percentage shows increment between the ranges of 

96.28 percent to 96.42 percent. Hidden neurons value between the ranges 700 to 800 neurons show some increment in 

between 96.42 and 96.66 percent with 0.24 percent, the highest difference range compared to other hidden neurons range. 

The ranges between 800 to 900 hidden neurons show 0.17 percent of the difference between 96.66 to 96.83 percent, and 

the highest mean is 97.05 percent between the ranges 900 to 1000 of hidden neurons. The result from the Gmean accuracy 

of testing sets with mean percentage began to decrease when neurons value in between 500 to1000. The mean percentage 

shows the ranges between 94.74 percent decreased to 94.01 percent. 

Although, the mean Gmean accuracy of training sets can further increase with neurons value up to 1000. The mean 

Gmean accuracy of testing sets began to reduce if more than 500 neurons are set up. Based on this experiment, the 

evaluation from above 500 hidden neurons can contribute becomes a relatively longer computational time. The overall 

evaluation results for 500 hidden neurons for clinical participants are tabulated in Table III. 

Normal Data Participants 

Figure 5 shows the Gmean’s accuracy of training and testing results from in-between values of a mean percentage to a 

different hidden neuron value. It can be observed from the training results show some increment in mean percentage up 

above 94.08 percent with the setting of 500 hidden neurons, while for the testing results, it shows the accuracy is above 

90.15 percent. The performance starts to decline when the number of hidden neurons is increased. It can be seen that once 

100 neurons are set up, the increase in mean percentage becomes lower than 91.31 percent for training results and less 

than 89.91 for the testing result. Next, between the ranges of 100 to 500, the mean percentage remained the ranges from 

91.31 to 94.08 percent and below 94.08 percent with 2.77 percent of the difference between the lowest to highest the 

mean value.  

It can be concluded that when the neuron is setting up to 500, the Gmean for training results are obtained to 94.08 

percent whereas testing results have reached their maximum, which is 90.15 percent. The training performance continues 

increasing up to 1000 neurons. However, for the testing set, it began to decline. Referring to Fig. 5 and Table IV, 500 

hidden neurons for normal participants have been chosen as the optimal hidden neurons value for classification. 

 

Experiment 2: Performance Evaluation using 500 Neurons. 

Clinical Data Participants 

This experiment purposely evaluates the algorithm’s performance based on the chosen optimal number of neurons in 

the hidden layer. To identify various classes of peaks and points, the first step of annotation for the systolic peak and the 

diastolic point has been carried out at the pre-processing signal process. After that, the peak and point candidates will be 

compared to annotated peaks and points as four classes which are True Systolic (TS), False Systolic (FS), True Diastolic 

(TD), and False Diastolic (FD). 

Table II. recalls the result of five important evaluation metrics for TS and FS classes and the comparison is tabulated 

in Table V. Table V. shows the four evaluation metrics for mean training results of TS score above 98.39 percent. Only 

precision (+P) metric with score 97.83 percent, lowest than others metrics. This could be due to the high number of 

predicted results that have been incorrectly classified as TS. For the FS score, four metrics score above 97.61 percent, 

while the remaining score with 96.73 percent, for sensitivity (Se) metrics.  

Table V. also arranges the comparison of mean training results from five significant evaluation metrics for TD and 

FD classes (see results in Table II.). The results appeared as only one metric evaluation from both classes scored above 

97.85 percent, which is from specificity (Sp) metrics. While remaining four others metrics (Acc, +P, Se, and F-score) 

showed scores between 94.10 percent to 97.10 percent from both classes, respectively. Sp in both classes was the highest 

score with almost 97.90 percent. Although, the same relationship between TD and FD where a high occurrence of falsely 

predicted value as TD can be linked to the high occurrence of falsely predicted value as non-FD, or either. Therefore, the 

F-score result can be affected depending on the relationship between +P and Se result. 

Referring to the results in Table V., it can conclude that the accuracy of the four classes performs well, especially as 

the classification of TS and FS. The accuracy for TD and FD both almost at 97 percent makes a high accuracy performance 

result to our objective in identifying diastolic point. Without excluding the accuracy of TS and FS, both classes performed 

with a near-perfect result almost in 99 percent. 
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Normal Data Participants 

Referring to experiment 1 for normal data participants, the 500 neurons are chosen as the optimal number of hidden 

neurons to put along with the NNRW classifier. Table VI. illustrates the result of five significant evaluation metrics for 

TS and FS classes of classification for training and testing results while Table VII. draws a comparison for mean training 

results between the classes. That table estimates the four evaluation metrics for mean training results of TS score very 

well above 97.19 percent. Only sensitivity (Se) metric with score 94.56 percent, lowest than others metrics. For the FS 

score, four metrics score above 98.47 percent, while the remaining score with 97.01 percent, for precision (+P) metrics. 

The results show that there is a relationship between TS and FS.  

Table VII. also arranges the evaluation of mean training results from five significant performance metrics prediction 

for TD and FD classes (see results in Table VII.). The results also appeared as the four evaluation metrics for mean 

training results of TD score very well above 90.72 percent. Only sensitivity (Se) metric with score 83.24 percent, lowest 

than others metrics. For the FD score, four metrics score above 96.70 percent, while the remaining score with 95.18 

percent, for specificity (Sp) metrics.  

 

 

Figure 4. The comparison for performance number of hidden neurons using a mean percentage of clinical PPG data 

participants from Gmean accuracy of training and testing result. 

 

Table III. Overall Evaluation Results Using 500 Neurons (Clinical Participants). 

 Training Results Testing Results 

 Mean 

(%) 

Max 

(%) 

Min 

(%) 

Std. Dev 

(%) 

Mean  

(%) 

Max 

 (%) 

Min  

(%) 

Std. Dev 

(%) 

Overall Accuracy 96.17 96.29 96.10 0.06 94.86 95.09 94.66 0.14 

Gmean 96.07 96.18 95.97 0.07 94.74 94.96 94.53 0.14 

 

 

 

Figure 5. Performance evaluation on different neurons value using a mean percentage of normal PPG data participants 

from Gmean accuracy of training and testing results. 
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Table IV. Overall Evaluation Results Using 500 Neurons (Normal Participants). 

 Training Results Testing Results 

 Mean 

(%) 

Max 

(%) 

Min 

(%) 

Std. Dev 

(%) 

Mean  

(%) 

Max 

 (%) 

Min  

(%) 

Std. Dev 

(%) 

Overall Accuracy 95.74 95.94 95.54 0.13 92.68 92.99 90.37 0.43 

Gmean 94.08 94.41 93.79 0.19 90.15 90.51 88.02 0.43 

 

Comparison with the Previous Study 

Table VIII. compares the results for detection systolic peak and diastolic point with the previously published methods 

[13] that use dataset from Mateo Aboy et al. [19]. The same classification we have used along with the NNRW classifier 

and the features extraction process. As is seen in Table VIII., our proposed method has resulted in a smaller prediction 

percentage for two performance evaluation metrics, using overall accuracy and Gmean result compared to the method 

proposed in [13]. 

The mean percentage result from both papers estimated at 95.60 percent and 94.72 percent for overall accuracy and 

Gmean of testing results, respectively. We believe that this is due to consists of the detection system of expert annotation 

(JM and DT) from the dataset [19], as well as using a more accurate pre-processing process for detecting key points in 

the signals. A dataset in [19] contains 4603 sample signals randomly select from 47 subjects. While, in this work, all 2100 

data per signal from 218 clinical subjects and 45 volunteers as such, many signal parts belong to the same individuals 

were shuffled and then partitioned into training and testing sets. This means that in this work, some samples of the test 

subjects were in the training sets, which makes the prediction task significantly complex compared to work in [13] where 

no sample from the test subjects are in the training set. 

Table IX., recalls the comparison result of five significant evaluation metrics for TS and FS classes between this work 

and paper in [13]. This table noticed that from both research works, four evaluation metrics of TS score very well above 

98.39 percent. After compared and analyzed that only precision (+P) metric with the mean percentage 98.41 percent from 

both papers, lowest than others metrics result. This could be due to the highest number of cases in both comparisons that 

were incorrectly predicted as TS.  

For the FS score comparison result, four metrics score above 99.46 percent, while the remaining score with 99.02 

percent, for sensitivity (Se) metrics in previous work, followed as well as result in this work. The lower result of 98.58 

percent from both Se could be due to the highest number of results incorrectly predicted as non-FS. From the result, we 

can identify both existing works on the same track to the close correlation of TS and FS.  

Table IX. also arranges the comparison of results between this study and the previous work [13], from five significant 

evaluation metrics for TD and FD classes. The results in previous work seem like only one metric from both classes was 

the highest score with almost 99.98 percent, which is from specificity (Sp) metrics. While remaining four others metrics 

(Acc, +P, Se, and F-score) showed scores between 99.86 percent to 99.95 percent from both classes, respectively. The 

mean percentage from both papers, which is from Sp metrics show scored above 97.67 percent, highest than others metrics 

score result. Although, the same relationship between TD and FD in paper [13], followed as well as the result in this 

study. 

By summarizing Table IX., we can conclude that the overall performance evaluation of this study compared with the 

results from the previous paper, T. Hann et al. [13] are performed well, too might guarantee the quality of method 

performance using NNRW-based method for multi-class classification systolic and diastolic peak detection of PPG 

signals. Later, in the future, we can investigate the seven different labels of hypertension to each of the ground truth and 

estimated BP values. 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
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Table V. Comparison of Mean Training Result For Four Classes Classification (Clinical Participants) 

Class Classes Classification Accuracy  

(%) 

Precision  

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-score  

(%) 

0 True-Systolic peak (TS) 99.03 97.83 98.95 99.10 98.39 

1 False-Systolic peak (FS) 98.98 98.50 96.73 99.61 97.61 

2 True-Diastolic point (TD) 97.10 95.78 94.10 97.85 94.94 

3 False-Diastolic point (FD) 97.08 94.32 94.32 97.87 94.32 
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Table VI. Four Classes Classification Results for Normal Participants. 

Performance 

Evaluation 

Classes 

Classification 

Training Results Testing Results 

Mean  

(%) 

Maximum 

(%) 

Minimum 

(%) 

Standard 

deviation 

Mean   

(%) 

Maximum 

(%) 

Minimum 

(%) 

Standard 

deviation 

Accuracy 

TS 99.02 99.07 98.91 0.05 96.88 97.52 96.24 0.39 

FS 99.02 99.07 98.91 0.05 97.46 97.69 97.20 0.18 

TD 96.70 96.82 96.61 0.06 93.65 94.48 93.04 0.42 

FD 96.70 96.82 96.61 0.06 93.60 94.48 92.95 0.56 

Precision 

TS 99.98 100.00 99.90 0.04 96.62 97.52 95.76 0.61 

FS 97.01 97.16 96.66 0.14 95.01 95.70 93.84 0.51 

TD 99.70 100.00 99.11 0.29 89.74 92.89 86.44 1.75 

FD 99.85 100.00 99.56 0.14 94.90 96.57 93.28 0.91 

Sensitivity 

TS 94.56 94.84 93.92 0.26 86.05 88.66 83.16 1.71 

FS 99.98 100.00 99.94 0.02 97.32 97.80 96.23 0.53 

TD 83.24 83.70 82.71 0.31 76.81 78.16 75.43 0.91 

FD 99.85 100.00 99.56 0.14 96.44 97.69 95.53 0.80 

Specificity 

TS 99.99 100.00 99.98 0.01 99.36 99.53 99.19 0.12 

FS 98.65 98.72 98.49 0.06 97.76 98.08 97.19 0.24 

TD 95.18 95.31 95.03 0.09 97.87 98.58 97.16 0.38 

FD 95.18 95.31 95.03 0.09 92.45 93.22 91.73 0.50 

F-score 

TS 97.19 97.35 96.86 0.14 90.98 92.86 89.02 1.16 

FS 98.47 98.55 98.30 0.07 96.14 96.52 95.78 0.28 

TD 90.72 91.08 90.49 0.19 82.68 84.74 81.20 1.07 

FD 99.85 100.00 99.56 0.14 95.66 96.99 94.46 0.80 

 

 

 

Table VII. Comparison of Mean Training Result For Four Classes Classification (Normal Participants). 

Class Classes Classification Accuracy  

(%) 

Precision  

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-score  

(%) 

0 True-Systolic peak (TS) 99.02 99.98 94.56 99.99 97.19 

1 False-Systolic peak (FS) 99.02 97.01 99.98 98.65 98.47 

2 True-Diastolic point (TD) 96.70 99.70 83.24 95.18 90.72 

3 False-Diastolic point (FD) 96.70 99.85 99.85 95.18 99.85 

 
 

 

Table VIII. Comparison of Overall Performance with existing work. 

Overall 

Performance 

Evaluation 

Participants 

Category 

Work / 

Publication 

Year 

Hidden 

Neurons 

Training Results Testing Results 

Mean 

(%) 

Max 

(%) 

Min 

(%) 

Std. 

Dev. 

(%) 

Mean 

(%) 

Max 

(%) 

Min 

(%) 

Std. 

Dev. 

(%) 

Overall 

Accuracy 

Clinical  
This work 500 96.17 96.29 96.10 0.06 94.86 95.09 94.66 0.14 

[13] / 2019 700 99.67 99.70 99.64 0.01 99.26 99.39 99.19 0.04 

Normal This work 500 95.74 95.94 95.54 0.13 92.68 92.99 90.37 0.43 

 Mean (%) 97.19 97.31 97.09 0.07 95.60 95.82 94.74 0.20 

Gmean 

Clinical  
This work 500 96.07 96.18 95.97 0.07 94.74 94.96 94.53 0.14 

[13] / 2019 700 99.68 99.71 99.64 0.01 99.27 99.40 99.20 0.04 

Normal This work 500 94.08 94.41 93.79 0.19 90.15 90.51 88.02 0.43 

 Mean (%) 96.61 96.77 96.47 0.09 94.72 94.96 93.92 0.20 
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Table IX. Comparison of four classes classification with other published work. 

Classes 

Classification 

Participants 

Category 

Work / 

Publication 

Year 

Accuracy Precision Sensitivity Specificity F-score 

(%) (%) (%) (%) (%) 

True-Systolic peak 

(TS) 

Clinical  
This work 99.03 97.83 98.95 99.10 98.39 

[13] / 2019 99.72 98.98 99.90 99.67 99.44 

Mean (%) 99.38 98.41 99.43 99.39 98.92 

Normal This work 99.02 99.98 94.56 99.99 97.19 

Mean (%) 99.26 98.93 97.80 99.59 98.34 

False-Systolic 

peak (FS) 

Clinical  
This work 98.98 98.50 96.73 99.61 97.61 

[13] / 2019 99.72 99.90 99.02 99.97 99.46 

Mean (%) 99.35 99.20 97.88 99.79 98.54 

Normal This work 99.02 97.01 99.98 98.65 98.47 

Mean (%) 99.24 98.47 98.58 99.41 98.51 

True-Diastolic 

point (TD) 

Clinical  
This work 97.10 95.78 94.10 97.85 94.94 

[13] / 2019 99.95 99.86 99.93 99.98 99.89 

Mean (%) 98.53 97.82 97.02 98.92 97.42 

Normal This work 96.70 99.70 83.24 95.18 90.72 

Mean (%) 97.92 98.45 92.42 97.67 95.18 

False-Diastolic 

point (FD) 

Clinical  
This work 97.08 94.32 94.32 97.87 94.32 

[13] / 2019 99.95 99.86 99.86 99.98 99.86 

Mean (%) 98.52 97.09 97.09 98.93 97.09 

Normal This work 96.70 99.85 99.85 95.18 99.85 

Mean (%) 97.91 98.01 98.01 97.68 98.01 

 

CONCLUSION 

In conclusion, this study has accomplished the performance evaluation for a multi-class NNRW-based approach for 

systolic-diastolic peak prediction from PPG signals on two different open benchmark datasets. The first dataset is an open 

clinical China database and the second dataset is data collected from undergraduate students, Universiti Malaysia Pahang 

(UMP). It is evaluated using two experimental setups, then compared the results with previous research so that can 

guarantee the generalization of method performance.  

The earlier module of the assessing work deal with pre-processing signals to eliminate the noise from the PPG signal. 

It then was sent for predicting true peaks and points after the manual annotation stage of systolic-diastolic points for the 

raw signals. This is followed by feature extraction and feature classification approached by 4-fold cross validation, and 

finally generated the performance results of predicted systolic-diastolic peaks during training and testing using the NNRW 

classifier. The best performance examined that the research achieved good results for prediction of True Systolic peak 

and True Diastolic peak with 99.03 percent and 97.10 percent for clinical databased respectively while for normal 

databased almost achieved with 99.02 and 96.70 percent, respectively. The performance testing results to the overall 

accuracy and Gmean for clinical dataset also achieved the result with 94.86 percent and 94.74 percent, respectively while 

for normal dataset the results obtained 92.68 percent and 90.15 percent, respectively. 

The finding results from the two experiments showed the ability of the algorithm to predict systolic and diastolic peaks 

and points of PPG Signals, respectively. For future work, this algorithm can be employed to predict and estimate any 

medical health applications related to oxygen's blood including hypertension, diabetes, lung diseases, heart failure, and 

congenital heart defects. 
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