

A NEW SCHEDULING TECHNIQUE

TO IMPROVE DATA MANAGEMENT IN

CLOUD COMPUTING

NAWSHER KHAN

DOCTOR OF PHILOSOPHY

UNIVERSITY MALAYSIA PAHANG

ii

THESIS CONFIDENTIAL STATUS

UNIVERSITY MALAYSIA PAHANG

DECLARATION OF THE THESIS AND COPYRIGHT

Author‟s full name : Nawsher Khan

Date of birth : 30/12/1977

Title : A NEW SCHEDULING TECHNIQUE TO IMPROVE

 DATA MANAGEMENT IN CLOUD COMPUTING

Academic Session : 2009-2013

I declared that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the official

 Secret Act 1972)

RESTRICTED (Contains restricted information as specified by the

 organization where research is done)

OPEN ACCESS I agree that my thesis to be published as online open

 access (Full text)

I acknowledge that Universiti Malaysia Pahang reserves the right as follows:

1. The thesis is the property of Universiti Malaysia Pahang.

2. The library of Universiti Malaysia Pahang has the right to make copies for the

purpose of the research only.

3. The library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student‟s Signature) (Signature of Supervisor)

 CW4118061 Assoc. Prof. Dr. Noraziah Ahmad

 Passport Number Name of Supervisor

 Date: April 10, 2013. Date: April 10, 2013.



iii

A NEW SCHEDULING TECHNIQUE

TO IMPROVE DATA MANAGEMENT IN

CLOUD COMPUTING

NAWSHER KHAN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computer Systems & Software Engineering

UNIVERSITY MALAYSIA PAHANG

2013

iv

Thesis submitted in fulfillment of the requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

v

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion this thesis is

satisfactory in terms of scope and quality for the award of Doctor of Philosophy in

Computer Science.

Signature : --

Name of Supervisor : DR. NORAZIAH BINTI AHMAD

Position : ASSOCIATE PROFESSOR

 FACULTY OF COMPUTER SYSTEMS & SOFTWARE

 ENGINEERING, UNIVERSITI MALAYSIA PAHANG

Date : April 10, 2013.

vi

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature : ---

Name : NAWSHER KHAN

ID Number : PCC090003

Date : April 10, 2013.

vii

Dedicated to

*Arfa Karim Randhawa (Late)

(2 February 1995 – 14 January 2012)

&

Prof. Dr. Abdul Qadeer Khan

* Arfa became the world‟s youngest Pakistani Microsoft Certified Professional (MCP) at the age of nine in 2004. She was invited
by Bill Gates to visit the Microsoft Headquarters in the USA. In her life, she was awarded the Fatimah Jinnah Gold Medal, Salaam

Pakistan Youth Award, President’s Pride of Performance, the Civil Award and many more. Further, Arfa was made brand

ambassador for Pakistan Telecommunication Company's 3G Wireless Broadband service. She wanted to study at Harvard, work in
Microsoft, and explore technological innovations in the field of satellite engineering in Pakistan. She died after 26 days of epileptic

seizure. The last job before her death was with NASA.

 Dr. Abdul Qadeer Khan (A. Q. Khan) is a Pakistani nuclear scientist, metallurgical engineer, and the undisputed hero of Pakistan's

nuclear saga and called "The Father of The Islamic Bomb". His breakthrough ultimately resulted in the historic explosion of six

nuclear bombs in May 1998. Not only was this but a significant development also made with the successful test firing of
Intermediate Range Ballistic Missiles, Ghauri 1, in April 1998 and Ghauri II in April 1999. Dr Khan has received honorary degrees

of Doctor of Science from the University of Karachi in 1993, Doctor of Science from Baqai Medical University on (1998), Doctor

of Science from Hamdard University, Karachi (1999) and Doctor of Science from the University of Engineering and Technology,
Lahore in December 2000. For his contributions in the field of science and technology, the President of Pakistan conferred upon Dr

Khan the award of Nishan-I-Imtiaz 1996 and 1998. Dr Khan is the only Pakistani to have received the highest civil award of

“Nishan-I-Imtiaz‟‟ twice. He is also a recipient of Hilal-I-Imtiaz.

viii

ACKNOWLEDGEMENT

All praises to the Almighty Allah (s.w.t), who made me able to explore new

horizon of knowledge. With due reverence, I would like to acknowledge that without

the divine blessing, I would not have been able to be part of a well versed family and

friends. These factors made me achieve what was destined for me.

I would like to express my sincere gratitude and thanks to my respectable

supervisor, Assoc. Prof. Dr. Noraziah Ahmad, who has always guided me through her

constructive approach of my endeavors in a sister figured manner. Her assistance,

devotion, and encouragement are unforgettable in my life. I am also thankful to my co-

supervisor, Dr. Tutut Herawan, who always pushed me to finish my work on time and

to the point. I also would like to pay thanks to Prof. Dr. Mustafa Mat Deris from

University Tun Hussein Onn Malaysia, for his supervision, who was always very kind

to extend his valuable guidance and insight in my study. I also recognize the help and

support by the clerical staff in the Faculty of Computer Systems and Software

Engineering throughout the duration of my research.

Finally, I would like to appreciate my parents for giving me the best chance,

advice, and support for receiving education and special thanks to my wife, who

shouldered the whole responsibility of my family and of my kids, in my absence. My

gratitude is extended to all my friends, my fellows, especially to my dearest, who

always give courage and showed me, “Thumb Up”.

ix

ABSTRACT

Cloud Computing is an extremely successful service oriented computing paradigm and

has revolutionized, modernized, and well-developed infrastructure of computing. It is

being signaled as the next-generation shift which combines the Internet and computing,

as a result, users will be able to access and store software, content, and data in remote

servers run by other companies or by a client. Data Management is the key factor of

Cloud Computing, which is „the right data in the right place at the right time’. It is also

the development and execution of architectures, policies, practices, and procedures in

order to manage the information lifecycle needs of an organization in an effective

manner. Scheduling techniques, which are the important part of data management, are

disciplines and procedures used for distributing resources between two different parties,

that is, Cloud Computing provider and Cloud Computing service user. The main

purposes of scheduling algorithms, architectures, and techniques are to minimize the

starvation of resources and service during the right time for using.

Existing models presents the whole scheduling architecture for data transferring

process, by taking in two slots. External Scheduler (ES) in one, and Local Scheduler

(LS) with Data Scheduler (DS) in another slot. But new proposed scheduling

architecture takes all three scheduler separately. On the base of these three separate

schedulers Queue Time (QT), Execution Time (ET), and Data Transfer time (DT), also

have been taken separately in data transfer time calculation.

Dealing with increasing huge amount of data makes the requirement more critical for

efficient accessing of data. Scheduling techniques have their major involvement in

managing day-by-day increased large data in cloud environment. This research proposes

a new scheduling technique to calculate the Total Completion Time (TCT) for the

transfer of specific amount of data. The formula for transfer time calculation has three

parameters, namely the Queue Time (QT), Execution Time (ET), and Data Transfer

time (DT). All these times (intervals) are different from each other and have their own

importance during calculation. In previous exist models, one of these values, either QT

or DT, has been ignored by taking maximum of them. Ignoring one value means

decreasing the actual consuming time. The proposed model considers each parameter

separately, means giving importance to each parameter. As an outcome, the Total

Transferring Time for data can be the sum of QT, ET and DT in TCT.

The proposed model Total Completion Time (TCT) has been evaluated by using a single

server and finite population M/M/C/*/P queuing model. There is a great impact on

accuracy by taking each parameter separately in the formula. Accuracy is 85% by using

56Kbps bandwidth (BW) and number of jobs (M) taken 2, it is increased up to

92.4639% for 50 jobs. The accuracy is 98.5000%; for 2 jobs, increases up to 99.1753%

for jobs 50 by using BW 512kbps. Result shows that by using M > 500, stability point

(where accuracy is 100%) can be achieved. Hence new technique is more efficient when

we need to transfer large amount of data. Experiments showed that the proposed model

is more reliable, in terms of accuracy. The proposed model has an accurate transfer time

calculation, thus Cloud Computing can present its services in a more efficient manner.

x

ABSTRAK

Perkomputeran Awan adalah perkomputeran berasaskan servis yang sangat berjaya.

Ianya telah berevolusi, mengalami proses permodenan serta mempunyai infrastruktur

yang terancang. Perkomputeran Awan merupakan pengkomputeraan generasi

seterusnya dan telah menyebabkan gelombang peralihan.Ini adalah kerana

pengkomputeran Awan menggabungkan internet dan perkomputeran yang hasilnya

membolehkan pengguna mengakses dan menyimpan perisian, kandungan dan data di

dalam pelayan yang disediakan oleh syarikat lain atau pengguna. Pengurusan data

adalah kunci utama kepada pengkomputeran Awan di mana „Data yang tepat pada masa

yang tepat‟. Pengurusan data adalah pembangunan dan perlaksanaan dari segi

rekabentuk, polisi, amalan dan prosedur di dalam pengurusan kitaran maklumat yang

diperlukan oleh organisasi dalam cara yang efektif. Teknik penjadualan yang

merupakan bahagian yang sangat penting di dalam pengurusan data, merupakan displin

atau prosedur yang digunakan dalampem bahagian sumber diantara dua pihakiaitu,

penyediaaan perkomputeran awan dan pengguna perkhidmatan perkomputeran awan.

Tujuanutama algoritma penjadualan, senibina dan teknikal adalah untuk meminimakan

kekurangan sumber dan servis pada masa penggunaan.

Model sedia memben Tang, M.kan keseluruhan senibina penjadualan dengan

mengambil kira dua slot. Penjadualan Luar (ES) dalam satu slot, dan Penjadualan

Setempat (LS) dengan Penjadualan Data (DS) dalam slot yang lagi

satu.Walaubagaimanapun senibina penjadualan baru yang dicadangkan mengambil

ketiga-tiga penjadualan secara berasingan. Pada asasnya ketiga-tiga penjadual

berasingan Masa Giliran (QT), Masa Pelaksanaan (ET), dan masa Pemindahan Data

(DT), juga telah diambil secara berasingan dalam data pengiraan masa pemindahan.

Berurusan dengan peningkatan data yang semakin banyak menyebabkan keperluan yang

sangat kritikal kepada capaian data yang lebih efisyen. Teknik penjadualan memang

banyak terlibat di dalam peningkatan data yang besar hari demi hari di dalam

persekitaran awan. Penyelidikan ini mencadangkan teknik penjadualan yang baru untuk

mengira Jumlah Masa Tamat (TCT) untuk proses penghantaran data yang tertentu.

Formula untuk masa penghantaran mempunyai tiga parameter, iaitu Masa Giliran (QT),

Masa perlaksanaan (ET) dan Masa Penghantaran (DT). Kesemua jenis masa ini (selang)

adalah berbeza antara satu sama lain dan mempunyai nilai kepentingan yang tersendiri

semasa pengiraan. Di dalam model yang sebelumnya, salah satu nilai QT atau DT

adalah diabaikan kerana mereka hanya mengambil kira nilai yang maksimum.

Mengabaikan salah satu nilai bermakna terdapat penurunan kepada nilai masa yang

sebenarnya diperlukan. Model yang dicadangkan ini menitik beratkan setiap parameter

di dalam formula yang sedia ada secara berasingan iaitu dengan memberikan

kepentingan untuk setiap parameter. Hasilnya, Jumlah Masa Penghantaran adalah

jumlah kepada QT, ET, DT dan TCT.

xi

Model yang dicadangkan Jumlah Masa Tamat (TCT) telah dinilai dengan menggunakan

pelayan tunggal dan populasi terhingga model giliran M / M / C / * / P. Terdapat kesan

yang besar terhadap ketepatan dengan mengambil setiap parameter secara berasingan

dalam formula. Ketepatan adalah 85% dengan menggunakan jalur lebar(BW) 56kbps

dan bilangan tugas (M) 2, ianya meningkat sehingga 92.4639% untuk 50 tugasan.

Ketepatan adalah 98.5000%; untuk 2 tugasan dan peningkatan sehingga 99.1753%

untuk 50 tugasan dengan menggunakan BW 512kbps. Keputusan menunjukkan bahawa

dengan menggunakan M > 500, titik kestabilan (di mana ketepatan adalah 100%) boleh

dicapai. Oleh itu teknik baru yang dicadangkan adalah lebih cekap apabila kita perlu

untuk memindahkan sejumlah data yang besar. Eksperimen menunjukkan bahawa

model yang dicadangkan adalah lebih dipercayai, dari segi ketepatan. Model yang

dicadangkan mempunyai pengiraan masa pemindahan yang tepa tseterusnya

pengkomputeran awan boleh memberikan perkhidmatan dalam kaedah yang lebih

cekap.

xii

TABLE OF CONTENTS

 Page

SUPERVISOR’S DECLARATION v

STUDENT’S DECLARATION vi

DEDICATION vii

ACKNOWLEDGEMENTS viii

ABSTRACT ix

ABSTRAK x

TABLE OF CONTENTS xii

LIST OF TABLES xvi

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xix

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Cloud Computing 1

1.3 Data Management 3

1.4 Scheduling 3

1.5 Problem Statement 4

1.6 Objectives of Research 8

1.7 Scope of Research 8

1.8 Structure of the Thesis 8

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 11

2.2 Grid Computing 11

2.3 Cloud Computing 12

 2.3.1 Major Benefits 14

 2.3.2 Cloud comparison with Cluster and Grid 16

 2.3.3 Types of Clouds 19

xiii

 2.3.3.1 Infrastructure-as-a-Service (IaaS) 20

 2.3.3.2 Platform-as-a-Service (PaaS) 21

 2.3.3.2.1 PaaS Features 22

 2.3.3.3 Open Source Cloud 25

 2.2.3.3.1 Open Source Platforms Comparison 26

 2.3.3.4 Software-as-a-Service (SaaS) 27

 2.3.3.5 Data-as-a-Service (DaaS) 29

 2.2.4 Cloud Prices 30

2.4 Data Management In Cloud Computing 31

 2.4.1 Scheduling 32

 2.4.1.1 Scheduling Architectures 33

 2.3.1.2 Job Scheduling Architectures Summery 40

 2.4.2 Queuing Theory 41

 2.4.2.1 Kendall's Classification 43

 2.4.3 Queuing Models 44

 2.4.3.1 M/M/1 Model 44

 2.4.3.2 M/M/1/K Model (Capacity Constraint) 45

 2.4.3.3 M/M/c Model (Multi-server System) 46

 2.4.3.4 M/M/c/K Model (Capacity Constraint with

 Multi-Server System)

46

 2.4.3.5 M/M/c/*/P Model (Finite Population) 46

 2.4.4 Queue Characterization 49

2.5 Summary 51

CHAPTER 3 METHODOLOGY

3.1 Introduction 53

3.2 Queuing Theory And Scheduling 53

 3.2.1 Parameters Used In Queuing Theory 54

 3.2.1.1 Independent Parameter 54

 3.2.1.2 Dependent Parameter 55

xiv

 3.2.1.3 Parameters Definition and Explanation 55

 3.2.2 Scheduler Architecture 59

 3.2.3 Scheduling Algorithm for TCT 63

 3.2.3.1 ALGORITHM‟S DESCRIPTION 64

 3.2.4 Scheduling Strategy 65

 3.2.5 Physical Structure of Cloud Architecture 66

 3.2.5.1. Application Programming Interface 67

 3.2.5.2. Cloud Administration 67

 3.2.5.3. Data-as-a-Services 68

 3.2.5.4. Cloud Schedulers 68

 3.2.5.5. Virtual Infrastructure Management (VIM) 69

 3.2.5.6. Cloud Networks 69

 3.2.6 Queuing System 70

 3.2.6.1 M/M/c/*/P 70

 3.2.7 Proposed Technique 74

3.3 Summary 74

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 76

4.2 Parameters Used 77

4.3 M/M/c/*/P Model 77

4.4 Queuing Theory Calculator 78

4.5 Transfer Time Calculation 80

4.6 Analysis and Results 83

4.7 Variation of TT and TCT with Bandwidth Change 86

 4.7.1 Bandwidth Variation Effect 87

4.8 Variation in TT And TCT with Change in Servers‟ Number 90

4.9 TT and TCT variation by changing the servers‟ number with

bandwidth

93

4.10 Error and Accuracy Estimation between TT and TCT 102

4.11 Overall Overview 105

xv

4.12 Summary 106

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Introduction 107

5.2 Scientific & Technological Contributions 107

5.3 Limitations 108

5.4 Conclusion 108

5.5 Future Work 109

REFERENCES 111

AUTHOR’s BIODATA 116

PUBLICATION LIST 117

xvi

LIST OF TABLES

Table No.
Title

Page

2.1 Characteristics Comparison of Cluster, Grid and Cloud Computing 17

2.2 Comparison of various platforms 24

2.3 Comparison of Open-Source Cloud Platforms 25

2.4 Comparing Platforms with Implementation Aspects 26

2.5 Cost Comparison for Some Platforms 31

2.6 Scheduling Algorithms Comparison 33

4.1 Comparison of Various Aspects for Queuing Process 85

4.2 Error Estimation with C = 1, BW = 56Kbps 102

4.3 Accuracy Estimation with C = 1, BW = 512Kbps 104

4.4 Overall Overview 105

xvii

LIST OF FIGURES

Figure No. Title Page

1.1 Non-Exhaustive View of Cloud System 2

1.2 The Phases of Data transferring process 5

1.3 Schedulers Architectures 6

2.1 Resource Provisioning Models 11

2.2 Cloud Computing Simple Architecture 13

2.3 Global Cloud Exchange Infrastructure 16

2.4 Clouds Type 19

2.5 Cloud Services Structure 21

2.6 Cloud Computing Taxonomy Map 23

2.7 Cloud Computing Taxonomy 28

2.8 Job Scheduling Architecture A 34

2.9 Jobs Scheduling Architecture B 35

2.10 Jobs Scheduling Architecture C 37

2.11 Cloud System Structure 38

2.12 Cloud Task Scheduling Process 39

2.13 M/M/1 State Transition Diagram 45

2.14 M/M/K Model State Transition Diagram 45

2.15 Schematic Representation of A Queuing System 49

3.1 Time in Queue 55

3.2 Time in Server 56

3.3 Schematic representation of time in system 56

3.4 Time in System 57

3.5 Transferring Time 57

3.6 Total Completion Time for Data Transfer 58

3.7 Scheduling Architecture 59

3.8 Physical Structure of Cloud Architecture 66

3.9 Arrivals and Departures from a System 72

xviii

4.1 Queuing Theory Calculator 78

4.2 Transfer Time Calculator 81

4.3 General Comparison of TT and TCT 84

4.4 TT and TCT with 56Kbps 86

4.5 TT and TCT with 128Kbps BW 87

4.6 TT and TCT with 256Kbps BW 88

4.7 TT and TCT with 512Kbps BW 89

4.8 TT and TCT using single server 90

4.9 TT and TCT using two servers 91

4.10 TT and TCT using three servers 92

4.11 TT and TCT by a single server with 128Kbps BW 93

4.12 TT and TCT by two servers with 128Kbps BW 94

4.13 TT and TCT by three servers with 128Kbps BW 95

4.14 TT and TCT by a single server with 256Kbps BW 96

4.15 TT and TCT by two servers with 256Kbps BW 97

4.16 TT and TCT by three servers with 256Kbps BW 98

4.17 TT and TCT variation with C = 1, BW = 512Kbps 99

4.18 TT and TCT variation with C = 2, BW = 512Kbps 100

4.19 TT and TCT variation with C = 3, BW = 512Kbps 101

4.20 Error Estimation with C = 1, BW = 512Kbps 103

xix

LIST OF ABBREVIATIONS

AaaS Architecture-as-a-Service

API Application Programming Interfaces

AWS Amazon Web Services

BW BandWidth

CAPEX CAPital EXpenditure

CC Cloud Computing

CPU Central Processing Unit

DaaS Data-as-a-Service

DDBMS Distributed Database Management System

DDS Distribute Data System

DDS Distributed Database System

Docs Documents

DS Data Scheduler

EC2 Elastic Compute Cloud

ES External Scheduler

FaaS Framework-as-a-Service

FCFS First-Come-First-Served

FIFO First-In-First-Out

FPPS Fixed-Priority-Pre-emptive-Scheduling

GIG Global Information Grid

GS Grid Structure

GUI Graphical User Interface

HaaS Hardware-as-a-Service

HRS Hierarchical Replication Scheme

I/O Input/Output

I/P/SaaS Infrastructure/Platform/Software-as-a-Service

LAN Local Area Network

LCFS Last Come First Served

LS Local Scheduler

NaaS Network-as-a-Service

xx

OPEX OPErational EXpenditure

OS Operating System

PaaS Platform-as-a-Service

PS Processing Sharing

QoS Quality of Service

RaaS Recovery-as-a-Service

RAM Random Access Memory

ROI Return of Investment

MSTS Monitoring Synchronization Transactions Systems

RR Round-Robin

SaaS Software-as-a-Service

SIRO Service In Random Order

SJF Similar to Shortest First

SLA Service Level Agreement

SMB Small and Medium Business

SOA Service Oriented Architecture

SPT Shortest Processing Time

SST Shortest Service Time

TCT Total Completion Time for transferring

TE Time in Execution

TQ Tree Quorum

TQ Time in Queue

TS Time in System

VaaS Voice-as-a-Service

VIM Virtual Infrastructure Management

VM Virtual Machine

WAN Wide Area Network

WS Web Services

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Scheduling is the key factor of Data Management in any environment, especially

in Distributed Systems, Grid Computing and Cloud Computing. Virtualized manner

platforms, storage, computing power, different services and application are presenting

with a nice manner to external jobs over the Internet. Right data in right place at the

right time is the efficient data management, which is the basic need for Cloud

Computing services provision. Efficient provision of the service depends on the well-

organized data management system, and data management system depends on the

reliable scheduling techniques with accurate data transportation time calculation in

cloud environment.

1.2 CLOUD COMPUTING

Cloud Computing is a tremendous revolution for the provision of various

services. The vision of Cloud Computing and Grid Computing is the same: to minimize

the computing charges and to increase reliability as well as elasticity. Now things have

changed, as compared with the situation ten years ago. The idea of Cloud Computing is

not new, as stated by Mc. Carthy in 1969, “Computation may someday be organized as

a public utility and let see how this speculates might occur” (Kleinrock, 2005).

However, with implementation aspects, Cloud Computing is very new. (Buyya et al.,

2

2011) proclaimed that, “Cloud Computing is an utility computing model for on-demand

delivery of computing power; consumers pay providers based on usage („pay-as-you-

go‟), similar to the way in which we currently obtain services from traditional public

utility services such as water, electricity, gas, and telephony” (Buyya et al., 2011).

Cloud Computing, as defined by (Vaquero et al., 2009; and Weiss, 2007), is the

manner where tremendously scalable IT enabled capabilities, and utilities are delivered

as-a-service to external jobs using internet technologies. The Cloud offers so many

benefits, as shown in Figure 1.1, that is, fast deployment, rapid provisioning, pay-for-

use, scalability, lower costs, fast elasticity, greater resiliency, ubiquitous network

access, on demand security controls, hypervisor (virtual machine) protection against

network attacks, low-cost disaster recovery and data-storage solutions, real time

detection of system, and tampering with rapid reconstitution of services. Data

management is the base of Cloud Computing, the function of which is to deliver various

services efficiently.

Figure 1.1: Non-exhaustive view of the Cloud System

Source: Say People 2012

3

1.3 DATA MANAGEMENT

Data-intensive and high-performance computing applications require efficient

management and transfer, and then handle terabytes or peta bytes of information in

distributed computing environments. Users need to be able to transfer large subsets of

datasets to local sites or other remote resources (Aggregate, 2012). Data management is

the improvement and execution of architectures, practices, policies, and procedures in

order to organize the informative life cycle needs of an enter-prised Cloud services in an

effective manner. In well-organized management policies and protocol, the scheduling

plays an important and active role.

Data Management is an important aspect particularly in storing Clouds, where

data is flexibly distributed across multiple resources. Implicitly, data consistency needs

to be maintained over a wide distribution of replicated data sources. At the same time,

the system always needs to be aware of the data location during replication. For taking

decision of when and where to execute data, Cloud providers need efficient scheduling

techniques which is the key factor in data management, to deliver services with

effective scalability and reliability.

1.4 SCHEDULING

Scheduling disciplines are procedures used for distributing resources between

two different parties (Cloud provider and Cloud user) which simultaneously and

asynchronously request them. The main purposes of scheduling algorithms,

architectures, and techniques are to minimize the starvation of resources and service

during the right time using for data transfer (Shi et al., 2010). Effective scheduling

disciplines and algorithms are needed to ensure fairness among the provider and the

user for the utilization of resources and cloud services. Scheduling deals with the

problems of deciding which of the outstanding requests can be allocated resources

(Deelman and Chervenak, 2008). With virtualized manner platforms, computing power,

storage, and different services are delivered on demand to external jobs over the

4

Internet. Hence right data in the right place at the right time is efficient data

management, which is the basic need for Cloud Computing services provision and

scheduling is the main factor of data management.

There are many algorithms in scheduling. One of them is First-Come-First-

Served (FCFS), which is the simplest scheduling algorithm. Similar to Shortest-Job-

First (SJF), this policy allows the scheduler to arrange processes with the minimum

estimated processing time remaining to be next in the queue. In Fixed-Priority-Pre-

emptive-Scheduling (FPPS), each process is getting a fixed priority rank from the

operating system, and in the ready queue, according to their priority order, the scheduler

arranges the processes. Lower priority processes get interruption by incoming higher-

priority processes. Round-Robin-Scheduling (RRS) assigns a fixed time unit per

process, and cycles through them. Multilevel-Queue-Scheduling (MQS) can be used for

situations in which processes are easily segmented into different groups.

1.5 PROBLEM STATEMENT

Scheduling technique (Equation 1.1) has proposed by (Tang et al., 2006;

Ranganathan and Foster, 2003; and Nguyen and Lim, 2007). The following technique

TT for Total Transfer Time calculation for a job has been used.

    ikiik +ETikfDTQT = TT ,)(, ,,max (1.1)

Where TT = Total Transfer Time, QT = Queuing Time; DT = Data Transfer

Time; and ET = Job Execution Time. Only one value DT or QT has been considered in

max{QT(i), DT(f(j), i)} in Equation 1.1 because only one value out of these two will be

maximum, the other minimum DT or QT value has been ignored. QT and DT both are

two different parameters, and have their own importance separately.

5

There are three (QT, ET and DT) parameters in Equation 1.1. QT is the time

which a job passes in the queue before starting the execution. Time denoted by ET is the

job execution time before starting the transferring process. DT is the time after

completing the execution time and before the completion data transferring process. TT

is the total time for transfer completion, and ETTC is the estimated total time for

completion transferring. Here in max{QT(i), DT(f(j),i)} the value of either QT or DT has

been ignored, by taking the maximum of both, by (Tang et al., 2006; Ranganathan and

Foster, 2003; and Nguyen and Lim, 2007). Ignoring one value means decreasing the

actual consuming time. According to experiments, almost DT is ignored because DT is

minimum value (Table 4.1, Table 4.2, Table 4.3 and Table 4.4), as compared to QT. All

these three parameters (QT, ET and DT) are different from each other, and each one has

its own importance respectively as shown in Figure 1.2.

Figure 1.2: The Phases of Data transferring process

This study presents an alternative proposed scheduling technique, which give

importance to each parameter by considering each one separately in the existing formula

while calculating the Total Completion Time (TCT). As an outcome, the Total

Transferring Time for data can be the sum of Queue Time, Execution Time, and Data

Transfer time.

 Job scheduling architectures A (Nguyen and Lim, 2007), B (Ranganathan and

Foster, 2003) and C (Liang and Shi, 2010) basically have divided their schedulers into

6

three phases. For the job submission by the users all three architectures follow First-

Come-First-Serve (FCFS) scheduling policy. User jobs are submitted directly to ES

(External Scheduler) and RB (Resource Broker) in both architectures where jobs are

placed in queues. Both ES and RB have different scheduling policies at this level for job

dispatch to LS. ES uses (i) load at the remote site and/or (ii) location of dataset as the

resource scheduling strategy whereas RB uses estimation of cost in terms of time as the

resource scheduling strategy. In Job scheduling architectures C, the architecture is also

divided into three phases. But instead of LS and DS like in architecture A and B it

presents two LS with the GS (Global Scheduler). User jobs are submitted and queued to

GS. GS uses stock of currency between the submission site and selected running sites

based on the reputation information and resource request. LS works by using processor

selection based on the intra-site trust information.

 Liang and Shi, 2010 Nguyen and Lim, 2007 Ranganathan and Foster, 2003

Figure 1.3: Scheduler Architectures

 Cheng (2007) proposed two schedulers MWTP and VWTP to perform

proportional delay differentiation. Algorithms can maintain the delay proportion and

reduce the average queuing delay by simultaneously considering the packet waiting

time and the packet transmission time. (Liang and Shi, 2010) proposed a reputation-

based resource scheduler for the Grid. (Dwekat and Rouskas, 2011) presented tiered-

service fair queuing (TSFQ) scheduler techniques, within each tier, the schedulers

employ a fixed number of queues to handle packets with few or no sorting operations.

(Francini et al., 2001) have presented three enhancements of WRR schedulers for

providing bandwidth guarantees in IP networks.

7

 All above mentioned algorithms have taken in three parts, (Nguyen and Lim,

2007; and Ranganathan and Foster, 2003) have taken these three schedulers in two slots.

The scheduler picks the server first, which already jobs have been processed and

waiting i.e. Local Scheduler (LS). The data begin to be transferred immediately means

Data Scheduler (DS) will start its work. It is possible that all jobs for that server are

finished by the Execution Time (ET) that the transferring finishes so the time to enter

service is merely the Data Transfer time (DT). It is also possible that some jobs are not

finished when the data transfer completes so that the new job must wait until all

previous jobs are completed. That time is just the system time (ET) of the current jobs at

the server. Thus the total time that the new job must wait before service is the Queue

Time (QT) i.e. system time (ET) for all jobs currently at that server. That is why above

architectures are taking maximum of QT and DT during the transfer time calculation

(Equation 1.1). According to these architectures the whole system is busy at a time, it

means that DS will keep continue its work and meanwhile there will be jobs in the ES,

and ES will execute jobs and at the same time, meanwhile there will be jobs in LS.

In order to compare the results of the new proposed technique and existing

technique, we need to calculate the Queue Time (QT), Execution Time (ET), and Data

Transfer Time (DT). By adding all these three parameters‟ values, we can get the Total

Completion Time (TCT). Suppose we need to calculate Transfer Time for 4 KB data by

using 56Kbps bandwidth. The values can be compared (in terms of accuracy).

According to the existing formula     ikiik +ETikfDTQT = TT ,)(, ,,max

by (Nguyen

and Lim, 2007; and Tang et al., 2006) the Total Time consumed in transferring is 5.125

sec, and according to the new proposed technique     jf+DT+ ET= QTTCT j, iiji ,

Total Time consumed in transferring is 5.7101 sec. Even TT is less than TCT, but in TT

one value either QT or DT has been ignored. Ignoring one important value effects the

real and original results of the data transferring time calculations. For efficient data

management, the accuracy in the transfer time calculation is more significant, which is

the basic need for Cloud Computing service's provision.

8

1.6 OBJECTIVES OF RESEARCH

This research focuses on scheduling technique to support the calculation of the

total completion time for transferring data from source to target.

The objectives of this research are:

i. To propose and develop a new technique for the calculation of Total

Completion Time (TCT) for data transferring process in cloud environment.

ii. To analyse, test, and evaluate new technique mathematically.

iii. Compare the performance of proposed techniques with existing models.

1.7 SCOPE OF RESEARCH

The scopes of this research are:

i. All parameters have considered for use in Total Completion Time

calculation procedure.

ii. Finite population M/M/C/K/P queuing model has applied for evaluation.

iii. Scheduling policy First-Come-First-Serve (FCFS) has used.

1.8 STRUCTURE OF THE THESIS

This thesis has been prepared to give details about the basic facts, calculations,

arguments, and procedures in order to meet its objectives. Chapter 1 generally describes

the background of data management, scheduling, problem statement, objectives, and

scope of the research. Chapter 2 reviews the Cloud Computing, types of Cloud

Computing, comparison with Grid Computing, different Cloud platforms, scheduling,

9

and various scheduling techniques in Cloud and Grid environment, queuing theory and

different queuing models. Chapter 3 presents the new proposed scheduling architecture

in cloud environment as well as framework, flowchart, and examples. Chapter 4

elaborates the implementation of results, discussion, and comparison with existing

models. The conclusions of the present research are summarized and presented in

Chapter 5 with suggestions and recommendations for future research.

10

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents the background of Grid Computing and Cloud Computing,

comparison of Grid with Cloud, Cloud types, and Cloud platforms. Cloud Computing

efficiency is based on data management principles whereby scheduling is the most

important category of the data management. This chapter briefly discusses scheduling

principles and queuing models.

2.2 GRID COMPUTING

Grid systems are a well-known technology that can provide a seemingly unique

infrastructure from several resource providers, possibly heterogeneous (Luis et al.,

2012). In other words, a Grid is a collection of computers, usually owned by multiple

parties and in multiple locations, connected together such that users can share access to

their combined power. Grid Computing (Grid) allow consumers to obtain computing on

demand, analogous in form and utility of the electrical grid (Amazon, 2010). Grids and

related application technologies are enabling scientists and engineers to build more and

more complex applications for managing and processing large data sets, and for

executing scientific experiments on distributed heterogeneous resources (Google, 2010).

Cloud aim for the same dream of using computing as a utility (Armbrust et al., 2009).

The fundamental vision and concepts are the same. The vision of a Global Grid has not

11

yet been realized but it might be fair to say that Cloud builds on the lessons learnt from

building a Grid.

Typically, Grid users send their tasks to the Grid platform which will distribute

them among the resources available. Activities such as resource location, execution

scheduling, security handling, etc. are managed by the Grid. Grids can use Cloud as

infrastructure providers so they can deploy or release resources in order to react to

changes on demand, or to anticipate to variations on that demand if load prediction

systems (like [Caron et al., 2010]) are available. This demand of resources will be

induced by the amount (which depends on the triggering rate) and size of tasks sent to

the Grid. Thus, Grids will be able to allocate only the infrastructure they required. Grid

computing enables the sharing, selection, and aggregation by users of a wide variety of

geographically distributed resources owned by different organizations and is well-suited

for solving IT resource intensive problems in science, engineering and commerce. Grids

are very large-scale virtualized and distributed computing systems. They cover multiple

administrative domains and enable virtual organizations (Delic and Walker, 2008). Such

organizations can share their resources collectively to create an even larger Grid.

Figure 2.1: Resource Provisioning Models

12

Besides, Grids can benefit from Cloud‟s flexibility as they will be able to run

tasks with heterogeneous software requirements in the same host. Grids and clouds are

much the same; both Grids and Clouds have adopted the concept of IT „as-a-service‟,

although Grid are more likely to offer free access to shared resources, while Cloud have

a „pay-as-you-go‟ approach. Figure 2.1 shows, the change in resource provision model

from physical to virtual and from local to remote environment.

To get Cloud Computing to work, we need three things: thin clients (or clients

with a thick-thin switch), Grid computing, and utility computing. Grid computing links

disparate computers to form one large infrastructure, harnessing unused resources.

Utility computing is paying for what you use on shared servers like you pay for a public

utility (such as electricity, gas, telephone etc.).

2.3 CLOUD COMPUTING

Cloud Computing is hinting at a future in which we would not compute on local

computers, but the user will use central facilities (compute, transfer, and storage

utilities) which operates by a third-party. In fact, back in 1969, Computing inventor

McCarthy predicted that “Computation may someday be organized as a public utility

and let see how this speculates might occur” (Kleinrock, 2005), first time he publicly

suggested in his talk in 1969 that computer time-sharing technology might lead to a near

future in which computing power and even specific applications could be sold through

the utility business model just like water, electricity, telephone, shops, and houses etc.

for rent, under the rule of Pay-As-You-Use.

Forty two years after the prediction of McCarthy, in 2011 Rajkumar Buyya

writes in his book that now “Cloud Computing is an utility computing model for on-

demand delivery of computing power; consumer pay providers based on usage Pay-As-

You-Go, similar to the way in which we currently obtain services from traditional public

utility services such as water, electricity, gas, and telephony” by (Buyya et al., 2011).

13

Figure 2.2: Cloud Computing Simple Architecture

 Source: IT ProPortal 2012

Cloud Computing has given the signal for the next new generation period which

is a combination of computing and internet. As a result, the user will be able to access

and store software, data, and content run by a third party enterprise in remote servers or

by a client (Foster et al., 2008). The access device can be computers, phones, TVs, etc.

Services are accessible through the internet anytime, anywhere, and from anywhere in

the world as mentioned in Figure 2.2. Various companies or consumers had already

started the usage of Cloud applications such as iTunes, Hotmail, Yahoo, Gmail, Google

Docs, Google Earth, Online Operating System, Facebook, and Flicker etc. Hence Cloud

Computing is a Web-based process and service, whereby shared resources, information,

and software‟s are provided to the consumer through various devices on demand over

the Internet.

In the contextual of Cloud Computing, the term Grid was invented in the mid-

1990s to describe and define technologies that would allow the users to obtain and use

computing power on demand when they need. By standardizing the protocols used to

http://en.wikipedia.7val.com/;s=zmO2dFaCN__n4nzmoBp-Y12/wiki/Web
http://en.wikipedia.7val.com/;s=zmO2dFaCN__n4nzmoBp-Y12/wiki/Processing
http://en.wikipedia.7val.com/;s=zmO2dFaCN__%20client%204nzmoBp-Y12/wiki/Internet

14

request computing power, (Foster et al., 2008) further explains that we could encourage

the creation of a Computing Grid, and now Cloud Computing is comparable to the

electric power Grid system in terms of delivering utility in the form of services.

A large-scale distributed computing model that is driven by economies of scale,

in which an abstracted virtualization, managed by computing power, storage,

dynamically-scalable hypervisor, platforms, and services are delivered on demand to

external jobs over the internet (Jeremy et al., 2011), as Figure 1.1 has described some

benefits, features, modes type, and locality of the Cloud system. Below section

discusses some benefits of Cloud Computing.

2.3.1 Major Benefits

 Lower Costs: Basically, Cloud Computing is the computing resource and delivery

which shows a better efficiency and utilization of the whole shared infrastructure.

 No Ex-Capital: Public Cloud or private Cloud, both deliver a better cash flow by

excluding the capital expense associated with the structure of the server

infrastructure.

 Faster Deployment: Servers are available to take and leave anytime, as per

requirement, just in a matter of minutes. The time to deploy new application drops

with Cloud Computing.

 Scale as Needed: During the growing or declining in applications, for just enough

scale, the user can add or remove storage, RAM, and computing capacity as

needed.

 Lower Maintenance Costs: With less physical resources in outsource

environment, there is less hardware to power and maintain. There is no need to

keep specialists in matters of storage, server, network, and virtualization on a full-

time basis.

 Resiliency and Redundancy: Especially in private, the Cloud deployment user can

get automatic fail over between hardware platforms and disaster-recovery

services, to manage and bring up server to set in a separate data centre as a

primary data hub.

15

Cloud Computing is emergent based on years of achievement on Grid

Computing, Virtualization, Utility Computing, Web Computing, and related

technologies. Cloud Computing provides both platforms and applications on-demand

through the internet or intranet as discussed by (Foster et al., 2008; Dean and

Ghemawat, 2004). Some examples of emerging Cloud Computing platforms are

Amazon EC2 (Amazon EC2, 2011), IBM blue Cloud (IBM, 2011), Google App Engine

(Google App Engine, 2011), and Microsoft Azure. The Cloud allows sharing,

aggregation, and allocation of software, storage, and computational network resources

on-demand. Some of the key benefits of Cloud Computing include hiding and

abstraction of complexity, virtualized resources, and efficient use of distributed

resources had discussed by (Foster et al., 2009).

So Cloud Computing is a tremendous revolution in Grid Computing, which has

the same vision. Both focus on reducing the cost of computing and increasing

reliability and flexibility by transforming computers from something that we buy and

operate ourselves to something that is operated by a third party (Jeremy et al., 2011).

Now things are different than they were ten years ago. With the passage of time, users

have a new need to analyse huge data, thus motivating greatly increased demand for

computing. Enterprises have spent multiple billions of dollars on various services, e.g.,

Amazon, Google, and Microsoft to create real commercial large-scale systems

containing thousands of thousands of computers.

There are so many comprehensive definitions of Cloud Computing by various

researchers. The definition created by (Foster et al., 2008) is A large-scale distributed

computing paradigm that is driven by economies of scale, in which a pool of abstracted,

virtualized, dynamically-scalable, managed computing power, storage, platforms, and

services are delivered on demand to external jobs over the internet (Jeremy et al., 2011),

as shown in Figure 2.3.

16

Figure 2.3: Global Cloud exchange Infrastructure

Source: Buyya et al., 2008

2.3.2 Cloud comparison with Cluster and Grid

 A number of computing researchers and practitioners have attempted to define

Clusters, Grids, and Clouds (Jeremy et al., 2011) in various ways. There are some

definition and comparisons of Cluster and Grid with Cloud Computing, have given in

Table 2.1.

 Cluster define by (Buyya, 1999) as „A Cluster is a type of parallel and

distributed system, which consists of a collection of inter-connected stand-alone

computers working together as a single integrated computing resource‟.

 “A Grid is a type of parallel and distributed system that enables the sharing,

selection, and aggregation of geographically distributed ‘autonomous’ resources

17

dynamically at runtime depending on their availability, capability, performance, cost,

and users' quality-of-service requirements” defined by (Buyya et al., 2009).

 Based on the observation of what Clouds promise to be, proposed the following

definition by (Buyya et al., 2009): “A Cloud is a type of parallel and distributed system

consisting of a collection of inter-connected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resource(s)

based on service-level agreements established through negotiation between the service

provider and the consumers”.

Table 2.1: Characteristics Comparison of Cluster, Grid, and Cloud Computing

Characteristics
Computing Environment / Systems

Clusters Grids Clouds

Population
Commodity

computers

High-End

computers

(Servers, Clusters)

Both and also web-

based storage

Scalability 100s 1000s 100s to 1000s

Service

Negotiation
Limited Yes, SLA based Yes, SLA based

User

Management
Centralized

Decentralised and

also virtual

organization based

Centralised or can be

delegated to third party

Resource

Management
Centralized Distributed Centralized/Distributed

Capacity
Stable and

Guaranteed
Varies, but high

Demand-based

Provisioned

Pricing of

Services

Limited, not open

market

Dominated by

public good or

privately assigned

Utility pricing,

discounted for larger

jobs

Node Operating

System (OS)

Standard OS

(Windows,

Linux)

Standard OS

(Dominated by

Unix)

A hypervisor (VM)

which can run multiple

OSs

Failure

Management

(Self-Healing)

Limited

(Often failed

task/application

are restarted)

Limited

(Often failed

task/application are

restarted)

Strong support for

failover and content

replication. VMs can

be easily migrated from

one node to other.

Ownership Single Multiple Single

Interconnection Dedicated, high- Mostly Internet Dedicated, high-end

18

Network/Speed end with low

latency and high

bandwidth

with high latency

and low bandwidth

with low latency and

high bandwidth

Security/

Privacy

Need Traditional

login; Medium

level of privacy-

depends on user

rights

Public/private key

base authentication

and mapping a user

to an account.

Limited support for

privacy.

Each user/application is

provided with a virtual

machine. High

security/privacy is

guaranteed.

Discovery
Membership

service

Centralised

indexing and

decentralised info

services

Membership services

Allocation/

Scheduling
Centralized Decentralized

Both

Centralized/Decentralis

ed

Standards/Inter-

Operability

Virtual Interface

Architecture

(VIA)-based

Some Open Grid

Forum Standards

Web Service

(SOAP and

REST protocols)

System Image

Single
Yes No Yes, but optional

Interworking

Multi-clustering

within an

organization

Limited adaptation,

but being explored

through research

efforts such as

Gridbus, InterGrid

High potential, third

party solution providers

can loosely tie together

services of different

Clouds

Drivers for

Application

Science, business,

enterprise,

computing, data

centres

Collaborative

scientific and high

output computing

applications

Dynamically

provisioned legacy and

web application,

content delivery

Building

Potential 3rd-

Party or Value-

Added Solution

Limited due to

rigid architecture

Limited due to

strong orientation

for scientific

Computing

High potential can

create new services by

dynamically providing

compute, strong and

application services

and offer as their own

isolated or composite

Cloud services to users.

Source: Buyya (2009)

19

2.3.3 Types of Clouds

 Cloud Computing generally can provide its services in three styles,

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). SaaS means the presented service to a user is the utility running on the

infrastructure of Cloud Computing. It is easy accessible by thin user interfaces such as a

simple browser. PaaS refers to the organisation of services produced by the

development of language and tool, for instance, python, Java, and .net which are

delivered by the service presenters/providers to the infrastructure of Cloud. IaaS refers

to the utilities/services presented/provided to the consumers by leasing the power of

processing, data transpiring capabilities, network, storage power, and other elementary

computing resources, with which the consumers can deploy and run any application,

including operating systems and other services. In all these services/utilities, there is no

need for the users to manage or control the operating system, cloud‟s infrastructure,

server, network, storage, and even the application‟s functions. For more explanation

Figure 2.4 describes the whole categorization of services in Cloud.

Figure 2.4: Cloud Types

20

2.3.3.1 Infrastructure-as-a-Service (IaaS)

 Computing is being transformed to a model consisting of various utilities that

are commoditized and delivered in a way like a traditional utility such as water, gas,

electricity, and telephony. Several computing models have offered successful delivery

of all utilities of computing, data storage, and data transferring. Computing vision

includes Cluster Computing and Grid Computing, then more recently Cloud

Computing.

 The computing world is rapidly changing in the direction of developing software

for millions of users to consume utilities as a service, rather than to run on their specific,

reserved, and on individual computers (Buyya et al., 2008; and Google App Engine,

2011). In such a paradigm, clients can access services based on their requirements

without reference to where the location for service is or how they are delivered. Internet

Providers (IPs) manage a massive set of computing resources, such as storage resources

and processing power capacity. By using virtualization, the providers have capabilities

to divide, allocate, dynamically resize, and reshape these resources to build ad-hoc

systems according to the needs and request of the user by jobs as well as Service

Providers (SPs). They make set-ups for software stacks which can run their

services/utilities, by using their Infrastructure-as-a-Service (IaaS) scenario (Peng and

Zhang, 2009; Rimal et al., 2009; and Google App Engine, 2011).

 Infrastructure-as-a-Service is also regarded as resource Clouds, which provides

managed and scalable Resources-as-a-Service (RaaS) to the user, in other words, they

basically provide enhanced virtualisation capabilities. Accordingly, different resources

may be provided via a service interface. Data and storage clouds will deal with reliable

access to data of potentially dynamic size, and weigh resource usage with access

requirements and/or quality definition. Some examples of the Infrastructure-as-a-

Service (IaaS) are GO GRID, RACKSPACE.COM, Amazon Elastic Compute Cloud

(EC2), Zimory, Elastic Hosts, and Amazon Web Service (AWS), as stated in Figure 2.5.

21

Figure 2.5: Cloud Services Structure

 Source: IBM Developer Works 2009

2.3.3.2 Platform-as-a-Service (PaaS)

 Platform-as-a-Service (PaaS) provides computational resources as utilities

through a platform in which applications and services can be developed and hosted.

(Peng and Zhang, 2009; Rimal et al., 2009; Buyya et al., 2008; and Google web-

resource, 2011) have discussed platforms in detail. PaaS typically makes use of

dedicated Application Programming Interfaces (APIs) to control the performance of a

server hosting engine which executes and replicates the execution according to user

requests (e.g. access rate). As each provider exposes his/her own API according to the

respective key capabilities, applications developed for one specific Cloud provider

cannot be moved to another Cloud host, there are, however, attempts to extend generic

programming models with Cloud capabilities (such as Microsoft Azure). Few examples

22

of Platform-as-a-Service are Force.com, Google App-Engine and Windows Azure, as

shown in Figure 2.5.

 Cloud Computing provides access to computational resources, i.e. CPUs. So far,

such low-level utilities cannot really be exploited on their own, so that they are typically

exposed as part of a Virtualized Environment, i.e. Virtual Machine (hypervisors).

Compute Cloud Providers therefore typically offer the capability to provide computing

resources (i.e. raw access to resources unlike PaaS that offer full software stacks to

develop and build applications), typically virtualised, in which to execute Cloudified

services and applications.

2.3.3.2.1 PaaS Features

 In the world (Global village), there are different Cloud Computing platforms,

whereas each platform has its own benefits and features (Rimal et al., 2009). For better

understanding, after analysing and comparing these platforms, it will be easy for the

user to select the best and suitable implementation aspects for his/her business. Table

2.2 compares the capabilities, advantages, and opportunity of some platforms, e.g.

Elastic Compute Cloud (EC2), Azure, App-Engine, Sun Grid, and Aneka.

 PaaS contributes facility in the management of applications without any cost

and difficulties of buying and managing the underlying software as well as hardware.

PaaS has the ability to present hosting capabilities, offer all services required to give

hands-in completion of life cycle of structure and deliver web applications/software,

whereas these services are entirely available via the internet (Google web resource,

2011). Elastic Compute Cloud (EC2) from Amazon, Apps Engine from Google and

Azure from Microsoft are some examples of platforms, as categorized in Figure 2.6.

http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service

23

Figure 2.6: Cloud Computing Taxonomy Map

Source: Matias 2008

 PaaS presents facilities and services for application design, development,

testing, deployment, and hosting as well as applications (utilities) such as team

partnership, web services/utilities integration, integration of database, security of data,

scalability in software and hardware, marshalling, storage, state management,

persistence, application versioning, application arrangement/instrumentation, and

developer community facilities (Peng and Zhang, 2009). These utilities/services are

provisioned as a combined solution over the web. Table 2.2 describes some comparison

of various PaaS.

http://blogs.southworks.net/mwoloski
http://en.wikipedia.org/wiki/WWW

24

Table 2.2: Comparison of various platforms

Property

Different Platforms

Amazon

Elastic

Compute Cloud

(EC2)

Google

App Engine

Microsoft

Azure

Sun

Network.com

(Sun Grid)

GRIDS Lab

Aneka

Focus Infrastructure Platform Platform Infrastructure
Enterprise

Clouds

Service Type

Compute,

Storage

(Amazon S3)

Web-

Application

Web and non-

web

application

Compute Compute

Virtualization

OS level

running on a

Xen hypervisor

Application

container

OS level

through fabric

controller

Job

management

system (Sun

Grid Engine)

Resource

manager and

scheduler

Dynamic

negotiation of

QoS

None None None None

SLA-based

resources

reservation

Web APIs Yes Yes Yes Yes Yes

User

Access

interface

Amazon EC2

command-line

tools

Web-based

administra-

tion

Microsoft

windows

azure portal

scripts, Sun

Grid web

portal

Work-bench,

web-based

portal

Value-added

service

providers

Yes No Yes Yes No

Programming

frame-work

Amazon

Machine

Images (AMI)

Python Microsoft.NET
Solaris OS.

Java, C, C++,

FORTRAN

APIs supported

models in c#

.Net

 Source: Buyya (2009)

 User necessities for Cloud services are varied, service providers need to ensure

that they can be flexible in their service delivery while keeping the users isolated from

the original infrastructure. Recent improvements in microprocessor technology and

software have led to the growing ability of commodity hardware to run utilities

(applications) within Virtual Machines (VMs) efficiently. VMs allow both the

inaccessibility of applications from the underlying hardware and other VMs and the

customization of the platform to suit the needs of the end-user.

25

2.3.3.3 Open Source Cloud

 The starring role of open source Cloud Computing is to build some mechanism

around digital identity management and outlines some technological building blocks

which are needed for controllable confidence and identity verification. Eucalyptus,

Open Nebula, and Nimbus are technically sound and popular. Current Cloud has a focus

on the issue of interoperability, which is essential for the enter-prised Cloud system.

Table 2.3 presents brief comparison of these open-source platforms.

Table 2.3: Comparison of open-source Cloud platforms

Feature Eucalyptus OpenNebula Nimbus

Computing

Architecture

-Ability to

configure

multiple

clusters, each

with private

internal network

addresses, into a

single Cloud.

-Private Cloud

-Cluster into an IaaS

Cloud

-Focused on the

efficient, dynamic,

and scalable

management of VMs

within data centres

(private Cloud)

involving a large

amount of virtual and

physical servers

-Based on Haizea

scheduling

-Science Cloud

-Client-Side Cloud-

Computing interface to

Globus-enabled

TeraPort cluster

-Nimbus Context

Broker that combines

several deployed virtual

machines into “

turnkey” virtual clusters

- Heterogeneous clusters

of auto-configuring

VMs with one command

Virtualization

Management
-Xen hypervisor

-Xen KVM and on-

demand access to

Amazon EC2

-Xen Virtualization

Service IaaS IaaS IaaS

Load

Balancing

-Simple load-

balancing Cloud

controller

-Nginx Server

conFigured as load

balancer, used round-

robin or weighted

selection mechanism

-Launches self-

configuring virtual

cluster i.e. the context

broker

Fault -Separate cluster -The daemon can be -Checking worker nodes

26

Tolerance within the

Eucalyptus

Cloud reduce

the chance of

correlated

failure

restarted and all the

running VMs

recovered

-Persistent database

backend to store host

and VM information

periodically and

recovery

Interoperabilit

y

-Multiple Cloud

Computing

interfaces using

the same “back-

end”

infrastructure

-Interoperable

between intra Cloud

services

-Standards : “rough

consensus and working

code”

storage

-Walrus (the

front end for the

storage

subsystem)

-Database, persistent

storage for ONE data

structures

-SQLite3 backend is

the core component of

the Open Nebula

internal data structures

-Grid FTP and SCP

Security

-WS-security for

authentication,

Cloud controller

generates the

public/private

key

-FirDeelman, E.ll,

Virtual Private

Network Tunnel

-PKI credential required

-Works with Grid

proxies VOMS,

Shibboleth (via Grid

Ship), custom PDPs

Programming

Framework

-Hibernate,

Axis2 and

Axis2c, Java

-Java, Ruby Python, Java

Source: Buyya (2009)

2.2.3.3.1 Open Source Cloud Platforms Comparison

 There are different types of Cloud platforms each one has its own

characteristics and advantages. After analysis and comparison, for ease of

understanding, Table 2.4 discusses in detail its implementation aspects.

27

Table 2.4: Comparing platforms with implementation aspects

 Eucalyptus Nimbus Open Nebula

Cloud Character Public Public Private

Scalability Scalable Scalable Dynamical, Scalable

Cloud Form IaaS IaaS IaaS

Compatibility Support EC2, S3 Support EC2 Open, Multi-Platform

Deployment
Dynamic

Deployment

Dynamic

Deployment
Dynamic Deployment

Deployment

Manner
Command line Command line Command line

Transplantability Common Common Common

VM Support
VMWare, Xen,

KVM
Xen Xen, VMWare

Web Interface Web Service
EC2 WSDL,

WSRF

Libvirt, EC2, OCCI

API

Reliability - - Rollback host and VM

OS Support Linux Linux Linux

Development

Language
Java Java, Python Java

Source: Buyya (2009)

2.3.3.4 Software-as-a-Service (SaaS)

 Software-as-a-Service (SaaS) refers to a Cloud service or application, which

offers the implementations of specific business functions and processes. SaaS is being

provided with particular Cloud capabilities, i.e., they provide

applications/services/utilities by using a Cloud infrastructure or platform, rather than

providing Cloud features (Buyya et al., 2008). Often, this kind of standard application

software is functionally presented within a Cloud. SaaS gives quick access to value the

standard business process. SaaS is highly suitable for those enter-prised areas where the

processes need to be standardized (Rimal et al., 2009). Almost, however, these

28

processes are not equivalent because they are actually sub-standard. If businessmen

agree to accept standardized business procedures and the pre-built SaaS packages which

can mechanize those standardized processes, they would meaningfully improve and

expand their enterprise/business. In these situations where the data and information are

too sensitive to believe offsite with a SaaS seller, then for the safety of data, the SaaS

application frequently can be hosted in the business/enterprise‟s data centre (Buyya et

al., 2008; and Rimal et al., 2009). Figure 2.7 presents general taxonomy of cloud

including SaaS and its services.

Figure 2.7: Cloud Computing Taxonomy

Source: Kaskade 2009

29

 Figure 2.7 presents brief Taxonomy of Cloud Computing. SaaS is one of the

main and important parts of Cloud Computing. Enterprises, based on their requirements

and desired security needs, should consider internal, public, and private options of

Cloud Computing. SaaS has the potential to provide the users various varieties hosted in

Cloud Computing. This is an alternative to locally run applications/utilities; an example

of this typical office application/software is word processors (Rimal et al., 2009; and

Google, 2011). Some examples of the SaaS are Google Docs by Google, CRM by Sales

force, Office Live and Window Live from Microsoft.

2.3.3.5 Data-as-a-Service (DaaS)

 Data-as-a-Service (DaaS) is an information provision and distribution model in

which data files (including text, images, sounds, and videos) are made available to

customers over a network, typically the Internet (SearchCloud, 2013). DaaS offers

convenient and cost-effective solutions for customer and client oriented enterprises.

Few examples of DaaS providers are:

 Fidelitone: A supply-chain and logistics management company, employed

ARI's DataStream DaaS solution to deploy parts catalogues into the customer

channel.

 Urban Mapping: A geography data service which provides data for customers

to embed into their own websites and applications.

 Xignite: A company that makes financial data available to customers.

 Hoover’s: Provides customers with business data on various organizations.

 DaaS is emerging as underlying technologies that support Web

services and SOA (Service-Oriented Architecture) mature. High-speed Internet service

has become increasingly available to support user access from more areas around the

world, making DaaS an attractive option to more people and organizations. The

evolution of SOA has greatly reduced the relevance of the particular platform on which

data resides.

http://searchsoa.techtarget.com/definition/Web-services
http://searchsoa.techtarget.com/definition/Web-services
http://searchsoa.techtarget.com/definition/service-oriented-architecture
http://searchservervirtualization.techtarget.com/definition/platform

30

Few benefits of DaaS are listed below.

 Ability to move data easily from one platform to another.

 Avoidance of the confusion and conflict that can occur when multiple copies

and same data exist in different locations.

 Reducing overall cost of data maintenance and delivery.

 Preservation of data integrity by implementing access control measures such

as strong passwords and encryption.

 Ease of administration.

 Ease of collaboration.

 Compatibility among diverse platforms.

 Global accessibility.

 Automatic updates.

 DaaS is expected to facilitate new and more effective ways of distributing and

processing data. Information management specialists believe that as more companies

figure out which data assets they can rent for competitive advantage, the DaaS market

will continue to expand. DaaS is closely related to Storage-as-a-Service (abbreviated

SaaS) and Software-as-a-Service (also abbreviated SaaS) and may be integrated with

one or both of these provision models. As is the case with these and other Cloud

Computing technologies, DaaS adoption may be hampered by concerns about security,

privacy, and proprietary issues. DaaS is totally concern with data transferring, hence

this study and new proposed technique totally related with DaaS. Active provision of

data depends on the correct time calculation for data transferring process.

2.2.4 Cloud Prices

 Several Cloud Computing and Conventional Computing data-centers are being

built in seemingly surprising locations, such as Texas, San Antonio (Microsoft, US

National Security Agency) and Quincy, Washington (Google, Yahoo, Microsoft). DaaS

(Data-as-a-Service) allows for, but does not require, the separation of data cost and

http://searchstorage.techtarget.com/definition/Storage-as-a-Service-SaaS
http://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing

31

usage from software or platform cost and usage. Hundreds of DaaS vendors, with

various pricing models, exist worldwide. Pricing can be volume-based (a fixed cost per

megabyte of data in the entire repository) or format-based (a fixed price per text file,

another fixed price per image file, etc.).

 The motivation and inspiration behind picking these locations is that the

expenses for electric power, labour, property purchasing consumption, cooling cost, and

tax charges are geographically variable and above all. Electricity costs and cooling

charges can account for a third of the costs of a data centre. Although prices are

fluctuating, we match present Cloud services rates. As a common and very beneficial

example is Elastic Compute Cloud (EC2) presented by Amazon Web Services (AWS)

which sells 1.0GHz x86 ISA „slices‟ for $0.10 per hour, and a new „slices‟ or instance

further can get just the cost of 2-5 minutes. Amazon‟s Scalable Storage Service (S3)

rates are $0.12 to $0.15 per GB/month, with additional bandwidth cost of $0.10 to $0.15

per GB to transfer data IN and OUT over the internet. Table 2.5 presents more

comparison.

Table 2.5: Cost comparison for some platforms

2.4 DATA MANAGEMENT IN CLOUD COMPUTING

The concept of data management is relatively simple. Cloud services need

access to high-quality, relevant data, provided in a timely and cost-effective manner.

Access to accurate data is necessary for effective investment decisions, trade execution,

Platforms
Storage

$/GB/month

Transferring

$/GB

Computing

$/GHz/h

Amazon EC2 0.055 0.10 0.100

Google App Engine 0.150 0.11 0.100

Microsoft Azure 0.150 0.13 0.120

http://searchsoa.techtarget.com/definition/software

32

securities pricing, risk management, regulatory compliance, and portfolio valuation and

measurement. Delivering on this concept, however, is challenging, particularly in a

dynamic environment marked by significant regulatory changes.

Data management is an important aspect particularly in storing cloud services,

where data is flexibly distributed across multiple resources (Shi et al., 2010). Cloud

services are just data transportation. Implicitly, data consistency needs to be maintained

over a wide distribution of replicated data sources. At the same time, the system always

needs to be aware of the data location during replication. For taking decision of when

and where to execute data, Cloud providers needs efficient scheduling models, where it

is the key factor in data management, to deliver services with effective scalability and

reliability (Deelman and Ann, 2008).

Cloud services need to consider key elements such as data architecture, metadata

security and storage. When these elements are properly organized into an effective data

management initiative, firms can realize significant benefits including lower operating

costs, better risk management, and fewer and less costly errors. Scheduling is the base

element and most important part of the data management.

2.4.1 SCHEDULING

With virtualized manner platforms, computing power, storage, and different

services are delivered on demand to external jobs over the internet (Deelman and Ann,

2008). Right data in the right place at the right time is efficient data management,

which is the basic need of Cloud Computing services (Shi et al., 2010). Scheduling is

the main factor of data management, and a queue phenomenon is the most important

portion of scheduling. Table 2.6 compares some well-known scheduling algorithms

with various aspects.

33

Table 2.6: Scheduling Algorithms Comparison

2.4.1.1 Scheduling Architectures

 Ranganathan and Foster (2003) defines a scheduling architecture that facilitates

efficient data management, allows priority to local policies, is decentralized with no

single point of failure and employs online job allocation techniques. The scheduling

logic of the architecture is encapsulated in three distinct modules Figure 2.8.

 External Scheduler (ES): Each user in the system is associated with an External

Scheduler and submits jobs to that External Scheduler. We can typically imagine one

ES per site but the framework does not enforce this. The ES then decides the remote site

to which to send the job to depending on some scheduling algorithm. It may use

external information such as load at a remote site or the location of a dataset, as input to

its decisions.

 Local Scheduler (LS): Once a job is assigned to run at a particular site (and sent

to an incoming job queue of that site) it is managed by the Local Scheduler at that site.

The LS decides how to schedule all jobs allocated to it, on its local resources. It could,

Scheduling

Algorithm

CPU

Overhead

Turnaround

Time
Throughput

Response

Time

First-In-First-Out Low High Low Low

Shortest-Job-First Medium Medium High Medium

Priority based

scheduling
Medium High Low High

Round-Robin

scheduling
High Medium Medium High

Multilevel Queue

scheduling
High Medium High Medium

34

for example, decide to give priority to certain kinds of jobs, or it could refuse to run jobs

submitted by a certain user.

 Dataset Scheduler (DS): The DS at each site keeps track of the popularity of

each data set locally available. It then replicates popular datasets to remote sites

depending on some algorithm. The DS may use external information such as whether

the data already exists at a site and load at a remote site to guide its decisions.

Figure 2.8: Job Scheduling Architecture A

Source: Ranganathan and Foster, 2003

35

 Then (Nguyen and Lim, 2007) extends the work of (Ranganathan and Foster,

2003) and combines scheduling and replication as shown in Figure 2.9. However, they

add into that model a centralized Active Replicator as part of Replica Manager and also

modify the role of Data Scheduler. They used some terms i.e. LS/DS/CE/SE/RB: Local

Scheduler/ Data Scheduler/ Computer Element/ Storage Element/ Resource Broker.

 Replica Catalogue (RC): Stores the list of all replicas on the grid. For every

predefined interval, the replicator will collect the replica information and data usage

information over the Grid. Then it decides whether to replicate a data file. When a job is

assigned to LS, the DS will responsible for all the data requests by the LS. This data

request is generated as soon as job is scheduled into LS queue. The objective of this DS

is to obtain to the local site as much data required by a job as possible before that job is

executed.

Figure 2.9: Jobs Scheduling Architecture B

Source: Nguyen and Lim, 2007

36

The basic system running procedure scheduler described by (Liang and Shi, 2010) as

follows and described in Figure 2.10.

 Task submission: A task is submitted from the submission site to the G-

Scheduler; all tasks will stay in the G-Queue.

 Global scheduling: The G-Scheduler schedules the task with First-Come-First-

Serve (FCFS) policy from the G-Queue, and then selects the running sites based on the

inter-site trust information (or sequential selection if without a reputation mechanism),

and dispatches the job to the selected sites meeting the scheduling requirements. At the

same time, the G-Scheduler changes the stock of currency between the submission site

and selected running sites based on the reputation information and resource request. The

selected running sites will put the job assignments from the G-Scheduler into the Local

scheduler‟s Queue.

 Local scheduling: The L-Scheduler in the running site also schedules jobs from

the L-Queue with FCFS, makes node selection based on the intra-site trust information

(or sequential selection if without a reputation mechanism), and dispatches the job to

the selected running nodes.

 Job running: Jobs will be running in the selected set of nodes with local

scheduling. A node can either finish the job successfully or fail the job running because

of node unavailability. If the system can support auto-rescheduling of failed jobs, the

failed jobs can be rescheduled to run in other nodes in the same site for a certain number

of times. The job is considered as failed only after it still cannot be finished after the

allowed maximum number of rescheduling.

 Running result report: The running results with the number of successful and

failed jobs will be reported to the G-Scheduler after the running site stops the job

running (either finished or failed). At the same time the site updates the intra-site trust

based on the running result.

37

 Inter-site trust update: The G-Scheduler updates the inter-site trust based on the

reported running results (or perceived running results if the G-Scheduler owns the job

running monitor function). If rescheduling is allowed, the failed jobs will enter the G-

Queue again, and wait for the next global scheduling. This procedure continues until all

jobs in one task have been successfully completed.

Figure 2.10: Jobs Scheduling Architecture C

Source: Liang and Shi, 2010

38

 Shailesh (2011) describes the relationship between the physical machines and

the VMs as shown in Figure 2.11. Consider P as a set of all the physical machines in the

entire system, where P = {P1, P2, P3 …. PN}. N is total number of the physical

machines and an individual physical machine can be denoted as Pi, where i denote the

physical machine number and range of i is (1 <= i <= N). Similarly, we have a set of

VMs on each physical machine Pi, Vi = {Vi1, Vi2, Vim} here m is the number of VMs

on the physical server i (Jinhua et al., 2011). If we want to deploy VM V on the present

system, then we have a solution set denoted by S = {S1, S2, S3 …. SN}, it represents the

mapping solution after VM V is assigned to each of the physical machines. When the V

is arranged with the physical machine Pi we get the mapping structure denoted as Si.

Figure 2.11: Cloud System Structure

Source: Shailesh 2011

39

 (Vaishali et al., 2012) has introduced a data locality driven task scheduling

algorithm, called Balance-Reduce. On finding a feasible solution, a critical obstacle is

that the remote cost cannot be calculated before the remote task number is known.

Moreover, it is hard to obtain a near optimal solution when the remote cost changes

frequently. For example, when we allocate a remote task, the remote task number

increase by one, so the remote cost may also increase. Furthermore, the load of the

servers which have been allocated remote tasks must be updated. In order to make sure

the remote cost, algorithm is split into two phases, balance and reduces:

• Balance: Given a data placement graph G, initial load set Linit and a local cost

Cloc, the balance phase returns a total allocation B. Under B, all tasks are

allocated to their preferred servers evenly.

• Reduce: Given a local cost Cloc, a remote cost function Crem(·), a total

allocation B computed by the balance phase, and an initial load set Linit, the

reduce phase works iteratively to produce a sequence of total allocations and

returns the best one. By taking advantage of B, the remote cost can be computed

at the beginning of each iteration.

Figure 2.12: Cloud Task Scheduling Process

Source: Vaishali et al., 2012

40

2.4.1.2 Job Scheduling Architectures Summery

 This section is summarizing the overall concept of above mentioned job

scheduling architectures. Job scheduling architectures A (Nguyen and Lim, 2007), B

(Ranganathan and Foster, 2003) and C (Liang and Shi, 2010) basically divide their

schedulers into three phases. For the job submission by the users all three architectures

follow First-Come-First-Serve (FCFS) scheduling policy. In job scheduler A and B

phase 2 (LS- Local Scheduler) and phase 3 (DS-Data Scheduler) are identical, the only

difference is in their phase 1. In architecture A, phase 1 is named as External Scheduler

(ES) and in architecture B this phase is named as Resource Broker (RB). User jobs are

submitted directly to ES and RB in both architectures where jobs are placed in queues.

Both ES and RB have different scheduling policies at this level for job dispatch to LS.

ES uses (i) load at the remote site and/or (ii) location of dataset as the resource

scheduling strategy whereas RB uses estimation of cost in terms of time as the resource

scheduling strategy. In Job scheduling architectures C, the architecture is also divided

into three phases. But instead of LS and DS like in architecture A and B, it presents two

LS with the Global Scheduler (GS). User jobs are submitted and queued to GS. GS uses

stock of currency between the submission site and selected running sites based on the

reputation information and resource request. LS works by using processor selection

based on the intra-site trust information.

 The scheduler picks the server first, which already has jobs being processed and

waiting i.e. Local Scheduler (LS). The data begin to be transferred immediately means

Data Scheduler (DS) will start its work. It is possible that all jobs for that server are

finished by the time Execution Time (ET) that the transfer finishes so the time to enter

service is merely the Data Transfer time (DT). It is also possible that the some jobs are

not finished when the data transfer completes so that the new job must wait until all

previous jobs are completed. That time is just the system time (ET) of the current jobs at

the server. Thus the total time that the new job must wait before service is the Queue

Time (QT) i.e. system time (ET) for all jobs currently at that server. That is why above

architectures are taking maximum of QT and DT during the transfer time calculation

(equation 1.1). According to these architectures the whole system is busy at a time, it

41

means that DS will keep continue its work and meanwhile there will be jobs in the ES,

and ES will execute jobs and at the same time there will be jobs in LS.

 Cheng (2007) proposed two schedulers MWTP and VWTP to perform

proportional delay differentiation. Algorithms can maintain the delay proportion and

reduce the average queuing delay by simultaneously considering the packet waiting

time and the packet transmission time. (Liang and Shi, 2010) proposed a reputation-

based resource scheduler for the Grid. (Dwekat and Rouskas, 2011) presented tiered-

service fair queuing (TSFQ) scheduler techniques, within each tier, the schedulers

employ a fixed number of queues to handle packets with few or no sorting operations.

(Francini et al., 2001) have presented three enhancements of WRR schedulers for

providing bandwidth guarantees in IP networks.

 In addition, all these scheduling architectures work on the base of Queuing

theory. Each scheduler technique has its own architecture and various numbers of sub-

schedulers. On the bases of above discussed scheduler architectures it means that, the

number of scheduler and the combination of schedulers depends on the scheduler

architecture.

2.4.2 QUEUING THEORY

 Queuing theory and models are just like the scheduling backbones. Here in this

section queuing models and statistical distributions will be briefly discussed. As the

value of a model fluctuates with its outcomes, suitable models and algorithms need to

be selected. Another significant factor is the point of view taken. Performance values

calculated with respect to an arriving process are not essentially equal as these processes

are determined from a server‟s viewpoint (Stallings, 2000). Again, the impact of

statistical distributions is not minor to be neglected (Tang et al., 2006). Though, it turns

out that the performance significance is the same, during the use of models with

exponentially distributed inter-arrival and service times. On the other hand, a lot of

beneficial relations have been determined for more common cases. Queuing theory with

42

models have briefly described by (Introduction to Queuing Theory, 2011; Lec-30, 2010;

Lec-31, 2010; Lec-32, 2010; and Queuing Theory-Birth Death processes, 2011).

Though queuing models differ in application and complexity, a common set of

performance features may be determined as follows.

 In order to calculate all related parameters‟ values, we need to use the following

parameters. For each model, by using various values of Arrival Rate (), Service Time

Distribution (), Server Utilization (), Number of Servers (C), Number of Jobs or

Population (M), Queue Capacity (K), Bandwidth (BW), we need to calculate the

following values, which are the key parameters while calculating Total Completion

Time for transferring.

 Pn = Probability of 'n' jobs in the system

 P0 = Probability of '0' jobs in the system

 L = Average jobs in the system

Lq = Average jobs in the queue

Ws = Average time spent in the system

 Wq = Average time waiting in line

 The state probability pn is defined through the probability of n jobs residing in

the system, either being served or waiting. Thus, pn = {n jobs in the system} has giving

by (Intro to Queuing Theory, 2011; and Queuing Theory-Birth Death processes, 2011).

The flow intensity ρ is given by the ratio of arrival rate λ and service rate μ, i.e.

 (2.1)

 Queuing theory dealing with mathematical techniques used to analyse

congestion problems. According to (Mag et al., 2009; and Lipsky, 2009), congestion

may occur when a population of entities (jobs) has to share a service system with

limited capacity. Every time there are more jobs requiring service then they can be

attended to these jobs are said to form a queue or waiting line. The main components of

43

a queuing system are the entities that require service, often called jobs; the entities that

provide service, usually called servers, and one or more queues discussed by (Mag et

al., 2009; Lipsky, 2009; Chee-Hock and Soong, 2008; and Jain et al., 2007). Jobs are

often external to the service system. They individually decide when they need a certain

service. Then they are said to arrive at the service system. Queues may build up and

dissolve again from time to time even if the capacity of the service system is sufficiently

large to handle all service demands in the long run. This phenomenon leads to the

formulation of stochastic models discussed by (Philippe, 1998; and John et al., 2008).

 Throughout this study, queue models refer to the total number of jobs present in

a service centre (server), including the jobs which are in service, and waiting time refers

to the time jobs waiting for their service, excluding their service time. There are some

notations used for the presentation of parameters in queuing models.

2.4.2.1 Kendall's classification

 Service systems with a single queue are conventionally classified according to

Kendall's notation which has been discussed by (Zafril and Azmi, 2011; Mag et al.,

2009; Lipsky, 2009; Chee-Hock and Soong, 2008; John et al., 2008; Dattatreya, 2008;

Artalejo and Lopez, 2007; Jain et al., 2007; and Gupta and Samanta, 2004).

Notation A/B/C

 The symbol at position A describes the arrivals to the queue process, often in

terms of an inter-arrival time distribution. A denotes the passive time distribution of the

individual job for systems with a finite job population. The symbol at position B signals

the service time distribution. The integer at position C shows the service capacity

(number of servers). It is customary to indicate an exponential distribution by the

symbol M for Markovian or memory less. Service times are generally assumed to be

mutually independent and independent of the arrival process. A prefixed B at position A

or B indicates that arrivals or services occur in batches (groups). Without this prefix,

jobs are assumed to arrive at one by one and to be served individually.

44

 Occasionally, this organization is extended to a four, five, or six symbol form.

Each omitted component has a default value. The complete form of Kendall's

classification is as: A/B/C/D/E/F.

Notation A/B/C/D/E/F

 The symbols at positions A, B, and C are the same, as discussed above. The

integer at position D denotes the capacity of the queue; that is, the maximum number of

jobs, which can be simultaneously accommodated in the system (default: infinite). The

integer at position E depicts the size of the job population (default: infinite). The symbol

at position F indicates the service discipline (default: FCFS), the symbol GD at the last

position shows a general (unspecified) service discipline.

2.4.3 Queuing Models

 Queuing theory consists of various models, depending on the number of servers

(single or multiple), queue length (fixed, dynamic) and population of jobs (known or

unknown) as well as on the basis of scheduling discipline. Queuing Models have been

briefly discussed by (Queuing Theory, 2011; Intro to Queuing Theory-Birth Death

processes, 2011; Lec-30, 2010; Lec-31, 2010; and Lec-32, 2010).

2.4.3.1 M/M/1 Model

 M/M/1 is the most basic model in the queuing theory. In this section, the

mathematical operation will be combined with intuitive insights to prepare the path for

more composite models. In M/M/1 model, random arrivals and exponentially

distributed service times are presumed. The random arrivals are exactly defined to be

Poisson in statistics. In addition, there is only a single server serving jobs on a First-

Come-First-Serve discipline basis. The arriving jobs are unaffected by the queue size

because the population is infinite. Using parameters in the M/M/1 model are  (average

45

arrival rate) and  (average service rate). Figure 2.13 shows the state transition diagram

for single server system.

Figure 2.13: M/M/1 State transition diagram

Source: Queuing Theory 2011

2.4.3.2 M/M/1/K Model (Capacity Constraint)

 Subsequently, the next step is to spread the M/M/1 model to include a system

capacity constraint (limitation) thus becomes M/M/1/K model (Lec-30, 2010; and Intro

to Queuing Theory, 2011). Same condition described for state 0 before has to be applied

to state K as well. As shown in Figure 2.14.

Figure 2.14: M/M/1/K Model State transition diagram

Source: Queuing Theory 2011

46

2.4.3.3 M/M/c Model (Multi-server System)

 Multiple servers in queuing systems may be modeled by a single server system

with state dependent service rate. Given n jobs are in the system, work is processed n

times as quick as a single server would require to do so. Given a limited provision of

servers, the load dependent service rate will be the same. Queuing Models briefly have

been described by (Lec-30, 2010; Lec-31, 2010; Lec-32, 2010; Intro to Queuing

Theory, 2011; and Queuing Theory-Birth Death processes, 2011). The related model is

denoted as M/M/c in the limited case and M/M/∞ in the unlimited case. The latter

system is also called „delay server‟, as the average response time is insensible to the

number of jobs presented in the system. As a single system, the delay server is almost

useless, but if combined with other systems to a queuing network, it plays a significant

role.

2.4.3.4 M/M/c/K Model (Capacity Constraints with Multi-server Systems)

 As mentioned above, by customizing the parameters for the load dependent

model, the capacity constraints can be introduced to a multi-server system M/M/c/K, as

briefly discussed by (Lec-30, 2010; Lec-31, 2010; Lec-32, 2010; and Queuing Theory-

Birth-Death processes, 2011).

2.4.3.5 M/M/c/*/P Model (Finite Population)

 Earlier discussion has centred on the queuing theory with infinite job

population. Although mathematically convenient, such a supposition only serves well as

an approximation to situations with a large population (number of jobs). One anticipates

that prediction faults become negligible. If this is not the case, then one has to keep an

eye on finiteness. This is best done by modifying the birth rate λ in the standard model

birth-death shown as follows:

 {
()

 (2.2)

47

 Here M denotes the number of jobs (size of the population). Presume a system

with c < M service units, i.e.

 {

 (2.3)

 {
(

)

(

)

 (2.4)

with (

)

()
 denoting the binomial coefficient. Using ∑

 and

solving for p0 gives

 *∑ ()

 ∑ ()

 +

 (2.5)

 For effective calculation of the steady state probabilities, (Gross and Harris,

1985; and Gross, 2008) propose the following recursion based on the properties of the

binomial coefficient:

 {

 ∏

 (2.6)

 Using the definition of the expected result, one is now able to calculate the

average system size:

 ∑
 *∑ ()

 ∑ ()

 + (2.7)

48

 To follow the work of (Gross and Harris, 1985; Lec-30, 2010; Lec-31, 2010;

Lec-32, 2010; Intro to Queuing Theory, 2011; and Queuing Theory-Birth Death

processes, 2011), the average queue size Lq can be derived from L as follows:

 ∑()

 ∑

 ∑

 ∑

 (∑

)

 ∑()

 ∑ ()(

)

 (2.8)

 In order to derive the waiting time indicators using Little‟s law, one initially has

to define the mean arrival rate ̅ (Lec-31, 2010; Lec-32, 2010; Queuing Theory-Birth

Death processes, 2011). With n jobs already present in the system and a maximum of

M−n jobs remain outside waiting for their turn. This outcomes in a mean arrival rate of

(M − n) λ, averaging yields

 ̅ ∑ ()

 (∑ ∑

)

 () (2.9)

By using Little‟s law with the just calculated mean arrival rate ̅ leads to

 ()
 (2.10)

and

 ()
 (2.11)

49

 With the large number of population M, the Engset distribution approaches the

probabilities where pn is given by the M/M/c/c Erlang loss system. (Gross and Harris,

1985; Lec-30, 2010; Lec-31, 2010; Lec-32, 2010; and Intro to Queuing Theory, 2011)

have discussed in great detail about this queuing theory.

2.4.4 Queue Characterization

A queuing system may be termed as a system, where jobs arrive conferring to an

arrival process to get service by a service facility according to a service process. Each

service facility may have one or more servers. It is normally assumed that each job can

get service only from one server at a time. If all servers are busy, the job has to put in

the queue for service. When a server gets free time again, the next job is selected from

the queue according to the instructions given by the queuing discipline. The job might

run through one or more stages during the service, before the departure from the system.

Figure 2.15 describes the flow process of a job in queue system.

Figure 2.15: Schematic representation of a queuing system

50

When a job needs to transfer from one node to another, first, it has to join the

queue. In the queue, the job should wait for its turn. Here, waiting time in the queue is

denoted by QT. This waiting time starts immediately after entering the queue and just

before starting the execution process. The number of job in the queue in a specific time

is denoted by Lq. After waiting, the job will enter to the processor. During execution,

the time taken by the processor is denoted by ET. ET starts with the start of execution

and ends with the end of execution. The number of jobs inside the processor in a

specific time is denoted by L. Resident time is Tr, the time which a job passes in the

system, which is the sum of the queue time (QT) and the execution time (ET). After

completion of job execution, the transfer process will start. Transfer time denoted by

DT, which commences with the start of the transfer process and ends with reaching the

job to its destination. Figure 3.6 in chapter number 3 shows that Total Completion Time

(TCT) is the sum of the waiting time in the queue (QT), spend time in the system (ET),

and transferring time (DT). A schematic representation of such system is shown in

Figure 2.15. Before moving forward, the most significant aspects of queuing systems

are listed and described.

 The arrival process is stated by a statistical distribution and its parameters.

Normally, the exponential distribution is assumed resulting in the arrival pattern to

calculate the average number of arrivals per unit of time. Generally, arrival processes

are characterized by other configurations as well. These include batch arrivals and time

dependence.

 The service process is the same as the arrival process. Again, exponentially is

normally assumed in practice due to intractability when releasing these

assumptions. The service process is greatly dependent on the state of the

system which is the opposite of the arrival process. In the case of the queuing

system being empty, the service facility will become idle.

 The queuing discipline refers to the way, jobs selected for the service under

queuing situations. It is generally used and the most common is the First-

51

Come-First-Serve (FCFS) discipline. Others include Last-Come-First-Serve

(LCFS), random and priority service.

 The departure process is rarely used to define a queuing system, as it can be

seen as an outcome of the queuing discipline, arrival, and service process.

Under certain circumstances, arrival and departure process follows the same

statistical distribution, which has become a very significant fact in the

queuing network modelling.

 The number of server's states to the number of parallel nodes, which can

service jobs simultaneously at a time.

 The number and organization of service stages, a job which might have to

visit before departing from the system. Shortly in a computer system, a job

might have to visit the CPU twice and the Input/Output processor once during

a single service.

2.5 SUMMARY

 This chapter briefly reviews and discusses Cloud Computing, Cloud services,

their advantages and disadvantages, types of Clouds, capabilities, and also compares the

prices of various Cloud services. Data Management is the key factor in providing Cloud

services. Finally, data-management scheduling, service discipline queuing theory, and

queuing models are also presented.

 To calculate data transfer time from source to target, we need to calculate the

Queue Time, Execution Time, and Data Transfer Time. We have to calculate Length of

the queue (Lq), wait in the queue for a job (QT), number of jobs in the server (L), and

wait in the server for a job (ET). Similar the scheduling architecture is encapsulated in

three distinct modules Figure 2.8, Figure 2.9 and Figure 2.10.

52

 External Scheduler (ES): Each user in the system is associated with an External

Scheduler and submits jobs to that External Scheduler. We can typically imagine one

ES per site but the framework does not enforce this. The ES then decides the remote site

to which to send the job to depending on some scheduling algorithm. It may use

external information such as load at a remote site or the location of a dataset, as input to

its decisions.

 Local Scheduler (LS): Once a job is assigned to run at a particular site (and sent

to an incoming job queue of that site) it is managed by the Local Scheduler at that site.

The LS decides how to schedule all jobs allocated to it, on its local resources. It could,

for example, decide to give priority to certain kinds of jobs, or it could refuse to run jobs

submitted by a certain user.

 Dataset Scheduler (DS): The DS at each site keeps track of the popularity of

each data set locally available. It then replicates popular datasets to remote sites

depending on some algorithm. The DS may use external information such as whether

the data already exists at a site and load at a remote site to guide its decisions.

 Next Chapter will discuss the methodology that is, how we can get all these

Queue Time (QT), Execution Time (ET), and Data Transfer Time (DT), Length of the

Queue (Lq), number of jobs in the server (L). A queuing model, the finite population

M/M/c/Kmodel will be used to evaluate the new proposed scheduling model.

53

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

 This chapter introduces an alternate technique to calculate the time for data

transfer from source to target. To improve data efficiency and reliability, the current

chapter uses various mathematical formulae. A scheduling architecture will be

presented, together with the Queuing Models, and their use will be discussed.

3.2 QUEUING THEORY AND SCHEDULING

According to (Stallings, 2000; Intro to Queuing Theory, 2011; and Queuing

Theory-Birth Death processes, 2011), Equation 3.1 illustrates some important

parameters associated with a queuing model. Items arrive with some average rates (i.e.

items arriving per second). Here, just for understanding, Little‟s Law notations have

been used. At any given time, a certain number of items will be waiting in the queue

(zero or more); assuming the average number of items waiting is W, and the meantime

that an item must wait is Tw. The Tw is an average over all incoming items, including

those that do not wait at all. The server handles incoming items with an average service

time Ts; this is the time interval between the dispatch of an item to the server and the

departure of that item from the server. Finally, two parameters apply to the system as a

whole. The average number of items resident in the system, including the item being

54

served (if any) and suppose the items waiting (if any), is Tw; and the average time that

an item spends in the system, waiting and being served, is Ts; we refer this as the mean

residence time. First-In-First-Out (FIFO) is a suitable scheduling discipline to use.

3.2.1 Parameters Used In Queuing Theory

This study is using general parameters/notations. All parameters have been

classified into two categories, namely independent and dependent. Some notations have

been changed from Little Law notations to general notation used by (Tang et al., 2006;

Ranganathan and Foster, 2003; and Nguyen and Lim, 2007) to avoid confusion.

Throughout this research, the Average time spent in the system is denoted by ET instead

of Ws, Data Transfer Time is represented by DT instead of Tt and Average time waiting

in queue denoted by QT instead of Wq. The rest of the parameters are the same, as they

have been presented in previous works.

3.2.1.1 Independent Parameters

Independent parameters are those which are not dependent on other parameters.

Independent parameters can be put at the first time. In this study, the followings are

independent parameters:

 = Arrival Rate

 = Service Time Distribution

 =

 = Server Utilization

C = Number of Servers

M = P= Number of Jobs (Population)

K = Queue Capacity

BW = Bandwidth

55

3.2.1.2 Dependent Parameters

Dependent Parameters are those parameters which are depended on other

parameters. Dependent parameter's values are generated by using independent

parameters. In this study, the followings are dependent parameters.

Pn= Probability of 'n' jobs being in the system

P0= Probability of 'o' jobs being in the system

L= Average jobs in the system

Lq = Average jobs in the queue

ET = Ws= Average time spent in the system

QT = Wq=Average time waiting in line (queue)

DT = Tt = Data Transfer Time

3.2.1.3 Parameters Definition and Explanation

For better and easy understanding, each parameter will be defined. Some of

them belong to Little‟s Law. It is important in scheduling and queuing theory. Little

Law (Stallings, 2000) has been discussed by (Blanc, 2011; Lipsky, 2009; and Chee-

Hock and Soong, 2008) as follows:

TsTwTr  (3.1)

Where Twis the mean waiting time generally denoted by QT, which the time for

a job is passing in waiting after entrance to queue and before starting execution, as

shown in Figure 3.1.

Figure 3.1: Time in Queue

56

Mean service (execution) time Ts denoted by (Little et al., 2008) is for each

arrival; ETj,i denoted by (Nguyen and Lim, 2007; Tang et al., 2006; and Ranganathan

and Foster, 2003). ET is the job Execution Time after entrance from queue and before

starting the transfer process, shown in Figure 3.2.

Figure 3.2: Time in Server

Tr (residence time) given in Equation 3.1 is the meantime, an item spends in the

system means both times in queue as well as in server. Hence using Little‟s Law, Tr has

shown in Figures 3.3 and 3.4.

  iji ETQTTr

WsWqTr

,


 (3.2)

Where QT(i) = Wq and ETj,i = Ws as mentioned in Figure 3.3.

Figure 3.3: Schematic representation of time in system

57

Or Tr is the sum of QT and ET, as described in Figure 3.4.

Figure 3.4: Time in System

The DTj,i is the time after the completion of execution and before the completion

of data transfer process, as presented by Tt. The important point is that Tt is only the

transfer time excludes QT and ET, as shown in Figure 3.5.

Figure 3.5: Transferring Time

According to this study, the Total Completion Time (TCT) for a job can be the

sum of three different Times, QT, ET and DT, as shown in Figure 3.6.

  jfDTETQTTCT ij , (3.3)

Converting this expression into the Little‟s notation, the Equation 3.3 will be as:

  jfTtWsWqTCT ij ,
(3.4)

58

Figure 3.6: Total Completion Time for Data Transfer

Equation 3.3 has explained in Figure 3.6. When a job needs to transfer from one

node to another, first, it has to join the queue. In the queue, the job should wait for its

turn. Here, this waiting time in the queue is denoted by QT. This waiting time starts

immediately after entering the queue and just before starting the execution process. The

number of job in the queue in a specific time is denoted by Lq. After waiting, the job

will enter the processor. During execution, the time taken by the processor is denoted by

ET. ET starts with the start of execution and ends with the end of execution. The

number of jobs inside the processor in a specific time is denoted by L. Resident time is

Tr which a job passes in the system, and is the sum of the queue time (QT) and the

execution time (ET). After completion of job execution, the transfer process will start.

Transfer time denoted by DT, which commences with the start of the transfer process

and ends with reaching the job to its destination. Figure 3.6 shows that Total

Completion Time (TCT) is the sum of the waiting time in the queue (QT), spend time in

the system (ET), and transferring time (DT).

59

3.2.2 SCHEDULER ARCHITECTURE

Total Completion Time (TCT) has three intervals of times; just like that the

process flow consists of the scheduling technique also has three distinct modules, as

shown in Figure 3.7.

Figure 3.7: Scheduler Architecture

60

External Scheduler (ES): Each user is associated with an External Scheduler in

the system and submits jobs to that External Scheduler. ES decides the remote site to

which the job will send to depending on some scheduling algorithms. ES uses external

information to decide the input such as loading at a remote site or on a specific location

of a data set.

Local Scheduler (LS): Assigned jobs are managed by the Local Scheduler to run

at a particular site. The allocation of allocated jobs is also the responsibility of the LS.

LS decide the priority and can refuse to run jobs submitted by a certain user.

Dataset Scheduler (DS): At each site, DS keeps track of the popularity of each

local available data set. It can use external information, such as the already existed data

at the concern site, to load to the target remote site.

 Job scheduling architectures A (Nguyen and Lim, 2007), B (Ranganathan and

Foster, 2003) and C (Liang and Shi, 2010) basically divide their schedulers into three

phases. For the job submission by the users all three architectures follow First-Come-

First-Serve (FCFS) scheduling policy. In job scheduler A and B phase 2 (LS- Local

Scheduler) and phase 3 (DS-Data Scheduler) are identical, the only difference is in their

phase 1. In architecture A, phase 1 is named as External Scheduler (ES) and in

architecture B this phase is named as Resource Broker (RB). User jobs are submitted

directly to ES and RB in both architectures where jobs are placed in queues. Both ES

and RB have different scheduling policies at this level for job dispatch to LS. ES uses (i)

load at the remote site and/or (ii) location of dataset as the resource scheduling strategy

whereas RB uses estimation of cost in terms of time as the resource scheduling strategy.

In Job scheduling architectures C, the architecture is also divided into three phases. But

instead of LS and DS like in architecture A and B it presents two LS with the Global

Scheduler (GS). User jobs are submitted and queued to GS. GS uses stock of currency

between the submission site and selected running sites based on the reputation

information and resource request. LS works by using processor selection based on the

intra-site trust information.

61

 Cheng (2007) proposed two schedulers MWTP and VWTP to perform

proportional delay differentiation. Algorithms can maintain the delay proportion and

reduce the average queuing delay by simultaneously considering the packet waiting

time and the packet transmission time. (Liang and Shi, 2010) proposed a reputation-

based resource scheduler for the Grid. (Dwekat and Rouskas, 2011) presented tiered-

service fair queuing (TSFQ) scheduler techniques, within each tier, the schedulers

employ a fixed number of queues to handle packets with few or no sorting operations.

(Francini et al., 2001) have presented three enhancements of WRR schedulers for

providing bandwidth guarantees in IP networks.

 The scheduler picks the server first, which already has jobs being processed and

waiting i.e. Local Scheduler (LS). The data begin to be transferred immediately means

Data Scheduler (DS) will start its work. It is possible that all jobs for that server are

finished by the time Execution Time (ET) that the transfer finishes so the time to enter

service is merely the Data Transfer time (DT). It is also possible that the some jobs are

not finished when the data transfer completes so that the new job must wait until all

previous jobs are completed. That time is just the system time (ET) of the current jobs at

the server. Thus the total time that the new job must wait before service is the Queue

Time (QT) i.e. system time (ET) for all jobs currently at that server. That is why above

architectures are taking maximum of QT and DT during the transfer time calculation

(equation 1.1). According to these architectures the whole system is busy at a time, it

means that DS will keep continue its work and meanwhile there will be jobs in the ES,

and ES will execute jobs and at the same time there will be jobs in LS.

With encapsulation of three schedulers ES, LS, and DS, the time for completion

of a job is also the encapsulation of three Times (Intervals). QT is the time when a job

passes in waiting after entrance to queue and before starting execution. The time

denoted by ET is the job execution time after its entrance from the queue and before

starting the transfer process. DT is the time after completion of the execution time and

before completion of the data transfer process. The Total Completion Time for a job is

the sum of all these three times.

62

 In addition, all these scheduling architectures work on the base of

Queuing theory. Each scheduler technique has its own architecture and various numbers

of sub-schedulers. On the bases of above discussed scheduler architectures, it means

that, the number of scheduler and the combination of schedulers depends on the

scheduler architecture.

63

3.2.3 SCHEDULING ALGORITHM FOR TCT

Algorithm’s Parameters

Filters: ES; LS; DS.

Filtering ∈ ES ∩ LS ∩ DS.
Processing Time: t1(QT) + t2(ET) + t3(DT)

ES=External Scheduler QT=Queue Time

LS=Local Scheduler ET=Execution Time

DS=Data Scheduler DT=Data Transfer Time

The Algorithm: Total Completion Time (TCT) Algorithm

1: jobs submitted to scheduler queue for processing

2: for all jobs there is a QT.

3: end for

4: if filter Ѥ ES (condition: job size ≠ 1 kb)

5: job status: QT

6: loop (go to 3)

7: until: ES (condition: job size = 1 kb)

8: end loop

9: for all jobs there is an ET.

10: end for

11: if filter ∈ ES (condition: job size = 1 kb) &

Filter ES ∩ LS (condition for LS =

resources unavailable).

12: job status: terminated

13: end if

14: if filter ∈ ES ∩ LS (condition: job size = 1kb
& resources available)

15: for all jobs there is a DT.

16: end for

17: filter ES ∩ LS ∩ DS (condition for DS=

network congestion)

18: job status: terminated

19: else

20: filter ∈ ES ∩ LS ∩ DS
21: TCT = QT + ET + DT.

22: job status: processed

23: end if

24: end if

∈

64

3.2.3.1 ALGORITHM’S DESCRIPTION

Algorithm 3.2.3 encapsulates three schedulers, ES (External Scheduler, LS

(Local Scheduler), and DS (Data Scheduler), as well as the time for completion of a job

is also the encapsulation of three Times (Intervals), QT (Queue Time), ET (Execution

Time), and DT (Data Transfer Time). QT, ET and DT are denoted by t1, t2 and t3

respectively. All these parameters have described in Figure 3.7. All jobs, which we need

to transfer, submitted to scheduler‟s Queue. All schedulers filter jobs according to the

filter‟s conditions, and then process.

Each user is associated with an External Scheduler in the system and submits

jobs to the External Scheduler‟s Queue. ES decides the remote site to which the job will

send to depending on some scheduling algorithms conditions. ES uses external

information to decide the input such as loading at a remote site or on a specific location

of a data set. ES filtering condition that is one job must be 1 kb. After fulfilling the

condition, ES will keep jobs in QT.

After the completion of ES process, jobs assign and manage by the Local

Scheduler to run at a particular site. The allocation of allocated jobs is the responsibility

of LS, as well as decides the priority and can refuse to run jobs submitted by a certain

user. Time consumed by ES is actually execution time and denoted by ET. ES will

check, either resource for transferring available, to send job or put in waiting queue until

the availability of resources.

When ES completes its responsibility of checking the availability of resources,

jobs assigns to DS. DS check the network congestion; either network is able for

transferring or DS should keep jobs in waiting queue until the availability of network.

At each site, DS keeps track of the popularity of each local available data set. It can use

external information, such as the already existed data at the concern site, to load to the

target remote site. Consumed time during the process of DS is denoted by DT.

According to the new proposed technique the sum of all intervals (t1, t2 and t2) give

TCT, which is the Total Completion Time for transferring of data.

65

3.2.4 SCHEDULING STRATEGY

The resource scheduling strategy is based on the estimation of cost (in terms of

time cost) of executing a job in each site. It is possible to assume that job is submitted to

Local Scheduler (LS) one by one. When receiving a job submission, the LS will estimate

the Total Time (TT) for completing a job in a site i, as mentioned by (Nguyen and Lim,

2007; Tang et al., 2006; and Ranganathan and Foster, 2003), as shown below.

    ikiik +ETikfDTQT = TT ,)(, ,,max (3.5)

Scheduler‟s architectures have been presented by (Dwekat and Rouskas, 2011;

Liang and Shi, 2010; Cheng, 2007; and Francini et al., 2001) with various structures,

algorithms and with different number of schedulers in different numbers of slots. It

depends on the way, how they have defined their model. Assume that we cannot begin

the downloading, means data transferring process, until after the server is clear of the

other jobs. For Turnaround Time, we simply use the Total Completion Time (TCT) for a

job which is the sum of all these three Times. After send out signal that the server is free

then the summation of Data Transfer Time (DT) and Queue Time (QT). It means that

the server would not be working during DT or some time we assume that the server has

other small tasks that can be interrupted when DT is complete. On the base of Scheduler

Architecture Figure 3.7 and Scheduling Algorithm for TCT (3.2.3), the Total

Completion Time is the summation of Queue Time (QT), Execution Time (ET) and

Data Transfer Time (DT) i.e.

    jf+DT+ ET= QTTCT j, iiij ,
(3.6)

 It is possible that all jobs for that server are finished by the time Execution Time

(ET) that the transfer finishes so the time to enter service is merely the Data Transfer

time (DT). It is also possible that the some jobs are not finished when the data transfer

completes so that the new job must wait until all previous jobs are completed. That time

is just the system time (ET) of the current jobs at the server. Thus the total time that the

66

new job must wait before service is the Queue Time (QT) i.e. system time (ET) for all

jobs currently at that server. That is why above architectures are taking maximum of QT

and DT during the transfer time calculation with the addition of ET (Equation 3.5).

3.2.5 PHYSICAL STRUCTURE OF CLOUD ARCHITECTURE

 A well-designed network of cloud architecture constructs a cloud-friendly

network. To provide users with the same features found in commercial public clouds,

private/hybrid cloud, software has some aspects on the base of which Cloud architecture

has the following main components. As described in Figure 3.8, this section discusses

all these components one by one.

Figure 3.8: Physical Structure of Cloud Architecture

Fig 3.7

67

3.2.5.1. Application Programming Interface.

 Cloud Application Programming Interface (APIs) are used to build applications

in the Cloud Computing market. Cloud APIs allow software to request data and

computations from one or more services through a direct or indirect interface. Cross-

platform interfaces have the advantage of allowing applications to access services from

multiple providers without rewriting, but may have less functionality or other

limitations versus vendor-specific solutions. An application-programming interface

(API) is a key part of any web-based technology. Without APIs, the technology in

question would serve a limited purpose and be severely confined in its capabilities. As

Cloud Computing continues to grow and expand, APIs will also evolve to give

developers an even more precise way of interaction. Although an essential piece, APIs

in the cloud don‟t come without controversy.

3.2.5.2. Cloud Administration

Cloud administrators configure and maintain the cloud platform itself. User

access, system software lifecycle, data center policy compliance are all necessary for a

cloud in the same way that they are necessary for individual physical machines.

However, cloud administration also differs from more traditional system administration

in a few important ways. First, the cloud administrator must maintain two separate

system software domains:

 System software on the physical machines.

 System software that is the platform itself.

It is often tempting to think of the cloud platform as being the „operating system

for the cloud‟. This simplification, however, can lead to confusion particularly with

respect to cloud installation and upgrade. An operating system „boots‟ when a machine

is started. A cloud is deployed and its components securely registered regardless of the

running status of any given machine. Thus a cloud administrator must differentiate

between operating system administration on the physical machines and administration

http://en.wikipedia.org/wiki/Cloud_computing

68

of the cloud platform itself which is a distributed and, in some sense, more abstract and

unifying „machine‟. Figure 3.8 describes the physical structure of cloud architecture.

3.2.5.3. Data-as-a-Services.

 Data-as-a-Service (DaaS) is an information provision and distribution model in

which data files (including text, images, sounds, and videos) are made available to

customers over a network, typically the Internet (Search Cloud, 2013). DaaS offers

convenient and cost-effective solutions for customer and client oriented enterprises.

DaaS is emerging as underlying technologies that support Web services and SOA

(Service-Oriented Architecture) mature. The evolution of SOA has greatly reduced the

relevance of the particular platform on which data resides. DaaS adoption may be

hampered by concerns about security, privacy, and proprietary issues. DaaS is totally

concern with data transferring, hence this study and new proposed technique totally

related with DaaS. Active provision of data depends on the correct time calculation for

data transferring process. New proposed technique is concern with DaaS.

3.2.5.4. Cloud Schedulers

Cloud Scheduler acts after jobs reaching to queue. It looks at the job queue to

discover which VM images are needed to complete the jobs in the queue, boots some

VM images on the clusters it has access to. These VM images run the jobs from the

queue, and Cloud Scheduler then shuts them down when they are no longer necessary.

Cloud Scheduler further has three main components as discussed in section 3.2.2 and

Figure 3.7 has described them. Besides, Cloud Scheduler performs the following

responsibilities.

 Manage a queue of VMs

 Responsible for all aspects of a VM‟s life-cycle

 Can be highly available, active-passive sets

 Manage thousands of execute nodes, and tens of thousands of active VMs,

hundreds of thousands of pending VMs

http://searchsoa.techtarget.com/definition/Web-services
http://searchsoa.techtarget.com/definition/service-oriented-architecture
http://searchservervirtualization.techtarget.com/definition/platform

69

 Other deployments scale further

3.2.5.5. Virtual Infrastructure Management (VIM)

Management solutions for virtual infrastructure are a prime topic during

virtualization discussions. As organizations deploy virtual solutions in more varied

ways, new opportunities and challenges related to effective virtualization

ecosystem management emerge. To provide users with the same features found in

commercial public clouds, private/hybrid cloud software has the following aspects.

 Provide a uniform and homogeneous view of virtualized resources.

 Manage a VM‟s full life cycle, including setting up networks dynamically for

groups of VMs and managing their storage requirements.

 Support configurable resource allocation policies to meet the organization‟s

specific goals (high availability, server consolidation and so on).

 Adapt to an organization‟s changing resource needs, including peaks in which

local resources are insufficient, and changing resources, including addition or

failure of physical resources.

3.2.5.6. Cloud Networks

A well-designed network of cloud architecture constructs a cloud-friendly

network. IT should pursue an end-to-end approach to its network architecture,

beginning with the user experience and the devices supported. The architecture also

brings appropriate local area and wide area networking technologies and even

multimedia optimization. By taking a holistic approach to networking, IT can lay the

critical foundation to seamlessly rolling out cloud and on-premise services that

accelerate the data availability and business innovation.

Cloud Schedulers Section 3.2.5.3 works on the base of queuing system. The

following, Section 3.2.6 discusses queuing system with detail.

70

3.2.6 QUEUING SYSTEMS

In the queuing systems the queuing length process is the same to a birth-and-

death process, a linearly structured Markovian process with only one-step change.

Additional subjects include the departure processes and busy periods. These outcomes

are applied, in Kendall's classification by (Stallings, 2000; and Blanc, 2011). i.e. for the

single server M/M/1 system, multi-server M/M/c system, finite queue-capacity M/M/c/K

system, variants of the foregoing systems with balking and reneging jobs and with state-

dependent service rates. But here this study is using finite jobs-population M/M/c/K/P

system because of the need to know the size of jobs prior starting the transfer of data by

using new architecture. (Stallings, 2000; and Blanc, 2011) have discussed these models

and further with great details by (Lipsky, 2009; and Jain et al., 2007). This study has

used the M/M/c/*/P (Finite Jobs Population Model).

3.2.6.1 M/M/c/*/P (Finite jobs population)

 The M/M/c/K/P queuing system is another variant of the M/M/c queuing system.

In this system, there is a finite number of potential jobs P (General notation for

population is M), while there is room (queue) for jobs K, including the jobs in service P

≥ K ≥ C). This is the fact that a closed system where each of the P job is either inside

the system (waiting or being served) or passive outside the system until its next turn to

visit the system. In this case, the arrival rate depends on the number of passive jobs so

that the arrival process is not a Poisson process. It is assumed that each potential job

returns to the system after an exponentially distributed passive time with rate. Such a

system is stable for every positive value of ¸ and service rate . Special case is the

M/M/c/c/P system which is normally referred to as Engset loss system (Stallings, 2000;

Blanc, 2011; and Lipsky, 2009).

If there are n jobs in the queue, then there are N-n jobs in the source. Assuming

that jobs waiting in the source are exponentially distributed amount of time with the

average before returning to the queue, and that they are independent of each other. If

71

there are N-n jobs in the source, then they create a Poisson input process to the queue

with rate λ .

Finite Population Model (Lipsky, 2009; and Jain et al., 2007) have shown as

below:

Here M represents the total size of the population which is the total number of

jobs. Assuming a system with C < M service units (Stallings, 2000; Blanc, 2011; and

Lipsky, 2009) i.e.










cncμ

cn nμ
μn

for

1for

(3.7)

To calculate Lq and wait in queue Wq or QT, we need probability of '0' entity in

the system P0, probability of 'n' entities in the system Pn, average number of jobs in the

system L, and average time spent in the system Ws (ET).

Hence,

  

   



































Mn c pρ

c!c

n!

!n!nM

M!

cn pρ
!n!nM

M!

p
n

cn

n

n

for

0for

0

0

(3.8)

Where,

   n!!

!

nM

MM

n 









,

To express the binomial coefficient, apply 1
0

 

M

n np and solve for p0

 










K n

Mn λ nM
λn

for0

0for

72

   

1
1

0
c-n0

!c

!

n!!

!

n!!

!




 






























  

c

n

M

cn

nn

c

n

nM

M

nM

M
p 

(3.9)

For easy understanding, Figure 3.9 explains some parameters. Where is the

utilization; the fraction of time facility (server or servers) is busy. N(t) is the number of

jobs in the queuing system at time t,
i

A is the Arrival time, and Dt is the Departure time,

St is the Service (consumed) Time for a job in the queuing system.

Figure 3.9: Arrivals and Departures from a system

Using the above formulas, after the calculation P0 & Pn, it is easy now to derive

the average size of the system, which is the number of jobs in the system.

    0

1

0
c-n !c

!

n!!

!

n!!

!
p

c

n

nM

M
n

nM

M
nL

c

n

M

cn

nn






























  



 



(3.10)

   
  



M

cn

M

cn

M

cn

nnn pcnppcnL

73

 

 















1

0

0
n!!

!c

n

n

nM

M
ncpcL 

(3.11)

In order to describe the waiting time and service time by using Little‟s Law, we

need to know, the means arrival rate of the jobs. With n jobs already in the system, a

maximum of M-n jobs remains outside the arrival time. Its outcomes in a mean average

arrival rate of (M-n), which is shown below:

   
  











M

n

M

n

M

cn

nnn nppMpnM
0 0



  LM   (3.12)

By using Little‟s Law (Stallings, 2000; Blanc, 2011; and Lipsky, 2009), the mean

arrival rate can produce Ws and Wq, which is shown below:

  LM

L
ETWs





(3.13)

and

 LM

L
QTWq

q





(3.14)

Consuming time in the execution process by a processor is given below.

   
 
















1

0

0
n!!

!c

n

n

nM

M
ncpcLjETWs  (3.15)

Now the Data Transfer Time, according to (Nguyen and Lim, 2007) is:

       i,j / BWk=sizefjfDTTt  (3.16)

Sizef(k) is the FileSize in bytes, and BW is the available used bandwidth between

computing sites.

74

3.2.7 PROPOSED TECHNIQUE

Now the values of Equations 3.14, 3.15, and 3.16, are:

 LM

L
QT

q





   
 

















1

0

0
n!!

!
c

n

n

nM

M
ncpcLjET 

      i,j / BWk=sizefjfDT

Putting QT, ET and ET in Equation 3.6, result is new proposed technique:

    jf+DT+ ET= QTTCT j, iiji

 
 

 
   i,j

c

n

nq

ji / BWkSizef
nM

M
ncpcL

LM

L
=TCT 


















1

0

0
n!!

!




(3.17)

3.3 SUMMARY

Dealing with the large amount of data makes the requirement more critical for

accuracy and efficiency during the access of data. This study has introduced new

scheduling techniques to support the calculation process for the Total Completion Time

(TCT) for the transfer of data. In order to obtain TCT, we need to calculate Queue Time

(QT), Execution Time (ET), and Data Transfer Time (DT) for a job.

 Previous works (Nguyen and Lim, 2007; Tang et al., 2006; and Ranganathan and

Foster, 2003) are taking maximum of QT and DT. New proposed scheduling technique

TCT gives importance to each parameter by considering each one separately, while

calculating the Total Time of Completion. We have to add all these parameters because

75

all of them are different; and each one has its own importance and no one is

insignificant to be ignored. In addition, for the evaluation of the new technique, this

study has used M/M/C/*/P queuing models.

There is a great impact on accuracy by taking each parameter separately in the

formula for the Total Completion Time (TCT) during job transferring process. Hence

this study shows that the Total Completion Timefor data transferring can be the sum of

Time in Queue (QT), Execution Time (ET), and Data Transfer time (DT). New

technique (the accumulation of these three Times) has proved experimentally in next

chapter.

76

CHAPTER 4

RESULTS AND DISCUSSION

4.1 INTRODUCTION

In this chapter, the implementation of the new proposed model Total Completion

Time (TCT) will be explained. The purpose of this implementation is to illustrate the

given model for TCT in previous chapter and to show that TCT can be used in practical

application. To bring TCT in practical shape by using all mentioned Equations in

previous sections, simple user interface has been used. With its help, this study

compares the current results of TCT with Total Transfer Time (TT) model of (Nguyen

and Lim, 2007; and Tang et al., 2006).

As discussed in Chapter 3, the scheduling architecture is encapsulated in three

distinct modules, Figure 3.7, on the basis of scheduler‟s three main portions, this study

also divides the Total Transfer Time for data from one node to another in three Times.

First, QT (Queue Time) is the time a job passes in the queue, starting immediately after

entrance to the queue and before starting the execution. Second, the time denoted by ET

(Execution Time) is the time after entrance from the queue and before starting the

transfer process. Third, DT is the Data Transfer Time, starts after execution completion

and before starting data transferring process. All these times are different from each

other and each one has its own importance. Hence, it means that the Total Completion

Time (TCT) for a job is the sum of all these three times, i.e. Queue Time (QT),

Execution Time (ET), and Data Transfer Time (DT). As a result, by treating all these

parameters separately, there is a very beneficial change to improve data efficiency and

reliability (in terms of accuracy in calculating the transfer time).

77

4.2 Parameters Used

The used of parameters in experiments are on the basis of definition in chapter 3,

Section 3.1.1, page 41. This section has divided all parameters in two Dependent and

Independent categories. For overall comparison Finite Population Model has used.

4.3 M/M/c/*/P Model

In order to evaluate the performance of proposed architecture, we have used the

queuing calculators (Queuing Theory Calculator, 2012) for calculations and comparison

of results with already used formulae (Nguyen and Lim, 2007;and Tang et al., 2006). In

queuing systems, there are four models, namely a) single server M/M/1 system, b)

multi-server M/M/c system, c) finite queue-capacity M/M/c/K system, and d) finite jobs-

population M/M/c/K/P system. Here we used M/M/c/K/P because for Transfer Time

Calculation, we need to know the total population M, which is the number of jobs. For

TCT, we need to calculate the values for all parameters mentioned in Section 3.1.1, with

the help of formulae used by (Queuing Theory, 2011; Intro to Queuing Theory-Birth

Death processes, 2011; Lec-30, 2010; Lec-31, 2010; and Lec-32, 2010). Equations

described above Equation 3.9, Equation 3.11, Equation 3.15, Equation 3.15, and

Equation 3.16 simultaneously.

   

1
1

0
c-n0

!c

!

n!!

!

n!!

!




 






























  

c

n

M

cn

nn

c

n

nM

M

nM

M
p 

    0

1

0
c-n !c

!

n!!

!

n!!

!
p

c

n

nM

M
n

nM

M
nL

c

n

M

cn

nn






























  



 



 
 
















1

0

0
n!!

!c

n

n

q
nM

M
ncpcLL 

 LM

L
ETWs





 LM

L
QTW

q
q





78

4.4 Queuing Theory Calculator

In previous Chapter, each parameter of queuing theory has defined. Now it is

easy to use the discussed formulae in Section 4.3, and calculate the value of TCT to

obtain results according to the new propose technique. For these calculations, in first

phase MS Excel, and then Queuing Theory Calculator interface (Queuing Theory

Calculator, 2012), Figure 4.1 has used. In this interface, any queuing model can be used,

but for the evaluation of the new proposed model, the finite population model is using.

The Finite population model is denoted by M/M/C/*/M or M/M/c/*/P.

Figure 4.1: Queuing Theory Calculator

Steps for using the Queuing Theory Calculator

1. Choose the queuing model, M/M/C (or M/M/1 if C=1), M/M/Inf, M/M/C/K,

or M/M/C/*/M.

2. Input the number of servers in the system (C).

3. Give queue capacity (K), the maximum number of entities that the queue

can hold (K). For M/M/C/*/P Model, no involvement of K and no item/s

waiting outside the queue. Hence no need to put the value of K.

79

4. Mention the entire population (M) of the jobs, the maximum number of

existing entities that need to be processed.

5. Choose the incoming jobs arrival rate Lambda (), which is the number of

jobs coming per unit time.

6. Provide service rates Mu (), which is the number of job services given per

unit time.

7. After steps 5 and 6, there is an option for units, in practice sometimes get

the incoming service rates with different units.

8. Press Calculate.

9. Values will come for server utilisation Ro (), Average entities in the whole

system (L), Average entities in queue (Lq), Average time of an entity spends

in the system (W, for easy understanding we use Ws which is ET Execution

Time), Average time of an entity waiting in line to be served (Wq= QT), the

probability that there would be exactly 'n' entities in the system at a certain

point (Pn).

10. The value of 'n' can be modified as desired, the probability that an entity

will spend in line exactly or less than 'n' units of time (Tq) and the

probability that an entity will spend exactly or less than 'n' units of time in

the system (T).

11. For quick calculations we can use the given „space for calculations‟ by

inputting the desired formula and then press the 'Res' button, e.g. input '2+2'

then press [Res]. Number four will be displayed.

Example: Suppose we want to calculate Ws = ET, Wq = QT; the number of jobs means

population (M), which is 4, for which we need to calculate the transfer time. If C = 1,

M = 4,  = 1,  = 1 then we can use the above formulas 3.11, 3.13, 3.15, 3.16 to

calculate L, ET, QT, W and DT respectively, assuming that 1 KB = 1 job, and n = 1,

where n is the job(s) number in the system.

   

1
1

0
c-n0

!c

!

n!!

!

n!!

!




 






























  

c

n

M

cn

nn

c

n

nM

M

nM

M
p 

80

   

1
11

0

4

11

1

1-1

1

0
!11

!1

!1! 14

!4

!1! 14

! 4




 






























  

n

p 

 = 0.0154

    0

1

0
c-n !c

!

n!!

!

n!!

!
p

c

n

nM

M
n

nM

M
nL

c

n

M

cn

nn






























  



 



 = 3.0154

 
 
















1

0

0
n!!

!c

n

n

q
nM

M
ncpcLL 

 = 3.0154 – 1 + 0.0154 + (1-1) 4 1

 = 2.0308

  LM

L
ETWs





=
 3.015441

3.0154


 = 3.0625

  LM

L
QTW

q
q





=
 3.015441

2.0308


 = 2.0625

4.5 Transfer Time Calculations

Using the interface below, we can get Data Transfer Time (DT) by applying a

very simple formula, that is, DT=File size/Bandwidth used by (Nguyen and Lim, 2007;

and Tang et al., 2006). Data Transfer Speed Calculator, from Figure 4.2 (T1 the

complete telecom source, 2012) has been used to calculate the Data Transfer Time

(DT).

81

Figure 4.2: Transfer Time Calculator

Steps for using the Data Transfer Calculator

1. Input size for desired file which needs to be transferred, in the File Size

textbox.

2. Select the file size unit from the List Box.

3. Select transfer speed (Bandwidth), through which file will transfer.

For Transfer Time calculation, it is extremely necessary and important to note that

this time is only the transfer time, exclude the Queue Time and Execution Time.

Additionally, this time starts immediately after finishing the execution process in a

server until reaching the destination, i.e. till the completion of transfer process. During

calculation, if the bandwidth unit is bps then we need to convert the file size unit to bit.

Example 1: Suppose we want to calculate the Transfer Time (Tt=DT) for 18Kbytes

data, by using 56Kbps bandwidth. For this purpose we need to use

Tt=Filesize/Bandwidth formula. Here, the required unit is bit, which is easy to achieve

from KB, and bps from Kbps. i.e. 18Kbytes = 18  1024  8 = 147456 bits and 56Kbps

= 56000bps.

82

Substituting values in the Equation 3.16, it will give the following result.

Tt =DT=File Size/Bandwidth = 147456 / 56000 = 2.6331 seconds

Example 2: Suppose we need to transfer 5GB data through 1.544Mbps, calculation will

be as follows:

5GB = 5  1024  1024  1024  8 = 42949672960 bits

1.544Mbps = 1.544  1000  1000 = 1544000bps

Tt = DT=File size/Bandwidth = 42949672960 / 1544000

= 27817.145699 sec = 7 Hours 43 Minutes 37.15 Seconds

Example 3: Now we want to calculate Tt for 4KB through 56Kbps, for which we

already have calculated Ws and Wq. Calculation is shown below:

4KB = 4  1024  8 = 32768 bits

56Kbps = 56  1000 = 56000bps

Tt = DT = File size/Bandwidth = 32768 / 56000

 = 0.585142 sec

Now in order to compare the results of the new proposes technique and existing

technique by (Nguyen and Lim, 2007; and Tang et al., 2006), the first interface (Figure

4.2) calculates Queue Time (QT), Execution Time (ET), and the second interface

(Figure 4.3) calculates the Data Transfer Time (DT). By adding all these three

parameter values, we can get the Total Completion Time (TCT). Suppose the Transfer

Time to be calculated for 4 KB by using 56Kbps. The values can be compared (in terms

of accuracy). According to the existing formulas by (Tang et al., 2006), ET can be

calculated as below: Where QT(i) = Wq, ETk,i = Ws and DT(f(k),i) = Tt

Putting Values in Equation 3.5,

    ikiik +ETikfDTQT = TT ,)(, ,,max

TTk,i = max(2.0625, 0.585) + 3.0625 = 5.125sec

According to the new proposed technique, Equation 3.6:

    jf+DT+ ET= QTTCT j, iiji

TCTji = 2.0625 + 0.5851 + 3.0625 = 5.7101sec

83

Here, by adding one extra ignored minimum parameter DT, which is equal to

0.5851sec, our result is little bit high when compared to the existing technique‟s result.

However, by adding and giving importance to each parameter, which are QT and DT, it

is very clear that both parameters are different from each other, and each one has own

importance. No one parameter is ignorable, and both need to give them their

importance. Hence, this new technique shows more efficiency (in terms of accuracy)

than the existing models. As a result, the Total Completion Time (TCT) can be the sum

of all three parameters which are, Queue Time (QT), Execution Time (ET), and Data

Transfer Time (DT).

4.6 Analysis and Results

To evaluate a new model, by using the discussed formulae in Chapter 3, first of

all we have to calculate the total consume time in data transferring process. Transfer

Time (DT) excludes the Queue Time (QT) and Execution Time (Ws). By using the new

mathematical technique, we calculate the difference between existing Equations 1.1 and

new Equation 3.17. Twenty experiments have been conducted for analysis. Changes

occur on the basis of variation in population (M) which is the number of jobs,

Bandwidth (BW) and number of servers (C). Other independent parameters have been

kept constant, i.e.  and .

The results below depicted the total Transfer Time (TT) calculated by using

Equation 3.5, and Total Completion Time (TCT) calculated by Equation 3.17. Figure 4.3

shows the comparison between TT and TCT.

84

Figure 4.3: General comparison of TT and TCT

The number of jobs or population, arrival rate of the jobs, service rate, number

of servers, number of jobs in queue, number of jobs in the system, mean waiting time in

queue, mean waiting time in system, bandwidth, data transfer time are denoted by M, ,

, c, Lq, L, QT, ET, BW, and DT respectively. The Total Transfer Time, according to the

existing formula, is denoted by TT and the Total Completion Time according to the new

proposed formula is denoted by TCT. Table 4.1 compares TT and TCT using the above-

mentioned notation.

In order to calculate the Total Completion Time for transferring data, first we

need to calculate wait in the system (ET), wait in queue (QT), and transfer time (DT).

After getting the values of these three parameters, results comparison can be conducted

between existing and new techniques with different aspects.

The parameters in the existing and new techniques are QT(i) = Wq , ETk,i = Ws

and DT(f(k),i) = Tt. For C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 512Kbps. By using

ET

QT

DT

TT

TCT

% Error

85

Equations 3.11, 3.13, 3.14 and 3.15, first we calculate L, W, QT, ET respectively and

then by using Equation 3.17, we calculate TCT. The comparison of the results of

Equation 3.5 and Equation 3.6 describes that new propose technique for TCT shows

more accuracy, by adding the ignored parameter in Equation 3.6 is either Wq or DT. It

means that the Total Time for Transferring Data can be the sum of Time in Queue,

Execution Time, and Data Transfer Time.

Table 4.1: Comparison of various aspects for queuing process

86

4.7 Variation of TT and TCT with bandwidth change

This experiment compares the difference between both times (TT and TCT) with

the change of bandwidth. Other parameters are the same, only bandwidth is changing.

For C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 56Kbps, Figure 4.4 shows the comparison

between TT and TCT by using BW 56Kbps. Results show the changes in TCT with

population (M) variation. With change of bandwidth only DT will change, because there

is no involvement of bandwidth during the data processing stage in the queue as well as

in the system.

Figure 4.4: TT and TCT with 56Kbps

87

4.7.1 Bandwidth variation effect

In this experiment, bandwidth (BW) has changed; other parameters are the same.

For C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 128Kbps. Figure 4.5 shows comparison

between TT and TCT by using BW 128Kbps. Results indicate the changes with the

variation of population M. Bandwidth variation will change only DT.

Figure 4.5: TT and TCT with 128Kbps BW

88

This experiment describes the comparison for both times (TT and TCT). The

objective is to know the variation with change of bandwidth BW from 128 to 256Kbps.

Other parameters have the same value, for C = 1,  = 1,  = 1, M = 2 ~ 50,

BW = 256Kbps. Figure 4.6 shows the comparison between TT and TCT. The results

show the gap between both times, i.e.TT and TCT. Gap is decreasing by using high

bandwidth. These results can be compared with previous Figure 4.5 and next coming

Figure 4.7, where 128 and 512Kbps bandwidth is used respectively. Change comes only

in DT with the change in bandwidth. As mentioned above, there is no involvement of

bandwidth during the data processing stage in the queue as well as in the system.

Figure 4.6: TT and TCT with 256Kbps BW

89

Figure 4.7 shows the comparison between TT and TCT by using BW 512Kbps.

These results can be compared with previous Figure 4.6, where 256Kbps bandwidth has

used. After comparing all these Figures, Figure 4.4, Figure 4.5, Figure 4.6 and Figure

4.7, the difference between TT and TCT has decreased continuously. It means that the

new proposed model is more efficient for large data transferring. For Figure 4.5, C = 1,

 = 1,  = 1, M = 2 ~ 50, BW = 512Kbps. Figure 4.5 shows the changes in TT and TCT

due to the change in DT.

Figure 4.7: TT and TCT with 512Kbps BW

90

4.8 Variation in TT and TCT with change in servers’ number

This experiment has done for the comparison for times TT and TCT, to know the

variation with changes in the number of servers (C). Other parameters have the same

value, only the number of servers has changed. The result shows the gap between both

times TT and TCT. The gap between both times is less by using high bandwidth than by

using low bandwidth. For C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 56Kbps, Figure 4.8

shows the comparison between TT and TCT with accuracy percentage.

Figure 4.8: TT and TCT using single server

91

By using two servers and 56Kbps bandwidth, Figure 4.9 compares both times

(TT and TCT), and tries to know the variation due to the changes in the number of

servers C. These results can be compared with Figure 4.9, three servers have been used.

By using two servers, QT and ET, will decrease and as a result TT and TCT will

automatically decrease. The mentioned gap between TT and TCT in Figure 4.9 is less

than the gap in Figure 4.8. For C = 2,  = 1,  = 1, M = 2 ~ 50, BW = 56Kbps.

Figure 4.9: TT and TCT using two servers

92

Figure 4.10 describes the difference between TT and TCT by using three servers

and 56Kbps bandwidth with C = 3,  = 1, = 1, M = 2 ~ 50, BW = 56Kbps. It shows the

effect of using three servers on TT and TCT. QT and ET will decrease and as a result, TT

and TCT will automatically decrease. As mentioned above, there is no effect on DT by

using more servers. The gap between TT and TCT in Figure 4.10 is decreasing as

compared to the gap in Figure 4.9.

Figure 4.10: TT and TCT using three servers

93

4.9 TT and TCT variation by changing the servers’ number with bandwidth

Figure 4.11 describes the difference between TT and TCT by using three servers

and 128Kbps bandwidth. The result shows the effect with 3 servers. QT and ET will

decrease and as a result, TT and TCT will automatically decrease. The gap between TT

and TCT in Figure 4.11 has decreased, as compared to the gap in Figure 4.10; the used

parameters are C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 128Kbps.

Figure 4.11: TT and TCT by a single server with 128Kbps BW

94

By using C = 2,  = 1,  = 1, M = 2 ~ 50, BW = 128Kbps, Figure 4.10

compares the difference between TT and TCT by using two servers and 128Kbps

bandwidth. QT and ET are decreasing continuously, and as a result, TT and TCT are

automatically decreasing. The gap between TT and TCT is also decreasing as compared

to the gap shown in Figure 4.11, with a decreased ratio shown in Figure 4.12.

Figure 4.12: TT and TCT by two servers with 128Kbps BW

95

Figure 4.11 shows the comparison between TT and TCT by using three servers

with C = 3,  = 1,  = 1, M = 2 ~ 50, BW = 128Kbps. Both times TT and TCT are

decreasing with increase in the number of servers C. As mentioned above, there is no

effect on DT by using three servers instead of one or two servers. The gap between TT

and TCT in Figure 4.13 has decreased continuously as compared to the gap in Figure

4.11 and Figure 4.12.

Figure 4.13: TT and TCT by three servers with 128Kbps BW

96

By using C = 1,  = 1,  = 1, M = 2 ~ 50, BW = 256Kbps, Figure 4.14

compares TT and TCT by using one server and 256Kbps bandwidth. TT and TCT are

increasing while the difference between both times is decreasing with an increase in

population and bandwidth.

Figure 4.14: TT and TCT by a single server with 256Kbps BW

97

Figure 4.15 shows the difference between TT and TCT by using two servers and

256Kbps bandwidth. As mentioned above, there is no effect on DT by using two servers

instead of one. For C = 2,  = 1,  = 1, M = 2 ~ 50, BW = 256Kbps, TT and TCT are

increasing while the difference between both times is decreasing with an increase in

population and bandwidth.

Figure 4.15: TT and TCT by two servers with 256Kbps BW

98

By using C = 3,  = 1,  = 1, M = 2 ~ 50, BW = 256Kbps, Figure 4.16

compares TT and TCT by using three servers and 256Kbps bandwidth. The gap between

TT and TCT is decreasing with increase in number of jobs.

Figure 4.16: TT and TCT by three servers with 256Kbps BW

99

Figure 4.17 shows the comparison between TT and TCT by using a single server

and 512Kbps bandwidth. There is a big change in DT by using 512Kpbs because the

bandwidth change can affect DT only. For C = 1,  = 1,  = 1, M = 2 ~ 50,

BW = 512Kbps, the gap between TT and TCT is decreasing with increase in population

and bandwidth.

Figure 4.17: TT and TCT variation with C = 1, BW = 512Kbps

100

By using C = 2,  = 1,  = 1, M = 2 ~ 50, BW = 512Kbps, Figure 4.18 shows

the comparison between TT and TCT by using two servers instead of one. Increase in

the number of servers directly affects the Execution Time ET, due to which the gap

between both times is decreasing continuously with an increase in population and

bandwidth.

Figure 4.18: TT and TCT variation with C = 2, BW = 512Kbps

101

Figure 4.19 compares TT and TCT by using three servers and 512Kbps

bandwidth. There is no change in DT. For C = 3,  = 1,  = 1, M = 2 ~ 50,

BW= 512Kbps, as mentioned above, gap between TT and TCT is decreasing with the

increase in population and bandwidth.

Figure 4.19: TT and TCT variation with C = 3, BW = 512Kbps

102

4.10 Error and Accuracy Estimation between TT and TCT

This section compares overall results, and calculates the variance between Total

Transfer Time (TT) according to the existing technique and Total Completion Time

(TCT) according to new proposed technique. Here actual value is TT and estimated

value is TCT. The following general error estimation formula used by (Kani et al., 2010;

Sankara, 2008; and Tang et al., 2006), to compare both times variations.

% Error = {(Estimate Value – Actual Value) / Actual} * 100

Table 4.2: Error Estimation with C = 1, BW = 56Kbps

103

Using C = 1,  = 1,  = 1, M = 2, BW = 56Kbps, the accuracy is 85%; it is

increased up to 92.4639% by using number of job range M = 2 ~ 50. The result shows

that with the increase of population (M) by using the same bandwidth and same number

of server, the gap has decreased between the results of both techniques (TT & TCT).

Decreasing the gap means the accuracy is increased by using the new techniques. By

using M > 500, stability point (where accuracy is 100%) can be achieved. As described

in Figure 4.20.

Figure 4.20: Error Estimation with C = 1, BW = 512Kbps

104

Using C = 1,  = 1,  = 1, M = 2, BW = 512Kbps, the accuracy is 98.5000%;

when M reaches to 50, accuracy is increasing up to 99.1753%, as shown in Table 4.23.

The result shows that with the increase of population (M) by using the same bandwidth

and same number of server, the gap between the results of both techniques (TT & TCT)

is decreasing. Decreasing the gap means the accuracy is increased by using the new

techniques. In this experiment also, by using M> 500, stability point (where accuracy is

100%) can be achieved. Hence new technique is more efficient when we need to

transfer large amount of data.

Table 4.3: Accuracy Estimation with C = 1, BW = 512Kbps

105

4.11 Overall overview

New proposed model is more efficient to transfer large data with high

bandwidth, as shown in Table 4.4 for C = 1, BW = 56 ~ 512, M = 2 ~ 50.

Table 4.4: Overall Overview

BW M ET QT DT TT TCT % Error % Accuracy

2 1.5000 0.5000 0.2900 2.0000 2.2900 14.5000 85.5000

4 3.0625 2.0625 0.5900 5.1250 5.7150 11.5122 88.4878

6 5.0031 4.0031 0.8800 9.0062 9.8862 9.7710 90.2290

8 7.0001 6.0001 1.1700 13.0002 14.1702 8.9999 91.0001

10 9.0000 8.0000 1.4600 17.0000 18.4600 8.5882 91.4118

12 11.0000 10.0000 1.7600 21.0000 22.7600 8.3810 91.6190

14 13.0000 12.0000 2.0500 25.0000 27.0500 8.2000 91.8000

16 15.0000 14.0000 2.3400 29.0000 31.3400 8.0690 91.9310

18 17.0000 16.0000 2.6300 33.0000 35.6300 7.9697 92.0303

20 19.0000 18.0000 2.9300 37.0000 39.9300 7.9189 92.0811

25 24.0000 23.0000 3.6600 47.0000 50.6600 7.7872 92.2128

35 34.0000 33.0000 5.1200 67.0000 72.1200 7.6418 92.3582

50 49.0000 48.0000 7.3100 97.0000 104.3100 7.5361 92.4639

2 1.5000 0.5000 0.1300 2.0000 2.1300 6.5000 93.5000

4 3.0625 2.0625 0.2600 5.1250 5.3850 5.0732 94.9268

6 5.0031 4.0031 0.3800 9.0062 9.3862 4.2193 95.7807

8 7.0001 6.0001 0.5100 13.0002 13.5102 3.9230 96.0770

10 9.0000 8.0000 0.6400 17.0000 17.6400 3.7647 96.2353

12 11.0000 10.0000 0.7700 21.0000 21.7700 3.6667 96.3333

14 13.0000 12.0000 0.9000 25.0000 25.9000 3.6000 96.4000

16 15.0000 14.0000 1.0200 29.0000 30.0200 3.5172 96.4828

18 17.0000 16.0000 1.1500 33.0000 34.1500 3.4848 96.5152

20 19.0000 18.0000 1.2800 37.0000 38.2800 3.4595 96.5405

25 24.0000 23.0000 1.6000 47.0000 48.6000 3.4043 96.5957

35 34.0000 33.0000 2.2400 67.0000 69.2400 3.3433 96.6567

50 49.0000 48.0000 3.2000 97.0000 100.2000 3.2990 96.7010

2 1.5000 0.5000 0.0600 2.0000 2.0600 3.0000 97.0000

4 3.0625 2.0625 0.1300 5.1250 5.2550 2.5366 97.4634

6 5.0031 4.0031 0.1900 9.0062 9.1962 2.1097 97.8903

8 7.0001 6.0001 0.2600 13.0002 13.2602 2.0000 98.0000

10 9.0000 8.0000 0.3200 17.0000 17.3200 1.8824 98.1176

12 11.0000 10.0000 0.3800 21.0000 21.3800 1.8095 98.1905

14 13.0000 12.0000 0.4500 25.0000 25.4500 1.8000 98.2000

16 15.0000 14.0000 0.5100 29.0000 29.5100 1.7586 98.2414

18 17.0000 16.0000 0.5800 33.0000 33.5800 1.7576 98.2424

20 19.0000 18.0000 0.6400 37.0000 37.6400 1.7297 98.2703

25 24.0000 23.0000 0.8000 47.0000 47.8000 1.7021 98.2979

35 34.0000 33.0000 1.1200 67.0000 68.1200 1.6716 98.3284

50 49.0000 48.0000 1.6000 97.0000 98.6000 1.6495 98.3505

2 1.5000 0.5000 0.0300 2.0000 2.0300 1.5000 98.5000

4 3.0625 2.0625 0.0600 5.1250 5.1850 1.1707 98.8293

6 5.0031 4.0031 0.1000 9.0062 9.1062 1.1103 98.8897

8 7.0001 6.0001 0.1300 13.0002 13.1302 1.0000 99.0000

10 9.0000 8.0000 0.1600 17.0000 17.1600 0.9412 99.0588

12 11.0000 10.0000 0.1900 21.0000 21.1900 0.9048 99.0952

14 13.0000 12.0000 0.2200 25.0000 25.2200 0.8800 99.1200

16 15.0000 14.0000 0.2600 29.0000 29.2600 0.8966 99.1034

18 17.0000 16.0000 0.2900 33.0000 33.2900 0.8788 99.1212

20 19.0000 18.0000 0.3200 37.0000 37.3200 0.8649 99.1351

25 24.0000 23.0000 0.4000 47.0000 47.4000 0.8511 99.1489

35 34.0000 33.0000 0.5600 67.0000 67.5600 0.8358 99.1642

50 49.0000 48.0000 0.8000 97.0000 97.8000 0.8247 99.1753

5
6
K

b
p
s

2
5
6
K

b
p
s

5
1

2
K

b
p
s

1
2
8
K

b
p
s

106

New proposed model is more efficient to transfer large data with high

bandwidth, as shown in Table 4.4 for C = 1, BW = 56 ~ 512, M = 2 ~ 50. With increase

of data size, error is decreasing by using various bandwidth in range 56 ~ 512. When

error is decreasing by increasing bandwidth, it shows that maximum accuracy is

possible to achieve by using high bandwidth for large amount of data.

4.12 SUMMARY

 Cloud Computing presents various services remotely everywhere from anywhere

in the world. Efficient Cloud service's provision is the basis on the efficient data

transferring in Cloud environment. Further, efficient data transfer is possible in the

presence of efficient and accurate scheduling technique for data transfer.

In this chapter, scheduling technique Total Transfer Time (TCT) has been

introduced to support the calculation process for Data transferring. In new scheduling

technique, this study offers importance to each parameter while calculating the Total

Completion Time. For the evaluation of new model, M/M/C/*/P queuing model has

been used. There is a great impact on accuracy by taking each parameter separately in

the formula for the Total Completion Time (TCT) for a job.After comparison of results,

this study shows that TCT can be the sum of Wait in the queue (QT), Wait in system

(ET), and Data Transfer time (DT). The results of the tests show that the new proposed

scheduling technique is more efficient for large data transfer.

Using M = 2, BW = 56Kbps, the accuracy is 85%; it is increased up to

92.4639% by changing population M upto 50, as shown in Figure 4.19. And by using

M = 2, BW = 512Kbps, the accuracy is 98.5000%; when M reaches to 50, accuracy is

increasing up to 99.1753%, as shown in Table 4.23. Result shows that with the increase

of population (M) by using the same bandwidth and same number of server, the gap

between both techniques (TT & TCT) is decreasing. Decreasing the gap means the

accuracy is increased by using the new techniques. In this experiment also, by using M>

500, stability point (where accuracy is 100%) can be achieved. Hence new technique is

more efficient when we need to transfer large amount of data.

107

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Introduction

This work has been addressed using M/M/C/*/P queuing to produce data to

support the time calculation for data transfer from source to target. This is operated by

the Cloud service provider to its users. This chapter summarizes the important findings

from this research. It also includes some directions for future work in each of the areas

covered during this study.

5.2 Scientific & Technological Contributions

 Scheduling technique has introduced to support the calculation for the Total

Time of Data Transferringprocess. Efficient data transfer is possible in the presence of

efficient and accurate scheduling technique for data transfer. There is a great impact on

accuracy by taking each parameter separately in formula for the Total Time of

Completion for a job.

Scheduling technique Total Transfer Time (TCT) has been introduced to support

the calculation process for Data transferring. After comparison of results, this study

shows that TCT can be the sum of Wait in the queue (QT), Wait in system (ET), and

Data Transfer time (DT). The results of the tests show that the new proposed scheduling

technique is more efficient for large data transfer.

108

Using M = 2, BW = 56Kbps, the accuracy is 85%; it is increased up to

92.4639% by changing population M upto 50, as shown in Figure 4.19. And by using

M = 2, BW = 512Kbps, the accuracy is 98.5000%; when M reaches to 50, accuracy is

increasing up to 99.1753%, as shown in Table 4.23. Decreasing the gap (as shown in

Table 4.4) means the accuracy is increased by using the new techniques. Experiment

shows that by using M > 500, stability point (where accuracy is 100%) can be achieved.

Hence new technique is more efficient when we need to transfer large amount of data.

5.3 Limitations

For the evaluation of the new technique only queuing M/M/C/K/P model has

used.For Queue Time (QT) and Execution Time (ET) 1 job is equal to 1 Kb. Due to

using M/M/C/K/P, Queue Capacity (K) is not including in any simulation in proposed

technique.

5.4 Conclusion

Dealing with the large amount of data makes the requirement more critical for

accuracy, efficiency, and reliability in data access. In this research, the techniques based

on previous works done by other researchers have been discussed in Chapter 2. This

study has introduced an alternate scheduling technique to support the calculation

process for the Total Transferring Time for Data. In scheduling techniques; this research

highlights the importance to each parameter while calculating the Total Completion

Time.

We have evaluated our new technique by using M/M/C/*/P queuing models.

There is a great impact on accuracy by taking each parameter separately in Equation 3.6

to calculate the Total Completion Time (TCT) for a job as discussed in Chapter 3.

Hence this research concludes that the Total Transferring Time for data can be the sum

of Wait in the queue (QT), Wait in system (ET), and Data Transfer Time (DT).

109

Experiments have been conducted in order to prove this technique which can

preserve data transfer time calculation. Chapter 4 compares the results of existing

(Equation 3.5) and new proposed techniques (Equation 3.17), with variation of server‟s

number and with change in bandwidth. For servers range C = 1~3 has used and

bandwidth range BW= 56Kbps ~ 512Kbps has applied.

Using C = 1,  = 1,  = 1, M = 2, BW = 56Kbps, the accuracy is 85%; it is

increased up to 92.4639% by using M = 50. For C = 1,  = 1,  = 1, M = 2,

BW = 512Kbps, the accuracy is 98.5000%; when M reaches to 50, accuracy will

increase up to 99.1753%, as shown in Table 4.23. The result shows that with the

increase of population (M) by using the same bandwidth and same number of server, the

gap has decreased between the results of both techniques (TT & TCT). Decreasing the

gap means the accuracy is increased by using the new techniques. By using M > 500,

stability point (where accuracy is 100%) can be achieved. Hence new technique is more

efficient when we need to transfer large amount of data.

5.5 Future Work

Our future work will focus on data management and scheduling in Cloud

Computing. Next plan is to investigate more with realistic scenarios by using other

models. Additionally, to improve the efficiency in the provision of Cloud services, we

would like to propose a complete real time model with the combination of replication,

by using CloudSim. Further, we need to evaluate our new model by using other M/M/C,

M/M/Inf, M/M/C/K and M/M/C/*/M queuing models.

As the newer block for data storage, significant attention is receiving after

outages in cloud services. Outages of service/s can directly impact the finances matters

of cloud providers who are consistently looking for new ways to limit the reach and

duration of outage events.

In order to keep active and alive Cloud Computing Services forever, it should be

reachable for any one, reliable for each type of data, easy accessible from anywhere and

110

should be easy adoptable for any type of business. To achieve these goals, in future we

plan to present architecture for locally sub-clouds instead of globally one cloud by using

replication and scheduling with software agent. And to improve the efficiency in the

provision of Cloud services, further study will propose a complete real time model with

the combination of replication, by using CloudSim.

111

REFERENCES

Artalejo, J.R. and Lopez, M.J. 2007. A simulation study of a discrete-time multiserver

retrial queue with finite population. Journal of Statistical, Planning and

Inference. 137(8): 2536-2542.

Aggregate Knowledge. 2012. Making Media AccounTable. http://www.aggregate

knowledge.com/index.html (9 April 2012).

Amazon. 2010. New amazon cloud outage takes down netflix.

http://www.crn.com/news/Cloud/231300459/new-amazon-Cloud-outage-takes-

down-netflix-foursquare.htm?itc=refresh (3 Jan 2011).

Amazon EC2. 2010. Elastic Compute Cloud. http://aws.amazon.com/ec2/ (25 April

2011).

Armbrust, M., Armando, F., Rean, G., Anthony, D., Randy, H., Andrew, K., Gunho, L.,

David A., Stoica, I., and Zaharia, M. 2009. Above the clouds: A Berkeley view

of cloud computing. Technical Report No. UCB/EECS-2009-28.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf (29

February 2012).

Blanc, J.P.C. 2011. Queuing Models: Analytical and numerical methods. Netherland:

Tilburg University.

Buyya, R. 1999. High performance cluster computing: Architectures and systems. New

York: Prentice Hall.

Buyya, R., Brogerg, J. and Goscinski, A. 2011. Cloud Computing: Principals and

Paradigms. US and Canada: John Wiley & Sons.

Buyya, R., Chee Shin Yeoa, Srikumar Venugopala, James Broberg A. and Ivona

Brandic. 2008. Cloud Computing and emerging it platforms: vision, hype, and

reality for delivering Computing as the 5th utility. Future generation computer

system. 25(6): 599-616.

Caron, E., Frederic, D., Adrian, M. 2010. Forecasting for grid and Cloud Computing

on-demand resources based on pattern matching. Proceedings of the 2nd IEEE

International Conference on Cloud Computing Technology and Science,

CloudCom. Indianapolis, Indiana, USA: 30 November – 3 December.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

112

Chee-Hock, N. and Soong B.H. 2008. Queuing Modeling Fundamentals with

Application in Communication Networks. West Sussex, England: John Wiley &

Sons.

Cheng, Y. 2007. Two schedulers to provide delay proportion and reduce queuing delay

simultaneously. Journal of Computer Networks. 51(11): 3220–3231.

Dattatreya, G.R. 2008. Performance Analysis of Queuing and Computer Networks.

Sound Parkway NW: Tylor & Francis Group.

Dean, J. and Ghemawat, S. 2004. Map Reduce: Simplified data processing on large

clusters. Proceeding of the Sixth Symposium on Operating System Design and

Implementation (OSDI’04), pp. 137-149.

Deelman, E. and Chervenak, A. 2008. Data Management Challenges of Data-Intensive

Scientific Workflows. Proceeding of the Eighth IEEE International Symposium

on Cluster Computing and the Grid, pp. 687-692.

Delic, K.A. and Walker, M.A. 2008. Emergence of the academic computing clouds.

ACM Ubiquity Publication, 9(31): 1-4.

Dwekat, Z. and Rouskas, G.N. 2011. A practical fair queuing scheduler: Simplification

through quantization. Journal of Computer Networks. 55(10): 2392-2406.

Francini, A., Chiussi, F.M., Clancy, R.T., Drucker, K.D. and Idirence. N.E. 2001.

Enhanced weighted round robin schedulers for accurate bandwidth distribution

in packet networks. Journal of Computer Network. 37(5): 561-578.

Foster, I., Yong, Z., Loan, R. and Shiyong, L. 2008. Cloud Computing and Grid

Computing 360-Degree Compared. Proceeding of the IEEE Grid Computing

Environments (GCE).

Ghemawat, S., Gobioff, H. and Leung, S.T. 2003. The Google file system. Proceeding

of the nineteenth ACM symposium on Operating systems principles (SOSP),

pp. 29-43.

Google App Engine Web Site. 2011. Web resource. https://cloud.google.com/

products/global (Jan 7, 2011).

Google. 2010. Google App Engine: Easy to build, Easy to scale, Easy to maintain.

http://code.google.com/appengine/ (03 May 2010).

Gross, D. and Harris, C. M. 1985. Fundamentals of Queuing Theory. New York, US:

John Wiley & Sons.

Gross, D. 2008. Fundamental of Queuing Theory. New Jersey, USA: John Wiley &

Sons.

http://www.sciencedirect.com/science/journal/13891286/51/11
https://cloud.google.com/

113

Gupta, U.C., Samanta, S.K., Sharma, R.K. 2004. Computing Queue Length and Waiting

Time Distributions in Finite-Buffer Discrete-Time Multi-server Queue with Late

and Early Arrivals. International Journal of Computers & mathematics with

Application. 48(10-11): 1557-1573.

IBM. 2009. IBM Developer Works. http://www.ibm.com/developerworks/

db2/library/techarticle/dm-0608mcinerney/ index.html (2 Jan 2011).

Intro to Queuing Theory. 2011. YouTube Video. http://www.youtube.com/

user/profbillbyrne: Department of Management Studies, IIT Madras, India.

Jain, J., Gopa, S., and Walter, B. 2007. A Course on Queuing Models. Sound Parkway

NW, USA: Taylor & Francis Group.

Jeremy, G., Elizabeth, W., Srinivas, R., Greg, O., and Bob, G. 2009. Twenty experts

define cloud computing. Cloud Expo Article. http://cloudcomputing.sys-

con.com/read/612375_p.html (24 August 2012).

Jinhua, H., Jianhua, G., Guofei, S. and Tianhai, Z. 2010. A Scheduling Strategy on Load

Balancing of Virtual Machine Resources in Cloud Computing Environment.

Proceeding of the Parallel Architectures, Algorithms and Programming

(PAAP), pp. 89-96.

John, D.C., Stephen, C. and Little. 2008. Little's Law.

http://web.mit.edu/sgraves/www/papers/Little%27s%20Law-Published.pdf (16

Dec 2010).

Kani, C., Shaojun, G., Yuanyuan, L., and Zhiliang, Y. 2010. Least Absolute Relative

Error Estimation. Journal of the American Statistical Association.

105(491): 1104-1112.

Kaskade, J. 2009. Serial Entrepreneur Global Enterprise Executive.

http://jameskaskade.com (27 March 2012).

Kleinrock, L. 2005. A vision for the Internet. International Journal of Research.

2(1): 4-5.

Khan, N., Noraziah, A., Deris, M.M. and Ismail, E.I. 2011. Cloud Computing:

Comparison of Various Features. Proceeding of the Communications in

Computer and Information Science, pp. 243–254.

Lec-30 Queuing Models. 2010. YouTube Video. India: Department of Management

Studies, IIT Madras.

Lec-31 Single Server Queuing Models. 2010. YouTube Video. YouTube Video. India:

Department of Management Studies, IIT Madras.

Lec-32 Multiple Server Queuing Models. 2010. YouTube Video. YouTube Video.

India: Department of Management Studies, IIT Madras.

http://www.ibm.com/developerworks/
http://www.youtube.com/%20user/profbillbyrne
http://www.youtube.com/%20user/profbillbyrne
http://jeremygeelan.sys-con.com/
http://jeremygeelan.sys-con.com/
http://srinivasramanathan.sys-con.com/
http://srinivasramanathan.sys-con.com/
http://bobgourley.sys-con.com/
http://cloudcomputing.sys-con.com/read/612375_p.html
http://cloudcomputing.sys-con.com/read/612375_p.html
http://web.mit.edu/sgraves/www/papers/Little%27s%20Law-Published.pdf
http://jameskaskade.com/?p=396
http://www.springer.com/series/7899
http://www.springer.com/series/7899

114

Liang, Z. and Shi, W. 2010. A reputation-driven scheduler for autonomic and

sustainable resource sharing in Grid computing. Journal of Parallel Distributed

Computing. 70(2): 111–125.

Lipsky, L. 2009. Queuing Theory: A Linear Algebraic Approach. New York, USA:

Springer Science.

Luis, R., Caron, E., Muresan, A., Desprez, F. 2012. Using clouds to scale grid

resources: An economic model. Future Generation Computer Systems.

28(4): 633-646.

Mag, D.I., and Christian, D. 2009. Stationary Queuing Models with Aspects of

Customer Impatience and Retrial Behavior. Vienna, Austria.

Matias, W. 2008. Cloud Computing Taxonomy Map. http://blogs.southworks.net/

mwoloski/2008/08/19/cloud-computing-taxonomy-map (9 March 2013).

Nguyen, N. and Lim, S.B. 2007. Combination of Replication and Scheduling in Data

Grids. International Journal of Computer Science and Network Security.

7(3): pp. 304-308.

OpenNebula. 2011. Enterprise cloud and datacenter virtualization.

http://www.opennebula.org (10 January 2011).

Peng, X. and Zhang, Z.L. 2009. Comparison of several Cloud Computing platforms.

Proceeding of The International Symposium Of Information, pp. 23-27.

Philippe, N. 1998. Basic Elements of Queuing Theory: Application to the modeling of

computer Systems. Amherst, US: Informatical Society.

Queuing Theory Calculator. 2009. Queuing Theory Model Calculator.

http://www.supositorio.com/rcalc/rcalclite.htm (8 July 2011).

Queuing Theory - Birth Death processes. 2011. YouTube Video. YouTube Video.

YouTube Video. India: Department of Management Studies, IIT Madras.

Ranganathan, K. and Foster, I. 2003. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing. 1(1): 5362.

Rimal, B.P., Eunmi, C. and Lumb, L. 2009. A Taxonomy and Survey of Cloud

Computing System. Proceeding of the Fifth International Joint Conference on

INC, IMS and IDC, pp. 44-51.

Sankara, K. 2008. Numerical Method for Scientists and Engineers. New Delhi, India:

Prentice-Hall, India.

Say People. 2012. Cloud Computing. http://saypeople.com/2011/08/15/cloud-

computing/#axzz2 HwQryoRi (14 January, 2012).

http://blogs.southworks.net/mwoloski
http://blogs.southworks.net/
http://www.supositorio.com/rcalc/rcalclite.htm
http://saypeople.com/2011/08/15/cloud-computing/#axzz2
http://saypeople.com/2011/08/15/cloud-computing/#axzz2

115

Search Cloud Application. 2013. Data as a service. http://searchcloudapplications.

techtarget.com/definition/data-as-a-service (19 February 2012).

Shi, Y., Xiaofeng, Z., and Xiangmei, L. 2010. Benchmarking cloud-based data

management systems. Proceedings of the Second International Workshop On

Cloud Data Management, pp. 47–54.

Shailesh, S. 2011. A Genetic Algorithm Scheduling Approach for Virtual Machine

Resources in a Cloud Computing Environment. California, US: San Jose State

University Scholar Works.

Stallings, W. 2000. Queuing Analysis: A Practical Guide for Computer Scientists. New

York, US: IFORS Education Resources.

T1 the complete telecom source. 2003. File Transfer Time. http://www.t1shopper.com/

tools/calculate/downloadcalculator.php (9 July 2012).

Tang, M., Lee, B.S. and Yeo, C.K. 2006. The Impact of data replication on job

scheduling performance in the Data Grid. Journal of Future Generation

Computer Systems. 22(3): 254-268.

Vaquero, L.M., Rodero-Merino, L., Caceres, J. and Lindner, M. 2009. A break in the

Clouds: Towards a Cloud definition. ACM SIGCOMM Computer

Communication Review. New York: ACM Press. 39(1): 50-55.

Vaishali, W., Sachin, D. and Nitin, A. 2012. An efficient data locality driven task

scheduling algorithm for Cloud Computing. International Journal of

Multidisciplinary and Academic Research. 1(3): 1-8.

Weiss, A. 2007. Computing in the Clouds. ACM Networker. New York, USA:

NetWorker. 11(4): 16-25.

Zafril, R. and Azmi, M. 2011. Grid jobs scheduling improvement using priority rules

and backfilling. Proceeding of International Conference on Software

Engineering and Computer Systems, 179: pp. 401– 415.

http://searchcloudapplications/
http://www.deepdyve.com/search?author=Meng%2C+Xiaofeng
http://www.deepdyve.com/search?author=Hu%2C+Xiangmei
http://www.deepdyve.com/search?author=Liu%2C+Bingbing
http://www.t1shopper.com/

116

AUTHOR’S BIODATA

Nawsher Khan was born in Samarbagh, Dir Lower, Pakistan. He received his bachelor

degree in Computer Science from the University of Peshawar, Pakistan and Master

Degree in Computer Science from Hazara University, Pakistan. Since 1999, he has

worked in various educational institutions. In 2005, he was appointed in National

Database and Registration Authority (NADRA) under the Interior Ministry of Pakistan.

Currently he is a Research Assistant in the Faculty of Computer Systems and Software

Engineering at University Malaysia Pahang (UMP), and before completion of PhD

study, he got offer from University Malaya (UM) Kuala Lumpur as a Post Doctorate

Research Fellow.

His research interests include Cloud Computing, Data Management, Distributed

System, Scheduling, and Replication. He has published more than 25 articles in various

international journals and conference proceedings.

117

PUBLICATION LIST

 INTERNATIONAL JOURNALS

1. Nawsher Khan, A. Noraziah, and Tutut Herawan. A Scheduling Technique for

Data Transfer Time Calculation in Cloud and Grid Environment. To appear in

International Journal of High Performance Computing Applications. ISI Impact

Factor: 0.643. (Special Issue of ICICA 2012, Accepted).

2. Nawsher Khan, A. Noraziah, and Tutut Herawan. A Scheduling Architecture

for Data Transfer Time Calculation. Journal of Parallel and Distributed

Computing, Elsevier, 2012. ISI Impact Factor 0.859 (Under Review)

3. Nawsher Khan, A. Noraziah, and Tutut Herawan. CLOUD COMPUTING:

Locally Sub-Clouds instead of Globally one Cloud. IGI Global. International

Journal of Cloud Applications and Computing, 2(3), pp. 68-84, July-September

2012.

4. Nawsher Khan, A. Noraziah, Elrasheed I. Ismail, and Mustafa Mat Deris.

CLOUD COMPUTING: Analysis of Various Platforms. International Journal of

E-Entrepreneurship and Innovation, IGI Global, 3(2), pp. 52-60, April-June

2012.

5. Nawsher Khan, Noraziah Ahmad, Ahmed N.A. Alla, and Abul H. Beg. A

Novel Database Design for Student Information System. American Journal of

Computer Science, Science Publication, Volume 6, Issue 1, 43-46, January 31,

2010.

BOOK CHAPTERS

6. Nawsher Khan, A. Noraziah, Tutut Herawan, and Mustafa Mat Deris. Cloud

Computing: Analysis of Various Services. ICICA 2012, Lecture Notes in

Computer Science, Springer Verlag, Vol. 7473, Pages 397-404, 2012.

(SCIMago/Scopus Impact Factor = 0.212)

118

7. Nawsher Khan, A. Noraziah, and Tutut Herawan. A Cloud Architecture with

Efficient Scheduling Technique. ICICA 2012: Lecture Notes in Computer

Science, Springer Verlag, Vol. 7473, Pages 381-388, 2012.

(SCIMago/ScopusImpact Factor = 0.212)

8. Nawsher Khan, A. Noraziah, Mustafa Mat Deris, and Elrasheed I.Ismail. Cloud

Computing: Comparison of Various Features. In E. Ariwa and E. Qawasmeh

(Eds.): DEIS 2011, Communications in Computer and Information Science,

Springer Verlag, Vol. 194, pp. 243–254, 2011.

INTERNATIONAL CONFERENCES

9. Nawsher Khan, A. Noraziah, Tutut Herawan, Elrasheed Ismail. Cloud

Computing: Architecture for efficient provision of services. The 15th

International Conference on Network-Based Information Systems (NBiS-2012),

Melbourne, Australia, 2012. Pages 18-23.

10. Nawsher Khan, A. Noraziah, Elrasheed I.Ismail, Mustafa Mat Deris. Cloud

Computing: Analysis of Open-Source Platforms Features. To appear in

Proceedia Computer Science Journal, Elsevier, Vol. x, pp. xxx-xxx, 2012.

11. Nawsher Khan; bt Ahmad, N.; Beg, A.H.; Fakheraldin, M.A.I.; Alla, A.N.A.;

Nubli, M.; 2010. Mental and Spiritual Relaxation by Recitation of the Holy

Quran. Computer Research and Development, 2010 Second International

Conference on Digital Object Identifier: 10.1109/ICCRD. 2010.62 Publication

Year: 2010, Page(s): 863 – 867.

12. Nawsher Khan.; Ahmad, N.; Beg, A.H.; Ismail, E.I.; Abd Alla, A.N.; Nubli,

M.; 2010. Epilepsy Control by Prayer Type Yoga Exercise. Computer Research

and Development, 2010 Second International Conference on Digital Object

Identifier: 10.1109/ICCRD.2010.61 Publication Year: 2010, Page(s): 391 – 395.

13. Nawsher Khan, A.Noraziah, Elrasheed I.Ismail, Mustafa Mat Deris.Cloud

Computing: Analysis of Various Platforms Features. 2
nd

 World Conference on

Information Technology (WCIT 11), 24-27 November, 2011. Antalya, Turkey.

119

AS A CO-AUTHOR PUBLICATION

14. Noraziah, Ainul Azila Che Fauzi, Mustafa Mat Deris, Md Yazid Mohd Saman,

Noriyani Mohd Zain, Nawsher Khan, “Managing Educational Resource

Student Information Systems Using BVAGQ Fragmented Database Replication

Model”, Elsevier, Procedia Social and Behavioural Sciences 2013.

15. Elrasheed, I.S; Hatim, R; Noraziah Ahmad; Nawsher Khan.; Beg, A.H.; 2010.

Effective Knowledge Management System Architecture in Cloud Computing.

2nd International Conference on Applied Business and Economics, ICABE

2010, Sohar University Oman.

16. Elrasheed. I. Sultan,A. Noraziah, Nawsher Khan. Scheduling Based Load

Balancing Using QPSO in Cloud Computing. International Journal of Cloud

Computing Application and Computing, IGI Global, 2012. (In progress).

17. Elrasheed. I.Sultan,A. Noraziah, Nawsher Khan, Ainul AzilaCheFauzi,

Noriyani M Zain, Gamal Awad. Task Scheduling Based on Quantum Particles

Swarm Optimization Load Balancing in Cloud Computing, 2012. (Accepted)

18. Ainul Azila Che Fauzi, A. Noraziah, Noriyani M Zain, A.H. Beg, Nawsher

Khan and Elrasheed Ismail Sultan. Handling Fragmented Database Replication

through Binary Vote Assignment Grid Quorum. Journal of Computer Science

DOI: 10.3844/jcssp.2011.1338.1342, Volume 7, Issue 9 Pages 1338-1342.

19. A.H.Beg, Noraziah Ahmad, Ahmed N Abd Alla, Nawsher Khan, Framework of

Persistence Layer for Synchronous Data Replication (PSR). Australian Journal

of Basic and Applied Sciences. 4(10): 5394-5400, 2010, ISSN 1991-8178,

INSInet Publication.

20. A.H.Beg, Noraziah Ahmad, Ahmed N Abd Alla, Nawsher Khan, K.F. Rabbi.

Structure and Framework of Synchronous Replication Based On Data

Persistency to Improve Data Availability into a Heterogeneous System, 2010.

International Conference on Software and Computing Technology (ICSC) 2010,

Kunming, China.

120

21. Muhammad Khan, Salah A.A. Elhussein, Muhammad Mumtaz Khan, Nawsher

Khan. Anti-Acetyl cholinesterase Activity of Piper sarmentosum by a

Continuous Immobilized-enzyme Assay. 3rd International Conference on

Biotechnology and Food Science (ICBFS 2012), April 7-8, 2012 APCBEE

Procedia, Volume 2, 2012, Pages 199–204.

22. Beg, A.H.; Ahmad, N.; Nawsher Khan.; Alla, A.N.A.; Nubli, M.; Lovely, A.K.;

2010. Artificial intelligent strategy to control heart rate variability. Electronic

Computer Technology (ICECT), 2010 International Conference on Digital

Object Identifier: 10.1109/ICECTECH.2010. 5479951 Publication Year: 2010,

Page(s): 228 – 231.

23. Noaziah Ahmad, A.H.Beg, Ahmad N Abd Alla, Muhammad Nubli, Nawsher

Khan, Ainul Azila. Framework of intelligent game and software for

improvement of learning performance based on heart rate variability. Computer

Engineering and Technology (ICCET). 2nd International Conference on 16-18

April 2010, Chengdu, China, IEE Explore, V4, pp. 383-386.

24. Habib Shah, Rozaida Ghazali, Nazri Mohd Nawi, and Nawsher Khan. Boolean

Function classification using Hybrid Ant Bee Colony Algorithm. Journal on

Computer Science & Computational Mathematics, JCSCM, Volume 2, Issue 11,

November 2012. pp. 61-70.
