

Graphene, Nanotubes and Quantum Dots-Based Nanotechnology

Fundamentals and Applications

Edited by:

Yarub Al-Douri

Woodhead Publishing Series in **Electronic and Optical Materials**

Graphene, Nanotubes and Quantum Dots-Based Nanotechnology

Fundamentals and Applications

Edited by

Yarub Al-Douri

Engineering Department, American University of Iraq-Sulaimani, Sulaimani, Kurdistan, Irag; Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey; Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia

elsevier.com/books-and-journals

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-85457-3

For Information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Kayla Dos Santos Editorial Project Manager: Fernanda A. Oliveira Production Project Manager: Kamesh Ramajogi Cover Designer: Miles Hitchen

Typeset by Aptara, New Delhi, India

Contents

Co Pre	Contributors Preface		
1	Introduction to graphene		1
	Tanu	ij Saxena, Michael Loong Peng Tan and Vijay K. Arora	
	1.1	Introduction	1
	1.2	Graphene the carbon allotrope	1
	1.3	Bandgap structure and carrier density	3
	1.4	Electron transport	9
	1.5	Ballistic transport	11
	1.6	Magneto-transport	12
	1.7	Quantum electrochemical potential	14
	1.8	Closing remarks	16
	Refe	rences	17
2	Synthesis methods of graphene		19
	Nur Hidayati Othman, Nur Hashimah Alias,		
	Mun	awar Zaman Shahruddin, Fauziah Marpani	
	and.	NorFarah Diana Aba	
	2.1	Introduction	19
	2.2	Top-down approaches	20
	2.3	Bottom-up approach	31
	2.4	Outlook and conclusions	36
	Refe	rences	37
3	Che	mical properties of graphene	43
	Muhammad Haziq Noor Akashah, Mohd Rafal Sahudin,		
	Rozina Abdul Rani, Patricia J. Scully and Siti Rabizah Makhsin		
	3.1	Introduction	43
	3.2	Chemical properties of graphene	44
	3.3	Graphene functionalization	51
	3.4	Chemical properties of graphene-based nanocomposites	55
	3.5	Characterization of chemical properties of graphene	58
	3.6	Summary	59
	Acknowledgment		60
	References		60

	20.3	Nanotubes applications	483			
	20.4	Conclusions	493			
	Refer	ences	493			
21	Comprehensive multiscale techniques to estimate the compressive					
	strength of concrete incorporated with carbon nanotubes					
	at va	rious curing times and mix proportions	497			
	Nzar	Shakr Piro, Ahmed Salih, Samir M. Hamad and Rawaz Kurda				
	21.1	Introduction	497			
	21.2	Methodology	499			
	21.3	Statistical evaluation of normal strength concrete properties	506			
	01.4	modified with CNT	506			
	21.4	Modeling	508			
	21.5	Assessment criteria for models	519			
	21.0	Analysis and output	519			
	Z1./ Dofor	Conclusions	530			
	Refer	ences	555			
22	Carbon nanostructures and 2D transition metal dichalcogenides					
	Misba	h Irshad, Mian Habib Ur Rehman Mahmood and Mahreen Fatima				
	22.1	Carbon nanostructures	537			
	22.2	Transition metal dichalcogenides	546			
	22.3	Conclusion	550			
	Refer	ences	550			
23	Applications of nanotubes in preparation of polymer					
	comp	osite materials	557			
	Mizar	ı Izzati Mat Zin and Wan Mohd Fazli Wan Nawawi				
	23.1	Introduction	557			
	23.2	Preparation of nanotube polymer composite	558			
	23.3	Application of CNT polymer composite	562			
	23.4	Conclusion	571			
	Refer	ences	572			
<mark>24</mark>	Introduction to quantum dots					
	Rajan Jose and Yarub Al-Douri					
	24.1	Defining a nanomaterial—How much is the volume of a				
		material on its surface?	579			
	24.2	Classification of nanocrystals based on morphology	581			
	24.3	Forces in nanostructured materials	582			
	24.4	Variation in electronic properties with increase in surface fraction	583			
	24.5	Structure of CdSe quantum dots	592			
	24.6	Thermal properties of quantum dots	593			

	24.7	Conclusions	596	
	Ackn	owledgments	596	
	Refer	ences	596	
25	Synthesis methods of quantum dots			
	Ritika Nagpal and Meenakshi Gusain			
	25.1	Introduction	599	
	25.2	Bottom-up approach	607	
	25.3	Other synthesis processes	618	
	25.4	Conclusions	624	
	Refer	ences	624	
<mark>26</mark>	Optic	cal properties of quantum dots	<mark>631</mark>	
	<mark>Yaru</mark> ł	Al-Douri and Rajan Jose		
	26.1	Introduction	631	
	26.2	Quantum dots	632	
	26.3	Computational method	633	
	26.4	Experimental techniques	634	
	26.5	Results and discussion	635	
	26.6	Conclusions	659	
	References		660	
27	Chemical properties of quantum dots			
	Wasa	n A.M.Al Taie, Ali Abu Odeh and Yarub Al-Douri		
	27.1	Introduction	663	
	27.2	Principle of quantum dots work	663	
	27.3	Parts of quantum dots	664	
	27.4	Forms of quantum dots	664	
	27.5	Chemical composition of quantum dots	664	
	27.6	Surface ligands and coordination of quantum dots	666	
	27.7	Oxidation of quantum dots	672	
	27.8	Redox chemistry of quantum dots	673	
	27.9	Chemical stability of quantum dots	673	
	27.10	Chemical reactions involving the surface of quantum dots	676	
	27.11	Thermodynamic properties of quantum dots	677	
	27.12	Kinetic properties of quantum dots	6/8	
	27.13	Toxicity of quantum dots	6/8	
	27.14	Conclusion	680	
	Futur	e perspective	681	
	Refer	ences	681	
28	Physical properties of quantum dots			
	Kah Hon Leong, Yik Heng Chin, Lan Ching Sim, Bo Tan,			
	Chao	meng Dai and Pichiah Saravanan	<i></i>	
	28.1	Introduction	687	
	28.2	Carbon quantum dots	688	

Optical properties of quantum dots

Yarub Al-Douri^{a,b,c} and Rajan Jose^d

^a Engineering Department, American University of Iraq-Sulaimani, Sulaimani, Kurdistan, Iraq, ^b Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey, ^cNanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia, ^dNanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

26.1 Introduction

The semiconductors are interesting materials in solid-state physics. The most widely studied materials are Groups IV and II–VI. These materials have different band gaps that are usually extending from few to several electron volts and whose temperature coefficient $dE_g = dT$ is positive, and they have high mobility [1]. They are showing interesting in optoelectronic applications [2]. It is advantageous to use the computational method based on total energy calculations to study the phase transition from the coordinated number Nc = 4- to 6-fold [3]. Third-generation approaches to photovoltaics (PVs) aim to decrease costs and significantly increasing efficiencies but maintaining the economic and environmental cost advantages of thin-film deposition techniques [4]. There are several approaches to achieve such multiple energy threshold devices [5]; tandem or multicolor cells, concentrator systems, intermediate-level cells, multiple carrier excitation, up/down conversion, and hot carrier cells [6].

Billaud and Truong [7] have computed the ground state Lamb shift of a semiconductor spherical quantum dot in the effective mass approximation. It appears to be significant enough to be detectable for a wide range of small quantum dots synthesized in semiconductors. They have suggested the Casimir effect to observe it. While Thu and Voskoboynikov [8] have calculated the lowest energy states of electrons confined in an asymmetrical InAs/GaAs double lens-shaped quantum dot molecule in external magnetic field. Based on the effective three-dimensional one electronic-band Hamiltonian approximation, the electronic energy states of the system were computed by nonlinear iterative method using Comsol MultiPhysics package. This description allows them to simulate the semiconductor quantum dot molecule in arbitrary directed magnetic field. Simulation results clearly have showed that the diamagnetic shifts of the electronic energy levels are anisotropic and nonuniform. Therefore, they have demonstrated an opportunity to dynamically manipulate electronic states not only by varying the magnitude but also by changing the direction of the magnetic field. Moreover, Lam and Ng [9] have used bio-tags to emit different color light with different dot sizes, and quantum dots are currently extensively studied for application

Graphene, Nanotubes and Quantum Dots-Based Nanotechnology: Fundamentals and Applications.

DOI: https://doi.org/10.1016/B978-0-323-85457-3.00029-3

Copyright © 2022 Elsevier Ltd. All rights reserved.

Index

Page numbers followed by "f" and "t" indicate, figures and tables respectively.

A

Activated biomass-derived graphene-based carbon, 196 Activated carbons, 333 Allotropes, 1 Alloyed quantum dot, 732 Angle-resolved photoemission spectroscopy (ARPES), 59 Arc discharge, 29 process description, 253 processing, 253 process parameters, 256 Armchair graphene nanoribbons (AGNR), 239 Armchair nanotubes, 238 Artificial atom, 590 Artificial neural network (ANN), 516, 524 Atomic force microscopy (AFM), 100, 195 graphene, 100 tapping mode, 100 Average pore size (APS), 70

B

Ballistic transport, 11, *see also* Graphene Ball milling, 252 Bandgap material, 178 Bandgap structure, of graphene, 3 Barrett-Joyner-Halenda (BJH) model, 69 Batteries, graphene, 216 Beer–Lambert law, 715 Biomass, 190 Biomass-derived graphene, 190 adsorbent, 203 antibiotics, 204 applications, 202 catalytic chemical vapor deposition method, 194

characteristics and applications, 198 chemical blowing technique, 192 CO₂ capture, 204 dye removal, 204 fuel cells, 203 hydrothermal carbonization, 193 molecular-cracking method, 193 oil and water purification, 204 plasma-enhanced chemical vapor deposition, 194 properties, 195 salt-based method, 191 supercapacitors, 202 template-based confinement, 193 ultrasound method, 193 Black phosphorus, 127 Boron nitride nanotubes (BNNT) mechanical properties, 468 synthesis and properties, 466 Bose-Einstein distribution, 10, 311 Bovine serum albumin (BSA), 293 Bravais lattice, 5 Brunauer-Emmett-Teller (BET), 67, 68, 69, 196. see also Graphene Bulge test, 108

С

Carbon, 57 nanofibers, 57 nanohorns, 356 Carbon-based supercapacitors, 202 Carbon nanostructures carbon nanotubes and nanocomposites, 541 carbon nanowires, 543 classification scheme, 541 nanocomposites of polymer, 542

W

Wet-chemical methods, 607 microemulsion process, 610 sol-gel process, 607 thermal decomposition process, 613 Wet etching method, 605

Х

X-ray adsorption spectra (XAS), 146

X-ray diffraction (XRD), 68, 98, 709, see also Graphene spectroscopy, 59 X-ray magnetic circular dichroism (XMCD), 131 X-ray photoelectron spectroscopy (XPS), 67, 74, 196, 719 X-ray powder diffractometer (XRD), 67