
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 12, No. 1, March 2023, pp. 315~327

ISSN: 2252-8938, DOI: 10.11591/ijai.v12.i1.pp315-327 315

Journal homepage: http://ijai.iaescore.com

Hybridizing guided genetic algorithm and single-based

metaheuristics to solve unrelated parallel machine scheduling

problem with scarce resources

Munther H. Abed, Mohd Nizam Mohmad Kahar

Faculty of Computing, College of Computing and Applied Sciences, University Malaysia Pahang, Pahang, Malaysia

Article Info ABSTRACT

Article history:

Received Dec 18, 2021

Revised Sep 30, 2022

Accepted Oct 15, 2022

 This paper focuses on solving unrelated parallel machine scheduling with

resource constraints (UPMR). There are j jobs, and each job needs to be

processed on one of the machines aim at minimizing the makespan. Besides

the dependence of the machine, the processing time of any job depends on the

usage of a rare renewable resource. A certain number of those resources (Rmax)

can be disseminated to jobs for the purpose of processing them at any time,

and each job j needs units of resources (rjm) when processing in machine m.

When more resources are assigned to a job, the job processing time minimizes.

However, the number of resources available is limited, and this makes the

problem difficult to solve for a good quality solution. Genetic algorithm shows

promising results in solving UPMR. However, genetic algorithm suffers from

premature convergence, which could hinder the resulting quality. Therefore,

the work hybridizes guided genetic algorithm (GGA) with a single-based

metaheuristics (SBHs) to handle the premature convergence in the genetic

algorithm with the aim to escape from the local optima and improve the

solution quality further. The single-based metaheuristics replaces the mutation

in the genetic algorithm. The evaluation of the algorithm performance was

conducted through extensive experiments.

Keywords:

Genetic algorithm

Great deluge

Hybridization

Makespan

Tabu search

Unrelated parallel machine

scheduling with resources

Variable neighborhood search

This is an open access article under the CC BY-SA license.

Corresponding Author:

Munther H. Abed

Faculty of Computing, College of Computing and Applied Sciences, University Malaysia Pahang

Pahang, Malaysia

Email: munt1979@yahoo.com

1. INTRODUCTION

At the age of technology advancement, the demand for fast and optimum production in manufacturing

industries is increasing. These motivated decision-makers and researchers utilize the intelligent system for an

optimum scheduling of the production process. This will increase the profits, decrease costs, whilst satisfy the

customer needs. Scheduling of the production is deemed one of the considerable activities of a company when it

comes to the operational level as it assists in keeping the company competitive in the demanding consumer

markets. The company needs to effectively utilize its resources, meet production deadlines, reduce production

costs and other constraints while fulfilling customer satisfaction. The relevance and potential of research and

application in the manufacturing area are enormous and, this had attracted researchers to investigate problems in

production scheduling from various perspectives over the previous years [1]. Of the crucial scheduling problems

is the parallel machine scheduling problem (PMS). Researchers have classified the PMS problem as being

non-deterministic polynomial-time hardness (NP-hard) even with the utilization of more than one machine (two

machines), and they considered it as a combinatorial optimization problem [2]. Many methods were used and

applied to provide a feasible solution to this problem, including exact method, approximation and heuristic

https://creativecommons.org/licenses/by-sa/4.0/
mailto:munt1979@yahoo.com

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

316

methods. Exact algorithms guarantee optimal solutions, because it explores all possible solutions in the entire

search space and it would be ideal choice for a small size problem. However, for large size problems, no such

algorithms have existed that able to solve in polynomial time [3]. Many works seen in the scientific literature used

ρ-approximation approaches and problem-based heuristics to solve the large size optimization problems [4], [5].

These algorithms seek solutions which are near-optimal at a reasonable computation cost regardless to securing

optimality and feasibility [6]. These methods are not suitable for a large variety of optimization problems because

they are designed to handle a specific problem [7]. This paper proposed a hybridization of genetic algorithm and

single-based metaheuristic algorithms in solving the unrelated parallel machine scheduling with resource

(UPMR). The rest of the research is arranged where section 2 describes the parallel machine scheduling and

section 3 deals with related work. A description of the problem, including the constraints, is discussed in section

4. Section 5 and section 6 describe the proposed algorithm and the results and discussion, respectively. Finally,

section 7 presented the conclusion and future work.

2. PARALLEL MACHINE SCHEDULING

In this problem, the machines can be classified into five different classes depending on the machines

nature which include single machine Ø, parallel dedicated machines PD, identical parallel machines P, uniform

parallel machines Q and unrelated parallel machines R [8]. Single machine (Ø) is the simplest of all possible

machine environments and is a special case of all other more complicated machine environments [9]. As for

Parallel dedicated machines, they are set of jobs that will be processed on each pre-determined machine [10].

Subsequently, the identical parallel machines mean that all of the machines have the same processing speed

[11], and the uniform parallel machines mean that the machines have different speeds of execution but each

machine works at a consistent rate [12]. Finally, the unrelated parallel machine, R, where the processing time

of each job depends on the machine that it is assigned to. The unrelated parallel machine, R is much more

complex and difficult compared to other models and closely resembles the real world problem in the industries

[13]. The unrelated parallel machine can be divided into three types based on the constraints. These are classical

unrelated parallel machine (UPM), unrelated parallel machine with sequence dependent setup time (UPMSP)

and unrelated parallel machine with resources (UPMR).

2.1. Classical unrelated parallel machine (UPM)

In UPM, the processing of a number of jobs, j has to be performed on exactly one machine selected

from a group of parallel machines. Many Jobs are now available to be processed at time zero and those jobs

demand a processing time especially when jobs, j are distributed over to machines. The processing times of the

jobs vary based on the machine for which jobs are assigned to. The classical parallel machines problem is an

assignment problem that is typical in this context, and the only decision taken to solve the problem is which

machine each job must be assigned to. Jobs that are assigned to machines can go into processing in any order

until they are complete, and the machines, thus, are never left idle (even between jobs) [14]. This problem has

been extensively explored in earlier literature for more than a decade [15].

2.2. Unrelated parallel machine with sequence dependent setup time (UPMSP)

In UPMSP, it includes a sequence of setup times and it is machine-dependent, where each machine

has its own matrix of setup times, and these matrices differ from one another. The setup time on a machine

between two jobs j and l differs from jobs l and j on the same machine. Additionally, the setup time between

jobs j and l on one machine is different in other machines [16].

2.3. Unrelated parallel machine with resources (UPMR)

Recently, a new requirement emerges in which job, j requires, besides a machine, m a number of one

or more extra resources, r. These additional resources could be considered human resources “machine

operators”, automated guided vehicles, tools, pallets, fixtures, industrial robots or limited materials. These

resources are deemed significant and have to be taken into account when assigning jobs to the machines. In

addition, the number of resources that any job requires varies based on the machine a given job is assigned to.

A sequence, on the other hand, means the computation of the beginning and end times of each job on the

machines. Based on the availability of resources, idle times might be crucial to obtain a feasible solution. That

has UPMR problem more complex when seen in terms of other problems. Due to the complexity and close

similarity of UPMR to the real-world application [17], [18], this research's goal is to generate good quality

solution in providing a solution to UPMR. UPMR problem exists in different manufacturing settings, such as

car factories, food processing plants and many more [17].

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

317

3. RELATED WORK

This section described the approaches used for solving unspecified dynamic UPMR problem. Many

works have been reported in the literature to solve this problem. For instance, [19] suggested a deterministic

3/2-approximation, 2-approximation and 4-approximation method to minimize the maximum completion time

and weighted completion time. The 4-approximation method is superior to the other two methods.

Grigoriev et al. [20] developed a 3.75-approximation algorithm using the rounding procedure to minimize

the makespan. Thus, the results of this model outperform a deterministic 6.83-approximation and a randomized

4-approximation. A Lagrangian-based constraint programming (CP) method was proposed by [21] by relaxing

the resource constraints. A comparison was carried out between the results of this method and the results of

pure integer programming (IP) and pure CP models to uncover the fact or phenomenon that the method of the

suggested Lagrangian-based CP yields very efficient and effective results. Edis and Oguz [22] proposed integer

programming (IP) model, a relaxed IP based constraint programming (CP) method to solve the large size

dataset and IP/CP model. The IP/CP model also outperform IP model and obtain near-optimal solutions for

large size problems. Fanjul et al. [23] proposed two approaches: an integer linear programming (ILP) program

and a two-phase approach based on solutions, named the fixing algorithm to minimize the makespan. The

fixing algorithm outperforms the ILP program. Fanjul-Peyro et al. [17] formulate the problem via two integer

linear programming problems mixed-integer linear programming (MILP). One of these methods relied on a

model that was earlier presented by [22] and denoted by UPMR-S. The second one relies on the similarity to

the problem of strip packing denoted by UPMR-P. They also presented three matheuristic strategies which

included machine-assignment fixing (MAF), job-machine reduction (JMR), and greedy-based fixing (GBF)

that were applied to each of these two models (UPMR-S and UPMR-P) and yielded MAF-S, JMR-S, GBF-S,

MAF-P, JMR-P and GBF-P. The JMR-P approach outperform all approaches in most instances. Arbaoui and

Yalaoui [18] presented CP model in order to minimize the Cmax. Experimental results show the CP model

outperform the exact and heuristic approaches in the literature (UPMR-S, UPMR-P, MAF-S and MAF-P) for

both small and medium size instances. Two methods are also proposed by [24] to minimize the makespan.

These methods are a MILP model and a CP model. The MILP performs much better than a pure CP model for

large problem. Villa et al. [2] proposed Local search methods: Nawaz-Enscore-Ham (NEHst), construction with

swapping (SWA) and Nawaz-Enscore-Ham (NEHres) and multi-pass heuristics (M1, M2, M3, M4 and M5) to

minimize the makespan. Regarding small instances, NEHres obtained the best results. While, in medium and

large instances, multi-pass heuristics M4 and M5 obtained the best results, respectively. Vallada et al. [25]

suggested four approaches scatter search (SS), enriched scatter search (ESS) and enriched iterated greedy (EIG)

to minimize the makespan. The results obtained by EIG outperform the three methods for small, medium and

large size instances. From the discussion, it shows that there is a need for a better algorithm in solving the

UPMR for optimality. In the survey reported by [1], 10 metaheuristics are used where the genetic algorithm

has been widely used. It stands for (50%) to solve many scheduling problems followed by simulated annealing

which stands for (10%).

4. PROBLEM FORMULATION

The uniqueness of UPMR is the resources constraints, in which all jobs require resources when being

processed in the machine. In view of the nature and usage of resources, they can be described by classes,

categories and also types when allocating resources to machines [26]. In classes, the resources can be

categorized into two, where it depends on “time” a resource requires by the jobs when being process by the

machine [27]. Resources required during the processing of the jobs, is called processing resources [2], [17],

[23]. However, if resources required either before or after processing of a job, then the resources are referred

to as input-output resources [27], [28].

In categories, the resources can be divided into two [28], which include resource constraints and

resource divisibility. Firstly, in the resource constraints categories, it includes resources that are renewable,

nonrenewable and double constraint. A renewable resource allows the resources to be re-used after being

released from other job [2], [17], [23]. However, for nonrenewable resources, the resources can only be used

once by some job (i.e. cannot be assigned to any other job) [29]. As for double constraint, it uses both resources

at the same time [28]. Second, in the resource divisibility, the resources are categories as discrete and

continuous. In a discrete resource, the resources are to be assigned to jobs in discrete amounts from a limited

finite group of possible allocations which may contain one element only [23]. However, in continuous, the

resources can be assigned to jobs in random quantities from a certain interval [26].

In type, the resources can be divided into static and dynamic [18]. In Static, the allocation of resources

to machines is fixed [30], while in the dynamic, the resources can be allocated and reallocated in view of the

jobs’ assignments [23], [24]. In terms of assigning jobs to the machines, this assignment can be of two types:

unspecified and specified [28]. In the unspecified, the assignment of job to machine is not prefixed [23], while

the assignment of job to machine is prefixed in the specified [31].

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

318

This work focuses on UPMR problem that is unspecified, dynamic, processing resources, discrete

and renewable. These constraints are selected because they reflect the real-world problem [2], [17], [23], [27],

[28]. This research focus on minimizing the makespan of the UPMR [32]. The following example sheds the

light on the UPMR problem and raises the difference between this problem and the regular UPM. We need to

take into mind the following example of an UPMR with two machines (m=2), six jobs (j= 6), 10 units of a

scarce resource (Rmax= 5×m). The processing times pjm and resource needs rjm are j ×m matrices of the

assignment machine m and job j, respectively.

 𝑝𝑗𝑚 = (

 𝑗1 𝑗2 𝑗3 𝑗4 𝑗5 𝑗6

𝑚1 15 32 26 41 10 29
 𝑚2 24 17 43 21 36 12

) 𝑟𝑗𝑚 = (

 𝑗1 𝑗2 𝑗3 𝑗4 𝑗5 𝑗6

𝑚1 4 10 6 2 3 5
 𝑚2 4 2 1 9 5 7

)

As it is known, the difference between the UPM and UPMR problem is the resource constraints.

Referring up to Figure 1, the UPM problem produces Cmax 51. However, this solution is infeasible where it

violates the resource constraints in the UPMR problem. The maximum availability of resources is violated by

two units, (r51 and r42) between time 0 and time 10, three units (r11 and r42) between time 10 and time 21 and

three units (r31 and r62) between time 38 and time 50. To get a feasible solution from an infeasible solution

while keeping the jobs assigned to the same machines, the idle-time is important. Figure 2 shows that resources

are not overused but the result is poor quality and the makespan increased to Cmax=84. It is possible to obtain

feasible solutions without idle-time, but they are not optimal (Cmax=77) as shown in Figure 3. In Figure 4,

resources are utilized, machines are optimized (always busy), and the makespan has not increased considerably

when compared to the UPM problem which does not take into consideration the resource constraints shown in

Figure 1 (Cmax=72).

Figure 1. Infeasible solution

Figure 2. Feasible solution with idle-time

Figure 3. Feasible solution without idle-time

Figure 4. Near-optimal solution

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

319

4.1. Notations and decision variables

The UPMR problem treats with several types of input data. These include a list of m available

machines; a list of j jobs to be processed; Rmax units of a certain resource; rjm units of the resource and pjm units

of time, which needed to process job j at machine m.

Notations:

- M number of machines (indexed by m), m=1,.., M.

- J number of jobs that requires processing (indexed by j), j=1,.., J.

- T number of the periods of time embodied in the scheduling horizon (indexed by t), t = 1,..,T.

- Rmax maximum number of the permitted resources.

- pjm processing intervals of times of job j applied on machine m.

- rjm required number of the resources that are needed to process job j on machine m.

Decision variables:

- 𝑥𝑗𝑚𝑡 1 if job j accomplishes its processing period of time on machine m at time t, 0 otherwise.

- Cmax the maximum completion time of all jobs.

4.2. Mathematical model

This section reveals the hard constraints and the objective function for the UPMR problem. It is taken

into consideration that the hard constraint needs to be satisfied for a feasible solution as illustrated in (1) to (3).

On the other hand, the objective function, that is widely applied in the UPMR, is to minimize the maximum

completion time of the jobs (see (4)).

- Each job must be processed by exactly one machine; and finishes at exactly one time as shown in (1).

∑ ∑ 𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

= 1 𝑀
𝑚=1 , ∀ 𝑗 = 1, … , 𝐽 (1)

- One machine is allowed to process one job only at a time as this is illustrated in (2).

∑ ∑ 𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝐽
𝑗=1 ≤ 1, ∀ 𝑚 = 1, … , 𝑀 ∀𝑡 = 1, … , 𝑇 (2)

- Do not exceed the Rmax units of the resource at any time. The formulation is shown in (3)

∑ ∑ ∑ 𝑟𝑗𝑚𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝑀
𝑚=1

𝐽
𝑗=1 ≤ 𝑅𝑚𝑎𝑥 , ∀𝑡 = 1, … , 𝑇 (3)

- The objective function is to minimize the makespan also known as (Cmax) and it is specified

as in (4).

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗=1,…,𝐽 ∑ ∑ 𝑡𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

𝑀
𝑚=1 , ∀𝑗 = 1, … , 𝐽 (4)

5. PROPOSED ALGORITHM

As it is known, the genetic algorithm suffers from an imbalance between exploration and exploitation

because its operation focuses more on exploring the search space rather than exploiting [33]. In addition, it also

suffers from getting trapped into local optimal as it only takes the best solutions in population after the

crossover and mutation operators. These drawbacks have not been solved even with many improvements to

the standard genetic algorithm as reported in the literature. Such improvements included tuning parameters and

selecting different types of operations [34]. Additionally, many researchers combine the genetic algorithm with

single-based metaheuristic [35], [36].

At the beginning, the guided genetic algorithm (GGA) is applied with parameters tuning [37].

The parameters are examined by fixing one value of each parameter and changing the values of other

parameters each time. This process is repeated with each value of the other parameters. On the other hand,

the multi-population, guided crossover and insertion mutation are used. Next, the mutation process is replaced

by the great deluge algorithm, tabu search algorithm and variable neighborhood search algorithm, to obtain

guided genetic algorithm with great deluge (GGA-GD), guided genetic algorithm with tabu search (GGA-TS)

and guided genetic algorithm with variable neighborhood search (GGA-VNS). The single-based metaheuristics

are used to create a balance between exploration and exploitation and to address getting stuck in local optimal.

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

320

5.1. Guided genetic algorithm (GGA)

Two chromosomes are selected from the population, where the first represents the best one (BC),

while the second one is selected randomly based on k-tournament selection (RC). Next, two unique opposite

chromosomes for both chromosomes are generated, called 𝐵𝐶̅̅ ̅̅ and 𝑅𝐶̅̅ ̅̅ , based on (5) and (6) respectively.

𝐵𝐶̅̅ ̅̅ = 𝑈𝑝𝑝𝑒𝑟 + 𝐿𝑜𝑤𝑒𝑟 − 𝐶𝐿 (5)

𝑅𝐶̅̅ ̅̅ = 𝑈𝑝𝑝𝑒𝑟 + 𝐿𝑜𝑤𝑒𝑟 − 𝐶𝐿 (6)

Where Upper and Lower represent the boundaries of the problem (i.e., the highest and lowest value for the job)

and CL represents the current location of the job. If the fitness value of the 𝐵𝐶̅̅ ̅̅ and 𝑅𝐶̅̅ ̅̅ are better than BC and

RC, then, they replace them. Otherwise, mixed each chromosome with its own opposition chromosome

together based on (7) and (8) respectively.

𝐵𝐶̿̿ ̿̿
𝑖 = {

𝐵𝐶𝑖 𝑖𝑓 𝑐ℎ𝑖 < 𝐶𝑟
𝑥

𝐵𝐶𝑖
̅̅ ̅̅ ̅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

𝑅𝐶̿̿ ̿̿
𝑖 = {

𝑅𝐶𝑖 𝑖𝑓 𝑐ℎ𝑖 < 𝐶𝑟
𝑥

𝑅𝐶𝑖
̅̅ ̅̅̅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

Where i represent an individual gene in each chromosome and Cr represent the crossover rate. ch denotes a

chaotic series generated via Chaotic Tent map formula [38] (see (9)). The ch0 is generated randomly between

0 and 1. It is important to mention that the chaotic series are used to enhance the diversification of the crossover

operator.

𝑐ℎ𝑋+1 = {

𝑐ℎ𝑥
0.7⁄ 𝑐ℎ𝑥 < 0.7

𝑥
10

3⁄ (1 − 𝑐ℎ𝑥) 𝑐ℎ𝑥 ≥ 0.7

 (9)

If the fitness value for the 𝐵𝐶̿̿ ̿̿
𝑖 and 𝑅𝐶̿̿ ̿̿

𝑖 are better than BC and RC, then BC and RC are replaced with the new

generated one for the next generation. Otherwise, keep the BC and RC for the next generation.

5.2. Hybridizing guided genetic algorithm with great deluge algorithm

As mentioned, the great deluge algorithm will replace the mutation operator in the genetic algorithm.

At each iteration, a neighbour solution is accepted if its quality is lower than the current value. Initially,

the value of the level is set equal to the cost of the initial solution. Then, at each iteration, the level is decreased

by the rain speed (UP) using (10).

𝐿𝐸𝑉𝐸𝐿 = 𝐿𝐸𝑉𝐸𝐿 − 𝑈𝑃 (10)

This process will be repeated until the stopping criterion is reached (maximum number of iterations).

The GD used the third type of the neighborhood structure based on the preliminary test as mentioned in

sub-section 5.5. The pseudocode of hybridizing GGA-GD is presented in Figure 5.

5.3. Hybridizing guided genetic algorithm with tabu search algorithm

The procedure starts with a feasible initial solution obtained after the completion of the crossover

operator of the genetic algorithm. This initial solution is stored both as the current and the best solution

simultaneously. The algorithm will then form a set of neighboring solutions of the current solution that is not

in the tabu list using a neighborhood structure. Then, the candidate solutions are evaluated using the objective

function, and the best candidate solution which is not tabu is selected as the current solution. The fitness of the

current solution will be compared to the best solution and, if it is better, will replace the best solution. This new

current solution is added to tabu list and, if it is full, the oldest element is removed from the tabu list. Next, the

whole procedures are repeated for a certain number of iterations [39]. Based on preliminary test, the TS used

the fourth type of neighborhood structure (see sub-section 5.5). The pseudocode of GGA-TS is presented in

Figure 6.

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

321

Figure 5. Pseudocode of GGA-GD

Figure 6. Pseudocode of GGA-TS

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

322

5.4. Hybridizing guided genetic algorithm with variable neighborhood search algorithm

The variable neighborhood search algorithm (VNS) begins with a solution that is initial. After that,

three steps constitute each iteration of the algorithm. These three steps are shaking, local search, and move as

shown in Figure 7. VNS will form a set of neighboring solutions based on kth neighborhood. After that, the

candidate solutions are evaluated using the objective function, and a random candidate solution s′ is shaked

from Nk(s) to be the current solution. In this work, four types of neighborhood structures are used gradually as

mentioned in sub-section 5.5. A procedure of local search known as hill climbing (HC) is applied to the solution

s′ to produce the solution s′′. The present solution is changed by the new local optima s′′ if and only if there is

a better solution that has been discovered (i.e., f (s′′) < f (s)). The same search procedure, thus, is initiated from

the solution s′′ in the first neighborhood N1. HC process terminates when the maximum number of iterations

stands for 3000 based on preliminary test. Concerning the neighborhood structure, the HC used the first type

based on the preliminary test (see sub-section 5.5). If no better solution is located (i.e., f (s′′) ≥ f (s)), the

algorithm moves to the next neighborhood Nk+1, randomly produces a new solution in this neighborhood, and

aims to improve it.

Figure 7. Pseudocode of GGA-VNS

5.5. Neighborhood strategies

The neighborhood structures have a prominent role in the performance of any SBH [33]. The existence

of adequate neighborhood leads to enhance the ability of a SBH to generate good solutions [40]. In this work,

the neighbor solution is created via four neighborhood structures:

- Select one job and insert it to different position within the same machine.

- Select one job and insert it to a different machine.

- Select two jobs from the same machine and swap their positions.

- Select two jobs from different machines and swap their positions.

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

323

5.6. Parameter tuning

The values of the parameters have direct effect on the performance of the metaheuristic algorithms

[33]. Different problems and even different instances from the same problem data require different parameter

values to reach an optimal or near optimal solution. The parameter settings for the proposed hybrid algorithms

are discussed in this subsection. A preliminary test is conducted to determine the suitable parameters values.

During the preliminary test, the genetic algorithm and SBH algorithms are executed 30 runs on ten instances

(8×2, 12×4, 16×6, 20×2, 25×4, 30×6, 50×10, 150×20, 250×30 and 350×10) and the best results over 30 runs

are reported. These instances are selected based on the size of the benchmark dataset. Table 1 summarizes the

parameter settings of all the algorithms used in this study.

Table 1. The parameter settings of the hybridized algorithm
Parameter Algorithm Value

Population size
Crossover rate

Mutation rate

Number of iterations
Number of iterations

Tabu list length

Number of neighborhood solutions
Number of iterations

Number of iterations

Number of iterations

GGA
GGA

GGA

GGA
GD

TS

TS
TS

HC

VNS

40
0.7

0.1

4000
4000

40

6
6000

3000

3000

5.6.1. GA parameter settings

Genetic algorithm (GA) has four parameters, namely population size, crossover rate, mutation rate

and number of generation (iteration). A preliminary test is used to determine the appropriate parameter values

in guided genetic algorithm (GGA) [37]. Different values of the parameters are used and tested. The values

used for population size are 20, 40, 60 and 100. In view of the results of the comparison carried out on all the

datasets used, the most suitable value of the population size is 40 produces the best result obtained in seven out

ten datasets. After setting the value of the population size, the crossover rate will be examined. The crossover

rate must also be set. The values of the crossover rate that are tested are 0.3, 0.5, 0.7 and 0.9. The best crossover

rate value for the eight datasets out of ten is 0.7. Next, the values of the mutation rate that are tested are 0.01,

0.05, 0.1 and 0.3. The value of the best mutation rate for the six datasets out of ten is 0.1. Finally, the values

used for the number of iterations are 500, 1000, 2000, 4000 and 6000. Based on the results of the comparison

carried out on all the datasets used, the most suitable value for the number of iterations is the value 4000 as the

best results of eight datasets out of ten are obtained at this value.

5.6.2. GD parameter settings

GD is composed of two parameters. The first of these is rain speed (UP), which requires to be tuning

and is calculated using (11) [41]:

𝑈𝑃 =
𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)− 𝐵𝐾𝑆

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 (11)

BKS refers to the best-known solution. The second parameter is the number of iterations, which is set to 4000

out of four values (2000, 3000, 4000, 5000 and 6000) based on preliminary test.

5.6.3. TS parameter settings

TS utilizes three parameters, the tabu list length Tl, the number of neighborhood solutions N(s’) and

the number of iterations. The values used for tabu list length are 20, 30, 40 and 50. In addition, the values 4, 6,

8, and 10 are used for the number of neighborhood solutions. While, the number of iterations is represented by

the values 2000, 3000, 4000, 5000 and 6000. Based on the preliminary test, two parameters were fixed to

examine the third one and so on. The parameters value of the TS used in this study based on preliminary test

are: the tabu list length is fixed to 40, the number of neighborhood solutions is fixed to 6 and the number of

iterations is fixed to 4000.

5.6.4. HC and VNS parameter settings

HC and VNS contain only one parameter, the number of iterations. The setting of the parameter to

3000 for two algorithms is based on the results of the preliminary test. This preliminary test is, then, applied to

the values of the different iterations (2000, 3000, 4000, 5000 and 6000).

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

324

6. RESULTS AND DISCUSSION

The proposed algorithms are evaluated and compared with state-of-the-art methods in terms of solution

quality. The obtained results are reported as the relative percentage deviation (RPD) from the best-known solution

(BKS). The best-known solution is the solution obtained by [2], [17], [25]. The relative percentage deviation RPD

for each instance is computed using (12) [42].

𝑅𝑃𝐷 =
𝐻𝑒𝑢𝑠𝑜𝑙− 𝐵𝐾𝑆

𝐵𝐾𝑆
× 100 (12)

BKS is the Best-Known Solution which can be optimal if the makespan is equal to the optimum

makespan of the problem without resources (UPM). Heusol is the best solution obtained by the proposed

algorithm over all independent runs. The proposed algorithms are coded in C# 2012 and run on a PC with CPU

Intel(R), Core (TM) i5, speed at 2.20 GHz and RAM 8.00 GB. A benchmark dataset used in this study is

proposed by [2], [17], which consist of different sizes of dataset were used for the experiment (referred to as

small, medium and large). The small size has 9 datasets, the medium has 9 datasets and the large has 12 datasets,

where each data set has 50 instances. In total, there are 450 small instances, 450 medium instances and 600

large instances. The dataset can be reach at [43]. The number of resources is computed as Rmax = 5 × number

of machines. The computational result of the given instance (8x2_2_U_10_100__R_inter) and Cmax along with

the processing time and resource consumption as shown in Table 2.

Table 2. The result obtained by GGA-VNS with Cmax = 133
Job machine Processing time pjm Resource consumption rjm

Start time Finish time

4 1 0 47 3
8 2 0 51 6

1 1 47 57 3

6 2 51 91 3
2 1 57 85 1

5 1 85 100 4

7 2 91 133 1

3 1 100 119 4

6.1. Small instances result

Our first evaluation is using small instances as shown in Table 3. GGA-VNS outperformed GGA-TS

and GGA-GD by 56% in terms of RPD. When comparing our algorithms with the state-of-the-art methods,

UPMR algorithm obtains the lowest RPD in 5 instances followed by the EIG method and JMR that obtain 4

and 2 instances respectively. The ESS, GGA-TS and GGA-VNS obtain 1 instance followed by M4, M5 and

GGA-GD which didn’t record any results that outperform the mentioned algorithms. In view of the average

relative percentage deviation (ARPD), the EIG obtains the lowest (best) value followed by GGA-VNS, ESS,

GGA-TS, GGA-GD, M4, M5, JMR and UPMR. Comparatively, in terms of the average time AvTime, the

UPMR and JMR methods need approximately 2000 seconds on average, the ESS and EIG at around 5 seconds

on average. The GGA-GD, M5, GGA-VNS, M4 and GGA-TS methods need less than 1 second on average.

Table 3. RPD, ARPD and AvTime for small instances
Instance UPMR [17] JMR [17] M4 [2] M5 [2] ESS [25] EIG [25] GGA-GD GGA-TS GGA-VNS

8x2 0 0 0.10 0.24 0 0 0.90 0.46 0.29

8x4 0 1.94 0.73 1.17 0.66 0.53 0.59 0.73 0.46

8x6 0 1.88 1.06 0.96 0.13 0.04 0.72 0.44 0.47
12x2 0 0 0.59 0.67 0.35 0.40 0.93 0.84 0.61

12x4 1.14 2.48 1.87 2.16 1.47 1.14 1.07 1.31 1.19

12x6 1.44 1.05 1.14 1.18 0.75 0.48 0.93 0.46 0.67
16x2 0.21 0.21 0.56 0.63 0.23 0.14 0.51 0.34 0.19

16x4 6.46 4.25 1.39 1.71 1.19 1.00 1.04 1.40 1.15

16x6 8.71 5.99 1.40 1.61 1.22 0.77 0.96 1.29 0.75

ARPD 2.00 1.98 0.98 1.15 0.67 0.50 0.85 0.81 0.64

AvTime 2208.34 1969.92 0.0449 0.0352 5.5 5.5 0.0346 0.0451 0.0398

6.2. Medium instances result

Table 4 shows the results for medium instances. With respect to RPD, GGA-VNS and GGA-TS

outperformed GGA-GD by 44% for each one (i.e., 4 instances for GGA-VNS and 4 instances for GGA-TS and

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

325

1 instance for GGA-GD). Taking ARPD into account, the GGA-VNS outperformed the GGA-TS and

GGA-GD. In comparing the results of the study with the previous literature, the study found that EIG algorithm

obtains the lowest RPD in 4 instances followed by the GGA-TS, ESS and GGA-VNS that obtain 3, 2 and 1

instances respectively. The UPMR, JMR, M4, M5 and GGA-GD did not record the lowest RPD compared to

the earlier mentioned algorithms. In ARPD, the lowest (best) value is obtained by the EIG and then followed

by ESS, GGA-VNS, GGA-TS, M4, M5, GGA-GD, JMR and UPMR. On the other hand, taking into

consideration the average time AvTime, the study showed that the UPMR and JMR methods need 3600 seconds

on average, whereas the ESS and EIG need around 14.5 seconds on average. In comparison, the GGA-GD,

GGA-VNS, M5, GGA-TS and M4 methods show the need for less than 1 second on average.

Table 4. RPD, ARPD and AvTime for medium instances
Instance UPMR [17] JMR [17] M4 [2] M5 [2] ESS [25] EIG [25] GGA-GD GGA-TS GGA-VNS

20x2 0.81 0.81 0.97 1.18 0.49 0.43 1.13 0.42 0.73

20x4 12.54 9.60 1.27 1.11 0.80 0.70 1.27 0.85 0.69

20x6 14.38 9.44 1.10 1.05 0.50 0.56 0.96 1.26 0.56

25x2 3.65 3.65 0.56 0.60 0.26 0.15 0.98 0.46 0.65
25x4 18.82 13.30 0.89 0.95 0.60 0.59 1.39 0.90 0.64

25x6 23.77 18.24 1.10 1.13 0.48 0.53 0.50 1.30 0.98

30x2 10.29 10.29 0.84 1.00 0.49 0.28 1.07 0.25 0.82

30x4 27.26 20.59 0.50 0.64 0.28 0.17 1.37 0.17 0.87

30x6 59.60 28.99 0.92 0.64 0.32 0.24 1.30 0.88 0.38

ARPD 19.01 12.77 0.91 0.92 0.47 0.41 1.11 0.72 0.70
AvTime 3600 3600 0.1965 0.1465 14.5 14.5 0.1296 0.1488 0.1335

6.3. Large instances result

Experiments of large instances are implemented as illustrated in Table 5. While GGA-VNS

outperformed GGA-TS and GGA-GD by 75% (9 instances out of 12) in view of RPD. The GGA-VNS also

outperformed the GGA-TS and GGA-GD in view of ARPD. In comparison with the state-of-the-art methods,

EIG algorithm is found to obtain the lowest RPD in all instances. As far as ARPD is concerned, the study

showed that the lowest (best) value is obtained by EIG and then followed by ESS, GGA-VNS, GGA-TS, M5,

GGA-GD and M4. In respect of the average time AvTime, the GGA-GD, GGA-TS and GGA-VNS need around

19 seconds on average. Subsequently, the EIG, ESS, M5 and M4 need around 60 seconds, 73 seconds, 102

seconds and 184 seconds respectively.

Table 5. RPD, ARPD and AvTime for large instances
Instance M4 [2] M5 [2] ESS [25] EIG [25] GGA-GD GGA-TS GGA-VNS

50x10 1.03 1.07 0.36 0.27 0.99 1.24 0.58
50x20 1.78 1.37 0.50 0.40 0.46 0.81 1.38

50x30 1.47 1.51 0.35 0.34 1.22 0.93 0.44

150x10 1.00 0.73 0.30 0.28 0.62 0.94 0.36
150x20 1.37 1.43 0.55 0.28 1.64 0.93 0.48

150x30 1.41 1.24 0.46 0.26 1.33 1.45 0.67

250x10 0.87 0.65 0.25 0.15 0.97 0.71 0.25
250x20 1.01 0.82 0.40 0.23 0.40 0.90 0.58

250x30 1.00 0.77 0.36 0.18 1.18 0.89 0.20

350x10 0.63 0.48 0.23 0.12 0.71 0.18 0.35
350x20 0.68 0.47 0.30 0.15 0.92 0.58 0.33

350x30 0.78 0.65 0.24 0.10 0.96 0.84 0.34

ARPD 1.09 0.93 0.36 0.23 0.95 0.87 0.50
AvTime 184.93 102.25 73.1 60.5 19.0129 19.5462 20.2563

As mentioned in sub-section 5.2, 5.3 and 5.4, the hybridization process works on exchanging roles

and investing the ability of SBH algorithms (GD, TS and VNS). This process in question is conducted to exploit

the search space for the purpose of enhancing the deficit in the genetic algorithm. On the other hand, the ability

of a genetic algorithm for exploring the search space is taken advantage of to enhance the deficit in SBH

algorithms.

7. CONCLUSION AND FUTURE WORK

This work proposed a hybridization of genetic algorithm with single-based metaheuristic algorithms.

The proposed methods able to efficiently and effectively produce quality results. The reason behind the success

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 1, March 2023: 315-327

326

of our algorithms is because of the combination of the population-based metaheuristic represented by the

genetic algorithm and the single-based metaheuristic represented by great deluge algorithm, tabu search

algorithm and variable neighborhood search algorithm. The population-based metaheuristics, which are

powerful in the exploration of the search space and weak in the exploitation of the solutions, will try to optimize

solutions globally. The single-based metaheuristics, are powerful optimization methods in terms of

exploitation, they will try to optimize solutions locally. Despite the quality of the results obtained, especially

the GGA-VNS, it still needs to be improved to get better results or match the results of the literature. In the

future, an adaptive hybrid GGA is suggested to select the suitable single-based metaheuristic algorithm

automatically in order to obtain better results.

ACKNOWLEDGEMENT

We are grateful to Universiti Malaysia Pahang (UMP) for supporting the research project through

University Postgraduate Research Grant Scheme (PGRS1903187).

REFERENCES
[1] H. Y. Fuchigami and S. Rangel, “A survey of case studies in production scheduling: Analysis and perspectives,” Journal of

Computational Science, vol. 25, pp. 425–436, 2018, doi: 10.1016/j.jocs.2017.06.004.
[2] F. Villa, E. Vallada, and L. Fanjul-Peyro, “Heuristic algorithms for the unrelated parallel machine scheduling problem with one

scarce additional resource,” Expert Systems with Applications, vol. 93, pp. 28–38, 2018, doi: 10.1016/j.eswa.2017.09.054.

[3] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison,” ACM Computing
Surveys, vol. 35, no. 3, pp. 268–308, 2003, doi: 10.1145/937503.937505.

[4] R. J. O. and K. Hoffman, “Exact methods for solving traveling salesman problems with pickup and delivery in real time,”

Optimization-Online, vol. 9, 2018.
[5] Y. Zhao, D. Jiao, and J. Mao, “Fast Nested Cross Approximation Algorithm for Solving Large-Scale Electromagnetic Problems,”

IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 8, pp. 3271–3283, 2019, doi: 10.1109/TMTT.2019.2920894.

[6] V. J. Rayward-Smith, C. Osman, C. R. Reeves, and G. D. Smith, Modern heuristic search methods. 1996.
[7] K. Chakhlevitch and P. Cowling, “Hyperheuristics: Recent developments,” Studies in Computational Intelligence, vol. 136,

pp. 3–29, 2008, doi: 10.1007/978-3-540-79438-7_1.

[8] J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, “Scheduling subject to resource constraints: classification and complexity,”
Discrete Applied Mathematics, vol. 5, no. 1, pp. 11–24, 1983, doi: 10.1016/0166-218X(83)90012-4.

[9] M. L. Pinedo, “Scheduling: Theory, algorithms, and systems: Fourth edition,” Scheduling: Theory, Algorithms, and Systems: Fourth

Edition, vol. 9781461423, pp. 1–673, 2012, doi: 10.1007/978-1-4614-2361-4.
[10] H. Kellerer and V. A. Strusevich, “Scheduling problems for parallel dedicated machines under multiple resource constraints,”

Discrete Applied Mathematics, vol. 133, no. 1–3, pp. 45–68, 2003, doi: 10.1016/S0166-218X(03)00433-5.

[11] A. Mensendiek, J. N. D. Gupta, and J. Herrmann, “Scheduling identical parallel machines with fixed delivery dates to minimize
total tardiness,” European Journal of Operational Research, vol. 243, no. 2, pp. 514–522, 2015, doi: 10.1016/j.ejor.2014.12.002.

[12] W. C. Yeh, M. C. Chuang, and W. C. Lee, “Uniform parallel machine scheduling with resource consumption constraint,” Applied

Mathematical Modelling, vol. 39, no. 8, pp. 2131–2138, 2015, doi: 10.1016/j.apm.2014.10.012.
[13] A. Grigoriev, M. Sviridenko, and M. Uetz, “Unrelated parallel machine scheduling with resource dependent processing times,”

Lecture Notes in Computer Science, vol. 3509, pp. 182–195, 2005, doi: 10.1007/11496915_14.

[14] Y. Guo, A. Lim, B. Rodrigues, and Y. Liang, “Minimizing the makespan for unrelated parallel machines,” International Journal
on Artificial Intelligence Tools, vol. 16, no. 3, pp. 309–415, 2007, doi: 10.1142/s0218213007003175.

[15] L. Fanjul-Peyro and R. Ruiz, “Size-reduction heuristics for the unrelated parallel machines scheduling problem,” Computers and
Operations Research, vol. 38, no. 1, pp. 301–309, 2011, doi: 10.1016/j.cor.2010.05.005.

[16] D. Yilmaz Eroglu, H. C. Ozmutlu, and S. Ozmutlu, “Genetic algorithm with local search for the unrelated parallel machine

scheduling problem with sequence-dependent set-up times,” International Journal of Production Research, vol. 52, no. 19,
pp. 5841–5856, 2014, doi: 10.1080/00207543.2014.920966.

[17] L. Fanjul-Peyro, F. Perea, and R. Ruiz, “Models and matheuristics for the unrelated parallel machine scheduling problem with

additional resources,” European Journal of Operational Research, vol. 260, no. 2, pp. 482–493, 2017,
doi: 10.1016/j.ejor.2017.01.002.

[18] T. Arbaoui and F. Yalaoui, “Solving the Unrelated Parallel Machine Scheduling Problem with Additional Resources Using

Constraint Programming,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 10752 LNAI, pp. 716–725, 2018, doi: 10.1007/978-3-319-75420-8_67.

[19] V. S. A. Kumar, M. V Marathe, S. Parthasarathy, and A. Srinivasan, “Approximation algorithms for scheduling on multiple

machines,” Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, vol. 2005, pp. 254–263, 2005,
doi: 10.1109/SFCS.2005.21.

[20] A. Grigoriev, M. Sviridenko, and M. Uetz, “LP rounding and an almost harmonic algorithm for scheduling with resource dependent

processing times,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 4110 LNCS, pp. 140–151, 2006, doi: 10.1007/11830924_15.

[21] E. B. Edis and C. Oguz, “Parallel machine scheduling with additional resources: A lagrangian-based constraint programming

approach,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6697 LNCS, pp. 92–98, 2011, doi: 10.1007/978-3-642-21311-3_10.

[22] E. B. Edis and C. Oguz, “Parallel machine scheduling with flexible resources,” Computers and Industrial Engineering, vol. 63,

no. 2, pp. 433–447, 2012, doi: 10.1016/j.cie.2012.03.018.
[23] L. Fanjul, F. Perea, and R. Ruiz, “Algorithms for the unspecified unrelated parallel machine scheduling problem with additional

resources,” Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM 2015,

pp. 69–73, 2016, doi: 10.1109/IESM.2015.7380139.

Int J Artif Intell ISSN: 2252-8938

Hybridizing guided genetic algorithm and single-based metaheuristics to … (Munther H. Abed)

327

[24] K. Fleszar and K. S. Hindi, “Algorithms for the unrelated parallel machine scheduling problem with a resource constraint,”
European Journal of Operational Research, vol. 271, no. 3, pp. 839–848, 2018, doi: 10.1016/j.ejor.2018.05.056.

[25] E. Vallada, F. Villa, and L. Fanjul-Peyro, “Enriched metaheuristics for the resource constrained unrelated parallel machine

scheduling problem,” Computers and Operations Research, vol. 111, pp. 415–424, 2019, doi: 10.1016/j.cor.2019.07.016.
[26] J. Y. T. Leung, “Handbook of scheduling: Algorithms, models, and performance analysis,” Handbook of Scheduling: Algorithms,

Models, and Performance Analysis, pp. 1–1195, 2004.

[27] J. Błażewicz, N. Brauner, and G. Finke, “Scheduling with discrete resource constraints,” Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, pp. 18–23, 2004.

[28] J. Blazewicz, k. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, “Scheduling under Resource Constraints,” Handbook on

Scheduling, pp. 425–475, 2007, doi: 10.1007/978-3-540-32220-7_12.
[29] D. Shabtay and M. Kaspi, “Parallel machine scheduling with a convex resource consumption function,” European Journal of

Operational Research, vol. 173, no. 1, pp. 92–107, 2006, doi: 10.1016/j.ejor.2004.12.008.

[30] M. Afzalirad and M. Shafipour, “Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine
scheduling problem with machine eligibility restrictions,” Journal of Intelligent Manufacturing, vol. 29, no. 2, pp. 423–437, 2018,

doi: 10.1007/s10845-015-1117-6.

[31] E. B. Edis and I. Ozkarahan, “A combined integer/constraint programming approach to a resource-constrained parallel machine
scheduling problem with machine eligibility restrictions,” Engineering Optimization, vol. 43, no. 2, pp. 135–157, 2011,

doi: 10.1080/03052151003759117.

[32] M. Pinedo, “Scheduling: theory, and systems (3rd ed.),” Springer, 2008.
[33] E. G. Talbi, “Metaheuristics: From Design to Implementation,” Metaheuristics: From Design to Implementation, 2009,

doi: 10.1002/9780470496916.

[34] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.

[35] O. Dib, M. A. Manier, L. Moalic, and A. Caminada, “Combining VNS with Genetic Algorithm to solve the one-to-one routing issue

in road networks,” Computers and Operations Research, vol. 78, pp. 420–430, 2017, doi: 10.1016/j.cor.2015.11.010.
[36] M. Forsberg, “Local search hybridization of a genetic algorithm for solving the University Course Timetabling Problem,” 2018.

[37] M. H. Abed and M. N. M. Kahar, “Guided genetic algorithm for solving unrelated parallel machine scheduling problem with

additional resources,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 26, no. 2, p. 1036, May 2022,
doi: 10.11591/ijeecs.v26.i2.pp1036-1049.

[38] M. H. Hassan, S. Kamel, S. Q. Salih, T. Khurshaid, and M. Ebeed, “Developing chaotic artificial ecosystem-based optimization

algorithm for combined economic emission dispatch,” IEEE Access, vol. 9, pp. 51146–51165, 2021,
doi: 10.1109/ACCESS.2021.3066914.

[39] C. Y. Zhang, P. G. Li, Z. L. Guan, and Y. Q. Rao, “A tabu search algorithm with a new neighborhood structure for the job shop

scheduling problem,” Computers and Operations Research, vol. 34, no. 11, pp. 3229–3242, 2007, doi: 10.1016/j.cor.2005.12.002.
[40] G. Zäpfel, R. Braune, and M. Bögl, “Metaheuristic search concepts: A tutorial with applications to production and logistics,”

Metaheuristic Search Concepts: A Tutorial with Applications to Production and Logistics, pp. 1–316, 2010, doi: 10.1007/978-3-

642-11343-7.
[41] G. Kendall and M. Mohamad, “Channel assignment in cellular communication using a great deluge hyper-heuristic,” Proceedings

- IEEE International Conference on Networks, ICON, vol. 2, pp. 769–773, 2004, doi: 10.1109/ICON.2004.1409283.

[42] Y. J. Gong, J. Zhang, O. Liu, R. Z. Huang, H. S. H. Chung, and Y. H. Shi, “Optimizing the vehicle routing problem with time
windows: A discrete particle swarm optimization approach,” IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews, vol. 42, no. 2, pp. 254–267, 2012, doi: 10.1109/TSMCC.2011.2148712.

[43] R. R. García, “Informative talk city of arts and sciences (in Catalan: Charla divulgativa ciutat de les arts y les ciencies),” Sistemas
de optimización aplicada, 2019. http://soa.iti.es/.

BIOGRAPHIES OF AUTHORS

Munther H. Abed received a B.S. degree in Computer engineering and information

technology from University of Technology, Iraq in 2002, and an M.Sc. degree in Information

technology from University Tenaga National, Malaysia in 2013. He is currently pursuing the

Ph.D. degree in Information Technology, Faculty of Computing, College of Computing and

Applied Sciences, UMP, Malaysia. He mainly interested in Metaheuristics, Hybrid algorithm,

Timetabling, Scheduling, and Robotics. He can be contacted at email: munt1979@yahoo.com.

Mohd Nizam Mohmad Kahar received a PhD degree in Computer Science from

the University of Nottingham, United Kingdom. He has been with Universiti Malaysia Pahang

(UMP), Malaysia, where he is currently an Associate Professor in the Faculty of Computing. His

research interests include solving real-world optimization problems such as the timetabling and

routing problems using metaheuristics or nature-inspired algorithm. He can be contacted at

email: mnizam@ump.edu.my.

mailto:munt1979@yahoo.com.com
mailto:mnizam@ump.edu.my
https://orcid.org/0000-0002-0010-9765
https://www.scopus.com/authid/detail.uri?authorId=57667343900
https://www.webofscience.com/wos/author/record/2935120
https://orcid.org/0000-0003-0811-0856
https://scholar.google.com/citations?hl=en&user=5OvbBFwAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=56986590400
https://www.webofscience.com/wos/author/record/1052198

