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 This paper focuses on solving unrelated parallel machine scheduling with 

resource constraints (UPMR). There are j jobs, and each job needs to be 

processed on one of the machines aim at minimizing the makespan. Besides 

the dependence of the machine, the processing time of any job depends on the 

usage of a rare renewable resource. A certain number of those resources (Rmax) 

can be disseminated to jobs for the purpose of processing them at any time, 

and each job j needs units of resources (rjm) when processing in machine m. 

When more resources are assigned to a job, the job processing time minimizes. 

However, the number of resources available is limited, and this makes the 

problem difficult to solve for a good quality solution. Genetic algorithm shows 

promising results in solving UPMR. However, genetic algorithm suffers from 

premature convergence, which could hinder the resulting quality. Therefore, 

the work hybridizes guided genetic algorithm (GGA) with a single-based 

metaheuristics (SBHs) to handle the premature convergence in the genetic 

algorithm with the aim to escape from the local optima and improve the 

solution quality further. The single-based metaheuristics replaces the mutation 

in the genetic algorithm. The evaluation of the algorithm performance was 

conducted through extensive experiments. 
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1. INTRODUCTION 

At the age of technology advancement, the demand for fast and optimum production in manufacturing 

industries is increasing. These motivated decision-makers and researchers utilize the intelligent system for an 

optimum scheduling of the production process. This will increase the profits, decrease costs, whilst satisfy the 

customer needs. Scheduling of the production is deemed one of the considerable activities of a company when it 

comes to the operational level as it assists in keeping the company competitive in the demanding consumer 

markets. The company needs to effectively utilize its resources, meet production deadlines, reduce production 

costs and other constraints while fulfilling customer satisfaction. The relevance and potential of research and 

application in the manufacturing area are enormous and, this had attracted researchers to investigate problems in 

production scheduling from various perspectives over the previous years [1]. Of the crucial scheduling problems 

is the parallel machine scheduling problem (PMS). Researchers have classified the PMS problem as being  

non-deterministic polynomial-time hardness (NP-hard) even with the utilization of more than one machine (two 

machines), and they considered it as a combinatorial optimization problem [2]. Many methods were used and 

applied to provide a feasible solution to this problem, including exact method, approximation and heuristic 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:munt1979@yahoo.com
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methods. Exact algorithms guarantee optimal solutions, because it explores all possible solutions in the entire 

search space and it would be ideal choice for a small size problem. However, for large size problems, no such 

algorithms have existed that able to solve in polynomial time [3]. Many works seen in the scientific literature used 

ρ-approximation approaches and problem-based heuristics to solve the large size optimization problems [4], [5]. 

These algorithms seek solutions which are near-optimal at a reasonable computation cost regardless to securing 

optimality and feasibility [6]. These methods are not suitable for a large variety of optimization problems because 

they are designed to handle a specific problem [7]. This paper proposed a hybridization of genetic algorithm and 

single-based metaheuristic algorithms in solving the unrelated parallel machine scheduling with resource 

(UPMR). The rest of the research is arranged where section 2 describes the parallel machine scheduling and 

section 3 deals with related work. A description of the problem, including the constraints, is discussed in section 

4. Section 5 and section 6 describe the proposed algorithm and the results and discussion, respectively. Finally, 

section 7 presented the conclusion and future work.  

 

 

2. PARALLEL MACHINE SCHEDULING 

In this problem, the machines can be classified into five different classes depending on the machines 

nature which include single machine Ø, parallel dedicated machines PD, identical parallel machines P, uniform 

parallel machines Q and unrelated parallel machines R [8]. Single machine (Ø) is the simplest of all possible 

machine environments and is a special case of all other more complicated machine environments [9]. As for 

Parallel dedicated machines, they are set of jobs that will be processed on each pre-determined machine [10]. 

Subsequently, the identical parallel machines mean that all of the machines have the same processing speed 

[11], and the uniform parallel machines mean that the machines have different speeds of execution but each 

machine works at a consistent rate [12]. Finally, the unrelated parallel machine, R, where the processing time 

of each job depends on the machine that it is assigned to. The unrelated parallel machine, R is much more 

complex and difficult compared to other models and closely resembles the real world problem in the industries 

[13]. The unrelated parallel machine can be divided into three types based on the constraints. These are classical 

unrelated parallel machine (UPM), unrelated parallel machine with sequence dependent setup time (UPMSP) 

and unrelated parallel machine with resources (UPMR). 

 

2.1.  Classical unrelated parallel machine (UPM) 

In UPM, the processing of a number of jobs, j has to be performed on exactly one machine selected 

from a group of parallel machines. Many Jobs are now available to be processed at time zero and those jobs 

demand a processing time especially when jobs, j are distributed over to machines. The processing times of the 

jobs vary based on the machine for which jobs are assigned to. The classical parallel machines problem is an 

assignment problem that is typical in this context, and the only decision taken to solve the problem is which 

machine each job must be assigned to. Jobs that are assigned to machines can go into processing in any order 

until they are complete, and the machines, thus, are never left idle (even between jobs) [14]. This problem has 

been extensively explored in earlier literature for more than a decade [15]. 

 

2.2.  Unrelated parallel machine with sequence dependent setup time (UPMSP) 

In UPMSP, it includes a sequence of setup times and it is machine-dependent, where each machine 

has its own matrix of setup times, and these matrices differ from one another. The setup time on a machine 

between two jobs j and l differs from jobs l and j on the same machine. Additionally, the setup time between 

jobs j and l on one machine is different in other machines [16]. 

 

2.3.  Unrelated parallel machine with resources (UPMR) 

Recently, a new requirement emerges in which job, j requires, besides a machine, m a number of one 

or more extra resources, r. These additional resources could be considered human resources “machine 

operators”, automated guided vehicles, tools, pallets, fixtures, industrial robots or limited materials. These 

resources are deemed significant and have to be taken into account when assigning jobs to the machines. In 

addition, the number of resources that any job requires varies based on the machine a given job is assigned to. 

A sequence, on the other hand, means the computation of the beginning and end times of each job on the 

machines. Based on the availability of resources, idle times might be crucial to obtain a feasible solution. That 

has UPMR problem more complex when seen in terms of other problems. Due to the complexity and close 

similarity of UPMR to the real-world application [17], [18], this research's goal is to generate good quality 

solution in providing a solution to UPMR. UPMR problem exists in different manufacturing settings, such as 

car factories, food processing plants and many more [17]. 
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3. RELATED WORK 

This section described the approaches used for solving unspecified dynamic UPMR problem. Many 

works have been reported in the literature to solve this problem. For instance, [19] suggested a deterministic 

3/2-approximation, 2-approximation and 4-approximation method to minimize the maximum completion time 

and weighted completion time. The 4-approximation method is superior to the other two methods.  

Grigoriev et al. [20] developed a 3.75-approximation algorithm using the rounding procedure to minimize  

the makespan. Thus, the results of this model outperform a deterministic 6.83-approximation and a randomized 

4-approximation. A Lagrangian-based constraint programming (CP) method was proposed by [21] by relaxing 

the resource constraints. A comparison was carried out between the results of this method and the results of 

pure integer programming (IP) and pure CP models to uncover the fact or phenomenon that the method of the 

suggested Lagrangian-based CP yields very efficient and effective results. Edis and Oguz [22] proposed integer 

programming (IP) model, a relaxed IP based constraint programming (CP) method to solve the large size 

dataset and IP/CP model. The IP/CP model also outperform IP model and obtain near-optimal solutions for 

large size problems. Fanjul et al. [23] proposed two approaches: an integer linear programming (ILP) program 

and a two-phase approach based on solutions, named the fixing algorithm to minimize the makespan. The 

fixing algorithm outperforms the ILP program. Fanjul-Peyro et al. [17] formulate the problem via two integer 

linear programming problems mixed-integer linear programming (MILP). One of these methods relied on a 

model that was earlier presented by [22] and denoted by UPMR-S. The second one relies on the similarity to 

the problem of strip packing denoted by UPMR-P. They also presented three matheuristic strategies which 

included machine-assignment fixing (MAF), job-machine reduction (JMR), and greedy-based fixing (GBF) 

that were applied to each of these two models (UPMR-S and UPMR-P) and yielded MAF-S, JMR-S, GBF-S, 

MAF-P, JMR-P and GBF-P. The JMR-P approach outperform all approaches in most instances. Arbaoui and 

Yalaoui [18] presented CP model in order to minimize the Cmax. Experimental results show the CP model 

outperform the exact and heuristic approaches in the literature (UPMR-S, UPMR-P, MAF-S and MAF-P) for 

both small and medium size instances. Two methods are also proposed by [24] to minimize the makespan. 

These methods are a MILP model and a CP model. The MILP performs much better than a pure CP model for 

large problem. Villa et al. [2] proposed Local search methods: Nawaz-Enscore-Ham (NEHst), construction with 

swapping (SWA) and Nawaz-Enscore-Ham (NEHres) and multi-pass heuristics (M1, M2, M3, M4 and M5) to 

minimize the makespan. Regarding small instances, NEHres obtained the best results. While, in medium and 

large instances, multi-pass heuristics M4 and M5 obtained the best results, respectively. Vallada et al. [25] 

suggested four approaches scatter search (SS), enriched scatter search (ESS) and enriched iterated greedy (EIG) 

to minimize the makespan. The results obtained by EIG outperform the three methods for small, medium and 

large size instances. From the discussion, it shows that there is a need for a better algorithm in solving the 

UPMR for optimality. In the survey reported by [1], 10 metaheuristics are used where the genetic algorithm 

has been widely used. It stands for (50%) to solve many scheduling problems followed by simulated annealing 

which stands for (10%). 

 

 

4. PROBLEM FORMULATION 

The uniqueness of UPMR is the resources constraints, in which all jobs require resources when being 

processed in the machine. In view of the nature and usage of resources, they can be described by classes, 

categories and also types when allocating resources to machines [26]. In classes, the resources can be 

categorized into two, where it depends on “time” a resource requires by the jobs when being process by the 

machine [27]. Resources required during the processing of the jobs, is called processing resources [2], [17], 

[23]. However, if resources required either before or after processing of a job, then the resources are referred 

to as input-output resources [27], [28]. 

In categories, the resources can be divided into two [28], which include resource constraints and 

resource divisibility. Firstly, in the resource constraints categories, it includes resources that are renewable, 

nonrenewable and double constraint. A renewable resource allows the resources to be re-used after being 

released from other job [2], [17], [23]. However, for nonrenewable resources, the resources can only be used 

once by some job (i.e. cannot be assigned to any other job) [29]. As for double constraint, it uses both resources 

at the same time [28]. Second, in the resource divisibility, the resources are categories as discrete and 

continuous. In a discrete resource, the resources are to be assigned to jobs in discrete amounts from a limited 

finite group of possible allocations which may contain one element only [23]. However, in continuous, the 

resources can be assigned to jobs in random quantities from a certain interval [26]. 

In type, the resources can be divided into static and dynamic [18]. In Static, the allocation of resources 

to machines is fixed [30], while in the dynamic, the resources can be allocated and reallocated in view of the 

jobs’ assignments [23], [24]. In terms of assigning jobs to the machines, this assignment can be of two types: 

unspecified and specified [28]. In the unspecified, the assignment of job to machine is not prefixed [23], while 

the assignment of job to machine is prefixed in the specified [31]. 
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This work focuses on UPMR problem that is unspecified, dynamic, processing resources, discrete 

and renewable. These constraints are selected because they reflect the real-world problem [2], [17], [23], [27], 

[28]. This research focus on minimizing the makespan of the UPMR [32]. The following example sheds the 

light on the UPMR problem and raises the difference between this problem and the regular UPM. We need to 

take into mind the following example of an UPMR with two machines (m=2), six jobs (j= 6), 10 units of a 

scarce resource (Rmax= 5×m). The processing times pjm and resource needs rjm are j ×m matrices of the 

assignment machine m and job j, respectively. 

 

                 𝑝𝑗𝑚 =  (

         𝑗1     𝑗2     𝑗3      𝑗4     𝑗5     𝑗6

𝑚1   15    32   26   41   10   29
 𝑚2   24   17   43   21   36   12

)          𝑟𝑗𝑚 =  (

           𝑗1     𝑗2     𝑗3     𝑗4    𝑗5    𝑗6

𝑚1   4    10     6     2     3      5
 𝑚2  4     2      1     9     5      7

) 

 

As it is known, the difference between the UPM and UPMR problem is the resource constraints. 

Referring up to Figure 1, the UPM problem produces Cmax 51. However, this solution is infeasible where it 

violates the resource constraints in the UPMR problem. The maximum availability of resources is violated by 

two units, (r51 and r42) between time 0 and time 10, three units (r11 and r42) between time 10 and time 21 and 

three units (r31 and r62) between time 38 and time 50. To get a feasible solution from an infeasible solution 

while keeping the jobs assigned to the same machines, the idle-time is important. Figure 2 shows that resources 

are not overused but the result is poor quality and the makespan increased to Cmax=84. It is possible to obtain 

feasible solutions without idle-time, but they are not optimal (Cmax=77) as shown in Figure 3. In Figure 4, 

resources are utilized, machines are optimized (always busy), and the makespan has not increased considerably 

when compared to the UPM problem which does not take into consideration the resource constraints shown in 

Figure 1 (Cmax=72). 

 

 

  
 

Figure 1. Infeasible solution 

 

Figure 2. Feasible solution with idle-time 

  
 

Figure 3. Feasible solution without idle-time 

 

Figure 4. Near-optimal solution 
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4.1.  Notations and decision variables 

The UPMR problem treats with several types of input data. These include a list of m available 

machines; a list of j jobs to be processed; Rmax units of a certain resource; rjm units of the resource and pjm units 

of time, which needed to process job j at machine m. 

Notations: 

- M number of machines (indexed by m), m=1,.., M. 

- J number of jobs that requires processing (indexed by j), j=1,.., J. 

- T number of the periods of time embodied in the scheduling horizon (indexed by t), t = 1,..,T. 

- Rmax maximum number of the permitted resources. 

- pjm processing intervals of times of job j applied on machine m. 

- rjm required number of the resources that are needed to process job j on machine m. 

 

Decision variables: 

- 𝑥𝑗𝑚𝑡  1 if job j accomplishes its processing period of time on machine m at time t, 0 otherwise. 

- Cmax the maximum completion time of all jobs. 

 

4.2.  Mathematical model 

This section reveals the hard constraints and the objective function for the UPMR problem. It is taken 

into consideration that the hard constraint needs to be satisfied for a feasible solution as illustrated in (1) to (3). 

On the other hand, the objective function, that is widely applied in the UPMR, is to minimize the maximum 

completion time of the jobs (see (4)). 

 

- Each job must be processed by exactly one machine; and finishes at exactly one time as shown in (1). 

 

∑ ∑ 𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

= 1  𝑀
𝑚=1 ,         ∀ 𝑗 = 1, … , 𝐽  (1) 

 

- One machine is allowed to process one job only at a time as this is illustrated in (2). 

 

∑ ∑ 𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝐽
𝑗=1 ≤ 1, ∀ 𝑚 = 1, … , 𝑀  ∀𝑡 = 1, … , 𝑇  (2) 

 

- Do not exceed the Rmax units of the resource at any time. The formulation is shown in (3) 

 

∑ ∑ ∑ 𝑟𝑗𝑚𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝑀
𝑚=1

𝐽
𝑗=1 ≤  𝑅𝑚𝑎𝑥 ,    ∀𝑡 = 1, … , 𝑇 (3) 

 

- The objective function is to minimize the makespan also known as (Cmax) and it is specified  

as in (4). 

 

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗=1,…,𝐽 ∑ ∑ 𝑡𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

𝑀
𝑚=1 , ∀𝑗 = 1, … , 𝐽  (4) 

 

 

5. PROPOSED ALGORITHM 

As it is known, the genetic algorithm suffers from an imbalance between exploration and exploitation 

because its operation focuses more on exploring the search space rather than exploiting [33]. In addition, it also 

suffers from getting trapped into local optimal as it only takes the best solutions in population after the 

crossover and mutation operators. These drawbacks have not been solved even with many improvements to 

the standard genetic algorithm as reported in the literature. Such improvements included tuning parameters and 

selecting different types of operations [34]. Additionally, many researchers combine the genetic algorithm with 

single-based metaheuristic [35], [36]. 

At the beginning, the guided genetic algorithm (GGA) is applied with parameters tuning [37].  

The parameters are examined by fixing one value of each parameter and changing the values of other 

parameters each time. This process is repeated with each value of the other parameters. On the other hand,  

the multi-population, guided crossover and insertion mutation are used. Next, the mutation process is replaced 

by the great deluge algorithm, tabu search algorithm and variable neighborhood search algorithm, to obtain 

guided genetic algorithm with great deluge (GGA-GD), guided genetic algorithm with tabu search (GGA-TS) 

and guided genetic algorithm with variable neighborhood search (GGA-VNS). The single-based metaheuristics 

are used to create a balance between exploration and exploitation and to address getting stuck in local optimal. 
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5.1.  Guided genetic algorithm (GGA) 

Two chromosomes are selected from the population, where the first represents the best one (BC), 

while the second one is selected randomly based on k-tournament selection (RC). Next, two unique opposite 

chromosomes for both chromosomes are generated, called 𝐵𝐶̅̅ ̅̅  and 𝑅𝐶̅̅ ̅̅ , based on (5) and (6) respectively. 

 

𝐵𝐶̅̅ ̅̅ = 𝑈𝑝𝑝𝑒𝑟 + 𝐿𝑜𝑤𝑒𝑟 − 𝐶𝐿 (5) 

 

𝑅𝐶̅̅ ̅̅ = 𝑈𝑝𝑝𝑒𝑟 + 𝐿𝑜𝑤𝑒𝑟 − 𝐶𝐿 (6) 

 

Where Upper and Lower represent the boundaries of the problem (i.e., the highest and lowest value for the job) 

and CL represents the current location of the job. If the fitness value of the 𝐵𝐶̅̅ ̅̅  and 𝑅𝐶̅̅ ̅̅  are better than BC and 

RC, then, they replace them. Otherwise, mixed each chromosome with its own opposition chromosome 

together based on (7) and (8) respectively.  

 

𝐵𝐶̿̿ ̿̿
𝑖 = {

𝐵𝐶𝑖            𝑖𝑓 𝑐ℎ𝑖 < 𝐶𝑟
𝑥

𝐵𝐶𝑖
̅̅ ̅̅ ̅            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (7) 

 

𝑅𝐶̿̿ ̿̿
𝑖 = {

𝑅𝐶𝑖            𝑖𝑓 𝑐ℎ𝑖 < 𝐶𝑟
𝑥

𝑅𝐶𝑖
̅̅ ̅̅̅             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

Where i represent an individual gene in each chromosome and Cr represent the crossover rate. ch denotes a 

chaotic series generated via Chaotic Tent map formula [38] (see (9)). The ch0 is generated randomly between 

0 and 1. It is important to mention that the chaotic series are used to enhance the diversification of the crossover 

operator.  

 

𝑐ℎ𝑋+1 =  {

𝑐ℎ𝑥
0.7⁄                            𝑐ℎ𝑥 < 0.7

𝑥
10

3⁄ (1 − 𝑐ℎ𝑥)              𝑐ℎ𝑥 ≥ 0.7

 (9) 

 

If the fitness value for the 𝐵𝐶̿̿ ̿̿
𝑖  and 𝑅𝐶̿̿ ̿̿

𝑖 are better than BC and RC, then BC and RC are replaced with the new 

generated one for the next generation. Otherwise, keep the BC and RC for the next generation. 

 

5.2.  Hybridizing guided genetic algorithm with great deluge algorithm 

As mentioned, the great deluge algorithm will replace the mutation operator in the genetic algorithm. 

At each iteration, a neighbour solution is accepted if its quality is lower than the current value. Initially,  

the value of the level is set equal to the cost of the initial solution. Then, at each iteration, the level is decreased 

by the rain speed (UP) using (10).  

 

𝐿𝐸𝑉𝐸𝐿 = 𝐿𝐸𝑉𝐸𝐿 − 𝑈𝑃   (10) 

 

This process will be repeated until the stopping criterion is reached (maximum number of iterations). 

The GD used the third type of the neighborhood structure based on the preliminary test as mentioned in  

sub-section 5.5. The pseudocode of hybridizing GGA-GD is presented in Figure 5. 

 

5.3.  Hybridizing guided genetic algorithm with tabu search algorithm 

The procedure starts with a feasible initial solution obtained after the completion of the crossover 

operator of the genetic algorithm. This initial solution is stored both as the current and the best solution 

simultaneously. The algorithm will then form a set of neighboring solutions of the current solution that is not 

in the tabu list using a neighborhood structure. Then, the candidate solutions are evaluated using the objective 

function, and the best candidate solution which is not tabu is selected as the current solution. The fitness of the 

current solution will be compared to the best solution and, if it is better, will replace the best solution. This new 

current solution is added to tabu list and, if it is full, the oldest element is removed from the tabu list. Next, the 

whole procedures are repeated for a certain number of iterations [39]. Based on preliminary test, the TS used 

the fourth type of neighborhood structure (see sub-section 5.5). The pseudocode of GGA-TS is presented in 

Figure 6.  
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Figure 5. Pseudocode of GGA-GD 

 

 

 
 

Figure 6. Pseudocode of GGA-TS 
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5.4.  Hybridizing guided genetic algorithm with variable neighborhood search algorithm 

The variable neighborhood search algorithm (VNS) begins with a solution that is initial. After that, 

three steps constitute each iteration of the algorithm. These three steps are shaking, local search, and move as 

shown in Figure 7. VNS will form a set of neighboring solutions based on kth neighborhood. After that, the 

candidate solutions are evaluated using the objective function, and a random candidate solution s′ is shaked 

from Nk(s) to be the current solution. In this work, four types of neighborhood structures are used gradually as 

mentioned in sub-section 5.5. A procedure of local search known as hill climbing (HC) is applied to the solution 

s′ to produce the solution s′′. The present solution is changed by the new local optima s′′ if and only if there is 

a better solution that has been discovered (i.e., f (s′′) < f (s)). The same search procedure, thus, is initiated from 

the solution s′′ in the first neighborhood N1. HC process terminates when the maximum number of iterations 

stands for 3000 based on preliminary test. Concerning the neighborhood structure, the HC used the first type 

based on the preliminary test (see sub-section 5.5). If no better solution is located (i.e., f (s′′) ≥ f (s)), the 

algorithm moves to the next neighborhood Nk+1, randomly produces a new solution in this neighborhood, and 

aims to improve it.  

 

 

 
 

Figure 7. Pseudocode of GGA-VNS 

 

 

5.5.  Neighborhood strategies  

The neighborhood structures have a prominent role in the performance of any SBH [33]. The existence 

of adequate neighborhood leads to enhance the ability of a SBH to generate good solutions [40]. In this work, 

the neighbor solution is created via four neighborhood structures: 

- Select one job and insert it to different position within the same machine.  

- Select one job and insert it to a different machine. 

- Select two jobs from the same machine and swap their positions. 

- Select two jobs from different machines and swap their positions.  
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5.6.  Parameter tuning  

The values of the parameters have direct effect on the performance of the metaheuristic algorithms 

[33]. Different problems and even different instances from the same problem data require different parameter 

values to reach an optimal or near optimal solution. The parameter settings for the proposed hybrid algorithms 

are discussed in this subsection. A preliminary test is conducted to determine the suitable parameters values. 

During the preliminary test, the genetic algorithm and SBH algorithms are executed 30 runs on ten instances 

(8×2, 12×4, 16×6, 20×2, 25×4, 30×6, 50×10, 150×20, 250×30 and 350×10) and the best results over 30 runs 

are reported. These instances are selected based on the size of the benchmark dataset. Table 1 summarizes the 

parameter settings of all the algorithms used in this study. 

 

 

Table 1. The parameter settings of the hybridized algorithm 
Parameter Algorithm Value 

Population size 
Crossover rate 

Mutation rate 

Number of iterations 
Number of iterations 

Tabu list length 

Number of neighborhood solutions 
Number of iterations 

Number of iterations 

Number of iterations 

GGA 
GGA 

GGA 

GGA 
GD 

TS 

TS 
TS 

HC 

VNS 

40 
0.7 

0.1 

4000 
4000 

40 

6 
6000 

3000 

3000 

 

 

5.6.1. GA parameter settings 

Genetic algorithm (GA) has four parameters, namely population size, crossover rate, mutation rate 

and number of generation (iteration). A preliminary test is used to determine the appropriate parameter values 

in guided genetic algorithm (GGA) [37]. Different values of the parameters are used and tested. The values 

used for population size are 20, 40, 60 and 100. In view of the results of the comparison carried out on all the 

datasets used, the most suitable value of the population size is 40 produces the best result obtained in seven out 

ten datasets. After setting the value of the population size, the crossover rate will be examined. The crossover 

rate must also be set. The values of the crossover rate that are tested are 0.3, 0.5, 0.7 and 0.9. The best crossover 

rate value for the eight datasets out of ten is 0.7. Next, the values of the mutation rate that are tested are 0.01, 

0.05, 0.1 and 0.3. The value of the best mutation rate for the six datasets out of ten is 0.1. Finally, the values 

used for the number of iterations are 500, 1000, 2000, 4000 and 6000. Based on the results of the comparison 

carried out on all the datasets used, the most suitable value for the number of iterations is the value 4000 as the 

best results of eight datasets out of ten are obtained at this value.  

 

5.6.2. GD parameter settings  

GD is composed of two parameters. The first of these is rain speed (UP), which requires to be tuning 

and is calculated using (11) [41]: 

 

𝑈𝑃 =  
𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)− 𝐵𝐾𝑆

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
   (11) 

 

BKS refers to the best-known solution. The second parameter is the number of iterations, which is set to 4000 

out of four values (2000, 3000, 4000, 5000 and 6000) based on preliminary test.  

 

5.6.3. TS parameter settings  

TS utilizes three parameters, the tabu list length Tl, the number of neighborhood solutions N(s’) and 

the number of iterations. The values used for tabu list length are 20, 30, 40 and 50. In addition, the values 4, 6, 

8, and 10 are used for the number of neighborhood solutions. While, the number of iterations is represented by 

the values 2000, 3000, 4000, 5000 and 6000. Based on the preliminary test, two parameters were fixed to 

examine the third one and so on. The parameters value of the TS used in this study based on preliminary test 

are: the tabu list length is fixed to 40, the number of neighborhood solutions is fixed to 6 and the number of 

iterations is fixed to 4000. 

 

5.6.4. HC and VNS parameter settings  

HC and VNS contain only one parameter, the number of iterations. The setting of the parameter to 

3000 for two algorithms is based on the results of the preliminary test. This preliminary test is, then, applied to 

the values of the different iterations (2000, 3000, 4000, 5000 and 6000).  
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6. RESULTS AND DISCUSSION 

The proposed algorithms are evaluated and compared with state-of-the-art methods in terms of solution 

quality. The obtained results are reported as the relative percentage deviation (RPD) from the best-known solution 

(BKS). The best-known solution is the solution obtained by [2], [17], [25]. The relative percentage deviation RPD 

for each instance is computed using (12) [42]. 

 

𝑅𝑃𝐷 =  
𝐻𝑒𝑢𝑠𝑜𝑙− 𝐵𝐾𝑆

𝐵𝐾𝑆
× 100  (12) 

 

BKS is the Best-Known Solution which can be optimal if the makespan is equal to the optimum 

makespan of the problem without resources (UPM). Heusol is the best solution obtained by the proposed 

algorithm over all independent runs. The proposed algorithms are coded in C# 2012 and run on a PC with CPU 

Intel(R), Core (TM) i5, speed at 2.20 GHz and RAM 8.00 GB. A benchmark dataset used in this study is 

proposed by [2], [17], which consist of different sizes of dataset were used for the experiment (referred to as 

small, medium and large). The small size has 9 datasets, the medium has 9 datasets and the large has 12 datasets, 

where each data set has 50 instances. In total, there are 450 small instances, 450 medium instances and 600 

large instances. The dataset can be reach at [43]. The number of resources is computed as Rmax = 5 × number 

of machines. The computational result of the given instance (8x2_2_U_10_100__R_inter) and Cmax along with 

the processing time and resource consumption as shown in Table 2. 

 

 

Table 2. The result obtained by GGA-VNS with Cmax = 133 
Job machine Processing time pjm Resource consumption rjm 

Start time Finish time 

4 1 0 47 3 
8 2 0 51 6 

1 1 47 57 3 

6 2 51 91 3 
2 1 57 85 1 

5 1 85 100 4 

7 2 91 133 1 

3 1 100 119 4 

 

 

6.1.  Small instances result 

Our first evaluation is using small instances as shown in Table 3. GGA-VNS outperformed GGA-TS 

and GGA-GD by 56% in terms of RPD. When comparing our algorithms with the state-of-the-art methods, 

UPMR algorithm obtains the lowest RPD in 5 instances followed by the EIG method and JMR that obtain 4 

and 2 instances respectively. The ESS, GGA-TS and GGA-VNS obtain 1 instance followed by M4, M5 and 

GGA-GD which didn’t record any results that outperform the mentioned algorithms. In view of the average 

relative percentage deviation (ARPD), the EIG obtains the lowest (best) value followed by GGA-VNS, ESS, 

GGA-TS, GGA-GD, M4, M5, JMR and UPMR. Comparatively, in terms of the average time AvTime, the 

UPMR and JMR methods need approximately 2000 seconds on average, the ESS and EIG at around 5 seconds 

on average. The GGA-GD, M5, GGA-VNS, M4 and GGA-TS methods need less than 1 second on average. 

 

 

Table 3. RPD, ARPD and AvTime for small instances 
Instance UPMR [17]  JMR [17] M4 [2]  M5 [2]  ESS [25]  EIG [25]  GGA-GD GGA-TS GGA-VNS 

8x2 0 0 0.10 0.24 0 0 0.90 0.46 0.29 

8x4 0 1.94 0.73 1.17 0.66 0.53 0.59 0.73 0.46 

8x6 0 1.88 1.06 0.96 0.13 0.04 0.72 0.44 0.47 
12x2 0 0 0.59 0.67 0.35 0.40 0.93 0.84 0.61 

12x4 1.14 2.48 1.87 2.16 1.47 1.14 1.07 1.31 1.19 

12x6 1.44 1.05 1.14 1.18 0.75 0.48 0.93 0.46 0.67 
16x2 0.21 0.21 0.56 0.63 0.23 0.14 0.51 0.34 0.19 

16x4 6.46 4.25 1.39 1.71 1.19 1.00 1.04 1.40 1.15 

16x6 8.71 5.99 1.40 1.61 1.22 0.77 0.96 1.29 0.75 

ARPD 2.00 1.98 0.98 1.15 0.67 0.50 0.85 0.81 0.64 

AvTime 2208.34 1969.92 0.0449 0.0352 5.5 5.5 0.0346 0.0451 0.0398 

 

 

6.2.  Medium instances result 

Table 4 shows the results for medium instances. With respect to RPD, GGA-VNS and GGA-TS 

outperformed GGA-GD by 44% for each one (i.e., 4 instances for GGA-VNS and 4 instances for GGA-TS and 
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1 instance for GGA-GD). Taking ARPD into account, the GGA-VNS outperformed the GGA-TS and  

GGA-GD. In comparing the results of the study with the previous literature, the study found that EIG algorithm 

obtains the lowest RPD in 4 instances followed by the GGA-TS, ESS and GGA-VNS that obtain 3, 2 and 1 

instances respectively. The UPMR, JMR, M4, M5 and GGA-GD did not record the lowest RPD compared to 

the earlier mentioned algorithms. In ARPD, the lowest (best) value is obtained by the EIG and then followed 

by ESS, GGA-VNS, GGA-TS, M4, M5, GGA-GD, JMR and UPMR. On the other hand, taking into 

consideration the average time AvTime, the study showed that the UPMR and JMR methods need 3600 seconds 

on average, whereas the ESS and EIG need around 14.5 seconds on average. In comparison, the GGA-GD, 

GGA-VNS, M5, GGA-TS and M4 methods show the need for less than 1 second on average. 

 

 

Table 4. RPD, ARPD and AvTime for medium instances 
Instance UPMR [17]  JMR [17]  M4 [2] M5 [2] ESS [25] EIG [25] GGA-GD GGA-TS GGA-VNS 

20x2 0.81 0.81 0.97 1.18 0.49 0.43 1.13 0.42 0.73 

20x4 12.54 9.60 1.27 1.11 0.80 0.70 1.27 0.85 0.69 

20x6 14.38 9.44 1.10 1.05 0.50 0.56 0.96 1.26 0.56 

25x2 3.65 3.65 0.56 0.60 0.26 0.15 0.98 0.46 0.65 
25x4 18.82 13.30 0.89 0.95 0.60 0.59 1.39 0.90 0.64 

25x6 23.77 18.24 1.10 1.13 0.48 0.53 0.50 1.30 0.98 

30x2 10.29 10.29 0.84 1.00 0.49 0.28 1.07 0.25 0.82 

30x4 27.26 20.59 0.50 0.64 0.28 0.17 1.37 0.17 0.87 

30x6 59.60 28.99 0.92 0.64 0.32 0.24 1.30 0.88 0.38 

ARPD 19.01 12.77 0.91 0.92 0.47 0.41 1.11 0.72 0.70 
AvTime 3600 3600 0.1965 0.1465 14.5 14.5 0.1296 0.1488 0.1335 

 

 

6.3.  Large instances result 

Experiments of large instances are implemented as illustrated in Table 5. While GGA-VNS 

outperformed GGA-TS and GGA-GD by 75% (9 instances out of 12) in view of RPD. The GGA-VNS also 

outperformed the GGA-TS and GGA-GD in view of ARPD. In comparison with the state-of-the-art methods, 

EIG algorithm is found to obtain the lowest RPD in all instances. As far as ARPD is concerned, the study 

showed that the lowest (best) value is obtained by EIG and then followed by ESS, GGA-VNS, GGA-TS, M5, 

GGA-GD and M4. In respect of the average time AvTime, the GGA-GD, GGA-TS and GGA-VNS need around 

19 seconds on average. Subsequently, the EIG, ESS, M5 and M4 need around 60 seconds, 73 seconds, 102 

seconds and 184 seconds respectively. 

 

 

Table 5. RPD, ARPD and AvTime for large instances 
Instance M4 [2] M5 [2] ESS [25] EIG [25] GGA-GD GGA-TS GGA-VNS 

50x10 1.03 1.07 0.36 0.27 0.99 1.24 0.58 
50x20 1.78 1.37 0.50 0.40 0.46 0.81 1.38 

50x30 1.47 1.51 0.35 0.34 1.22 0.93 0.44 

150x10 1.00 0.73 0.30 0.28 0.62 0.94 0.36 
150x20 1.37 1.43 0.55 0.28 1.64 0.93 0.48 

150x30 1.41 1.24 0.46 0.26 1.33 1.45 0.67 

250x10 0.87 0.65 0.25 0.15 0.97 0.71 0.25 
250x20 1.01 0.82 0.40 0.23 0.40 0.90 0.58 

250x30 1.00 0.77 0.36 0.18 1.18 0.89 0.20 

350x10 0.63 0.48 0.23 0.12 0.71 0.18 0.35 
350x20 0.68 0.47 0.30 0.15 0.92 0.58 0.33 

350x30 0.78 0.65 0.24 0.10 0.96 0.84 0.34 

ARPD 1.09 0.93 0.36 0.23 0.95 0.87 0.50 
AvTime 184.93 102.25 73.1 60.5 19.0129 19.5462 20.2563 

 

 

As mentioned in sub-section 5.2, 5.3 and 5.4, the hybridization process works on exchanging roles 

and investing the ability of SBH algorithms (GD, TS and VNS). This process in question is conducted to exploit 

the search space for the purpose of enhancing the deficit in the genetic algorithm. On the other hand, the ability 

of a genetic algorithm for exploring the search space is taken advantage of to enhance the deficit in SBH 

algorithms. 

 

 

7. CONCLUSION AND FUTURE WORK 

This work proposed a hybridization of genetic algorithm with single-based metaheuristic algorithms. 

The proposed methods able to efficiently and effectively produce quality results. The reason behind the success 
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of our algorithms is because of the combination of the population-based metaheuristic represented by the 

genetic algorithm and the single-based metaheuristic represented by great deluge algorithm, tabu search 

algorithm and variable neighborhood search algorithm. The population-based metaheuristics, which are 

powerful in the exploration of the search space and weak in the exploitation of the solutions, will try to optimize 

solutions globally. The single-based metaheuristics, are powerful optimization methods in terms of 

exploitation, they will try to optimize solutions locally. Despite the quality of the results obtained, especially 

the GGA-VNS, it still needs to be improved to get better results or match the results of the literature. In the 

future, an adaptive hybrid GGA is suggested to select the suitable single-based metaheuristic algorithm 

automatically in order to obtain better results. 
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