

Industrial Applications of Nanocellulose and Its Nanocomposites

Editors: S.M. Sapuan, M.N.F. Norrrahim, R.A. Ilyas

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-89909-3 e-ISBN: 978-0-323-89917-8

For information on all Woodhead publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Gwen Jones Editorial Project Manager: Chiara Giglio Production Project Manager: Surya Narayanan Jayachandran Cover Designer: Mark Rogers

Working together to grow libraries in developing countries

Preface

Industrial Applications of Nanocellulose and Its Nanocomposites provides an extensive, up-to-date overview of this fast-moving area of study from the perspectives of prominent researchers in academic, industrial, and government or private research laboratories. This is an exciting time to be in as, moving beyond scientific curiosity, nanocellulose is starting to hit the marketplace. Nanocellulose is a versatile material that is receiving a lot of attention from scientists in several fields such as automotives, composites, adsorbents, paints, coatings, medical implants, electronics, cosmetics, pulp and paper, tissue engineering, packaging, and aerogels. Current trends show that research related to recent developments of nanocellulose is increasing and covers several aspects including synthesis, surface modification, and improvement of the properties of nanocellulose, bearing in mind the targeted applications.

The objectives of this book are to reflect on recent advancements in the design and fabrication of nanocellulose and to discuss the important requirements for each application, along with the challenges that might arise. This book also includes an overview of the current economic perspectives and safety issues related to nanocellulose. The potential of nanotechnology and nanocomposites in various sectors of research and applications is promising and attracting increasing investment. For this reason, this book will benefit end users such as students, researchers, and industry players. Each chapter explains in detail the important role of nanocellulose, including the advantages and limitations of its specific applications. The book includes commentary from leading industrial and academic experts in the field who present cutting-edge research on advanced materials based on nanocellulose. Improvement features and recommendations are also provided to pave the way to new horizons for nanocellulose, and its applications. Therefore, this book will offer guidance to current, new, and future researchers in nanocellulose to strategize their work to meet the current demands. In terms of commercialization, this book will steer industry players to identify the potential uses of nanocellulose in their products. These same concepts are available elsewhere in the preface. Finally, thoughts on the future directions of nanocellulose-based materials have been included in some chapters.

> S.M. Sapuan M.N.F. Norrrahim R.A. Ilyas

Table of contents

• Full text access Front Matter, Copyright, Contributors, Editors' biographies, Preface
Book chapter O Abstract only 1 - Introduction to nanocellulose production from biological waste
R.A. Ilyas, M.R.M. Asyraf, Norizan Mohd Nurazzi Pages 1-37
Purchase View abstract ∨
Book chapter O Abstract only 2 - Economic insights into the production of cellulose nanofibrils from oil palm biomas
M.N.F. Norrrahim, Mohammed Abdillah Ahmad Farid, R.A. Ilyas Pages 39-48
Purchase View abstract ∨
Book chapter O Abstract only 3 - Nanocellulose: Sustainable biomaterial for developing novel adhesives and composites Zeki Candan, Ayhan Tozluoglu, Tufan Salan
Pages 49-137 Purchase View abstract
Book chapter O Abstract only 4 - Nanocellulose-based aerogels for various engineering applications Paulo Henrique Camani, Gabriel Diego Lemes and Derval dos Santos Rosa Pages 139-153 Purchase View abstract View abstract
Book chapter O Abstract only 5 - Nanocellulose: Chemistry, preparation, and applications in the food industry
Omar Bashir, Sumira Rashid, Beenish Pages 155-177
Purchase View abstract V
Book chapter O Abstract only 6 - Nanocellulose nanocomposites in coating materials
Nasmi Herlina Sari, Suteja and R.A. Ilyas Pages 179-195
Purchase View abstract ∨
Book chapter O Abstract only 7 - Nanocellulose as an adsorbent for heavy metals
M.N.F. Norrrahim, Noor Azilah Mohd Kasim, Keat Khim Ong Pages 197-211
Purchase View abstract >

Book chapter O Abstract only
8 - Nanocellulose in sensors
Muhammad Syukri Mohamad Misenan, Z.N. Akhlisah, M.N.F. Norrrahim Pages 213-243
Purchase View abstract V
Book chapter O Abstract only 9 - An overview of cellulose nanofiber physicochemical characterizations and biological studies in relation to nanosafety concerns
Leo Bey Fen, Jahangir Kamaldin and Hazirah Pengiran Pages 245-261
Purchase View abstract V
Book chapter O Abstract only 10 - Nanocellulose hydrogels
J. Mantovan, J.F. Pereira, S. Mali Pages 263-287
Purchase View abstract V
Book chapter O Abstract only 11 - Nanocellulose applications in packaging materials
Tengku Arisyah Tengku Yasim-Anuar, Hidayah Ariffin, Mohd Ali Hassan Pages 289-310
Purchase View abstract V
Book chapter O Abstract only 12 - Active biocomposite packaging films: Compatibility of carrageenan with cellulose nanofiber from empty fruit bunches
Nurul Aini Mohd Azman Pages 311-326
Purchase View abstract V
Book chapter O Abstract only 13 - Enhanced thermal stability of cellulose nanocrystals for processing polymer nanocomposites at a high temperature
Khairatun Najwa Mohd Amin Pages 327-335
Purchase View abstract V
Book chapter O Abstract only 14 - Nanocellulose nanocomposites for biomedical applications
Ismail M. Fareez, Ramli M. Zaki and Jasni A. Hawa Pages 337-352
Purchase View abstract V
Book chapter O Abstract only 15 - Nanocellulose biocomposites in specialty papermaking
Ainun Zuriyati Mohamed Asa'ari, J. Latifah, R.A. Ilyas Pages 353-374
Purchase View abstract ∨

Book chapter O Abstract only 16 - Nanocellulose composites in the pulp and paper industry
Farah Nadia Mohammad Padzil, Ching Hao Lee, Hidayah Ariffin Pages 375-395
Purchase View abstract ∨
Book chapter O Abstract only 17 - Nanocellulose nanocomposites in textiles
Mohd Azwan Jenol, M.N.F. Norrrahim and Norizan Mohd Nurazzi Pages 397-408
Purchase View abstract ∨
Book chapter O Abstract only 18 - Nanocellulose as a bioadsorbent for water and wastewater purification Mohd Idham Hakimi, Syed Umar Faruq Syed Najmuddin, R.A. Ilyas Pages 409-437
Purchase View abstract V
Book chapter O Abstract only 19 - Nanocellulose composites in the automotive industry
Norizan Mohd Nurazzi, Mohd Azwan Jenol, A. Norli Pages 439-467
Purchase View abstract V
Book chapter O Abstract only 20 - Advances in nanocellulose nanocomposites for bone repair
Innocent Jacob Macha Pages 469-480
Purchase View abstract ∨
Book chapter O Abstract only 21 - Nanocellulose composites for electronic applications
A. Atiqah, F.A. Sabaruddin, M. Asrofi Pages 481-502
Purchase View abstract ∨
Book chapter • Full text access Index
Pages 503-524

Enhanced thermal stability of cellulose nanocrystals for processing polymer nanocomposites at a high temperature

Khairatun Najwa Mohd Amin

Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan, Pahang D.M., Malaysia

Chapter outline

13.1 Introduction 327

13.2 Process to enhance the thermal stability of CNC 328

13.3 Thermally stable CNC-reinforced polymer nanocomposites 330

References 333

13.1 Introduction

CNC has emerged as an attractive filler for polymer composites due to its intrinsic mechanical properties. Low loading of CNC between 0.5 and 1 wt% in the polymer matrix has demonstrated an extraordinary increase in tensile strength of various polymer composites for instance 20% and 35% of improvement in polyvinyl(acetate) (Nozaki & Lona, 2021)and polylactide (Chai et al., 2020) respectively. However, the process to fabricate CNC/polymer nanocomposites often involved conventional method which is not suitable for scalable production. A conventional method like solvent casting constitutes a problem in terms of production speed and environmental issues due to the high solvent usage (Jyoti, Basu, Singh, & Dhakate, 2015). Thus, the melt compounding method consists of extrusion and molding is preferred to suit industrial-scale production and demand. Melt compounding which is commonly employed by thermoplastic polymer operating at high processing temperature from as low as 120°C for common polyethylene (Zaaba & Ismail, 2019) up to 390°C for polymer-like Polyether ketone (Das et al., 2020). Table 13.1 offers an overview of techniques that were used recently to produce CNC-based composites with some respected examples.

One challenge in utilizing CNC in polymer composites specifically thermoplastic polymer fabricated through melt compounding method is that their thermal stability

Technique	Polymer matrix	Fraction of CNC (wt%)	Ref.
Extrusion and/or	Polyethylene	1.5	Inai, Lewandowska, Ghita, and Eichhorn (2018)
molding	Polyethylene	1.0	Gray, Hamzeh, Kaboorani, and Abdulkhani (2018)
	Polypropylene	2.0	Sojoudiasli, Heuzey, and Carreau (2018)
	Polystyrene	10	Nagalakshmaiah, Nechyporchuk, El Kissi, and Dufresne (2017)
	Polyester	1-3	Zheng, Clemons, and Pilla (2019)
Solvent	Poly (lactic acid)	1.0	Hao et al. (2018)
casting	Waterborne Polyurethane	5	Mondragon et al. (2017)
	Poly (vinyl alcohol)	10	Popescu (2017)
	Acrylonitrile Butadiene Styrene	1	Ma, Zhang, and Wamg (2017)
	Rubber latex	1	Jailudin and Mohd Amin (2020)

Table 13.1 Techniques and fraction of CNC applied in CNC/polymer nanocomposites.

which is close to melting temperature most of the polymer. This tends to rise degradation and discoloration of the extruded nanocomposites (Abhijit, Johannes, Sahlin-Sjövold, Mikael, & Boldizar, 2020). Thus, recent researches are actively producing CNC with enhanced thermal stability to counter this problem.

13.2 Process to enhance the thermal stability of CNC

The most common isolation method to produce CNC is by using the sulphuric acid hydrolysis method. This method is preferable by most researchers due to its simple process flow, established protocols, and high production yield (2015). However, CNC produced has low thermal stability resulted by substitution of sulfate functional group over hydroxyl group which may be promoting dehydration reactions and act as flame retardants to the CNC. The onset degradation temperature mostly recorded values around 210–240°C (Zhang et al., 2020). Table 13.2 shows the onset degradation temperature of CNC according to the acid employed for the hydrolysis process.

Recently, ionic liquid (IL) also has been used to improve the thermal stability of CNC. IL is a green solvent with negligible vapor pressure which has multiple functions and initially is used in polymer modification. The attempt of ionic liquid-like 1-allyl-3-methylimidazolium chloride as a plasticizer has surprisingly improved the thermal stability of CNC (Liu, Guo, Nan, Duan, & Zhang, 2017). The results were obtained due to the ability of IL to partial desulfurization of CNC and the thermal degradation recorded at 240°C. Following that, a simple method of mixing IL with CNC was performed by rotary evaporate procedure, and it is able to increase the thermal

Type of acid	Onset degradation temperature (°C)	Ref.
Sulphuric acid	200–240	Bano and Negi (2017), Xing, Zhang, Tu, and Hu (2018), and Zhang et al. (2020)
Hydrochloric acid	244	Hastuti, Kanomata, and Kitaoka (2018)
Phosphoric acid	260–310	(Espinosa, Kuhnt, Foster, & Weder, 2013), (Frost & Foster, 2020), Zhang et al. (2020), and (Wang et al., 2019)
Formic acid	300-325	Lv et al. (2019) and Du et al. (2017)
Mixed acids	250-300	Cheng et al. (2020), Vanderfleet et al. (2019),
		Wang, Yao, Zhou, and Zhang (2017), and Yu,
		Qin, Sun, Yan, and Yao (2014)

Table 13.2 Onset degradation temperature of CNC produced through acid hydrolysis.

stability up to 210°C and increase the miscibility with polymer matrix as well (Song et al., 2018). Other than that, research also has shown that doing post alkali treatment on CNC film also has successfully erased the sulphate group resulting in a remarkable enhancement in thermal properties (Nan et al., 2017). This method successfully achieves thermal degradation at 260°C.

Alternatively, phosphoric acid or mixed acids (combination of two or more acids in hydrolysis process) have been utilized to isolate CNC with better thermal stability. Phosphoric acid, formic acid, and mixed acid are able to increase the thermal stability up to 300°C which is excellent to be reinforced with high-performance thermoplastic polymer with a processing temperature of more than 200°C (Das et al., 2020).

Other than that, mechanical methods like ultrasonication, homogenizer, and milling are also gaining high attention to be used in producing CNC. These methods are used as a posttreatment to produce CNC. CNC produce through this method provides good thermal stability as shown in Table 13.3 in fact it has a high production yield which is suitable for high scale production. In addition, this method also consumes low preparation time, acid/solvent usage, and energy (Mohd Amin, Annamalai, & Martin, 2017).

Overall, the degradation temperature of CNC able to be improved up to 300°C which falls in the temperature range of most high-performance thermoplastic polymer processing using the melt compounding method. This significant increase in thermal stability will boost up the employment of CNC as a reinforcing filler for polymer composite.

Table 13.3 Onset degradation temperature of CNC produced through a mechanical method.

Type of acid	Onset degradation temperature (°C)	Ref.
Ball milling Ultrasonication	258–263 250	Mohd Amin, Annamalai, and Martin (2017) Mohd Amin, Annamalai, Morrow, and Martin (2015)

13.3 Thermally stable CNC-reinforced polymer nanocomposites

Here the discussion on the CNC/polymer nanocomposite processed through melt compounding method is reviewed. The works are done to avoid thermal degradation of CNC either using preprocess to the CNC (grafting, modification, etc) or using ready thermally stable CNC to be reinforced with polymer and further process with melt compounding method with the purpose of high scalability production to suit the industry demand.

The first part will discuss the nanocomposites work which are using preprocess method to the low thermal stability of CNC. Polylactic acid (PLA) is one of the most promising biopolymers with exceptional properties, is being used in a wide variety of applications in diverse fields (Mao, Tang, Zhao, Zhou, & Wang, 2019). Research by Dhar, Tarafder, Kumar, and Katiyar (2016), has successfully fabricated CNC/PLA nanocomposite by using reactive extrusion. In this work, the CNC has been grafted with PLA using dicumyl peroxide as a crosslinking agent. Significantly, the grafted PLA chains shield the sulfate and hydroxyl groups of CNCs, thereby enhancing the compatibilization with the PLA matrix and preventing thermal degradation during extrusion. The extrusion processing temperature was at 180°C and the extrudate did not show any degradation or discoloration as shown in Fig. 13.1 with coding "PLAD CNC1".With 1 wt% of CNC in the PLA matrix, the tensile strength of the CNC/PLA nanocomposite recorded 40% of improvement from neat PLA. A similar biopolymer which is PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)), a family of bacterially-derived linear polyesters adopted a similar method (Zheng et al., 2019) as well. The maximum extrusion processing temperature is 160°C.

Next is polyamide which has garnered a lot of interest for its potential use in various applications ranging from deep-sea oil production to lightweight replacements for metals and rubbers in automobiles and aircrafts, to high-performance athletic shoes (Oliver-Ortega et al., 2019; Thokala, Kealey, Kennedy, Brady, & Farrell, 2017).

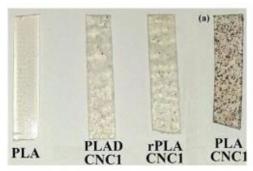


Fig. 13.1 Pictorial comparisons of the neat PLA, PLADCNC1 and rPLACNC1strips with PLA/CNC1 wt% extruded by simple melt blending.

Reproduction of image from Dhar, P., Tarafder, D., Kumar, A., & Katiyar, V. (2016). Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process. *Polymer*, 87, 268–282. https://doi.org/10.1016/j.polymer.2016.02.004 with permission from Elsevier.

Polyamide (PA) 12 has been reinforced with thermal stable CNC produced through phosphoric acid hydrolysis and was managed to be processed through melt compounding method (Nicharat, Sapkota, Weder, & Foster, 2015). 1-20 wt% of CNC in the PA matrix was extruded at a temperature of 190°C and the tensile strength was increased from 40 to 72 MPa. Meanwhile a work with another type of PA which is PA 11 also able to process using melt compounding method as well by using preprocessing/premixing methods which is planetary ball milling and melt-compounding (rollerblade mixing) without the addition of processing aids or additional surface functionalization of CNC (Venkatraman, Gohn, Rhoades, & Foster, 2019). CNC used is from the acid hydrolysis process was further milled with PA 11. This process uses ball-bearing collisions to mechanically weld together two materials in the solid-state without solvents. Then, the PA12/CNC was melt compounded at temperature 190°C. The film fabricated as shown in Fig. 13.2, the method used able to prevent degradation of CNC as the film was compared with the sample without milling and just directly mixed and compound the PA11 and CNC. The tensile strength of the PA11/CNC with the milling process.

Another example of thermoplastic used with CNC is polypropylene (PP). PP can be fabricated to fiber and fabrics, film, injection, and blow molding products as well

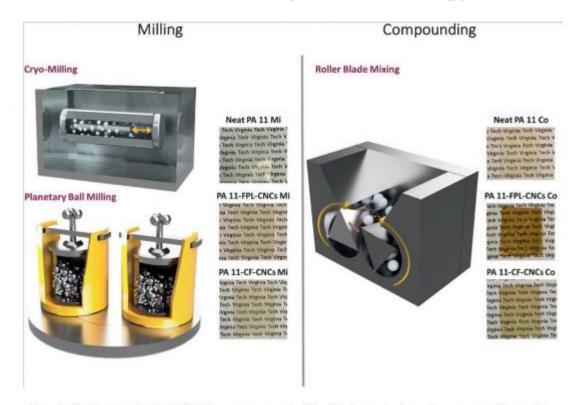


Fig. 13.2 PA11 and PA11/CNC nanocomposite film fabricated via melt compounding with preprocess with milling (left) and without milling (right).

Reproduction of image from Venkatraman, P., Gohn, A. M., Rhoades, A. M., & Foster, E. J. (2019). Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing. *Composites Part B: Engineering, 174*, 106988. https://doi.org/10.1016/j.compositesb.2019.106988 with permission from Elsevier.

Note: Page numbers followed by f indicate figures and t indicate tables.

A	Adsorbents
Acetate butyrate, 380	activated carbon and zeolites, 198
Acetylacetone sensor, 220	nanocellulose, 199–204, 202t, 205–207t
Acetylation, of CNF, 296	Adsorption
Acid hydrolysis, 3, 9–10, 65–66, 440–441,	definition, 198
485–486	dye, adsorption kinetics of, 401–402
Acids, 412, 414 <i>t</i>	heavy metals (see Heavy metals, as
Acoustic wave-based sensor, 215	chemical contaminants)
Activated carbon, 415–416	Aerogels
Active cooling system, 482	advantage of, 139–140, 201
Active packaging, 320–323	applications, 139–140
Acute toxicity	definition, 139–140, 201
dermal toxicity safety study, 252-254	polymer aerogels, 148
inhalation toxicity safety study, 252-253	applications, 141, 142f
oral toxicity safety study, 252	biopolymers/natural polymers, 140, 143
Additives, 376	carbon/carbide-based aerogels, 141
Adhesives, nanocellulose	cellulose and nanocellulose-based
bio-based resins (see Bioresins)	aerogels (see Cellulose, aerogels)
from plant biomass sources, 69	cross-linked chemical structure, 140,
properties, 69	141 <i>f</i>
solid content and viscosity, increase in, 69	definition, 140
thermoplastic resins	hybrid aerogels, 141
hot melts, 75–76, 76f	inorganic/organic aerogels, 141
polyvinyl acetate (PVA) adhesives,	macro and microscale, microporous
76–77, 77 <i>f</i>	structure, 140, 141 <i>f</i>
thermosetting resins	synthesis, stages for, 141–142, 142f
aminoplastic adhesives, 69	synthetic polymers, 140–143
condensed adhesives, 69	properties, 139–140
formaldehyde, 69–70	Ag/HMT composites, 182–187, 185 <i>f</i> , 186 <i>t</i>
isocyanate adhesives, 74–75, 75f	Agriculture, nanocellulose hydrogels in,
melamine formaldehyde (MF) adhesive,	274–275
73–74, 74 <i>f</i>	Alcohol fuel cell sensor, 218
melamine urea formaldehyde (MUF)	Aldehyde gases, 217
adhesive, 73	Algae, 313
phenolic resins (see Phenol-	Alginate, 340–341
formaldehyde (PF) resin)	Alginate-CNC hydrogels, 269, 273
phenol resorcinol formaldehyde (PRF)	Alginate-MoO ₃ NPs, 219
adhesive, 74	Alginate-NCC composite, 363–364
resorcinol formaldehyde (RF) adhesive,	Alkali treatment, 10, 11f, 13
74, 74 <i>f</i>	Alpha-tocopherol, 321–323, 321 <i>t</i>
urea formaldehyde (UF) adhesives (see	Aluminum metal matrix composites,
Urea formaldehyde (UF) adhesives)	457–458

Ames test, 170	nanocellulose reinforced epoxy
Aminoplastic adhesives, 69, 78–79	composite, 452–453
Amino silane-modified nanocellulose, 182,	natural fiber reinforced thermoset
183 <i>t</i> , 184 <i>f</i>	composites, 453
Ammonia-based pretreatment, 10	vehicle components, usage in, 441–442
Ammonia gas sensors, 217–218	
Ammonia sensor, 215	В
Ammonium persulfate (APS) oxidative	Bacterial cellulose nanocrystal (BCNC), 219
agent, 163–164	Bacterial cellulose (BC) nanoribbons. See
Anionic nanofibrillar cellulose (aNFC)	Bacterial nanocellulose (BNC)
hydrogel, 342	Bacterial nanocellulose (BNC), 2–3, 3f,
Antimicrobials materials, 400	52, 59 <i>f</i> , 160, 214–215, 264–265,
Antioxidants, in packaging materials	316–317, 354, 376, 380, 382, 398,
natural antioxidants, 320–323	440, 472–473
synthetic antioxidants, 320-321	aerogels, 140, 144
Asbestos fibers, 248	bacteria, 486
Ash, 57	biomedical applications, 26, 68, 337–338,
Atomic force microscopy (AFM), 19–20	487
AuNP/BNC nanocomposites, 229,	biocompatibility and stability, 339,
233–234	470–471
Autologous, for bone loss, 469–470	bone repair and regeneration, tissue
Automotive applications, nanocellulose,	engineering for, 471–472
460	cytocompatibility, 339
advantages, 443	wound dressing applications, 343,
beneficial characteristics, 440–442, 441 <i>f</i>	402–403
bionanocomposites, 21–23, 25, 25 <i>f</i>	characteristic of, 4–5, 5 <i>t</i>
bumper, structuring of, 442	commercialization of, 487
crystal modulus of, 443	copper oxide (CuO) nanoparticles, 99–100
desulfation method, 442–443	definition, 4
electric vehicles, 456	degree of polymerization (DP), 6–7
features, 443	drawbacks, 486–487
green materials, future projection of,	electron microscope images of, 317, 318f
454–455	enzymatic hydrolysis, 483
Kyoto technique, 456	extraction method, 483, 484 <i>t</i>
lightweight materials, future projection of,	extraction sources, 8t
454–456, 454 <i>f</i>	food application, 164–165, 487
lignocellulose residues, 456–457	gas sensors, 218–219
limitations, 442	glucose biosensor, 234
metal-matrix composites, 457–460	hydrogen peroxide (H ₂ O ₂) biosensor,
nanocellulose nanocomposites (see	233–234
Nanocellulose nanocomposites	isolation of, 164
(NNC))	lyophilized fabric-reinforced CS/BNC,
plant fibers, 454–455	bacteriostatic effect, 400–401
sheet molding compound (SMC)	mechanical properties, 7
composite, 441–442	morphology of, 6
surface chemical modification, 442–443	preparation methods, 361
surface functionalization, 443	production, 469–470
thermosetting polymers	from bacteria species, 4, 67
as composite matrix 451–452	continuous cultivation methods, 68

static cultivation method, 68	Bioink, 340–341
sugar-rich novel substrates, 67-68	Biological wastes, nanocellulose from, 14,
properties, 67, 483, 484t, 486–487	15 <i>f</i> , 16 <i>t</i>
strain sensors, 226	ginger, 15, 17 <i>f</i>
synonyms, 58–59	kenaf, 16–18, 18 <i>f</i>
toxicology properties, 470–471	sugarcane bagasse nanocellulose (SBCN),
Ball milling, 329–331, 329 <i>t</i>	19, 19 <i>f</i>
Banana pseudostem fibers, 384	sugar palm fiber (SPF), 10, 11f, 19–20, 20f
Bearberry extract, 322–323	water hyacinth, 16, 18f
Benzaldehyde (BZH) chemical sensor, 220	Biomedical applications, nanocellulose in,
Beta-cyclodextrin (beta-CD), 221	52, 160, 347
Bimetallic nanoparticles (BNPs), 220–221	bacterial nanocellulose (BNC) (see
Bioadsorbent materials, 410	Bacterial nanocellulose (BNC))
activated carbon, 415–416	biological implants, 339-341
chitosan, 416–417	biomedical materials, biological properties
clay minerals, 416	of, 338–339
nanocellulose	bionanocomposites, 26, 26f
as bioadsorbent, 410, 420–430	cellulose nanocrystals (CNC) (see
functionalization, 417–418	Cellulose nanocrystals (CNC))
nanomaterials, 410, 417	cellulose nanofibers (CNF) (see Cellulose
Biocomposite packaging film, 321–323	nanofibers (CNF))
Biocomposites	drug delivery (see Drug delivery system)
in automotive application, 443-444	tissue engineering (see Tissue engineering
critical issues, 445	(TE))
fuel consumption and CO ₂ emissions,	wound dressing (see Wound dressing
reduction of, 444	applications)
lightweight biocomposites, use of,	Bionanocomposites, 21–27, 22t
444	automotive applications, 21–23, 25, 25f
natural fibers, polymeric materials	biomedical applications, 26, 26f
reinforced with, 445	biopolymers (see Biopolymers)
in food packaging, 357–364	flexible optoelectronic, 25–26, 25f
high durability paper, 364–367	food packaging application, 357–364
non-structural biocomposites, 356-357	food packaging applications, 21, 23–24f
printing paper, 367–369	Bionanomaterials
structural biocomposites, 356–357	hemicelluloses, 61–63
wood-based composites (see Wood-based	lignin, 60–61
composites)	nanocellulose (see Nanocellulose (NC))
Biodegradable films, 311–312	Biopolymers
advantages, 312	aerogels, 140–143
biodegradable guar gum/nano-crystalline	bionanocomposites fabrication, 356
films, 318	cellulose (see Cellulose)
biopolymers, 312	definition, 358
cellulose (see Cellulose)	in food packing
definition, 312	biodegradable polymers, 357–359, 360t
as packaging materials, 312	lignocellulosic materials, 359
preparation, 312	nanocellulose-based composites,
Biodegradable polymers	361–364, 362 <i>t</i>
classification of, 358, 359f	hydrogels, 268–269
in food packing, 357–359, 360 <i>t</i>	packaging materials, 312

Biopolymers (Continued)	C
carrageenan, 313–315	Capital expenditure (CAPEX), 41, 45, 46t
cellulose (see Cellulose)	Carbide-based aerogels, 141
plasticizers, 319–320	Carbon black (CB), 25, 220
starch, 312	Carbon dioxide (CO ₂) emission, 442, 444,
Bioresins, 77	447–448
animal waste, adhesives from, 81	Carbon nano-dots (CNDs), 219–220
blood albumin adhesives, 80	Carbon nanofibrils (CNFs), 427, 429
casein adhesives, 80–81	Carbon nanostructures (CNSs), 219–220
lignin, 77–78, 78f	Carbon nanotubes (CNTs), 105, 220, 225,
soy protein adhesive, 79–80	417
tannin-based adhesives, 78–79, 79f	Carbon-neutral lignocellulosic materials, 50
Biosensors	Carbon quantum dot/nanofibrillated cellulose
components of, 226–227, 227f	(CQDs/NFC) composite aerogel,
definition, 226	202–203, 203 <i>f</i>
nanocellulose application in	Carbon quantum dots (CQD), 222
electrical biosensors, 233–234	Carboxylation, 91–95
optical biosensors (see Optical	Carboxymethylated chitosan, 427
biosensors)	Carboxymethyl cellulose (CMC), 165
Blood albumin adhesives, 80	Carboxymethyl cellulose hydrogels, 269
Bone substitute materials, 469–470	Carrageenan
Bone tissue regeneration and repair	iota-carrageenan
autologous, for bone loss, 469–470	3,6-anhydrogalactose content, 313, 314f
bone substitute materials, development of,	ester sulfate content of, 313, 314f
469–470	food applications, 313
cellulose nanocomposites	gelation properties, 313
cellulose nanocrystals-hydrogel	structure, 313, 314 <i>f</i>
nanocomposites, 474–476	kappa-carrageenan
CNC nanocomposites, 472–473, 473f	3,6-anhydrogalactose content, 313, 314f
CNC with maleic anhydride grafted	ester sulfate content of, 313, 314f
polylactic acid, 474–476	food industries, used in, 313
fabrication techniques, 473–474, 475 <i>f</i>	gelation properties, 313
hydroxyapatite-bacterial cellulose	structure, 313, 314 <i>f</i>
(HAp-BC) nanocomposite, 474–476	lambda-carrageenan
otolith/collagen-BC nanocomposites,	3,6-anhydrogalactose content, 313, 314 <i>f</i>
474–476	ester sulfate content of, 313, 314f
for tissue engineering applications,	food applications, 313
474–476, 477 <i>t</i>	gelation properties, 313
natural polymer nanocomposites,	structure, 313, 314 <i>f</i>
469–470	seaweeds, 313
tissue engineering (TE), 469–472	semirefined carrageenan film, 323
Bone tissue scaffolding, CNC aerogels for,	Casein adhesives, 80–81
145–146	Casting methods
Boron nitride (BN) nanosheets, 399–400,	aqueous casting solution, 378–379
399t	nonaqueous casting solution, 378–380
Breathalyzers, 219	CellF-carbon nanotube (CNT) aerogel, 225
Brunauer-Emmett-Teller (BET), 19–20	Cellobiases, 10–12
Butylated hydroxyanisole (BHA), 320–321	Cellulase, types of, 10–12
Butylated hydroxytoluene (BHT), 320–321	Cellulose, 2–3, 50–51, 482

aerogels, 144–145, 148	structure, 156–157, 157 <i>f</i> , 439–440
advantages, 140, 143-144, 201	yield, 54
bacterial nanocellulose (BNC), 140, 144	Cellulose-based aerogels (CAGs), 429–430
cellulose nanocrystals (CNC), 140,	Cellulose nanocomposites, 487–488
145–147, 145 <i>f</i>	bone repair and regeneration (see Bone
cellulose nanofibers (CNF), 140, 145,	tissue regeneration and repair)
145 <i>f</i> , 147–148	definition, 472–473
characteristics, 140, 143-144	Cellulose nanocrystals (CNC), 2–3, 3f,
hydroxyl groups, presence of, 143–144	52, 59 <i>f</i> , 160, 214–215, 234–235,
regenerated cellulose, 140, 144	264–265, 317, 354, 376, 398, 440,
sources, 144	472–473
synthesis, steps for, 144	acid hydrolysis, 65–66
annual worldwide production, 51	adsorption, 203–204
applications, 214	aerogels, 140, 145–147, 145f
biodegradable films, raw material for,	applications, 5, 67, 486
314–315	in automotive applications, 441–442, 460
biodegradation, 470–471	biocompatibility properties, 470-471
biomedical application, 337–338	biomedical applications, 26, 337–338
biomedical materials, biological properties	bone repair and regeneration, tissue
of, 338–339	engineering for, 471–476, 473 <i>f</i>
chain, molecular structure of, 54, 55f	drug delivery, 341
characteristics, 155-156, 264, 397	in vitro cytotoxicity studies, 339
crystalline cellulose, 157–158	tri-dimension (3D) of electrospun
degree of polymerization (DP), 155–156	scaffolds, 342
fibers, 445	biopolymer composites, for packaging
food packaging applications, 359	applications, 361, 362 <i>t</i>
gas sensors, 216	alginate, 363–364
glucose units, 51, 155–156	chitosan, 363
hydrogels, 264, 342	glycerol-plasticized wheat starch,
insolubility of, 315	361–363
intramolecular and intermolecular	polyhydroxyalkanoates (PHA), 364
hydrogen bonding networks,	polyhydroxybutyrate (PHB), 364
314–315, 315 <i>f</i>	polylactic acid (PLA), 363
mechanical properties, 51	whey protein isolate, 364
molecular weight of, 55	carbon nanoparticles, 106
nanomaterials (see Nanocellulose (NC))	characteristic of, $4-5$, $5t$
natural cellulose, 155–156	chemical composition, 3
from natural resources, 469–470	chemical hydrolysis, 440
OH groups, 54–55	cytotoxicity studies, 249–250, 251t
oil palm biomass (OPB) (see Oil palm	definition, 3
biomass (OPB))	electron microscope images of, 317, 318f
oxidized cellulose, 470–471	extraction method, 3, 58–59, 356, 483,
from plant fibers, 2	484 <i>t</i> , 485–486
properties, 51, 214, 314–315	extraction of, 316–317
and seaweed, compatibility between,	extraction sources, 8t
318–319	food application, 164–165
sources, 58, 315, 316 <i>t</i>	functionalized ZnO/CNC, bacteriostatic
stereochemical formula of, 54, 55 <i>f</i>	effect of, 400–401
as structural polymer, 155–156	gas sensors

Cellulose nanocrystals (CNC) (Continued)	CNC film, post alkali treatment on,
ammonia gas sensors, PANI/CNC	328–329
composites, 217	ionic liquid (IL), 328–329
CNC-modified tin dioxide films, 217	mechanical methods, 329, 329t
colorimetric sensor, 217	phosphoric acid, formic acid, and mixed
electrode sensor, 217–218	acid, 329
nitrogen dioxide (NO ₂) gas sensor, 216–217	sulphuric acid hydrolysis method, 328, 329 <i>t</i>
hydrogels, 265–268	toxicological report for, 470–471
alginate hydrogels, 269, 273	urea-formaldehyde adhesive, interaction
carboxymethylcellulose/	with, 87–89
hydroxyethylcellulose hydrogels, 269	yield, 66–67
chitosan hydrogels, 269	Cellulose nanofiber boards (CNFB), 252–253
gelatin hydrogels, 269	Cellulose nanofiber in water (CNFW)
polyacrylamide (PAAM) hydrogels, 268	chemical identity and nano-properties of,
polyacrylic acid (PAA) hydrogels, 268	246, 248 <i>t</i>
poly (ethylene glycol) (PEG) hydrogels,	eye irritation study, 253
268	oral toxicity study, 252
poly (vinyl alcohol) (PVA) hydrogels,	skin corrosion/irritation and skin
268	sensitization, 253–254
sodium alginate/gelatin hydrogels, 269	Cellulose nanofibers (CNF), 2–4, 3 <i>f</i> , 52, 59 <i>f</i> ,
tissue engineering applications, 271	87–89, 160, 214–215, 264–265,
wound dressing application, 271–272	316–317, 354, 376, 378, 398,
isolation of, 161–164, 440–441	440–442, 469–470, 472–473
kenaf, 16–18, 18 <i>f</i>	aerogels, 140, 145, 145 <i>f</i> , 147–148
mechanical properties, 7, 215	applications, 289–290, 485
as mechanical reinforcing agent, 486	in automotive applications, 441–442, 460
morphology of, 6, 361	biological safety studies, 245–246, 257
paper coating process, 380	aquatic test system, 254–256
particle behavior of, 67	cellular test system, 249–250
polymer composites/nanocomposites	industry and consumer products,
challenge, 327–328	application of, 247–249
solvent casting method, 327, 328 <i>t</i> , 332,	mammalian test system, 250–254
332f	physicochemical characterization, CNF
thermoplastic polymer, melt	suspension, 246
compounding, 327, 328 <i>t</i> , 329–333	biomedical applications, 337–338
preparation, 5, 361	bone repair and regeneration, tissue
production, 469–470	engineering for, 471–472
production methods, 377	drug delivery, 341
properties, 65–66, 483, 484 <i>t</i> , 485–486	3D printing bioink, 340–341
"rice-like shape", 4f	
	wound dressing applications, 343–344
short-rod-like/whisker shape, 3	biopolymer composites, for packaging applications, 361, 362 <i>t</i> , 363
size of, 3, 65, 440, 485	
strain sensor	characteristic of, 4–5, 5 <i>t</i>
CNC-grafted GO hybrid materials, 225	chemical modification of, 65
CNTs/CNC sensitivity, 226	chemical pretreatment, 64–65
surface modification, 67	definition, 483–485
synonyms, 3, 58–59, 65, 483, 484 <i>t</i> , 485	development of, 289–290
thermal stability, enhancement of, 7, 329	drawbacks, 63–64

electrical biosensors, 233	mass balance, by SHS-WDM and KOH-
electron microscope images of, 317, 318f	WDM, 43, 43 <i>f</i>
enzymatic pretreatment, 12, 64–65	materials, 40
extraction methods, 63–64, 483, 484 <i>t</i> , 485	mechanical fibrillation, 41
extraction processes, 317	SHS- and KOH-treated CNFs,
extraction sources, 8t	properties of, 41–43, 42t, 43f
fabrication, 356	untreated, SHS-and KOH-treated pulps,
food application, 164–165	properties of, 41–42, 42 <i>t</i>
gas sensors, 218	production methods, 376–378
high energy consumption and production	properties, 289–290, 483, 484 <i>t</i>
expense, 485	silylated NFC reinforced PP composite,
high-pressure homogenization, 356	490
hybrid CQD/CNF, 222	size of, 4, 63, 483–485
hydrogels, 266–268	strain sensor
alginate hydrogels, 269	GN-CNF@PVA hydrogel, 225
anionic nanofibrillar cellulose (aNFC)	polyvinyl alcohol (PVA)/CNF hydrogel,
hydrogel, 342	for pressure/strain sensing, 224
chitosan hydrogels, 269	sugar palm fiber (SPF), 20
collagen hydrogels, 269	synonyms, 4, 58–59, 63–64, 483–485, 484
poly (ethylene glycol) (PEG) hydrogels,	thermal conductivity (TC) properties, 399t
268	Ag-rGO/NFC, 399–400
poly (vinyl alcohol) (PVA) hydrogels, 268	CNF/OH-BNNS, 399
wound dressing application, 271	2D-layered NFC/BN, 399-400
hydroxyapatite (HAP) composite foam,	thermal stability, 7
101	thin film transistors (TFTs), 494–496
isolation of, 161	toxicological report for, 470–471
mechanical methods, 289-290	urea-formaldehyde adhesive, particleboard
mechanical properties, 7	panels bonded with, 87
microfluidization, 356	Cellulose nanowhiskers (CNWs). See
morphology of, 6, 361	Cellulose nanocrystals (CNC)
"noodle-like shape", 4f	Centrifugal casting molding method, 106
paper coating process, 380	CeO ₂ nanoparticles, 220
papermaking applications, 356	Ceramic materials, 458
particleboard composites, performance	Cetyl triammonium bromide (CTAB), 106
enhancement of, 87–89	Cetyltrimethylammonium bromide
polymer composites, reinforcement	(CTMAB), 490
material for (see Polymer reinforced	Chemical contaminants
CNF composites)	acids, 412, 414t
preparation methods, 361	dyes, 411, 426–428
printing paper	heavy metals, 411, 420-426
impacts and advantages, 368-369	organic oils, 412, 428–430
paper strength, 368	organochlorines, 412, 414t
production, from OPMF, 47	organophosphorus, 412, 414t
characterization analysis, 41	phenols, 412, 414 <i>t</i>
economic analysis, 41	plant nutrients, 412, 414t
economic evaluation, by SHS-WDM	point and nonpoint sources, 411
and KOH-WDM, 44-45	Chemically engineered nanocellulose
hemicellulose removal, SHS and KOH	(CMNC), 222
pretreatments for, 40–41	Chemical modification, 168–169

Chemical pretreatment methods, 9–10, 12	water absorption properties, 189, 190f
Chemical sensors	water uptake and permeability, 191-192,
definition, 219	192 <i>f</i>
metal oxide, bimetal, bimetal oxide	Coefficient of OLEDs' thermal expansion
chemical sensor, 220–222	(CTE), 496
nanocellulose chemical sensor, 222-223	Collagen-nanocellulose hydrogels, 269
transduction methods, 219	Colorimetric biosensors, nanocellulose-
type of, 219–220	based, 231–233
Chemical vapor deposition (CVD) method,	Colorimetric sensor, 217
429–430	Compatibilizer, 296–298, 297 <i>f</i>
Chemisorption, 415–417	Composites, nanocellulose reinforcement in
Chemithermomechanical (CTMP) paper	advantages, 81–82
sheets, 382	polymer composites/nanocomposites,
Chitosan (CS), 400–401, 416–417	107–109
Chitosan aerogel, 202–203	applications, 89
Chitosan hydrogels, 269	carbon-derived nanoparticles, 90
Chitosan-NCC composite, 363	conductive nanomaterials, 90
Chitosan/poly(vinylpyrrolidone)/	mechanical properties of, 487–490
nanocellulose (CPN), 403	metal-based nanocomposites, 90–95,
Chlorhexidine digluconate, 272	92–94 <i>t</i>
Chloropropyltriethoxysilane (CPTES),	metal oxide/inorganic based
146–147	nanocomposites, 95–101, 96–98 <i>t</i>
Cholesterol sensor, 222	nanocarbon based nanocomposites,
Chromium (Cr), 202–203	101–107, 102–104 <i>t</i>
Citric acid-modified cellulose nanofibrils,	problems of, 108
421–425	production techniques, 108
Clay minerals, 416	significance, 81–82
Clofazimine, 272	wood-based composites (<i>see</i> Wood-based
Coating materials, nanocellulose	composites)
nanocomposites in, 192	Compressible and elastic carbon aerogels
air resistance, 187–189, 189 <i>f</i>	(CECAs), 226
applications, 192, 193 <i>f</i>	Compression molding, 302
corrosion resistance, 189–190	Conductive nanocellulose composites, 491–492
crack resistance, 190, 191f	Conductive nanomaterials, 90
hemp fiber, 180	Conductive nanoparticles, 223
mechanical resistance properties	Conductive polyaniline/CNC (PANI/CNC)
abrasion resistance, 187	composites, 217
HMT nanocomposites, coatings	Conductive polymers, 223–224
modified with, 185–187, 186 <i>t</i>	Confocal laser filtering magnifying
impact strength, 187	instrument (CLSM), 165–166
tensile strength, 187	Continuous cultivation methods, 68
modified nanocellulose coating	Copper oxide nanoparticles (CuO NPs),
on glass and aluminum substrates,	99–100
182	Corrosive hydrolysis, 161–162
on steel substrates, 182–184	Cosmetics
polarized optical microscopy, 190–191,	definition, 275
191 <i>f</i>	nanocellulose hydrogel, 275–276
silane, surface modification with,	Cotton cellulose nanocrystals, 230–231, 231f
180–182, 181 <i>f</i>	C-periodate nanocellulose, 403

Crude oil sensing, 219–220	nanocellulose composites
Crude palm oil production, 39–40	conductive composites, 492, 493 <i>t</i>
Crystalline cellulose, 157–158	electrical properties of, 491
Crystallinity index, 41–42	lithium-ion batteries, separator of,
Cytotoxicity studies, of nanocellulose,	496–497
249–250, 251 <i>t</i>	mechanical properties, 487-490
D	organic field-effect transistors
D	(OFETs), 496
Daphnia magna reproduction test, 254–255, 256f	organic light-emitting diodes (OLEDs), 496
Deep eutectic solvents (DESs), 12	piezoelectric and electroactive effect,
Degree of polymerization (DP), 6–7, 57,	492–494
155–156	supercapacitors (SC), 494, 495t
Desulfation method, 442–443	thermal properties, 490–491
Dietary fiber, nanocellulose as, 164–168	thin film transistors (TFTs), 494–496
Dilute-acid hydrolysis, 9–10	properties of, 497
Dimethylol phenol, 70	temperature and pressure sensor, 492
Dip-coating procedure, 226	Electronic devices
Discontinuously reinforced aluminum (DRA)	electronic material devices, thermal
composite, 458	management of, 482
Discontinuously reinforced metal-matrix	heat dissipation mechanism, 482
composite, 458	microprocessors for, 482
Dissolved gas analysis (DGA), 215–216	Electrospinning technique, 161, 342, 474
Dopamine (DA), 341	Electrostatically settled nanocrystalline
Double pickering emulsions, 166	cellulose (ENCC), 169–170
Double-walled carbon nanotubes	Emulsions, 165–166
(DWCNTs), 226	Endocellulases, 10–12
Drop-casting method, 232–233	Endothelial cells (ECs), 340
Drug delivery system, 341	Energy storage systems, 459–460
definition, 272	Enzymatic hydrolysis, 161–162, 483
nanocellulose hydrogel, 272–273	Enzymatic pretreatment, 10–12
Dye contaminants	Epichlorohydrin (ECH), 144
adsorption kinetics, 401–402	Epoxy, 451–452, 452 <i>f</i>
nanocellulose treatment, 426–428 types, 411, 413 <i>f</i>	Epoxypropyltrimethylammonium chloride, 443
Dynamic mechanical analysis (DMA), 295	Epoxy silane, 182, 184 <i>f</i>
T.	Esterification, of CNF, 296
E	Ethylene-vinyl acetate (EVA) copolymer,
Ecotoxicity study, 254–256	75–76, 76 <i>f</i>
Electrical biosensors, nanocellulose-based, 233–234	Ethylene vinyl alcohol (EVOH), 168 Exocellulase, 10–12
Electric vehicles, 456	Extractive substances, 50, 57–58
Electrochemical sensors, 215, 220	Extrusion process, 298–300, 299f
Electro-conductive hydrogels (ECHs), 223–224	Eye damage/irritation safety study, 253
Electrode sensor, 217–218	_
Electro impedance spectroscopy (EIS),	F
189–190	Ferroferric oxide (Fe ₃ O ₄) nanoparticles,
Electronic applications, nanocellulose in	202–203
challenges, 497	Fiber-based wood composites, 82, 83f, 85

Field emission scanning electron microscopy	Gelatin-nanocellulose hydrogels, 269
(FESEM), 19–20	Generally regarded as safe (GRAS), 170
Fillers, 376, 378	Genotoxicity, of CNF, 249-250
Fish acute toxicity test, 255–256	Ginger nanocellulose, 15, 17f
Fish embryo acute toxicity (FET) test, 255–256	Glass fiber (GF)/epoxy composite, 441–442
Fluorescent biosensor, nanocellulose-based,	Glassy carbon electrode (GCE), 220,
230–231	233–234
Food industry, nanocellulose in, 171	Global Harmonized System (GHS), 246,
dietary fiber, 164–168	250–253
emulsifying and stabilizing agent, 165–166	Global warming, 446
food additive, 164–165	Glucose, 50–51
	Glucose biosensor, 234
food packaging (see Packaging,	
nanocellulose in)	Glucose oxidase (GOx), 234
hydrogels, 273–274	Glue-laminated timber (Glulam), 86–89
safety, 170	Glycerol, as plasticizer, 320, 320 <i>t</i>
Food Standards Agency (FSA), 248–249	GN-CNF@PVA hydrogel, 225
Formaldehyde, 69–70	Graft-co-polymerization technique, 222
Formic acid, 329	Graphene (GN), 225
Fourier transform infrared spectroscopy	Graphene oxide-silica (GO-silica), 427
(FT-IR), 19–20	Graph oxide (GO), 218
Fracture morphology analysis, 25	Greenhouse gas emission, 446–447
Freeze-drying process, 141–142, 474	Green tea extract, 323
Functional Food Center (FFC), 167–168	
Functional food ingredient, 166–168	H
Functional Food Science in Europe	Heavy metals, as chemical contaminants,
(FuFoSE), 167	197, 199–200
Functionalized nanocellulose, 417–418, 419 <i>f</i>	adsorption method, 198, 200
a dictionalized nanocentrose, 117 110, 113	health effects, 411, 412 <i>t</i>
G	nanocellulose as adsorbent, 199, 205–207 <i>t</i> ,
Gas sensors, 215–216	420–426
bacterial nanocellulose (BC), 218–219	challenges, 204
based on nanomaterials, 216	chitosan aerogel, 202–203
cellulose, 216	CQDs/NFC composite aerogel,
cellulose nanocrystals (CNC)	202–203, 203 <i>f</i>
ammonia gas sensors, PANI/CNC	ferroferric oxide (Fe ₃ O ₄) nanoparticles,
composites, 217	202–203
CNC-modified tin dioxide films, 217	functionalization, 199, 204
colorimetric sensor, 217	hydrogel composites, 203–204
electrode sensor, 217–218	nanopaper ion-exchanger, 204
nitrogen dioxide (NO ₂) gas sensor,	properties, 200–201, 202t, 204
216–217	response surface methodology, 202-203
cellulose nanofibers (CNFs), 218	point/nonpoint sources, 199
parameters, 216	remediation
portable gas sensor, function of, 216	conventional approaches, 198
principle of, 216	lignocellulosic biomass for, 198–199
Gas-stage hydrochloric corrosive hydrolysis,	water sources, 199–200
161–162	Hemicellulose, 50–51, 56, 439–440
Gelatin/BHA mats, 320–321	applications, 62–63
Gelatin/BITA mats, 320–321 Gelatin film packaging, 322–323	classification, 56–57
CICIALIII HIIII DACKAYIIIY. 344—343	Ciassification, JU-J/

extraction, 62	tissue engineering applications,
molecules vs. cellulose molecules, 57	270–271, 342
nanohemicellulose, 63	wound dressing application, 271–272
properties, 62	natural polymers, 263–264
in wood, 55, 61–62	polyvinyl alcohol (PVA)/CNF hydrogel,
Hemp fiber, 180	224
Hexamethylenetetramine, 78	preparation, 263
High-density polyethylene (HDPE),	self-healing hydrogels, 224
290–291, 291 <i>t</i>	synthetic polymers, 263–264
High durability paper	Hydrogenated acrylonitrile-butadiene rubber
nanocellulose application	(H-NBR) composites, 490–491
advantages, 365	Hydrogen peroxide (H ₂ O ₂) biosensor,
challenges, 366	233–234
incorporation of, 366–367	Hydrogen sulfide (H ₂ S) gas sensor, 216,
promising results in production, 367	219
for specialty applications, 364–365	Hydrolysis, 161–164, 180–181
synthetic polymers, 365	Hydrophobic nanoclay (HMT)
High-pressure homogenization (HPH),	nanocomposites, 182–187, 185f,
13–14, 20	186 <i>t</i>
Hornification, 201	Hydrophobic polymers, 448
Horseradish peroxidase (HRP), 233–234	Hydroxyapatite-bacterial cellulose (HAp-BC)
Hot melt adhesives	nanocomposite, 474–476
applications, 75	Hydroxyapatite (HAp) nanoparticles, 218
characteristics, 75	
ethylene-vinyl acetate (EVA) copolymer,	Hydroxyethylcellulose hydrogels, 269 Hydroxylated boron nitride nanosheets (OH-
75–76, 76 <i>f</i>	BNNS), 399, 399 <i>t</i>
features, 75	Hypoxemia, 248–249
high viscosity, 75–76	I
polyamide adhesives, 76	
Hydrochloric acid hydrolysis, 66	Inhalation toxicity safety study, 252–253
Hydrocolloid gums, 78–79	Injection molding process, 25, 301–302
Hydrogels	Inorganic aerogels, 141
cellulose, 264, 342	Inorganic substances, 57
characteristics, 263	In-situ chemical deposition process, 95
composites, 203–204	Institute of Food Technologists (IFT), 167
crosslinked polymer, 263–264	Institutional Animal Care and Use
definition, 263	Committee (IACUC), 252
GN-CNF@PVA hydrogel, 225	Interlaminar shear strength (ILSS), 451–452,
interpenetrating polymer networks	452 <i>f</i>
(IPNs), 263–264	Internal bond strength (IB), 87–89
nanocellulose, 264–265, 276–277	Internal melt-blending, 300–301, 300f
in agriculture, 274–275	Interpenetrating polymer networks (IPNs),
challenges, 277	263–264
CNC hydrogel, 265–266	Ionic liquid-like 1-allyl-3-methylimidazolium
in cosmetics, 275–276	chloride, 328–329
drug delivery system, 272–273	Ionic liquids (IL), 12
food applications, 273–274	Iron gall ink, 382
NFC hydrogels, 266–267	Iron oxide/HMT composites, 182–187, 185f,
reinforced hydrogels, 267–270	186 <i>t</i>

Innariometa adhagirras	Liana a allulacia hiomataniala
Isocyanate adhesives	Lignocellulosic biomaterials
polymeric 4,4'-diphenylmethane	cellulose, 50 (see also Cellulose)
diisocyanate (pMDI), 75	chemical components of, 53f, 54
polymethylene diisocyanate, 75	chemical composition, 53–54
urethane bridge formation, 74–75, 75f	component of, 53
J	definition, 53
	extractive substances, 57–58
Jute cellulose nano-fibrils (CNF)/	hemicellulose, 50, 56–57
hydroxypropylmethylcellulose	lignin
nanocomposite, 341	building blocks of, 56, 56f
K	definition, 55
	distribution of, 56
Kenaf/glass hybrid epoxy composite,	raw materials, 50
451–452, 452 <i>f</i>	Lignocellulosic fibers, 2, 376–377
Kenaf nanocellulose, 16–18, 18f	Linear low-density polyethylene (LLDPE),
Kyoto technique, 456	290–291
L	Lingocellulose nanofibers (LCNF), 87–89
Label driven optical biosensor, 227–229	Liquid-assisted extrusion, 299–300
nanocellulose-based colorimetric	Lithium-ion batteries, 496–497
biosensors, 231–233	Lithium-ion battery (LIB) separator
nanocellulose-based fluorescent	membrane, 459–460
biosensors, 230–231	Low-density polyethylene (LDPE), 290–291
Label-free optical biosensor	291 <i>t</i>
identification methods, 228	Lung disease, 248–249
nanocellulose-based label-free biosensors, 228–229	M
Raman spectroscopy technique, 228	Magnetic iron nanoparticles modified
recognition mechanisms, 227–228	microfibrillated cellulose (FeNP/
refractive index variations, 228	MFC), 421–425
Lactic acid, 80–81	Magnetic nanocellulose aerogels, 426, 428
Laminated veneer lumber (LVL), 86	Malachite green (MG) dyes, 427–428
Layer-by-layer spraying process, 225 Leather-inspired nanocellulose-based films,	Malachite green isothiocyanate (MGITC), 229
383–384	Malaysian GLP compliance program, 252
Lemongrass essential oil, 322	Maleic anhydride (MA), 297–298
Level-off level of polymerization (LODP),	Maleic anhydride grafted polypropylene
161–162	(PPgMA), 302–303
Light-emitting diode (LED), 25–26	Mechanical fibrillation, 41
Lignin, 42–43, 47, 50–51	Mechanical homogenization method, 485
adhesive production, raw material for,	Mechanical refining, 12
77–78	Medium-density fiberboard (MDF), 82, 83 <i>f</i> ,
building blocks of, 56, 56f	85, 85 <i>t</i>
definition, 55	Melamine formaldehyde (MF) adhesive, 74
distribution of, 55–56	condensation reaction, 73, 74f
formaldehyde crosslinking, 77–78, 78f	disadvantage, 73
nanolignin, 60–61	for exterior use boards, 73
Lignocellulosic biomass, 2–3, 50, 354, 356f	Melamine urea formaldehyde (MUF)
for environmental remediation, 198–199	adhesive, 73
	441100110, 10

Melt compounding method, 327–330, 328 <i>t</i> ,	properties, 101–105
332	published studies, 101–105, 102–104 <i>t</i>
PA11 and PA11/CNC nanocomposite film,	single-walled and multiwalled CNTs, 106
330–331, 331 <i>f</i>	three-dimensional nanocellulose/
TPU/CNC nanocomposites, 332, 332f	nanocarbon composites, 106–107
Melt processing, 108	two-dimensional composites, 106
Mesothelioma, 248	Nanocellulose (NC), 2, 51–53, 58–60,
Metal-based nanocomposites, 90–95, 92–94 <i>t</i>	179–180
Metal-matrix composites, for automotive	acid hydrolysis, 440
applications, 457–460	adhesives, reinforcements in, 68–69
Metal nanoparticles, 228–229	bioresins, 77–81
Metal oxide gas sensor, 218–219	thermoplastic resins, 75–77
Metal oxide/inorganic based nanocomposites,	thermosetting resins, 69–75
100	aerogels, 201, 494 (see Aerogels)
CdTe QDs, 101	applications, 52, 60, 107, 156, 169–170,
cellulose nanofiber (CNF)-hydroxyapatite	214, 376
(HAP) composite foam, 101	biochemical applications, 160
copper oxide nanoparticles (CuO NPs),	biomedical applications (see Biomedical
99–100	applications, nanocellulose in)
magnetic nanoparticles, 100	composite materials applications, 160
mineral salts, 101	in food industry (see Food industry,
published studies, 95, 96–98t	nanocellulose in)
quantum dots (QDs), 100–101	sensor applications (see Sensors)
zinc oxide nanoparticle (ZnO NP), 99	surface coatings, 179
Metal oxides (MOx) chemical sensors, 220	in textiles (see Textile industry,
Methacryloxy silane, 182, 184f	nanocellulose application in)
<i>N,N'</i> -Methylene bisacrylamide (MBA), 144	automotive applications (see Automotive
Methylene blue dye, 427–428	applications, nanocellulose)
Methylol phenol, 70	bacterial cellulose (BC) nanoribbons (see
Methyl paraben (MePRB), 221–222	Bacterial nanocellulose (BNC))
Microelectromechanical systems, 492–494	as bio adsorbent, 214–215
Microfibrillated cellulose (MFC). See	as bioadsorbent, 410, 420–430
Cellulose nanofibers (CNF)	from biological wastes, 14, 15f, 16t
Military appliances, nanocellulose in,	ginger, 15, 17f
403–404	kenaf, 16–18, 18 <i>f</i>
Modulus of elasticity (MOE), 87–89	sugarcane bagasse nanocellulose
Modulus of rupture (MOR), 87–89	(SBCN), 19, 19f
Multimetal nanoparticles, 221	sugar palm fiber (SPF), 10, 11f, 19–20,
Multiwalled carbon nanotubes (MWCNTs),	20 <i>f</i>
226	water hyacinth, 16, 18f
MXene nanosheets, 226	bionanocomposites, applications of (see
N.Y.	Bionanocomposites)
N	biosynthesis process, 486
Nanobentonite incorporated nanocellulose/	bone repair and regeneration (see Bone
chitosan aerogel, 421–425	tissue regeneration and repair)
Nanocarbon based nanocomposites, 105–106	bottom-top approach, 200
applications, 101–105	characteristics, 4–5, 5 <i>t</i> , 214–215
composite films, 106	chemical pretreatment, 482
one-dimensional composites 106	chemical structure of 2-3 3f

Nanocellulose (NC) (Continued)	Nanocellulose aerogel foam/dodecylsulfate
commercial use, drawback of, 469-470	(NAF/SDS), 428
composites, reinforcements in (see	Nanocellulose-carbon nanotube (CNT)-based
Composites, nanocellulose	composite, 491
reinforcement in)	Nanocellulose-graphene matrix composites,
cytotoxicity studies, 249–250, 251t	491
definition, 4–5, 156, 200, 440, 482 disadvantage, 339–340	Nanocellulose/graphene oxide composites, 421–425
in electronic applications (see Electronic	Nanocellulose/nanoalumina (NC/Al ₂ O ₃)
applications, nanocellulose in)	aerogels, 429
extraction, from cellulose fiber, 482, 483 <i>f</i>	Nanocellulose nanocomposites (NNC)
features, 4–5, 160, 397	for automotive application
functionalization, 417–418	adoption, 446
heavy metals adsorption (see Heavy	biocomposites, 443–445
metals, as chemical contaminants)	biodegradable materials, 444
history of, 158–160	bioplastics, 443–445 crystalline cellulose with other
nanocrystalline cellulose (NCC) (see	
Cellulose nanocrystals (CNC))	reinforcements, 445, 446 <i>t</i>
nanofibrillated cellulose (NFC) (see	lightweight and carbon neutral, 447–448
Cellulose nanofibers (CNF))	nanomaterials, 445–446
nano-product, 397	polymers, 444
natural fibers, pretreatment of, 9, 9f	pulp, 447
acid hydrolysis, 9–10	research development and technological
alkali treatment, 10, 11f	innovation, 446–447
deep eutectic solvents (DESs), 12	thermoplastic composites, 447–451, 449 <i>f</i>
enzymatic pretreatment, 10–12	thermosetting composites, 450–451
ionic liquids (IL), 12	in coating materials, 192
mechanical refining, 12	air resistance, 187–189, 189 <i>f</i>
organic solvents, 12	applications, 192, 193 <i>f</i>
2,2,6,6-tetramethylpiperidine-1-oxyl	corrosion resistance, 189–190
(TEMPO)-mediated oxidation, 10	crack resistance, 190, 191f
preparation, from forest residues, 13–14,	glass and aluminum substrates, 182
13 <i>f</i>	hemp fiber, 180
production of, 397	mechanical resistance properties,
properties of, 6 <i>f</i> , 27, 52, 58–60, 107,	185–187
156, 171, 179, 214–215, 354, 376,	polarized optical microscopy, 190–191,
470–471, 482, 487–488	191 <i>f</i>
crystallinity percentage/degree of	silane, surface modification with,
crystallinity, 5	180–182, 181 <i>f</i>
degree of polymerization (DP), 6–7	steel substrates, 182–184
extraction sources, 7, 8t	water absorption properties, 189, 190f
mechanical characteristics, 6–7	water uptake and permeability, 191-192,
morphology, 6	192 <i>f</i>
thermal stability, 7	electronic applications
in pulp and paper industry (see Paper-	conductive composites, 491–492
based products, nanocellulose in)	electrical properties, 491
sources, 4–5, 59–60, 107, 160	lithium-ion batteries, separator of,
top-bottom approach, 200	496–497
types of, 2–4, 3f, 214–215	mechanical properties, 487–490

organic field-effect transistors	oil palm empty fruit bunch (OPEFB), 316.
(OFETs), 496	317f
organic light-emitting diodes	oil palm fronds (OPF), 316
(OLEDs), 496	oil palm kernel shell (OPKS), 316, 317f
piezoelectric and electroactive effect,	palm oil mill effluent (POME), 316, 317f
492–494	Oil palm empty fruit bunch (OPEFB), 247,
supercapacitors (SC), 494, 495t	316, 317 <i>f</i>
thermal properties, 490–491	Oil palm fronds (OPF), 316
thin film transistors (TFTs), 494–496	Oil palm kernel shell (OPKS), 316, 317f
in textiles (see Textile industry,	Oil palm mesocarp fiber (OPMF), CNF
nanocellulose application in)	production from, 47
Nanocellulose/silica hybrid (CSH), 402	characterization analysis, 41
Nanocrystalline cellulose (NCC). See	economic analysis, 41
Cellulose nanocrystals (CNC)	economic evaluation, by SHS-WDM and
Nanofibrillated cellulose (NFC). See	KOH-WDM
Cellulose nanofibers (CNF)	capital expenditure (CAPEX), 45, 46t
Nanofilms, 383–384	components, 44–45, 44 <i>t</i>
Nanomaterials, 410, 417	operating expenditure (OPEX), 45, 46 <i>t</i>
Nanoparticle-reinforced plywood panels, 87–89	profitability analysis, 45, 46 <i>t</i>
Nanosafety, of cellulose nanofiber, 245–246,	hemicellulose removal, SHS and KOH
257	pretreatments for, 40–41
aquatic test system, 254–256	mass balance, by SHS-WDM and KOH-
cellular test system, 249–250	WDM, 43, 43 <i>f</i>
industry and consumer products,	materials, 40
application of, 247–249 mammalian test system, 250–254	mechanical fibrillation, 41 SHS- and KOH-treated CNFs, properties
physicochemical characterization, CNF	of, 41–43, 42 <i>t</i> , 43 <i>f</i>
suspension, 246	untreated, SHS-and KOH-treated pulps,
Natural dyes, 411, 413 <i>f</i>	properties of, 41–42, 42 <i>t</i>
Natural fibers, 440, 460	Oil palm mesocarp fruit (OPMF), 316, 317f
components of, 439–440	Oil-water separations, CNC aerogels for,
definition, 9	146–147
lignocellulosic fibers, 2	Open circuit potential (OCP), 189–190
polymeric materials reinforced with, 445	Operational expenditure (OPEX), 41, 45,
pretreatment of, 9–12, 9f	46 <i>t</i>
reinforced epoxy composites, 451–452, 452f	Optical biosensors, 215
sources, 439–440	applications, 227
Natural polymer nanocomposites, 469–470	label-driven biosensors, 227–229
Nitrogen dioxide (NO ₂) gas sensor, 216–217	nanocellulose-based colorimetric
Nontoxic chemical sensor, 221	biosensors, 231–233
Novolac type adhesives, 70–71	nanocellulose-based fluorescent
	biosensors, 230–231
0	label-free optical biosensor
Offset printing method, 380	identification methods, 228
Oil palm biomass (OPB), 198–199, 315–316	nanocellulose-based label-free
chemical composition of, 316, 317 <i>t</i>	biosensors, 228–229
CNF production, from OPMF (see Oil	Raman spectroscopy technique, 228
palm mesocarp fiber (OPMF), CNF	recognition mechanisms, 227–228
production from)	refractive index variations, 228

Optoelectronic devices, 496	poly lactic acid (PLA), 168-169
Oral toxicity safety study, 252	polymer/CNF composites (see Polymer
Organic aerogels, 141	reinforced CNF composites)
Organic field-effect transistors (OFETs), 496	polymer framework filler, 168–169
Organic light-emitting diodes (OLEDs),	properties, 168
25–26, 25 <i>f</i> , 496	protective material for food, 357
Organic oils, 412, 428–430	surface modification, 168–169
Organic pollutants, 410	synthetic packaging material, 311–312
Organic solvents, 12	tocopherol, 321
Organic substances, 50, 57	Pad-dry-cure method, 402
Organisation for Economic Co-operation and	Palm cellulose ash, 219–220
Development (OECD) test guidelines,	Palm oil mill effluent (POME), 316, 317f
246, 249–256	Paper-based NO ₂ graphite electrode
Organochlorines, 412, 414t	molecular sensor system, 218
Organophosphorus, 412, 414t	Paper-based products, nanocellulose in, 381,
Organosolv, 12	388
Oriented strand board (OSB), 82–85, 83 <i>f</i> , 84 <i>t</i>	casting methods
Otolith/collagen-BC nanocomposites,	aqueous casting solution, 378–379
474–476	nonaqueous casting solution, 378–380
Oxidative stress, 256, 257f	challenges, 386–387
	coating process, 380
P	filtration and papermaking processes, 381
Packaging, nanocellulose in	nanofilm, 383–384
antioxidants, 320–321	packaging paper, 383
banana pseudostem fibers, nanofilm from,	paper sheet making, application in,
384	382–383
biocomposite packaging film, 321–323	properties, 384–386
biodegradable guar gum/nano-crystalline	Paraformaldehyde, 78
films, 318	Parallel-strand lumber (PSL), 86
biodegradable polymers, 357–359, 360 <i>t</i>	Particle-based wood composites
bio-nanocomposite films, 318	oriented strand board (OSB), 82–85, 83 <i>f</i> , 84
bionanocomposites, 16 <i>t</i> , 21, 22 <i>t</i> , 23–24 <i>f</i> ,	particleboard, 82–83, 83 <i>f</i> , 84 <i>t</i> , 87–89
357–364, 370	Particleboard, 82–83, 83 <i>f</i> , 87–89
biopolymers, 311–312	classification of, 83, 84 <i>t</i>
carrageenan, 313–315	definition, 83
cellulose (see Cellulose)	disadvantage of, 83
plasticizers, 319–320	Passive cooling system, 482
starch, 312	PEG- <i>block</i> -polyethylene (PEG- <i>b</i> -PE), 296
cellulose, 359	Peptide-nanocellulose aerogel (PepNA), 146
films, 168–170	Percolating stiff nanoparticle network, 489
hydroxypropyl guar/cellulose-nanofibrils	Peroxidation process, 400–401
composite films, 318	Petrochemical-based plastics, 311–312
natural nano-cellulose reinforced polymer	Petroleum-based packaging, 357
nano-composite, 318	Petroleum polymers, 311–312
paper, 168–170, 383	1,10-Phenanthroline (PHEN) sensor, 221
petroleum-based packaging, 357	Phenol-formaldehyde (PF) resin, 69, 87–89
petroleum polymers, 311–312	adhesives
plastic materials, 311–312	disadvantages of, 71
plastic packaging, 357–359	features of, 70
r	10000100 01, 70

novolac type adhesives, 70–71	Polyethylene (PE), 290–291, 291 <i>t</i> , 327, 328 <i>t</i> ,
preparation methods, 70–71	357–358, 448–450
resole adhesive, 70	Poly(3,4-ethylenedioxythiophene)-
viscosity, solids content and gel time, increase in, 69	poly(styrenesulfonate)(PEDOT-PSS), 225–226
alkaline and acidic condensation reaction,	Polyethylene glycol (PEG), 100
70, 71 <i>f</i>	Poly(ethylene glycol) (PEG) hydrogels, 268
production of, 70	Polyethylene-grafted-maleic anhydride
Phenolic alcohol, 70	(<i>PEg</i> MA), 297–298, 297 <i>f</i>
Phenolic compounds, 58	Polyethylene terephthalate (PET), 357–358
Phenol resorcinol formaldehyde (PRF)	Polyhedral oligomeric silsesquioxane
adhesive, 70, 74	(POSS), 402
Phenols, 412, 414 <i>t</i>	Polyhydroxyalkanoates (PHA), 294–295, 364
Phosphoric acid hydrolysis, 329–331	Poly(3-hydroxybutyrate) (PHB), 294–295, 364
Phthalate plasticizers, 319	Poly(3-hydroxybutyrate-co-3-
Physisorption, 415–417	hydroxyhexanoate) (PHBHHx),
Pickering emulsions, 165–166	294–295
Piezoelectric nanocellulose/graphene-based	Poly(3-hydroxybutyrate-co-3-
sensors, 215	hydroxyvalerate) (PHBV), 294–295,
Plant nutrients, 412, 414 <i>t</i>	330
Plasticizers, 319, 361–363	Poly(3-hydroxyhexanoate) (PHHx), 294–295
glycerol, 320, 320 <i>t</i>	Poly(3-hydroxyoctanoate) (PHO), 295
ionic liquid-like 1-allyl-3-	Poly(itaconic acid/methacrylic acid)-
methylimidazolium chloride,	grafted-nanocellulose/nanobentonite
328–329	composite, 421–426
natural plasticizers, 319	Polylactic acid (PLA), 168–169, 380
phthalates, 319	antioxidant active packaging, 323
Plastic materials, 311–312	cellulose nanocrystal (CNC), 330, 330f
Plastic polymers, 357–359	cellulose nanofiber (CNF), 293–294
Plywood, 82, 83f, 86–89	food packaging applications, 363
Polarized optical microscopy, 190–191, 191 <i>f</i>	nanocomposites, 448–450
Polyacrylamide (PAAM) hydrogels, 264,	3D printed composites, 489
268	Poly(lauryl metachrylate)-block-polye(2-
Polyacrylic acid (PAA) hydrogels, 264, 268	hydroxymethyl methacrylate)
Polyamide hot melt adhesives, 76	(PLMA- <i>b</i> -PHEMA), 296
Polyamides, 330–331, 331 <i>f</i> , 446	Polymer aerogels, 148
Polyaniline (PANi), 226	applications, 141, 142f
Polybutylene adipate terephthalate (PBAT),	biopolymers/natural polymers, 140, 143
448–450	carbon/carbide-based aerogels, 141
Polycaprolactone (PCL) monomer, 298	cellulose and nanocellulose-based aerogels
Poly-(diallyldimethylammonium chloride)	(see Cellulose, aerogels)
(PDDAC), 233	cross-linked chemical structure, 140, 141f
Polydimethylsiloxane (PDMS) composite,	definition, 140
225	hybrid aerogels, 141
Polydimethylsiloxane (PDMS)/graphene	inorganic/organic aerogels, 141
(GR) hybrids, 221–222	macro and microscale, microporous
Polydopamine, 272	structure, 140, 141 <i>f</i>
Polyester fabric, 402	synthesis, stages for, 141–142, 142f
Polyesters, 446	synthetic polymers, 140–143

Polymer composites/nanocomposites, 81–82,	internal melt-blending, 300–301, 300f
107–109	one-pot extrusion, 302–303
applications, 89	selection of, 298
bio-nanocomposite films, 318	solvent casting, 301
carbon-derived nanoparticles, 90	polyethylene (PE), 290–291, 291 <i>t</i>
conductive nanomaterials, 90	poly(hydroxyalkanoates) (PHA), 294–295
hydroxypropyl guar/cellulose-nanofibrils	polylactic acid (PLA), 293–294
composite films, 318	polypropylene (PP), 291–292, 292 <i>t</i>
mechanical properties of, 487–490	polystyrene (PS), 292–293
melt processing, 108	polytetrafluoroethylene (PTFE), 293
metal-based nanocomposites, 90–95,	polyvinyl chloride (PVC), 293
92–94 <i>t</i>	surface modification strategies, 295–296
metal oxide/inorganic based	covalent modification, 296
nanocomposites, 100	noncovalent modification, 296
CdTe QDs, 101	polymer grafting, 296–298, 297f
cellulose nanofiber (CNF)-hydroxyapatite	Poly(methacrylic acid-co-maleic acid)
(HAP) composite foam, 101	grafted nanofibrillated cellulose
copper oxide nanoparticles (CuO NPs),	(NFC-MAA-MA) aerogel, 421–425
99–100	Polymethylene diisocyanate, 75
magnetic nanoparticles, 100	Polyolefins, 446
mineral salts, 101	Polyphenols, 322
published studies, 95, 96–98t	in bearberry extract, 322–323
quantum dots (QDs), 100–101	from green tea extract, 323
zinc oxide nanoparticle (ZnO NP), 99	Polypropylene (PP), 291–292, 292 <i>t</i> , 448–450
nanocarbon based nanocomposites,	in food packing, 357–358
101-107, 102-104t	nanocomposites, 25
natural nano-cellulose reinforced polymer	Polysaccharide films, 383–384
nano-composite, 318	Polysaccharides, 269
problems of, 108	Polystyrene (PS), 292–293
production techniques, 108	in food packing, 357–358
solution casting method, 108	Polytetrafluoroethylene (PTFE), 293
thermally stable CNC reinforced with,	Polyurethane BC nanocomposites, 473–474
330, 332–333	Polyurethane (PU) sponge sensor, 226
polyamide (PA), 330–331, 331 <i>f</i>	Polyvinyl acetate (PVA) adhesives, 76–77, 77
polylactic acid (PLA), 330, 330f	Poly(vinyl alcohol) (PVA), 146–147, 225
polypropylene (PP), 331–332	Polyvinyl alcohol (PVA)/CNF hydrogel, 224
thermoplastic polyurethane (TPU), 332,	Poly(vinyl alcohol) (PVA) hydrogels, 268
332 <i>f</i>	Polyvinyl alcohol (PVA) nanocomposites,
Polymer grafting strategy	379, 448–450, 449 <i>f</i>
"grafting from" approach, 298	Polyvinylchloride (PVC), 293, 357–358
"grafting onto" approach, 296–298, 297f	Polyvinylidene chloride (PVdC), 168
Polymeric 4,4'-diphenylmethane diisocyanate	Porous materials
(pMDI), 75	characteristics, 139
Polymer reinforced CNF composites, 290,	polymeric materials
303	aerogels (see Aerogels)
fabrication methods, 298	applications, 139
compression molding, 302	Potassium hydroxide (KOH) pretreatment,
extrusion, 298–300	40–42
injection molding, 301–302	Pressure sensor, 492

Printing paper	acoustic wave-based sensor, 215
cellulose nanofiber, impact of, 368–369	biosensors (see Biosensors)
paper packaging market growth, 367	challenges, 234–235
paper strength, factors affecting, 367–368	chemical sensor, 215, 219–223
Profitability analysis, 45, 46t	future research, 235
Protein-based edible film, 364	gas sensor, 215–219
0	optical sensors, 215
Q	piezoelectric nanocellulose/graphene-
Quantum dots (QDs), 100–101	based sensors, 215
Quartz glass microbalance (QCM), 215	pressure sensor, 492
_	strain sensors, 223–226
R	temperature sensor, 492
Raman spectroscopy technique, 228	nanomaterials, 214
Reactive dyes, 401–402	role, 213
Reactive POSS (R-POSS), 402	types, 214
Refining, 368	Separation applications, CNC aerogels for,
Refractive index biosensing systems, 228	146–147
Regenerated cellulose nanofibers (RC), 440	Shake-flask method, 400–401
Regenerated nanocellulose bioadsorbent,	Sheet molding compound (SMC),
420–421	441–442
Resin, 57	Silanization, of CNF, 296
bioresins, 77–81	Silica aerogels, 141–142
thermoplastic resins, 75–77	Silk fibroin hydrogels, 269–271
thermosetting resins, 69–75	Silver-based nanocomposite, 91, 92–94 <i>t</i> , 95
Resole type phenol formaldehyde adhesive,	Silver parametricles (AgNPs), 219, 492
70	Silver nanoparticles—reduced graphene oxide
Resorcinol adhesives, 69	(Ag/rGO) sheets, 399–400, 399 <i>t</i> Silver nanowires (AgNWS), 496
Resorcinol formaldehyde (RF) adhesive, 74,	Silylated graphene oxide-grafted chemical-
74 <i>f</i>	modified nanocellulose (Si- GO-g-
Respirable airborne fibers, 248–249	CMNC), 222
Response surface methodology (RSM),	Silylated NFC reinforced polypropylene (PP)
202–203, 363	composites, 490
Rhodamine B (RhB) dyes, 426	Skin corrosion/irritation safety study,
Rosemary extract, 322–323	253–254
a	Skin sensitization safety study, 253–254
S	Sodium alginate/gelatin hydrogels, 269
Salt spray, 189–190	Sodium bicarbonate modified cellulose
Seaweeds	nanocrystal, 421–425
carrageenan (see Carrageenan)	Sodium chlorite (NaClO ₂), 40–41
and cellulose, compatibility between,	Sodium dodecyl sulfate (SDS), 233
318–319	Sodium hydroxide (NaOH), 267
definition, 313	Sodium metaperiodate, 163–164
Self-healing stress sensors, 223–224	Sol-gel process, 141, 142 <i>f</i> , 144, 147
Sensors	Solution casting method, 108
categories of, 214	Solvent casting method, 301, 327, 328 <i>t</i> , 332,
cellulose, 214	332 <i>f</i>
functions, 214	Soy protein adhesive, 79–80
nanocellulose application in	Soy protein isolate-NCC film, 364

Specialty papermaking, 354	Surface plasmon resonance (SPR), 228–229
nanocellulose biocomposites in	Surfactant materials, 95
food packaging applications (see	Synthetic dyes, 411, 413 <i>f</i> , 426
Packaging, nanocellulose in)	Synthetic polymers, 140–143
high durability paper, 364–367	T.
printing paper, 367–369	T
popular companies, in production, 354,	Tannin-based adhesives, 78–79, 79f
355 <i>t</i>	Tea polyphenol-loaded chitosan
Spectrophotometers, 219	nanoparticles, 322
Stabilizing agent, nanocellulose as, 165–166	Temperature sensor, 492
Starch, 312, 361–363	TEMPO-oxidized cellulose nanofiber
Static cultivation method, 68	(TOCN), 490–491
Steel substrates, 182–184	TEMPO oxidized-cellulose nanofibrils
Strain sensors	(TOCNFs)-gold nanoparticles,
applications, 223	427–428, 427 <i>f</i>
electro-conductive hydrogels (ECHs),	Tensile index, 187, 188 <i>f</i>
223–224	Tetracycline hydrochloride, 272
nanocellulose strain sensor, 224–226	2,2,6,6-Tetramethylpiperidine-1-oxyl
piezoresistive and piezo capacitive	(TEMPO)-mediated oxidation, 6–7,
properties, 223	10, 64, 161–164, 267, 377–378
self-healing stress sensors, 223–224	Textile industry, nanocellulose application in
stretchable and conductive materials, 223	397, 404–406
stretchable strain sensors, 223–224	challenges, 404
technological shortcomings, 223	features, 398
uses, 223	functionalized nanocellulose
Strengths, weaknesses, opportunities, and	antimicrobial properties, 400–401, 401t
threats (SWOT) analysis, 387	dye, adsorption kinetics of, 401–402
Stretchable strain sensors, 223–224	goals, 398
Succinic anhydride modified cellulose	grafting process, 398
nanocrystal, 421–425	surface modification, chemical
Sugarcane bagasse nanocellulose (SBCN),	functionalities, 398
19, 19 <i>f</i>	thermal insulation properties, 398–400,
Sugar palm fiber (SPF), 10, 11 <i>f</i> , 19–20, 20 <i>f</i>	399t
Sugar palm nanocrystalline celluloses	textile-related industry
(SPNCCs), 19–20, 20f	medical tools, 402–403
Sulfonation, 91–95	military sector, 403-404
Sulphuric acid hydrolysis, 66, 162–163, 328,	Thailand GLP Monitoring Programme, 253
329t, 332	Thermal conductivity (TC), of nanocellulose
Supercapacitors (SC), 494, 495t	398–400, 399 <i>t</i>
Supercritical drying, 141–142	Thermal management, of electronic material
Superheated steam (SHS) pretreatment,	devices, 482
40–42	Thermogravimetric analysis (TGA), 19–20
Superhydrophobic coating, 185–187	Thermogravimetry analyzer, 41
Supermolecular aerogel (SA), 218, 226	Thermoplastic composites, for automotive
Suprathel, 343–344	applications, 447–450, 449f
Surface enhanced Raman scattering (SERS),	Thermoplastic polyurethane (TPU), 332,
215, 228–229	332 <i>f</i>
Surface-modified nanocellulose	Thermoplastic polyurethane (TPU)
bioadsorbent, 420–421	membranes, 226

Thermoplastic resins	Tricyanofuran-hydrazone (TCFH), 232–233,
automotive application, 448	232 <i>f</i>
hot melt adhesives	Twin-screw extrusion technique, 25
applications, 75	
characteristics, 75	U
ethylene-vinyl acetate (EVA)	Ultra-high molecular weight polyethylene
copolymer, 75–76, 76 <i>f</i>	
features, 75	(UHMWPE), 290–291
high viscosity, 75–76	Ultrasonication, 329, 329t
polyamide adhesives, 76	Ultrasonic pulse-echo process, 225
polyvinyl acetate (PVA) adhesives, 76–77,	Urea biosensor, 232
77f	Urea formaldehyde (UF) adhesives, 69,
Thermoplastic starch, 361–363	71–73, 87–89
Thermosetting resins	advantages, 71
aminoplastic adhesives, 69	cellulose nanocrystals (CNC), interaction
condensed adhesives, 69	with, 87–89
formaldehyde, 69–70	cellulose nanofibers (CNF), 87
isocyanate adhesives, 74–75, 75 <i>f</i>	curing in, 72
melamine formaldehyde (MF) adhesive,	formaldehyde emission, 72–73
	hardening reaction, 72–73
73–74, 74 <i>f</i> melamine urea formaldehyde (MUF)	for interior use, 72
	particleboard panels bonded with, 87
adhesive, 73	polymeric condensation reaction, 71–72, 73f
phenolic resins (<i>see</i> Phenol-formaldehyde	powder, 72
(PF) resin)	production of, 72
phenol resorcinol formaldehyde (PRF)	structure, 72–73
adhesive, 74	synthesis, 72, 73 <i>f</i>
resorcinol formaldehyde (RF) adhesive,	
74, 74 <i>f</i>	V
urea formaldehyde (UF) adhesives (see	Veneer-based wood composites, 85
Urea formaldehyde (UF) adhesives)	glue-laminated timber (Glulam), 86–89
Thickness swelling (TS), 87–89	laminated veneer lumber (LVL), 86
Thin film transistors (TFTs), 494–496	parallel-strand lumber (PSL), 86
2-Thiobarbituric acid-reactive substances	plywood, 82, 83 <i>f</i> , 86–89
(TBARS), 322	Vinyl acetate, 76
Thiolated-SNC, 421–425	Viscoelastic polymers, 223
Three-dimensional (3D) printing, 270–271,	Vitamin E. See Tocopherol
340–341, 474, 475 <i>f</i>	Vitanini L. See Tocopheror
TiB ₂ -reinforced Ti matrix composite, 457	W
TiO ₂ nanoparticles, 417	
Tissue engineering (TE), 341–342	Waste sulfide spent liquor (SSL), 77–78
for bone repair and regeneration, 469–476,	Wastewater remediation. See Water
473f, 477t	contaminants
nanocellulose hydrogels, 270–271	Water contaminants
Titanium oxide (TiO_2) , 217	adsorption process, 415–417
Tocopherol, 321	classes, 413–414
Tooth-mixing element (TME) screw,	purification procedures, 413–414
302–303, 302 <i>f</i>	Water hyacinth nanocellulose, 16, 18f
Transmission electron microscopy (TEM),	Water-soluble polymer, 448
19–20	Weather sensors, 234

Wet disk milling (WDM), CNF production	bacterial nanocellulose (BNC), 343,
mechanical fibrillation, 41	402–403
SHS- and KOH-treated CNFs, properties	hydrogels, 271–272
of, 41–43, 42 <i>t</i> , 43 <i>f</i>	plant-derived nanocellulose,
SHS-WDM and KOH-WDM methods	343–344
economic evaluation, 44–45, 44t	textile used for, 400
mass balance, 43, 43f	
Wet-spinning method, 106–107	X
Wood-based composites, 81–82	X-ray diffraction (XRD), 19–20
component of, 82	real ray diffraction (MND), 17 20
disadvantages of, 82–83	Y
general elements in, 82, 82f	
medium-density fiberboard (MDF), 82,	Young's modulus, 182, 183 <i>t</i>
83 <i>f</i> , 85, 85 <i>t</i>	_
particle-based wood composites	${f Z}$
oriented strand board (OSB), 82-85,	Zebrafish (Dania rerio), 254–256, 257f
83 <i>f</i> , 84 <i>t</i>	Zeolitic imidazolate framework-67 (ZIF-67)
particleboard, 82–83, 83f, 84t, 87–89	modified bacterial cellulose/chitosan
veneer-based wood composites, 85	(BC/CH) composite aerogel, 427–428
glue-laminated timber (Glulam), 86–89	Zinc oxide (ZnO)
laminated veneer lumber (LVL), 86	functionalized ZnO/CNC, bacteriostatic
parallel-strand lumber (PSL), 86	effect of, 400–401
plywood, 82, 83f, 86–89	nanomaterials, 220
Wound dressing applications, 337–338,	nanowire sensor, 218
342–343	plasma treatment, 401
animal-derived nanocellulose, 344	Zinc oxide nanoparticle (ZnO NP), 96–98t,
antimicrobial substances, 344, 345–346t	99