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Abstract. Scoring tools are often used to predict patient severity of illness and mortality in 
intensive care units (ICU). Accurate prediction is important in the clinical setting to ensure 
efficient management of limited resources. However, studies have shown that the scoring tools 
currently in use are limited in predictive value. The aim of this study is to develop a machine 
learning (ML) based algorithm to improve the prediction of patient mortality for Malaysian ICU 
and evaluate the algorithm to determine whether it improves mortality prediction relative to the 
Simplified Acute Physiology Score (SAPS II) and Sequential Organ Failure Assessment Score 
(SOFA) scores. Various types of classification algorithms in machine learning were investigated 
using common clinical variables extracted from patient records obtained from four major ICUs 
in Malaysia to predict mortality and assign patient mortality risk scores. The algorithm was 
validated with data obtained from a retrospective study on ICU patients in Malaysia. The 
performance was then assessed relative to prediction based on the SAPS II and SOFA scores by 
comparing the prediction accuracy, area under the curve (AUC) and sensitivity. It was found that 
the Decision Tree with SMOTE 500% with the inclusion of both SAPS II and SOFA score in 
the dataset could provide the highest confidence in categorizing patients into two outcomes: 
death and survival with a mean AUC of 0.9534 and a mean sensitivity 88.91%. The proposed 
ML score were found to have higher predictive power compared with ICU severity scores; SOFA 
and SAPS II. 

Keywords. Machine learning, Mortality prediction, Severity, SAPS II score, SOFA score; 
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1. Introduction 
Scoring systems are often used in the Intensive Care Unit (ICU) to assess the severity of the disease, 
compare ICU performances, in research and to predict mortality [1-3]. Prediction of patient mortality 
and severity is crucial for clinicians to make sound medical decisions for patient and resource 
management; which includes treatment, prevention and efficient allocation of limited resources. This is 
a necessity in busy ICUs since medical resources such as limited number of doctors, nurses and facilities, 
may not be sufficient for all the patients to be instantaneously attended to. A scoring model can stratify 
acutely ill patients who would more urgently require such resources and potentially benefit from it thus 
improving allocation of resources, clinical decision making leading to a better quality of care in the ICU. 

Numerous scoring models have been developed to assess and characterize the severity of illness of 
critically ill patients. The scores generally belong to one of two categories [1-4]: (1) scores that aim to 
quantify the level of organ dysfunction daily during ICU stay, for example the Sequential Organ Failure 
Assessment (SOFA) [5] (2) score that aims to predict mortality based on parameters upon ICU 
admission or during the first 24 hours of ICU stay, for example, the Simplified Acute Physiology Score 
(SAPS II) [6]. 

The Sequential Organ Failure Assessment (SOFA) score was developed to describe changes in organ 
function and sequence of complications in the critically ill. The score is based on 6 variables; respiration, 
coagulation, liver, cardiovascular, renal and central nervous system (Glasgow Coma Score). A score of 
0-4 is assigned for the six organ systems which describes the worst values for every 24-hour period in 
the ICU. Although the score was not designed to predict mortality, an association between increasing 
initial organ-specific SOFA scores and mortality has been suggested since mortality rate is related to the 
degree of organ dysfunction [4, 5] 

The Simplified Acute Physiology Score (SAPS II) was developed and validated using data from 137 
ICUs from 12 countries in a European and North American cohort (n = 13,152) [6]. The mortality risk 
is estimated based on the sum of the score. The score includes 17 variables consisting of 12 physiological 
variables, type of admission (scheduled/unscheduled surgical or medical), age and 3 underlying disease 
variables hematologic malignancy, metastatic cancer and acquired immunodeficiency syndrome). 

To this day, scoring tools such as SAPS II and SOFA scores remain widely used in clinical practice 
and have been known to discriminate survivors and non-survivors well [7]. Inevitably, these models 
reflect the medical culture and the population characteristics which they originate from. The SAPS II 
severity score for mortality estimation, was developed from a large sample of ICU patients from North 
America and Europe [5, 6]. Although the methods have been showed to adapt well and result in good 
discrimination when applied to new populations from other institutions, external validation studies 
performed in various countries have shown that even recent versions of critical warning scoring tools 
are not adequately calibrated and have large variability in accuracy across various diseases and 
populations [8-13] 

These scoring models, were not designed to be sensitive to the underlying physiology of individual 
patients and does not factor in variations in patient information trends [5]. This is problematic when 
applying predictions to a larger scale due to the complex and heterogeneous mixture of patients and 
diagnoses thus leading to locally-customised variants of these scores to improve prediction. As a result, 
the performance of SAPS II, for example has been found to be affected by case-mix [3] [14] and national 
differences. This has led to the development of various versions of SAPS. For example, there has been 
research studies to specifically tailor to France, to Southern Europe and Mediterranean countries and to 
Central and Western Europe (see [15-17]) and for very elderly ICU patients [18]. 

Furthermore, these scores do not account for changes in diagnostic, therapeutic and prognostic 
techniques. The SOFA and SAPS II score for example were developed in 1996 [5] and 1993 [6] 
respectively. There has been much progress in diagnostic, therapeutic and prognostic techniques since. 
Thus, to ensure accuracy of the scoring models in today's ICU, there’s is a need for the current scoring 
models to be continuously updated as new diagnostic, therapeutic and prognostic techniques are 
developed [1]. 
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In this study, we aim to develop a novel ML score for risk stratification of critically ill patients 
presented to the Malaysian ICU for mortality prediction. Instead of developing locally-customized 
variants of the common scoring tools, we will leverage the use of multidimensional analysis which 
includes various parameters, such as physiological measurements, admission types etc., as well as SAPS 
II [6] and SOFA [1] scores, all data which are readily available in the Malaysian ICU database to 
improve accuracy of prediction. We will also show that including SAPS II and SOFA scores will 
improve ML prediction for patient mortality. 

2. Methodology 

2.1. Study design and patient recruitment eligibility  
A prospective, nonrandomised, observational cohort study was implemented consisting of a database of 
28,790 critically ill patients above the age of 18 years old, admitted to four hospitals in Malaysia; Penang 
General Hospital, Kuala Lumpur Hospital, Sultanah Aminah Hospital and Tengku Ampuan Afzan 
Hospital between January 2010 to December 2014. These hospitals are the main public hospitals in their 
respective states and among the covering the south, north, west and east coast of Malaysia. The baseline 
characteristics is given in Table 1. Inclusion criteria for this dataset used in this study were patients with 
more than one observation for each clinical variable outlined in table 1 and the existence of values for 
SOFA and SAPS II scores. Patients without these scores were removed from the dataset to allow 
comparison between the performance in mortality prediction between SOFA, SAPS II and the algorithm 
developed in this study. 

Following this patient inclusion process, a total of 25,524 patients were selected in this study, with 
median SAPS II 49 (IQR: 35 - 63), median SOFA 9 (IQR: 6 - 12). A total of 4,304/21,220 (20.29%) 
patients died in the intensive care units. The study was registered with the National Medical Research 
Registration (NMRR 14-1938-23183) and ethics approval was obtained from the Malaysian Research 
Ethics Committee (MREC) with a waiver of patient consent.  

Since the primary goal of this study is to predict mortality after ICU admission, the ICU discharge 
status was grouped into two bins; either ‘Alive’ or ‘Death’. Patients who were labelled as ‘Discharged 
with grave prognosis’ and ‘Transferred to another hospital’ were labelled as ‘Alive’. By grouping these 
labels, we could distinctly predict and score the desired outcome. Patients were followed up until 
discharged or in-hospital death. Model construction used data from 17,846 patients whereas model 
validation used data from 7,649 patients. The partitioning was also done with a built-in method in Azure 
Machine Learning which randomized the patient based on the patient outcome.  

3. Results and discussion 
The gold standard used in this study was the in-ICU mortality. The definition of this gold standard 
classified 4,304 patients as having in-ICU deaths and 21,220 patients as survivors which results in a 
prevalence of 16.86% in-ICU mortality as shown in table 1. Here, we have an imbalanced dataset which 
consists of a group with a majority of normal samples and a minority of samples with abnormal outcome 
(death). Imbalanced data may cause standard classifiers such as logistic regression, Support Vector 
Machine and decision trees to provide suboptimal classification results where the majority class has 
good coverage whereas the minority class are distorted. For this work, Synthetic Minority Oversampling 
Technique (SMOTE) [19] was implemented to cope with imbalanced data classification. SMOTE is an 
oversampling method which works by increasing the number of the minority class through random data 
replication. 

To avoid over-fitting while increasing the minority class, the SMOTE built-in module in Azure 
Machine Learning uses imputation to statistically sample the rows and impute the minority label within 
the existing feature space. By deriving new instance values from interpolation instead of extrapolation 
will ensure relevance to the underlying data set. 
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Table 1. Baseline characteristics of 25, 524 patients included in the study. Data are 
presented as mean ± standard deviation or number (%). 

Variable No mortality within 
ICU (n=21,220) 

Mortality within ICU 
(n=4,304) 

Age (years) 47.75 ± 17.48 52.21 ± 16.54 
Male gender 12,603 (59.39%) 2784 (35.29%) 
Ethnicity 
  Malay 11,237 (52.95) 2,300 (53.44) 
  Chinese 4,724 (22.26) 960 (22.30) 
  Indian 2,882 (13.58) 600 (13.94) 
  Others 2,377 (11.20) 444 (10.31) 
ICU length of stay (hour) 125.57 ± 223.33 160.49 ±255.78 
Hospital length of stay (hour) 486.51 ± 648.98 256.49 ± 388.59 
Patient Category   
  Non-Operative 12,510 (58.95) 3,088 (71.74) 
  Emergency Operative 6,046 (28.49) 1,091 (25.35) 
  Elective Operative 2,637 (12.43) 115 (2.67) 
  Others 27 (0.13) 10 (0.23) 
Location before ICU admission   
  Ward 7461 (35.16) 2034 (47.26) 
  Operation Theatre 7352 (34.65) 908 (21.10) 
  Emergency Department 4603 (21.69) 931 (21.63) 
  Others 1803 (8.5%) 431 (10.02) 
Main organ failures   
  Cardiovascular 4877 (22.98) 2062 (47.91) 
  Neurological 2285 (10.77) 500 (11.62) 
  Haematological 964 (4.54) 100 (2.32) 
  Hepatic 165 (0.78) 34 (0.79)
  Respiratory  3606 (16.99) 1190 (27.65) 
  Renal 1538 (7.25) 233 (5.41) 
  No organ failure 7785 (36.69) 185 (4.30) 
Number of organ failures   
  None 7906 (37.26) 195 (4.53) 
  One  7062 (33.28) 783 (18.19) 
  Two 4382 (20.65) 1521 (35.34) 
  Three 1551 (7.31) 1234 (28.67) 
  More than three 319 (1.50) 571 (13.27) 
Severe sepsis within 24 hours of 
ICU admission 

5699 (51.36) 2599 (45.68) 

Acute respiratory distress 
syndrome (ARDS) within 24 
hours of ICU admission 

1401 (12.63) 958 (16.84) 

Acute kidney injury (AKI) 
within 24 hours of ICU 
admission 

3997 (36.02) 2133 (37.49) 

SAPS II Score 34.00 ± 15.74 57.27 ± 17.71 
SOFA Score 6.00 ± 3.7 11.16 ± 3.77 

 
To evaluate the effectiveness of the SMOTE sampling technique when dealing with the problem of 

an imbalanced dataset, seven prediction models were built without and with the SMOTE sampling 
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technique (100%, 300% and 500%). The prediction performance of different prediction models was 
measured using two evaluation metrics: area under curve (Figure 1) and sensitivity (Figure 2). These 
measures are often used to assess the performance of models in medical applications (see [20].  

Furthermore, the choice of AUC as performance indicator is justified due to the imbalanced dataset 
which renders performance criteria such as accuracy inadequate to assess models' the performance as it 
tends to give advantage to models that output the class with highest frequency [21]. Sensitivity was also 
chosen as a performance indicator following Ong et al. [20]. 

The seven different machine learning models were trained using Support Vector Machine (SVN), 
Neural Network (NN), Logistic Regression (LR), Locally-Deep Support Vector Machine (LDSVN), 
Decision Forest (DF), Boosted Decision Tree (DT) and Boosted Decision Jungle (DJ). To gain insight 
on how SOFA and SAPS II score may contribute in improving prediction performance, the analysis 
performed for four cases:  

 
� Case 1: Dataset without inclusion of SOFA and SAPS II score (blue boxplots in figure 1 and 

figure 2) 
� Case 2: Inclusion of SOFA score in the dataset (red boxplots in figure 1 and figure 2) 
� Case 3: Inclusion of SAPS II score in the dataset (orange boxplots in 1 and figure 2)  
� Case 4: Inclusion of SOFA and SAPS II score in the dataset (green boxplots in figure 1 and 

figure 2) 
Results show that the AUC (Figure 1) and sensitivity (figure 2) for all models using SMOTE resulted 

in significant improvement over the training results without SMOTE. In general, Boosted Decision Tree 
resulted in the best performance for all cases, with and without SMOTE for AUC and sensitivity (see 
columns DT in figure. 1 and 2 respectively). Models such as Decision Forest, Boosted Decision Trees 
and Boosted Decision Jungle are mostly on the higher side indicating superior performance than other 
models. It can also be seen that increasing the percentage of synthetic examples improves sensitivity 
and generally, AUC. For example, in Case 4, the DF model achieves a mean AUC of 0.9467 and a mean 
sensitivity of 73.58% using the sampled dataset with 100% synthetic examples compared to 0.9492 
(mean AUC) and 83.25% (mean sensitivity) using the sampled dataset with 300% synthetic examples. 
Increasing the percentage of synthetic examples to 500% improves the AUC of DF to achieve 0.9534 
(mean AUC) and 88.91% (mean sensitivity). For Case 1, DT showed the best improvement using 
SMOTE 100% achieving 0.9568 (mean AUC) compared to 0.9543 and 0.9523 using 300% and 500% 
synthetic examples respectively. However, in terms of mean sensitivity, DT (Case 1) achieved 91.61% 
using the sampled dataset with 500% synthetic examples compared to 87.74% (SMOTE 300%) and 
82.74% (SMOTE 100%). This shows that the performance of each model can differ from one metric to 
another. 

To assess the stability of the model prediction across the different cases, the best performance for 
each model was averaged after applying the ten-fold cross-validation on the training dataset. Here, the 
dataset is split into ten mutually exclusive and exhaustive blocks which are approximately equal in size. 
Nine blocks are then trained with each algorithm (the training set) and used to predict the outcome in 
the remaining block (the validation set) prior to the calculation of the mean squared error between the 
predicted and observed outcomes. To ensure that no patient appears in both the training and validation 
sets for each iteration and that for every patient observation to serve exactly once in the validation set 
and included in the training set at other times, this procedure was repeated 10 times using a different 
block as the validation set every round. This is to mitigate overfitting; an occurrence in which the 
algorithm is overly tailored to the available data at the expense of performance of external data, which 
is more likely to occur when training and validation sets intersect. The performance is then measured 
for each iteration and aggregated over all 10 iterations. 

The Boosted Decision Tree model using SMOTE 500% for Case 4 was found to have the best mean 
in terms of AUC (0.9663 ± 0.022) and sensitivity (91.61% ± 0.5655%). This is also illustrated by the 
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highest median shown by the boxplots in red in figure 1 and 2. It is noted that all the models with 
SMOTE achieved a more balanced sensitivity.  

A large performance variance between the models may be observed for the models without SMOTE 
sample, which may be explained by the data imbalance between the two data classes (16.86%, 83.14%). 
Model variance is lower for the cases where SMOTE sampling was implemented due to increase in 
balance between the two data classes. In addition, the performance of each model can differ from one 
metric to another. Here, Neural Network without using SMOTE sampling showed the worst AUC 
performance for all 4 cases (second column in figure 1) with mean AUC of 0.7987 (Case 1), 0.8673 
(Case 2), 0.8240 (Case 3) and 0.8337 (Case 4). However, for sensitivity, the Support Vector Machine 
without SMOTE showed the worst performance (first column in figure 2 with mean sensitivity of 
24.05% (Case 1), 27.33% (Case 2), 36.89% (Case 3) and 37.06% (Case 4). These performance measures 
provided the lower bound of performance and hence, the level of difficulty of the prediction problem 
that we attempting to deal with. This is due to the algorithms being sensitive to data sampling and the 
number of neighbours. By including these methods in the analysis provides an indication of the lower 
bound of performance and hence the level of difficulty of the prediction problem in hand. 

 
Figure. 1 AUC for Cross validation of n=10 folds without SMOTE (NS), SMOTE 100% (S100), 
SMOTE 300% (S300) and SMOTE 500% (S500) for (Blue) Case 1: dataset without SOFA and SAPS 
II score (Green) Case 2: dataset with SOFA score (Orange) Case 3: dataset with SAPS II score and 
(Red) Case 4: dataset with SOFA and SAPS II score. The seven machine learning models were trained 
using Support Vector Machine (SVN), Neural Network (NN), Logistic Regression (LR), Locally-Deep 
Support Vector Machine (LDSVN), Decision Forest (DF), Boosted Decision Tree (DT) and Boosted 
Decision Jungle (DJ). 
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Figure. 2 Sensitivity for Cross validation of n=10 folds without SMOTE (NS), SMOTE 100% (S100), 
SMOTE 300% (S300) and SMOTE 500% (S500) for (Blue) Case 1: dataset without SOFA and SAPS 
II score (Green) Case 2: dataset with SOFA score (Orange) Case 3: dataset with SAPS II score and 
(Red) Case 4: dataset with SOFA and SAPS II score. The seven machine learning models were trained 
using Support Vector Machine (SVN), Neural Network (NN), Logistic Regression (LR), Locally-Deep 
Support Vector Machine (LDSVN), Decision Forest (DF), Boosted Decision Tree (DT) and Boosted 
Decision Jungle (DJ). 

The numerical representation in terms of the best performance average are shown in tables 2 and 3. 
For each case, the highest value was highlighted in bold font. The Boosted Decision Tree model using 
SMOTE 500\% for Case 4 was found to have the best mean in terms of AUC (0.9663 ± 0.022) and 
sensitivity (91.61% ± 0.5655%), as well as the highest median shown by the red boxplots in the DT 
column in both figure 1 and 2. All the models with SMOTE achieved a more balanced sensitivity. 

By comparing the performance average of the best models for the different cases highlighted in bold 
for AUC, (Table 2) and Sensitivity, (Table 3), it can be observed that by including SAPS II scores (Case 
3) into the dataset, the prediction is improved 0.46 to 0.56 and 0.63% to 1.18% for AUC and Sensitivity 
respectively. This can also be seen in figure 1 and 2 where the lower and upper bounds of the orange 
boxplots (inclusion of SAPS II score) are higher for both AUC and sensitivity compared to when SAPS 
II score is excluded (see boxplots in blue and green in figure 1 and 2). This suggests that SAPS II score 
has a greater influence on the overall improvement in prediction compared to SOFA score. This may be 
due to the fact that SOFA scores were developed for sequentially assessment of the severity of organ 
failure during ICU stay and, though it may be used to predict mortality in various clinical conditions, it 
was not designed for that purpose [1]. 

The best prediction, however, is obtained by including both SOFA and SAPS II scores, Case 4, over 
other cases with prediction improvement of 0.39 to 0.95 average AUC and 0.64% to 1.82% average 
sensitivity. It can be concluded that the prediction is most accurate when both SOFA and SAPS II scores 
are included in the dataset (Case 4) as it has the highest performance. 
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Table 2. Best performance average summary for each model in terms of AUC. For each case, the highest 
value is highlighted in bold font. The values that were underlined, in italic and normal fonts were 
achieved with SMOTE 100%, SMOTE 300% and SMOTE 500% respectively. 

Classification Case 1 Case 2 Case 3 Case 4 

Support vector 
machine 

0.8774 ± 
0.0062 

0.8559 ± 
0.0057 

0.8766 ± 
0.0075 

0.8774 
±0.0062 

Neural 
network 

0.9070 ± 
0.0064 

0.9000 ± 
0.0060 

0.9092 ± 
0.0057 

0.9153 ± 
0.0028 

Logistic 
regression 

0.9082 ± 
0.0050 

0.8930 ± 
0.0046 

0.9078 ± 
0.0049 

0.9084 ± 
0.0034 

Locally-deep 
SVN 

0.9074 ± 
0.0052 

0.8853 ± 
0.0109 

0.9080 ± 
0.0043 

0.9115 ± 
0.0034 

Decision 
forest 

0.9492 ± 
0.0024 

0.9526 ± 
0.0032 

0.9478 ± 
0.0031 

0.9534 ± 
0.0030 

Boosted 
decision tree 

0.9568 ± 
0.0024 

0.9578 ± 
0.0016 

0.9624 ± 
0.0024 

0.9663 ± 
0.0022 

Boosted 
decision 
jungle 

0.9322 
±0.0039 

0.9280 ± 
0.0015 

0.9305 ± 
0.0040 

0.9329 ± 
0.0034 

Table 3. Best performance average summary for each model in terms of Sensitivity (%). For each case, 
the highest value for each case are highlighted in bold font and were achieved using SMOTE 500%. 

Classification Case 1 Case 2 Case 3 Case 4 

Support vector 
machine 

83.36 ± 
1.0517 

83.67 ± 
0.6948 

83.45 ± 
0.0075 

83.27 ± 
0.6357 

Neural 
network 

85.51 ± 
1.7860 

84.83 ± 
0.9879 

86.03 ± 
0.0057 

86.10 ± 
1.8253 

Logistic 
regression 

87.22 ± 
0.6206 

87.01 ± 
0.5672 

86.74 ± 
0.0049 

86.68 ± 
0.7788 

Locally-deep 
SVN 

86.52 ± 
1.7445 

86.44 ± 
2.1287 

86.23 ± 
0.0043 

86.75 ± 
0.6856 

Decision 
forest 

87.96 ± 
0.6110 

89.09 ± 
0.5473 

85.57 ± 
0.0031 

88.91 ± 
0.6783 

Boosted 
decision tree 

89.79 ± 
0.6625 

90.34 ± 
0.4984 

90.97 ± 
0.0024 

91.61± 0.5655 

Boosted 
decision 
jungle 

87.18 ± 
1.0988 

88.21 ± 
1.1550 

88.11 ± 
0.0040 

89.06 ± 
0.8963 

The AUC of the SAPS II score, the SOFA score and the chosen ML score are shown in figure 3. 
While it has been found that the inclusion of SAPS II score, compared with the SOFA score, tend to 
result in better overall ML performance when coupled with other variables, the opposite is seen when 
considering the ICU predictive scoring scores in isolation. Here, SOFA score did slightly better 
compared to SAPS II score by a difference of AUC 1.49%. Figure 3 shows that the ML model may 
improve the average prediction by 16.22%. 
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In addition to performance comparison, the relationship between risk groups for each severity score 
with the outcome of morbidity were also analysed. To do this, the conversion from SOFA score to 
mortality percentage was necessary. Here, the conversion followed the estimate of mortality risk based 
on studies by Vincent et al. [22] and Ferreira et al. [7]. Rate of mortality were 1.96%, 7.46%, and 90.58% 
patients were in the low, intermediate, and high risk ML score groups, respectively as shown in figure 
4. Rate of mortality were 0.83%, 22.01%, and 43.95% patients were in the low, intermediate, and high 
risk based on the SAPS II score, respectively. While rate of mortality was 1.05%, 43.95%, and 55.0% 
patients were in the low, intermediate, and high risk based on the SOFA score, respectively. Here, it was 
demonstrated that the combined features present significant improvements to predictive accuracy and 
sensitivity compared to using SOFA score or SAPS II score alone and has shown good discriminating 
power for distinguishing patients who survived from those who died. 

 
Figure 3. Recall for cross validation of n=10 folds without SMOTE (NS), SMOTE 100% (S100), 

SMOTE 300% (S300) and SMOTE 500% (S500) for (Blue). 

 
Figure 4. Risk groups for SOFA, SAPS II and ML score. 

These results show that instead of developing locally-customised variants of the common scoring 
tools to improve calibration and variability in accuracy across various diseases and populations [9-13], 
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ML allows us to leverage multidimensional analysis which includes parameters and data available in 
the Malaysian ICU database, such as physiological measurements, admission types etc., along with 
SOFA and SAPS II scores are able to improve accuracy of prediction mortality. This, in turn, will allow 
medical practitioners to make better medical decisions leading to more efficient resource management 
of limited resources which is critical in a public hospital ICU setting. 

4. Future studies 
This study includes patient records from multiple ICU's in Malaysia to reduce the potential of the 
algorithm overestimating since the training and the testing were executed on the partitions of the same 
data set. We are currently working on collecting more recent data which includes data from a wider 
range of hospitals. In the future, we would like to test and validate our algorithm with this data set to 
further increase the effectiveness of predictions and avoid performance variability in the algorithm. 

5. Conclusion 
The ML score proposed in this paper represents a noninvasive and objective risk-stratification tool that 
can be immediately determined at presentation to the ICU along with bedside diagnosis. It may be 
applied across populations as it 'learns' from data and not statistically modelled based on specific 
populations. This way, it is not required to localise the SAPS II and SOFA score in attempt to avoid 
variability. The ML score uses a combination of common clinical variables such as physiological 
measurements and admission types (see table 1) as a predictor of patient outcomes. A cross-validation 
was applied to the dataset of critically ill patients presenting to the ICU to overcome overfitting 
associated with traditional statistical methods. Various types of classification algorithms in machine 
learning was studied and it was found that the Decision Tree with SMOTE 500% provided the highest 
confidence in categorizing patients into two outcomes: death and survival. In addition, the ML score 
was found to predict mortality more accurately compared with the current ICU scoring system; SAPS 
II and SOFA scores. However, the incorporation of SAPS II and SOFA score in the dataset significantly 
improved the overall prediction performance of the ML score. 
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