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Abstract: Incomplete hydro-meteorological data and insufficient rainfall gauges have caused difficul-
ties in establishing a reliable flood forecasting system. This study attempted to adopt the remotely
sensed hydro-meteorological data as an alternative to the incomplete observed rainfall data in the
poorly gauged Kuantan River Basin (KRB), the main city at the east coast of Peninsula Malaysia.
Performance of Weather Research and Forecasting (WRF) schemes’ combinations, including eight
microphysics (MP) and six cumulus, were evaluated to determine the most suitable combination of
WRF MPCU in simulating rainfall over KRB. All the obtained results were validated against observed
moderate to extreme rainfall events. Among all, the combination scheme Stony Brook University and
Betts–Miller–Janjic (SBUBMJ) was found to be the most suitable to capture both spatial and temporal
rainfall, with average percentage error of about ±17.5% to ±25.2% for heavy and moderate rainfall.
However, the estimated PE ranges of −58.1% to 68.2% resulted in uncertainty while simulating
extreme rainfall events, requiring more simulation tests for the schemes’ combinations using different
boundary layer conditions and domain configurations. Findings also indicate that for the region
where hydro-meteorological data are limited, WRF, as an alternative approach, can be used to achieve
more sustainable water resource management and reliable hydrological forecasting.

Keywords: WRF; microphysics scheme; cumulus scheme; floods; rainfall

1. Introduction

The ability to accurately estimate rainfall has significant importance in theoretical as
well as practical amplification [1]. Moreover, timely and accurate prediction of rainfall at
the regional and global levels is highly important for making preventive measurements for
flood management [2,3]. Effective forecasting is primarily dependent on the accuracy of the
numerical model to determine the intensity, spatial, and temporal pattern of precipitation
at both global and regional levels. In general, rain is the more challenging variable to be
forecasted [4]. There have been several studies that applied global models to analyze the
process of large-scale atmospheric circulation and quantify the rainfall events. However,
they are unable to capture accurate rainfall events due to their coarse resolution [5–9].
Numerical weather prediction at the regional level, on the other hand, can properly simulate
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large-scale weather phenomena, resulting in better representation of convection. For this
reason, regional models are increasingly being used to investigate rainfall scenarios [10–12].

Although the quantification of rainfall employing numerical models is a complex pro-
cess, the regional level scale Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)
and Weather Research and Forecasting (WRF) model are frequently used and popular
for operational forecasting concerning their performance. The advance research Weather
Research and Forecasting (WRF) model is the most recent popular community model that
has been extensively used in several applications related to meteorological phenomena such
as rainfall and thunderstorms [13,14]. According to studies, the WRF model can produce
high-resolution spatial and temporal rainfall simulation results, indicating that the WRF
model can increase runoff simulation accuracy for flood disaster prevention [15,16]. Several
forecasting reviews have been conducted by the WRF user community to evaluate WRF’s
performance in a variety of forecasting applications [14,17,18]. Refs. [19,20] have further
confirmed the WRF model’s ability to provide significant values to represent the convec-
tive system and efficiently identify tornadic and non-tornadic events using predictable
initial data with high grid resolution. Ref. [21] evaluated the effectiveness of the WRF
microphysical scheme to investigate the latent heat ratio associated with the mesoscale
convective system and to simulate the distribution pattern of convective rainfall over the
Korean Peninsula. The 36-grid km WRF model has been found to be capable of producing
accurate one-day monsoon forecasts for the Indian region [22].

Many studies explored the parameterization of multiple physical schemes avail-
able in the WRF model for simulating rainfall events, such as the microphysics (MP)
scheme [23–25], cumulus (CU) parameterization scheme [26,27], land surface model (LSM)
options [28–30], and planetary boundary layer (PBL) scheme [31,32]. The study [33] con-
ducted on Mumbai, India’s west coast discovered that parameterizing MP WRF Single-
Moment 6-class WSM6 schemes with CU Betts–Miller–Janjic (BMJ) has the ability to accu-
rately predict and simulate extreme events in the region. According to [34], three heavy
rainfall events across the southern peninsula of Malaysia were simulated using four distinct
WRF CU schemes, including the new Kain–Fritsch, Betts–Miller–Janjic, Grell–Devenyi en-
semble scheme, and the older Kain–Fritsch scheme. Despite generally better performance,
Betts–Miller–Janjic created uncertainty while simulating the first rainfall event, suggesting
that CU suitability may depend on the circumstances. It is crucial to investigate the effects
of multiple parameterizations in an ensemble mode because the performance of one scheme
is likely to be influenced by the other model configurations investigated. For instance, the
findings on which CU scheme performs best would be intimately connected to the MP or
land surface options considered during the model simulations [35].

With the above-mentioned perspectives, this study aimed to determine the best suit-
able physics scheme combination that can efficiently forecast the rainfall events at the
KRB. KRB has been experiencing floods for decades due to its tropical climatic condition,
which promotes torrential rainfall occurrences. The worst recorded KRB floods occurred in
January1970, December 2001 and 2010, January 2011 and 2012, and December 2013, 2014,
and 2021 [36,37]. All the flood events were caused by unpredicted heavy rain during the
North East Monsoon (NEM), and the massive floods have imposed a severe risk to the
local society. For this reason, significant hydro-meteorological forecasting is essentially
important for decision-makers and scientific society to produce an effective hazard re-
sponse that can reduce the risk of economic loss, property damages, and loss of human
lives. Based on previous studies, the intensive prolonged rainfall during the monsoon
period has caused flooding which resulted in severe damages to agricultural networks,
infrastructure, properties, and loss of lives, predominantly in low lying areas of the east
coast region [36,38–40]. To achieve this goal, the study focuses on statistical evaluation by
conducting sensitivity analysis of different WRF physical schemes combinations to predict
the moderate, heavy, and extreme rainfall events. This research utilized 1◦ × 1◦ re-analysis
data from the National Centre for Environmental Prediction (NCEP) Global Final Analysis
(FNL) as the boundary conditions for the model simulations.



Sustainability 2022, 14, 12624 3 of 41

2. Materials and Methods
2.1. Study Area

The Kuantan River Basin (KRB) is the most important river basin in the northeastern
end of the Pahang state in Peninsula Malaysia, where the only city, Kuantan City, is located.
The basin lies between the coordinates of latitude 3.65◦ N to 4.13◦ N and longitude 102.86◦ E
to 103.37◦ E, having a catchment area of 1630 km2 where the Kuantan River begins from
Sg. Lembing, passing through Kuantan City and ending at the South China Sea. The
KRB consists of various land uses such as rural, agricultural, urban, and industrial areas.
Based on the location, KRB has a tropical climatic condition with mean annual rainfall
of approximately 2500 mm which, according to the historical record, often experiencing
concurrent severe floods during the monsoon season. During the NEM season from
October to March, prolonged heavy rainfall has caused river overflow, which consequently
inundates low-lying areas and hampers human social life and the economy. In recent years,
the worst flood events in KRB have brought huge destruction to agricultural activities
and properties and caused loss of lives. Reportedly, around 14,044 to 18,000 people were
affected and about 2294 km2 of land was damaged [41,42]. Rapid urban development has
reduced the capacity of river catchments that can be used to store and retain excess runoff,
which results in frequent flood occurrences in the urbanized areas.

2.2. Location of Hydrological Stations

Several site visits have been made throughout the study. The main purpose of the
visits was to rectify the actual locations of the hydrological stations. A Global Positioning
System (GPS) device, the Garmin GPSMAP 76CSx model, was used to collect and record the
coordinates of all the hydrological gauging stations. The updated locations are provided in
Table 1. The total of eight rainfall stations were located within the KRB and one rainfall
station (Pulau Manis) was slightly outside the boundary. In this basin, it was found that
there is only one streamflow station situated at the upstream of the basin at Bukit Kenau.
The KRB boundary and the selected rainfall hydrological stations identified for this study
are presented in Figure 1.

Table 1. Location of the hydrological gauging stations in KRB.

No Gauge Type Station ID Station Name Latitude Longitude

1 Rainfall 3732021 Kg. Sg. Soi 3.72◦ 103.29◦

2 Rainfall 3631001 Pulau Manis 3.65◦ 103.11◦

3 Rainfall 3732020 Paya Besar 3.77◦ 103.28◦

4 Rainfall 3930012 PCCL Sg.Lembing 3.91◦ 103.03◦

5 Rainfall 3832015 Rumah Pam 3.85◦ 103.25◦

6 Rainfall 3731018 JKR.Gambang 3.71◦ 103.13◦

7 Rainfall 3931013 Ladang Nada 3.90◦ 103.10◦

8 Rainfall 3931014 Ladang Kuala Raman 3.89◦ 103.14◦

9 Rainfall 3833001 JPS Negeri Pahang 3.82◦ 103.28◦

10 Streamflow 3930401 Bukit Kenau 3.93◦ 103.06◦
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Figure 1. Study area of Kuantan River Basin and its hydrological gauging stations.

2.3. Collection of Data

This study utilized a 30 m resolution of the Shuttle Radar Topography Mission (SRTM)–
Digital Elevation Model (DEM) to delineate the watershed boundary. The 30 m resolution
was selected because it is the highest resolution that is freely available and can be down-
loaded from the United States Geological Survey (USGS) database. In this research, the
time series rainfall and streamflow data from nine rainfall stations were collected from
Drainage and Irrigation Department (DID). The acquired rainfall data were used in the
WRF model schemes analysis. Table 2 provides general information on all the data collected
for this study.

Table 2. General information on the primary data collected.

Data Required Format Source Reference

Digital Elevation Model
(DEM) from SRTM 30 (m) raster/Geotiff Online Public domain source

provided by NASA
www.srtm.csi.cgiar.org

(accessed on 24 March 2017)

Rainfall gauge data Vector format/Attribute data DID, Pahang/Field survey www.water.gov.my (accessed
on 19 September 2017)

www.srtm.csi.cgiar.org
www.water.gov.my
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2.4. Categorization of Rainfall Event

The events were selected based on the periods when most of KRB experienced flooding.
The time intervals of the hydrological data were 15 and 60 min for rainfall and 15 min for
streamflow. Since the focus of the study is to stimulate event-based rainfall, the years 2001,
2010, 2011, 2012, 2013, and 2016 were selected because these years are predominant years for
receiving rainfall and have provided more rainfall and streamflow data compared to other
years [38,43]. For the study, rainfall periods that met the requirement of receiving both heavy
rainfall and high streamflow were selected (see Appendix A). For the WRF model analysis and
validation processes, the selected rainfall events were grouped into three categories: extreme,
heavy, and moderate events. This categorization was implemented to evaluate the capability
of the WRF model in estimating precipitation outputs that potentially contribute to flood
events. The amount of rainfall in the watershed at the time of the event was used to categorise
the events as extreme, heavy, and moderate. Three to five days of average total rainfall that
exceeds three hundred fifty millimeters is considered an extreme event. Similar to this, heavy
and moderate events are classified when the average total rainfall amounts over the same
duration fall between 150 and 350 mm and less than 150 mm, respectively. Table 3 below
shows the category of rainfall events based on the rainfall depth range.

Table 3. Categorization of rainfall events.

Rainfall Event Event End Date Total Rainfall Depth
(mm) Event Category

21 December 2001 23 December 2001 376.1 Extreme
29 December 2010 2 January 2011 281.0 Heavy

26 January 2011 30 January 2011 190.8 Heavy
26 March 2011 30 March 2011 58.5 Moderate

11 January 2012 13 January 2012 283.7 Heavy
1 December 2013 5 December 2013 764.3 Extreme
8 December 2016 12 December 2016 49.7 Moderate

There were 48 different combinations of model schemes tested using a single rainfall
event to identify the most appropriate schemes combination among all applied combinations.
Subsequently, the selected parameterized schemes were used to simulate other selected rainfall
events. Figure 2 shows the methodological workflow for the present research.
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2.5. Configuration of WRF Model Domain

In this study, the WRF model version 3.9.1 manufactured by National Center for
Atmospheric Research (NCAR), Boulder, United State of America (USA), was used to
estimate the rainfall in KRB. The methodology of designing the WRF model involves
domain selection, resolution, projection system, WRF pre-processing, and WRF process.
The selection of the domain is essentially required to design the experiments, especially
for a mesoscale model. A new generation of the mesoscale model has higher resolutions
compared to the global model. High resolution often requires high computational cost;
however, it can provide precise information about an area such as topography, albedo,
temperature, air pressure, moisture, etc. Thus, the high-resolution domain was used in this
study to avoid any potential missing data. Three interactive nesting domains were used
in this study, as shown in Figure 3. The parent domain (d01) was set at a grid resolution
of 36 km, and two child domains covered the grid spacing at 12 km (d02) and 4 km (d03)
resolution. A nesting ratio of 3:1 was applied to maintain the model’s stability. The selected
domains covered Peninsular Malaysia (36 km) with 27 grid points in the west–east (e_we)
and 33 grid points in the south–north (e_sn) direction. The other two domains (12 km and
4 km) covered the east coast part of Peninsular Malaysia with grid points 31, 34, and 55,
with 64 respective to the west–east (e_we) and south–north (e_sn) directions. This study
used the high-resolution 4 km domain output of the rainfall series.
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2.6. Selection of Schemes for Model Sensitivity Test

In this research, the combinations of different physical schemes’ parameterization
were tested in the WRF model to determine the best combination. The sensitivity of each
combination was evaluated by comparing the estimated and observed rainfall following
statistical indices. The WRF model offers numerous physics schemes options in which
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MP and CU schemes are the options that are mainly responsible for estimating rainfall.
Therefore, this study adopted only MP and CU schemes. Currently, there are 13 micro-
physics and 14 cumulus schemes available for model simulation [44]. It is to be noted
that not every scheme is suitable for all regions and climatic conditions. The selection of
the MP and CU physical schemes was made according to their characteristics, suitability,
and reference to previous studies. The configured WRF model with the selected physical
schemes combination was applied to simulate the selected rainfall events. For this study,
the rainfall event from 29 December 2010 to 2 January 2011 was used for evaluation of the
performance of the physical scheme. Tables 4–6 describe the configuration of the selected
physical schemes and designed domain used in estimating rainfall for the selected events.

Table 4. Combination of WRF physical schemes with selected MP and CU.

Physics Options WRF Model Configured Scheme

Long Wave Radiation RRTM Rapid radiative transfer model
Short Wave Radiation Dhudiha Scheme MM5 short wave

Surface layer Monin–Obukhov similarity theory
Planetary Boundary Layer Yousei University (YSU) PBL scheme

Table 5. Combination of different microphysics and cumulus schemes.

S. No. Microphysics Scheme Cumulus Schemes Schemes Name Simulation Codes

1 Kessler Kain–Fritsch KSKF MP1CU1
2 Kessler Betts–Miller–Janjic KSBMJ MP1CU2
3 Kessler Grell–Freitas KSGF MP1CU3
4 Kessler Grell 3D KSG3D MP1CU5
5 Kessler Tiedke KSTiS MP1CU6
6 Kessler Old Kain–Fritsh KSOKF MP1CU99
7 Lin et al. Kain–Fritsch LinKF MP2CU1
8 Lin et al. Betts–Miller–Janjic LinBMJ MP2CU2
9 Lin et al. Grell–Freitas LinGF MP2CU3
10 Lin et al. Grell 3D LinG3D MP2CU5
11 Lin et al. Tiedke LinTiS MP2CU6
12 Lin et al. Old Kain–Fritsh LinOKF MP2CU99
13 WRF Single Moment 3 class Kain–Fritsch WSM3KF MP3CU1
14 WRF Single Moment 3 class Betts–Miller–Janjic WSM3BMJ MP3CU2
15 WRF Single Moment 3 class Grell–Freitas WSM3GF MP3CU3
16 WRF Single Moment 3 class Grell 3D WSM3G3D MP3CU5
17 WRF Single Moment 3 class Tiedke WSM3TiS MP3CU6
18 WRF Single Moment 3 class Old Kain–Fritsh WSM3OKF MP3CU99
19 WRF Single Moment 6 class Kain–Fritsch WSM6KF MP6CU1
20 WRF Single Moment 6 class Betts–Miller–Janjic WSM6BMJ MP6CU2
21 WRF Single Moment 6 class Grell–Freitas WSM6GF MP6CU3
22 WRF Single Moment 6 class Grell 3D WSM6G3D MP6CU5
23 WRF Single Moment 6 class Tiedke WSM6TiS MP6CU6
24 WRF Single Moment 6 class Old Kain–Fritsh WSM6OKF MP6CU99
25 Goddard Microphysics Kain–Fritsch GoMKF MP7CU1
26 Goddard Microphysics Betts–Miller–Janjic GoMMBJ MP7CU2
27 Goddard Microphysics Grell–Freitas GoMGF MP7CU3
28 Goddard Microphysics Grell 3D GoMG3D MP7CU5
29 Goddard Microphysics Tiedke GoMTiS MP7CU6
30 Goddard Microphysics Old Kain–Fritsh GoMOKF MP7CU99
31 New Thompson et al. Kain–Fritsch NThKF MP8CU1
32 New Thompson et al. Betts–Miller–Janjic NThBMJ MP8CU2
33 New Thompson et al. Grell–Freitas NThGF MP8CU3
34 New Thompson et al. Grell 3D NThG3D MP8CU5
35 New Thompson et al. Tiedke NThTis MP8CU6
36 New Thompson et al. Old Kain–Fritsh NThOKF MP8CU99
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Table 5. Cont.

S. No. Microphysics Scheme Cumulus Schemes Schemes Name Simulation Codes

37 Morrison Double Moment Kain–Fritsch MDMKF MP10CU1
38 Morrison Double Moment Betts–Miller–Janjic MDMBMJ MP10CU2
39 Morrison Double Moment Grell–Freitas MDMGF MP10CU3
40 Morrison Double Moment Grell 3D MDMG3D MP10CU5
41 Morrison Double Moment Tiedke MDMTiS MP10CU6
42 Morrison Double Moment Old Kain–Fritsh MDMOKF MP10CU99
43 Stony Brook University (Y Lin) Kain–Fritsch SBUKF MP13CU1
44 Stony Brook University (Y Lin) Betts–Miller–Janjic SBUBMJ MP13CU2
45 Stony Brook University (Y Lin) Grell–Freitas SBUGF MP13CU3
46 Stony Brook University (Y Lin) Grell 3D SBUG3D MP13CU5
47 Stony Brook University (Y Lin) Tiedke SBUTiS MP13CU6
48 Stony Brook University (Y Lin) Old Kain–Fritsh SBUOKF MP13CU99

Table 6. Configured domain for the study.

Description Detail

Maximum Domain 3
Domain Extent 100◦ East to 108◦ East, 0◦ North to 8◦ North

Domain Spatial Resolution 36 km (D1), 12 km (D2), 4 km (D3)
Static Geographic data Resolution 10 m, 2 m and 3 s

Grid Ratio 1:3
Grid Size 27 × 33 (D1), 31 × 34 (D2) and 55 × 64 (D3)

Map Projection Mercator
Reference Latitude 3.76

Reference Longitude 103.22
True Median Latitude 3.76
Standard Longitude 103.22

2.7. Evaluation Methods for Model Performance

Several statistical indices are widely used in the models’ evaluation, which includes
Root Mean Square Error (RMSE) and Percentage Error (PE) and the contingency table
matrix. The relative statistical methods of the contingency table matrix are comprised of
the Percentage of Correction, Hit Rate (HR), False Alarm Ration (FAR), Threat Score (TS),
and Bias (B).

2.7.1. Root Mean Square Error

RMSE is the most commonly used method in model evaluation to measure the dif-
ference between the predicted (P) and observed (O) values [45]. The RMSE equation is as
presented in Equation (1).

RMSE =

√
1
n

n

∑
i=1

(Pi − Oi) (1)

where n is the number of sample points, P is the predicted value, and O is the observed value.

2.7.2. Percentage Error

The Percentage Error (PE) is the simple statistical method which is used to determine
the precision of the measured values and actual values. A difference of ±20% between
actual and estimated values is acceptable in model evaluation [46]. PE helps to understand
how accurate the measured values are to the real value. The PE is expressed in a percentage
and was calculated from the equation:

PE =
(measured value − actual value)

(actual value)
× 100 (2)
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2.7.3. Contingency Table Matrix and Relatives Measures

The contingency table matrix describes the frequency distribution of the related vari-
ables considered in this study. Table 7 shows the matrix of the interrelated variables and
their interaction. There are four possible outcomes produced in this analysis, which are:

Table 7. Contingency table matrix.

Observed

Yes No

Forecast Yes a b a + b
No c d c + d

a + c b + d n = a + b + c + d

a = The event is forecasted and occurred.
b = The event is forecasted but not occurred.
c = The event is not forecasted but occurred.
d = The event is not forecasted and not occurred.
The related statistical methods were performed according to the interrelated variable

presented in the contingency table matrix [47].

2.7.4. Percentage of Correction

Percentage of Correction is the most direct and spontaneous method to evaluate model
accuracy. PC defines the percentage of the number of forecasts that are correct. The value
of PC ranges from 0 to 1 with the indicator of no correct forecast observed to all correct
forecast observed [48]. This statistical method is significant in high-frequency forecasting.
PC is calculated as:

PC =
(a + d)

n
(3)

2.7.5. Hit Rate

HR is commonly known as the Probability of Detection (POD). This measure was used
to determine the fraction of the observed events’ forecasting correctly. It is calculated as:

HR =
a

(a + c)
(4)

The HR values range from (0), which indicates a poor fraction to (1) that shows good
fraction or correct forecast [47].

2.7.6. False Alarm Ratio

False Alarm Ratio (FAR) is the fraction of “true or yes” forecasted events that were
wrongly predicted. The best possibility of the model is presented by zero (0) value and the
poor possibility indicated by the value 1. FAR was calculated using Equation (5).

FAR =
b

(a + b)
(5)

2.7.7. Threat Score

Threat Score (TS) is another alternate intuitive indicator to calculate the event fore-
casting accuracy. This method is also known as the Critical Success Index (CSI). TS is the
number of correct forecasts divided by the total number of observed forecasts that occurred.
This can be regarded as the proportion of correct forecasts [48]. It is expressed as follows:

TS =
a

a + b + c
(6)
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The TS score ranges from (0), which is the worst possible forecast to (1), which is at
the best end.

2.7.8. Bias

Bias (B) is often used to represent the verification ratio of the contingency table matrix.
B is the comparison between the number of times the event was forecasted and occurred [49].
It was calculated using Equation (7).

B =
a + b
a + c

(7)

B < 1 means the event forecasted less than the event occurred (underestimate).
B = 1 means the event forecasted the same as the event occurred (unbiased).
B > 1 means the event forecast more the event occurred (overestimate).

3. Results

The performances of physical schemes’ parameterization in the WRF model have been
estimated through testing of the selected 48 different combinations. Different statistical
methods were applied to evaluate the performance of the model schemes. This section
presents the results from several statistical techniques in analyzing the accuracy and
performance of each combination of WRF physical schemes to produce reliable rainfall
estimation in KRB.

3.1. Model Schemes Evaluation

The sensitivities of the 48 physical scheme combinations in the WRF model have been
evaluated using a variety of statistical approaches. Based on the statistical analysis, the
physical scheme combinations have been ranked to determine the most efficient physical
scheme combinations for KRB. The ranking of the WRF scheme’s performance was in
accordance to the rainfall event selected from 29 December 2010 to 2 January 2011. The
cumulative ranks were applied to determine the total ranking for each scheme combination.
Different schemes performed differently depending on the computed Root Mean Square
Error (RMSE) at each rainfall station as shown in Table A1 in Appendix A. From the
statistical result, it was found that the Stony Brook University Grell Freitas (SBUGF) schemes
performed exceptionally well at downstream region of KRB, consisting of the stations Kg.
Sg. Soi., Pulau Manis, and the Malaysian Public Works Department (JKR) Gambang.
Scheme LinGF, on the other hand, did well at the stations Ladang Nada and Ladang Kuala
Raman. The SBUKF and SBUBMJ schemes were found effective at stations JPS Negeri
Pahang, Paya Besar, and Rumah Pam.

According to the computed PC in Figure 4, the majority of the model simulations
indicated insufficient event occurrence at stations JPS Negeri Pahang, Rumah Pam, PCCL Sg.
Lembing, Paya Besar, Ladang Nada, and Ladang Kuala Raman. However, distinct model
scheme combinations, which include SBUOKF, GoMKF, SBUBMJ, MDMBMJ, NthBMJ,
and SBUGF, have been identified as capable of capturing the event at all stations with
PC ranges from 0.52 to 0.79. It is noteworthy that the same model schemes, except for
SBUGF, were able to reliably anticipate rainfall based on the determined Threat Score (TS)
ranges from 0.5 to 0.79 (see Figure 5), particularly for stations downstream of the KRB,
while WSM3OKF schemes have a low TS among all. The most well-known method of
calculating the percentage of hit rate was also used to determine the correctness of model
schemes. The value hit to a score of 1 is defined as the best-fit forecasting. All the model
parameterized schemes performed adequately for stations Kg. Sg. Soi, Pulau Manis, and
JKR Gambang, as shown in Figure 6, whereas combinations of schemes SBUKF, GoMKF,
MDMBMJ, SBUGF, and SBUBMJ performed exceptionally well in predicting rainfall events
for all of the stations’ ranges from 0.6 to 1.
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Furthermore, the False Alarm Ratio (FAR), which is another more widely used statis-
tical method in weather forecasting, indicates that the majority of the model simulation
shows great efficiency at the upper stream part of KRB, where the stations PCCL Sg. Lem-
bing, Rumah Pam, Ladang Nada, and Ladang Kuala Raman are located. According to
the FAR method, a low number of false alerts means higher accuracy. Figure 7 shows
the WSM3KF (0.00) and KSKF (0.00–0.05) schemes have the maximum efficiency. Model
accuracy assessment was further investigated using Bias (B). A statistical estimator was
used to calculate the ratio of an event’s forecast to the total observed values. With an unbi-
ased forecast, a forecasted value of 1 reflects the best performance. The results in Figure 8
revealed that all schemes’ simulations produced predicted events (>1) at the downstream
part and underpredicted (<1) at the upstream of KRB, though the combination of SBUBMJ
schemes produced a relatively better output among all.

Overall, the accuracy of the 48 distinct scheme combinations was measured using
TS, HR, PC, RMSE, FAR, and Bias. The scheme simulations were shown to be highly
efficient using TS, while the percentage of false alarms was detected using FAR. The
schemes were ranked according to their obtained values on each of the indices (described
in Section 2.6). All of the evaluated ranks were combined to find the set of top performance
scheme combinations. Table A2 shows the overall ranking of the model schemes that
have been investigated. There are five highly efficient scheme combinations which have
been identified. These schemes were then used to simulate rainfall events of various
types (extreme, heavy, and moderate) to ensure their accuracy and find the best scheme
combination for KRB. Schemes SBUBMJ were ranked first in the cumulative ranking
for their significant performance in estimating rainfall for the event. WSM6GF, LinGF,
MDMBMJ, and MDMGF were ranked second to fifth, respectively. Table 8 shows the top
five WRF physical scheme combinations in terms of performance.

Table 8. Selected top performance of WRF physical schemes combination.

Simulation Code Simulation Names Microphysics Schemes
(MP)

Cumulus Schemes
(CU) Schemes Rank

MP13CU2 SBUBMJ Stony Brook University Betts–Miller–Janjic 1
MP6CU3 WSM6GF WRF Single Moment 6 class Grell–Freitas 2
MP2CU3 LinGF Lin et al. Grell–Freitas 3
MP10CU2 MDMBMJ Morrison Double Moment Betts–Miller–Janjic 4
MP10CU3 MDMGF Morrison Double Moment Grell–Freitas 5
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3.2. Performance of the Schemes Combination in Predicting Rainfall

The top five physical scheme combinations obtained have been applied to estimate the
extreme, heavy, and moderate rainfalls. Two precipitation events from 21 to 23 December
2001 and 1 to 3 December were selected for the extreme rainfall evaluations. The result for
the event from 21 to 23 December 2001, displayed in Figure 9, indicated that the schemes
WSM6GF, MDMGF, and LinGF seem to produce low rainfall magnitude at all stations
compared to the observed. Meanwhile, the schemes SBUBMJ and MDMBMJ produced
overestimated rainfall at stations Kg. Sg Soi (30% and 5%), Rumah Pam (58% and 6%),
Ladang Nada (25% and 16%), Ladang Kuala Raman (79% and 66%), and JPS Negeri Pahang
(96% and 73%), respectively. The good agreement of both SBUBMJ and MDMBMJ was
noticed at station PCCL Sg Lembing. Overall, MDMBMJ performed relatively better
in estimating rainfall with an average Percentage Error (PE) of about 31.8%, as shown
in Table 9.
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Figure 9. WRF simulated rainfall for the 21 to 23 December 2001 event.

Table 9. Comparison of the average total average rainfall depth estimated by WRF schemes and
observed data for the 21 to 23 December 2001 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 632.51 68.2
WSM6GF 2 48.04 −87.2

LinGF 3 376.1 115.9 −69.2
MDMBMJ 4 495.9 31.8
MDMGF 5 106.4 −71.7

The performance of the schemes was further tested for the event on 1 to 3 December 2013,
with the result present in Figure 10. The comparison has been limited to accessible rainfall
stations due to a lack of observed data. According to the results, it is found that all of the
schemes’ combinations were unable to predict rainfall accurately at stations JKR Gambang,
Rumah Pam, and Kg. Sg. Soi. However, when compared to the observed rainfall at station
Ladang Nada, the LinGF schemes overestimated rainfall by about 49% whilst the scheme
MDMGF showed better accuracy. Considering the estimated total average rainfall depth
(see Table 10), all of the schemes showed underestimated rainfall with error differences
ranging from 26.9% to 60% compared to observed data.
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Figure 10. WRF simulated rainfall for the 1 to 5 December 2013 event.

Table 10. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for the 1 to 5 December 2013 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 320.593 −58.1
WSM6GF 2 352.5 −53.9

LinGF 3 764.3 558.7 −26.9
MDMBMJ 4 305.3 −60.0
MDMGF 5 349.6 −54.3

Figure 11 shows the predicted results for the event from 29 December 2010 to 2
January 2011, and Table 11 listed the magnitude of total average rainfall estimated by the
WRF schemes. Results revealed that most of the schemes’ combinations produced under
predicted rainfall magnitude at different rainfall stations range, approximately, from 5% to
88% compared to the observed. Schemes SBUBMJ, on the other hand, generated about 20%
overestimation for the rainfall at stations JKR Gambang and Kuala Raman. According to the
obtained result at the station Ladang Nada, it has been observed that, except for the scheme
MDMBM, all the other four scheme combinations accurately capture the precipitation
intensity. Overall, SBUBMJ was found to be an effective scheme to simulate the event with
slightly underestimated rainfall depth with a difference of about 7.5%.
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Figure 11. WRF Simulated rainfall for the 29 December 2010 to 2 January 2011 event.
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Table 11. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for the 29 December 2010 to 2 January 2011 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 201.3 −17.5
WSM6GF 2 118.8 −51.3

LinGF 3 244.1 107.1 −56.1
MDMBMJ 4 101.7 −58.3
MDMGF 5 105.0 −57.0

Two other rainfall events first from 26 to 30 January 2011 and the second event from 11
to 13 January 2012 were selected to simulate heavy rainfall, as shown in Figures 12 and 13,
respectively. The simulation’s output for the first event is shown in Figure 12, where
the results indicated that all the model schemes showed varied performance in terms
of capturing the rainfall compared to the observed rainfall. It is worth noting that they
were unable to capture the event intensity at station Paya Besar. Two model schemes
combinations of MDMGF and LinGF produced over estimated rainfall at PCCL Sg Lembing
and Ladang Nada and underestimated rainfall at station Rumah Pam and JPS Negeri
Pahang. Overall, the schemes SBUBMJ produced greater accuracy, with a PE of about
−21.2 percent, as shown in Table 12. Results obtained from simulation of the second
event are displayed in Figure 13, where it is revealed that the five schemes produced lower
rainfall (ranges from 20 mm to 200 mm) at various stations when compared to observed
data. On the other hand, the cumulus scheme BMJ combined with MP schemes SBU and
MDM provided approximately 7% to 20% overestimated rainfall at the station PCCL Sg.
Lembing and JPS Negeri Pahang. Again, the combination of SBUBMJ schemes performed
better in estimating the depth of average total rainfall in KRB, with the PE of about −21.8%
overall, as shown in Table 13.
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Table 12. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for the 26 to 30 January 2011 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 127.1 −21.2
WSM6GF 2 85.0 −47.3

LinGF 3 161.3 110.0 −31.8
MDMBMJ 4 115.3 −28.5
MDMGF 5 113.8 −29.4

Table 13. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for the 11 to 13 January 2012 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 221.88 −21.8
WSM6GF 2 107.1 −62.2

LinGF 3 283.8 80.2 −71.7
MDMBMJ 4 198.8 −29.9
MDMGF 5 115.6 −59.3

Figures 14 and 15 show the results of moderate rainfall model simulations for the
events of 26 to 30 March 2011 and 8 to 12 December 2016, respectively. The acquired
results from the event of 26 to 30 March 2011 revealed that the schemes WSM6GF, LinGF,
and MDMGF estimated higher rainfall than the observed rainfall at all KRB stations.
However, the parameterization of the BMJ cumulus scheme combines with microphysics
in SBU, and MDM indicates good accuracy. MDMBMJ, on the other hand, overestimated
rainfall at station JKR Gambang. As indicated in Table 14, the scheme SBUBMJ performed
considerably better in simulating moderate rainfall in KRB, with a PE difference of about
22.2%. Furthermore, the simulation results for the event from 8 to 12 December 2016
revealed that the schemes WSM6GF, LinGF, and MDMGF generate overestimated rainfall
at PCCL Sg. Lembeing, JKR Gambang, Ladang Nada, and Ladang Kuala Raman in
comparison to observed rainfall, showing better accuracy at stations Kg. Sg. Soi and
Rumah Pam. As indicated in Table 15, the model scheme MDMBMJ performed well among
all, with a difference of −0.6% PE.
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Table 14. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for 26 to 30 March 2011 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 71.295 22.2
WSM6GF 2 377.6 547.0

LinGF 3 58.4 386.9 563.0
MDMBMJ 4 86.1 47.5
MDMGF 5 387.5 564.0

Table 15. Comparison of average total rainfall depth estimated by WRF schemes and observed data
for 8 to 12 December 2016 event in KRB.

WRF Schemes Ranked Average Total Observed
Rainfall Depth (mm)

Average Total WRF
Rainfall Depth (mm) PE (%)

SBUBMJ 1 62.2 25.2
WSM6GF 2 133.0 167.4

LinGF 3 49.7 106.2 113.6
MDMBMJ 4 49.4 −0.6
MDMGF 5 118.9 139.1

3.3. The Spatial Rainfall Pattern Distribution

Figures 16–22 provide a comparison of observed and simulated WRF MPCU schemes
for the selected rainfall event categories in terms of spatial interpolation of rainfall patterns
using Inverse Distance Weighting (IDW). For the events on 21 to 23 December 2001 and
1 to 5 December 2013, the CU scheme BMJ parameterized with MP schemes MDM and SBU
showed comparatively better performance than the other schemes’ combinations in terms
of capturing spatial patterns for extreme rainfall, respectively. The scheme cumulus GF, on
the other hand, was found to be ineffective at producing spatial precision when combined
with MP schemes Lin and MDM, respectively. Based on the results of simulating heavy
rainfall events, it was found that all of the scheme combinations accurately captured the
rainfall intensity at the upstream region of the KRB during the event from 26 to 30 January
2011. However, SBUBMJ showed a relatively better performance to capture the rainfall
event overall. By comparing the results for the event on 29 December 2010 to 2 January
2011, it has been observed that the combination of MDMBMJ followed a similar rainfall
distribution pattern as the observed pattern. It has also been noted that the schemes LinGF
were unable to represent the correct rainfall pattern for the event on 11 to 13 January 2012,
whereas the other scheme combinations performed well in the central region of KRB. In
comparing the efficiency of the schemes in capturing the pattern of moderate rainfall events,
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the results showed that the combination of schemes SBUMJ, WSM6GF, and MDMGF was
capable of capturing the rainfall distribution pattern seen during the event from 26 to 30
March 2011. Moreover, SBUBMJ showed a tendency to accurately represent the event from
8 to 12 December 2011.
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4. Discussion

In the first objective, a series of 48 experiments on the combinations of 8 microphysics
and 6 cumulus schemes in WRF has been conducted to estimate the rainfall event that
occurred from 29 December 2010 to 2 January 2012 at KRB. The results from the 4 km
nested domain were used for all the analyses and comparisons. All the simulations were
made for 3 and 5 days. Comparisons between the WRF scheme’s estimated rainfall and the
observed rainfall are shown in Figures 4–8. It has been noted that there was a considerable
variation in the scheme’s simulated results against the observed data. This could be due to
the variation in atmospheric properties and topographic characteristics at certain stations
and the non-suitability of domain configuration.

The results indicated that most of the schemes were not able to produce significant
rainfall magnitude for all events. However, in the parameterized case, GF and BMJ cumulus
schemes and SBU microphysics schemes are found to be relatively better to simulate the
events (for example, WSM6GF, GoMGF, SBUGF, SBUBMJ, WSM6BMJ, and MDMBMJ). The
identification of best-performing combinations was achieved by using categorical statistical
evaluation techniques. These techniques were PC, TS, HR, FAR, Bias, and continuous
indices (RMSE). An average, a lower RMSE of 41.8 identified that the BMJ cumulus scheme
could simulate the event with a better scope. In KRB, the average values of the PC range
from 0.61 to 0.67 and TS ranges from 0.55 to 0.67 reveal the parameterization of BMJ and
GF (cumulus schemes) with MDM, SBU, WSM6, and Lin (microphysics schemes) perform
relatively better to estimate the rainfall.

The Bias values revealed that BMJ cumulus parameterization tends to produce a
slightly overestimated amount of rainfall. FAR and HR for the specific MP and CU schemes
combination in the KRB area are less sensitive, as almost all the model combinations
produced the rain. The reason could be that the area receives rainfall almost every day
during the NEM season, therefore, there is no chance for both schemes (MP and CU) to miss
the rainfall simulation. Performance of BMJ, KF, and GF (cumulus schemes) and SBU and
MDM (microphysics schemes) is noticeably competent in terms of HR. The combination of
WSM6KF has been identified as comparatively weaker than others in producing FAR.
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Overall analysis reveals that the BMJ and GF schemes from cumulus and SBU, and
MDM schemes from microphysics, are superior to providing reliable simulation results. The
reliability of the results for cumulus schemes is supported by previous studies. Refs. [34,50]
found the BMJ scheme’s potential to produce promising results in simulating convec-
tive type rain in Malaysia; however, the suitability of the scheme’s performance is case
dependent. Further results similar to this study have been found for other regions, for
instance, Ref. [51] compared BMJ, KF, and GF schemes by simulating monsoon rainfall
over the Indian region and determined that BMJ schemes produced more realistic rainfall
prediction compared with the observed data. Similarly, the sensitivity of the convective
scheme parameterization was tested by [52] for simulation of a meso-convective system
(see Table 16). The study determined that the BMJ scheme contributed significantly to
capturing the convective storm. The fact could be that the rainfall in the tropical regions
including Malaysia is produced from convective systems. The BMJ scheme in a convective
system has the characteristics to adjust the temperature and moisture profiles into the
atmosphere, which are in a quasi-equilibrium state in deep and shallow convection.

The microphysics schemes contain the explicit resolved processes of water vapor,
clouds, and rainfall; thus, the scheme has a vital role in weather forecasting. However,
there is not much research in evaluating the performance of microphysics schemes for
Malaysia that has been documented. The performance of these schemes has been assessed
in other regions including the middle latitude region [53], western Canada [54], southeast
India [55], and the Shasta Dam watershed, northern California [56]. This study analysis
determines that the microphysics schemes SBU and MDM showed significant performance
when combined with the other cumulus schemes. The reason might be the properties of
prognostics hydrometeor species that play a larger role in high-resolution WRF simulation
for the squall lines case associated with convective or heavy precipitation. It must be
emphasized that the sensitivity of microphysics should be tested for the different scenarios.

Table 16. Comparative results of similar studies in simulating rainfall.

Region and Reference Microphysics (MP) Cumulus
(CU) Results

South China Sea [57]

WRF Single Moment—3 class
Eta
New Thompson
Stony Brook University
Lin Scheme

Kain–Fritsch
Betts–Miller–Janjic
NewSimplified
Arakawa
Tiedtke

Overall, the WRF model schemes combination have
an acceptable parformance to predict important
parameters (winds, rainfall) related to typhoon.
However, the best estimated precipitation rate was
identify with constantly lowest RMSE, MBE, and
t values and highest CE values, 0.00025, 0.00015,
3.699,and 0.405, repectively.

Eastern Peninsular
Malasysia (using MM5) [50] -

Kain–Fritsch
Betts–Miller
Grell
Anthes–Kuo

Betts–Miller performed better compared with
obverserd TRMM rainfall with least RMSE (0.54, 1.2,
0.65), systematic RMSE (0.44, 1.04, 0.58), and
unsystematic RMSE (0.31, 0.42, 0.30) at 06z09, 00z10,
and 18z10 (6 hr interval), repectively

Ganges–Brahmaputra–
Meghna basin (GBMB) and,
Indus Basin (IB)
[51]

WRF Single Moment—3
WRF Single Moment—5
WRF Single Moment—6 class
Thompson Scheme

Kain–Fritsch
Betts–Miller–Janjic
Grell–Freitas

Combination of MPCU WSM-5-BMJ showed better
consistant performance in all conditions at both
regions. The approximate estimated POD, CSI, FBI,
and FAR, TOPSIS-RSV were reported as 0.8, 0.6,
0.9–1.2, 0.2–0.3, and 0.7–0.8, respectively.

Southeast India [52]
Lin Scheme
Thompson
WRF Single Moment—6 class

Betts–Miller–Janjic
Kain–Fritsch-
Grell–Devenyi

Compared with obsereved parameters, the meso-scale
convetive system including wram temperature,
refelectvity, and rainfall pattern are well simulated by
WRF schemes MP Thompson, CU Betts–Miller–Janjic,
and Mellor–Yamada–Janjic PB layer with less RMSE
(2.32, 1.01) and Bias (5.42, 1.04) and high correlation
(0.74 T2m, 0.19 h2m, and ws10m), respectively.

Chennai Southeast
India [55]

Morrison double moment scheme
Lin scheme
WRF Single Moment—3 Class and 6
Class
New Thompson scheme

Morrison Double Moment (MDM) schemes tend to
perform better in simulating heavy rainfall events
with estimated less RMSE 13.86, MAE, 11.03, and
Bias 8.235.
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It is important to note that this study evaluates the performances of the schemes by
simulating one rainfall event (29 December 2010 to 2 January 2011), and it is difficult to
interpret why the scheme performances are generally different. Therefore, it is required to
simulate more events of different scenarios such as heavy, moderate, and extreme rainfall
to validate the sensitivity of schemes’ parameterization in the WRF model for KRB. The
limitation of time and computational constraint was not allowed to evaluate all 48 schemes’
combinations in simulating other rainfall events which have been selected for this research.
Therefore, the top five efficient MP-CU schemes combinations, which were evaluated
and ranked according to their performance through statistical methods, were selected to
simulate other selected rainfall events. The purpose was to identify the best performing
WRF parameterized physical schemes for KRB.

In the second phase, the selected five WRF parameterized MP, and CU schemes were
tested for seven different rainfall events which were categorized into extreme, heavy, and
moderate. Figures 9–15 display the simulated rainfall depth for all categorized events. The
accumulated results indicated that all the schemes’ parameterizations exhibit a considerable
difference in the simulated amount of rainfall. From the close comparisons between the
observed and WRF scheme’s estimated rainfall depths, as shown in Tables 9–15, it has been
observed that all the schemes’ combinations produced varied estimations in all rainfall
events. For the extreme and heavy rainfall events, the parameterization of WSM6GF, LinGF,
and MDMGF showed lower prediction skills with a percentage error difference range from
−47.3% to −87.2%, from −26.9% to −71.7%, and from −29.4% to −59.3%, respectively,
whereas the PE (%) of these schemes, WSM6GF (164.7 and 547), LinGF (113.6 and 563),
and MDMGF (139.1 and 564), showed the model produced a very high amount of rainfall
depth compared to that observed in moderate rainfall events. Thus, the parameterization of
these MP and CU schemes is found to not be compatible with simulating moderate rainfall
events. On the other hand, the parameterized SBUBMJ schemes were identified as more
reliable to simulate heavy and moderate rainfall events and have produced overpredicted
and underpredicted rainfall with an average PE range from 17.5% to 25.2%. However, a PE
ratio ranging from −58.1% to 68.2% in simulating extreme rainfall showed that schemes
did not capture the event accurately. The uncertainty of WRF schemes’ performances in
producing rainfall in KRB is possibly due to the process of rainfall estimation which is
based on various interactive factors and is challenging. These factors involve the behavior
of domain configurations, topographical characteristics of an area, sparse rainfall data, and
the absence of vertical-sounding observations.

Furthermore, the pattern spatial distribution of WRF simulated all seven rainfall events
and was compared with the observed rainfall pattern. From the comparison, it has been
noted that the parameterization of WRF MP and CU schemes produces comparable rainfall
patterns in most of the model simulations. However, the combination of SBUBMJ schemes
showed a more realistic performance in capturing the distributed rainfall pattern compared
with the observed trend overall. Another possible reason for the varied performance
of the scheme combinations could be the contribution of local boundary formulation in
the Planetary Boundary Layer (PBL) condition, which seeks to capture and simulate the
vertical environment. As the evaluation of PBL was not the scope of the research objective,
therefore, this study used the default Yousei University (YSU) PBL condition in the WRF
model configuration.

Moreover, it should be noted that the selection of the MP scheme has a greater influence
on capturing the spatial pattern of rainfall distribution, and CU schemes influence capturing
rainfall intensity in the model. In this regard, the SBU scheme from microphysics and BMJ
from cumulus evolve in the potential configurations to simulate the spatial and temporal
rainfall pattern for all the selected events in KRB. Considering the performance of BMJ
cumulus schemes, the results are consistent with some previous studies, as discussed earlier.
Ref. [51] evaluated the 15 combinations of MP and CU schemes to identify the suitable
configuration of WRF model schemes in simulating Indian monsoon rainfall over the
Ganges–Brahmaputra–Meghna River basins. The study used two nesting domains of 27 km
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and 9 km grid resolutions, and the simulation results determined the BMJ cumulus as being
superior to perform well when combined with the MP schemes’ options of WSM3, WSM6,
and Thompson. Similarly, ref. [58] invested different combinations of four microphysics,
two cumulus, and two planetary boundary layers for simulating the extreme rainfall
event at the upper Ganga Basin. The output of the study revealed that BMJ was the best
configuration with microphysics Goddard (GoM) and Millor–Yamada–Janjis (MYJ) PBL to
capture the event successfully.

According to [59], compared to other WRF cumulus schemes, the BMJ scheme shows
more agreement to the ground observed in simulating stratiform and convective precipita-
tions. The research attempted to assess the WRF’s capability to simulate the flood event
in Yorkshire–Humberside (UK) that occurred in 1999. In the case of microphysics (MP)
schemes, there are minimal studies in comparison to configurations for simulated different
storm events. Ref. [8] concluded that all the MP schemes are very influential in the rainfall
simulation at high grid resolutions due to the impact of the water phase process. As for SBU
microphysics performance, in the simulation of tropical rainfall events, there is not much
research that has been conducted. To understand and analyze the behavior of SBU schemes’
configuration over the Malaysian region, it is required to perform more simulation tests
by using different storm conditions. From the overall analysis of WRF model schemes
combinations, the study has identified the combination of SBUBMJ physical schemes in the
WRF model to generate the meteorological data for the rainfall for hydrological simulation
in KRB.

5. Conclusions

WRF model sensitivity was evaluated to simulate a 5-day rainfall period against the
observed rainfall data using 48 different parameterized MP and CU schemes. All the
parameterized schemes simulations show varied performance in estimating rainfall at
different rainfall gauge locations at the studied basin. The statistical methods, including
RMSE, PC, TS, HR, FAR, and Bias, were applied to analyze the accuracy of the simulations.
Results obtained from the statistical indices have indicated varied performance levels
for the combination of the physical schemes. The model schemes were ranked based on
their performances in each index. Then, all the ranked values were combined to form
cumulative rank orders. The obtained results indicate that parameterization of SBUBMJ,
WSM6GF, LinGF, MDMBMJ, and MDMGF is found to be potentially significant to produce
a good agreement with the observed data. To identify the most efficient parameterized
physical schemes for KRB, sets of the selected five schemes combinations have been further
investigated by simulating different rainfall events. Parameterization of MP Schemes
WSM6, Lin, and MDM with CU GF schemes shows less accuracy in rainfall estimation
compared to the observed rainfall, whereas the combination of CU scheme BMJ with MP
schemes MDM and SBU shows relatively better results. Overall, however, it was found
that the parameterization of Stony Brook University–Betts–Miller–Janjic (SBUBMJ) resulted
in a good agreement in capturing both spatial and temporal rainfall patterns that can be
used in the hydrological simulation, especially in cases of heavy and moderate rainfall
with the PE range from ±17.5%to ±25.2%. However, it produced uncertainty in simulating
extreme rainfall events with estimated PE ranges from ±58.1% to ±68.2%. It is, therefore,
required to test the parametrization SBUBMJ with different boundary layer conditions and
domain configurations for simulating extreme rainfall more accurately. In the conclusion,
the findings in this study indicate that for the region where hydro-meteorological data are
limited or incomplete, the alternative approach can be used to establish more sustainable
and reliable hydrological forecasting utilizing the WRF model. This is important in ensuring
sustainable water resource management and monitoring in the data-scarce region.
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Figure A1. Daily average rainfall and streamflow for December 2001.
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Figure A2. Daily average rainfall and streamflow for December 2010.
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Figure A3. Daily average rainfall and streamflow for January 2011.

Sustainability 2022, 14, 12624 32 of 44 
 

 
Figure A3. Daily average rainfall and streamflow for January 2011. 

 
Figure A4. Daily average rainfall and streamflow for March 2011. 

 
Figure A5. Daily average rainfall and streamflow for January 2012. 

 
Figure A6. Daily average rainfall and streamflow for December 2013. 

0

100

200

300

400

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

St
re

am
flo

w
 (m

³/s
)

R
ai

nf
al

l (
m

m
)

Days

Rainfall (mm) Streamflow (m³/s)

0

100

200

300

400

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

St
re

am
flo

w
 (m

³/s
)

R
ai

nf
al

l (
m

m
)

Days

Rainfall (mm) Streamflow (m³/s)

0

200

400

600

800

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

St
re

am
flo

w
 (m

³/s
)

R
ai

nf
al

l (
m

m
)

Days

Rainfall (mm) Streamflow (m³/s)

0

250

500

750

1000

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

St
re

am
flo

w
 (m

³/s
)

R
ai

nf
al

l (
m

m
)

Days

Rainfall (mm) Streamflow (m³/s)

Figure A4. Daily average rainfall and streamflow for March 2011.
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Figure A5. Daily average rainfall and streamflow for January 2012.
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Figure A6. Daily average rainfall and streamflow for December 2013.
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Figure A7. Daily average rainfall and streamflow for December 2016.

Table A1. RMSE (mm) of WRF physical schemes combination at rainfall stations of KRB.

Sc
he

m
es

na
m

e

K
g.

Sg
.S

oi

Pu
la

u
M

an
is

Pa
ya

B
es

ar

PC
C

L
Le

m
bi

ng

R
um

ah
Pa

m

JK
R

G
am

ab
an

g

La
da

ng
N

ad
a

La
da

ng
K

ua
la

R
am

an

JP
S

N
eg

er
iP

ah
an

g

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

To
ta

l

A
ll

R
an

ke
d

KSKF 34 34 54 70 49 32 58 47 73 20 21 18 29 11 21 33 20 9 182 19
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KSGF 26 25 52 76 45 25 35 30 76 4 2 10 44 6 2 2 2 17 89 6

KSG3D 39 38 57 70 55 35 57 47 81 33 38 33 31 24 34 26 21 29 269 31
KSTiS 33 33 52 69 50 30 54 43 76 16 17 11 22 16 16 15 12 16 141 13

KSOKF 37 37 55 76 49 34 67 52 73 27 30 22 45 13 30 45 41 10 263 28
LinKF 39 36 58 71 60 34 58 50 84 37 25 37 38 42 29 40 38 42 328 38

LinBMJ 31 38 55 77 53 34 73 62 75 11 35 20 46 20 28 46 44 14 264 29
LinGF 32 28 55 60 52 27 31 27 80 13 6 21 3 17 5 1 1 23 90 7

LinG3D 41 38 58 70 59 36 57 49 83 42 44 42 30 36 43 30 32 34 333 39
LinTiS 37 35 54 67 56 33 54 45 82 30 23 15 15 28 24 13 15 31 194 20

LinOKF 39 38 58 70 54 35 58 47 81 34 36 36 35 22 33 35 23 27 281 35
WSM3KF 41 39 59 71 61 36 59 50 85 48 45 48 40 45 45 42 39 47 399 48

WSM3BMJ 36 35 55 67 55 32 54 44 80 23 22 19 16 23 20 16 13 22 174 17
WSM3GF 33 29 55 49 56 28 52 41 83 17 8 25 2 26 9 9 4 36 136 12

WSM3G3D 41 39 58 70 59 36 57 48 83 47 46 47 28 34 46 32 29 38 347 44
WSM3TiS 41 38 57 69 58 36 56 48 83 43 43 30 24 32 38 21 27 40 298 36

WSM3OKF 41 39 58 71 57 36 58 49 81 46 47 41 37 29 44 38 30 26 338 41
WSM6KF 40 38 58 71 60 35 58 50 84 38 34 40 39 41 36 41 37 44 350 45

WSM6BMJ 34 37 57 68 60 60 57 48 84 21 29 29 18 38 48 25 25 43 276 32
WSM6GF 30 27 53 72 41 27 56 43 73 9 4 13 41 4 6 19 11 11 118 11

WSM6G3D 39 38 57 70 55 35 57 48 80 35 37 35 34 25 37 28 24 21 276 33
WSM6TiS 38 36 55 69 56 34 56 46 81 31 26 26 27 27 26 20 18 28 229 24

WSM6OKF 37 37 58 70 57 35 57 48 81 28 31 38 32 30 32 29 26 30 276 34
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GoMGF 27 29 49 168 64 32 164 119 79 6 9 4 48 47 23 48 48 20 253 26
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NThGF 29 25 52 48 43 26 51 58 71 7 3 9 1 5 3 7 42 7 84 5
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Table A1. Cont.
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SBUGF 20 21 47 125 37 24 127 104 64 1 1 2 47 2 1 47 47 4 152 16

SBUG3D 36 34 56 69 50 32 57 47 75 24 20 27 25 15 22 31 19 13 196 21
SBUTiS 33 31 52 66 49 30 54 42 74 15 15 8 12 12 12 12 9 12 107 9

SBUOKF 33 36 54 68 46 30 58 48 71 18 24 17 19 7 17 39 28 5 174 18

Table A2. Cumulative ranking for WRF schemes combination.

Schemes PC HR FAR TS RMSE BIAS Total Cumulative Rank

KSKF 29 33 4 34 19 14 133 21
KSBMJ 26 30 3 29 27 13 128 18
KSGF 18 15 34 17 6 31 121 16

KSG3D 47 45 45 43 31 4 215 45
KSTiS 34 37 19 36 13 11 150 29

KSOKF 40 48 1 48 28 1 166 31
LinKF 48 40 48 45 38 9 228 48

LinBMJ 16 21 12 16 29 29 123 17
LinGF 5 18 2 13 7 26 71 3

LinG3D 46 42 42 42 39 8 219 47
LinTiS 30 29 21 30 20 17 147 28

LinOKF 39 43 17 40 35 6 180 35
WSM3KF 45 44 10 44 48 5 196 38

WSM3BMJ 20 28 6 25 17 22 118 13
WSM3GF 17 20 14 21 12 30 114 12

WSM3G3D 42 46 32 46 44 3 213 43
WSM3TiS 41 41 30 41 36 7 196 39

WSM3OKF 43 47 20 47 41 2 200 41
WSM6KF 37 35 46 35 45 20 218 46

WSM6BMJ 22 22 18 23 32 27 144 26
WSM6GF 3 10 5 8 11 32 69 2

WSM6G3D 44 39 47 39 33 12 214 44
WSM6TiS 36 36 44 37 24 19 196 40

WSM6OKF 23 24 11 26 34 21 139 25
GoMKF 10 5 41 6 10 46 118 14

GoMBMJ 12 11 15 12 47 39 136 23
GoMGF 6 6 27 4 26 43 112 10

GoMG3D 15 12 29 15 3 38 112 11
GoMTiS 19 16 33 18 8 35 129 19

GoMOKF 9 9 9 9 22 40 98 8
NThKF 25 19 39 20 30 34 167 32

NThBMJ 7 7 31 7 2 44 98 9
NThGF 13 14 13 14 5 37 96 6

NThG3D 38 38 24 38 37 10 185 36
NThTiS 31 32 8 31 15 15 132 20

NThOKF 24 23 23 22 42 28 162 30
MDMKF 33 31 35 32 40 16 187 37

MDMBMJ 2 2 28 2 4 48 86 4
MDMGF 8 13 7 10 23 33 94 5

MDMG3D 35 34 37 33 43 18 200 42
MDMTiS 28 26 16 27 25 23 145 27

MDMOKF 27 25 26 24 46 25 173 33
SBUKF 11 3 38 5 14 47 118 15

SBUBMJ 1 1 22 1 1 41 67 1
SBUGF 4 4 25 3 16 45 97 7

SBUG3D 32 27 43 28 21 24 175 34
SBUTiS 21 17 36 19 9 36 138 24

SBUOKF 14 8 40 11 18 42 133 22
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Table A3. Percentage of correction (PC).
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KSKF 0.74 0.68 0.66 0.34 0.34 0.60 0.41 0.42 0.74
KSBMJ 0.75 0.68 0.69 0.37 0.38 0.62 0.41 0.39 0.75
KSGF 0.78 0.69 0.71 0.33 0.46 0.64 0.45 0.45 0.78

KSG3D 0.57 0.63 0.44 0.31 0.26 0.53 0.33 0.37 0.57
KSTiS 0.68 0.59 0.69 0.31 0.40 0.56 0.41 0.40 0.68

KSOKF 0.61 0.60 0.55 0.31 0.29 0.62 0.33 0.35 0.61
LinKF 0.68 0.63 0.55 0.15 0.23 0.53 0.24 0.24 0.68

LinBMJ 0.79 0.74 0.60 0.45 0.52 0.63 0.47 0.40 0.79
LinGF 0.81 0.69 0.76 0.49 0.50 0.68 0.61 0.57 0.81

LinG3D 0.73 0.60 0.45 0.31 0.25 0.56 0.32 0.33 0.73
LinTiS 0.73 0.61 0.70 0.40 0.36 0.57 0.44 0.43 0.73

LinOKF 0.71 0.62 0.57 0.32 0.24 0.60 0.34 0.35 0.71
WSM3KF 0.70 0.64 0.56 0.24 0.26 0.56 0.27 0.29 0.70

WSM3BMJ 0.76 0.71 0.69 0.38 0.45 0.60 0.41 0.44 0.76
WSM3GF 0.74 0.68 0.70 0.46 0.48 0.60 0.54 0.55 0.74

WSM3G3D 0.62 0.59 0.48 0.36 0.26 0.55 0.35 0.38 0.62
WSM3TiS 0.65 0.52 0.64 0.31 0.33 0.52 0.35 0.35 0.65

WSM3OKF 0.63 0.60 0.51 0.33 0.27 0.59 0.30 0.33 0.63
WSM6KF 0.75 0.69 0.60 0.19 0.33 0.60 0.23 0.26 0.75

WSM6BMJ 0.74 0.69 0.64 0.40 0.50 0.58 0.48 0.42 0.74
WSM6GF 0.86 0.69 0.80 0.47 0.58 0.69 0.58 0.59 0.86

WSM6G3D 0.64 0.61 0.49 0.22 0.30 0.55 0.31 0.35 0.64
WSM6TiS 0.70 0.59 0.68 0.34 0.35 0.57 0.35 0.35 0.70

WSM6OKF 0.78 0.76 0.64 0.42 0.31 0.60 0.46 0.44 0.78
GoMKF 0.74 0.68 0.69 0.68 0.76 0.60 0.74 0.65 0.74

GoMMBJ 0.82 0.69 0.67 0.48 0.60 0.64 0.54 0.45 0.82
GoMGF 0.78 0.70 0.76 0.57 0.55 0.63 0.64 0.61 0.78

GoMG3D 0.78 0.66 0.74 0.49 0.49 0.62 0.53 0.54 0.78
GoMTiS 0.74 0.60 0.70 0.50 0.60 0.58 0.52 0.54 0.74

GoMOKF 0.78 0.74 0.76 0.50 0.37 0.66 0.57 0.54 0.78
NThKF 0.79 0.72 0.66 0.31 0.47 0.64 0.36 0.35 0.79

NThBMJ 0.76 0.69 0.72 0.55 0.62 0.62 0.60 0.55 0.76
NThGF 0.82 0.64 0.70 0.49 0.52 0.64 0.55 0.55 0.82

NThG3D 0.74 0.66 0.45 0.31 0.26 0.60 0.35 0.36 0.74
NThTiS 0.74 0.59 0.70 0.44 0.39 0.56 0.45 0.44 0.74

NThOKF 0.82 0.73 0.61 0.32 0.37 0.67 0.38 0.34 0.82
MDMKF 0.74 0.66 0.47 0.38 0.28 0.61 0.37 0.42 0.74

MDMBMJ 0.77 0.72 0.69 0.59 0.74 0.64 0.60 0.59 0.77
MDMGF 0.79 0.69 0.72 0.50 0.51 0.70 0.58 0.61 0.79

MDMG3D 0.74 0.66 0.47 0.39 0.28 0.61 0.37 0.42 0.74
MDMTiS 0.74 0.63 0.63 0.46 0.45 0.60 0.44 0.49 0.74

MDMOKF 0.79 0.69 0.65 0.31 0.40 0.69 0.35 0.34 0.79
SBUKF 0.77 0.73 0.69 0.43 0.67 0.64 0.55 0.53 0.77

SBUBMJ 0.77 0.73 0.74 0.66 0.60 0.65 0.68 0.63 0.77
SBUGF 0.78 0.71 0.68 0.58 0.53 0.65 0.64 0.64 0.78

SBUG3D 0.73 0.67 0.49 0.40 0.34 0.60 0.42 0.43 0.73
SBUTiS 0.74 0.64 0.69 0.50 0.59 0.60 0.47 0.51 0.74

SBUOKF 0.79 0.61 0.70 0.52 0.61 0.64 0.59 0.54 0.79
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Table A4. Threat Score (TS).
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KSKF 0.72 0.67 0.61 0.15 0.16 0.59 0.20 0.20 0.14
KSBMJ 0.73 0.66 0.64 0.19 0.23 0.59 0.20 0.20 0.17
KSGF 0.77 0.69 0.68 0.27 0.37 0.63 0.36 0.36 0.30

KSG3D 0.52 0.60 0.30 0.17 0.08 0.46 0.20 0.22 0.07
KSTiS 0.65 0.57 0.60 0.17 0.28 0.52 0.24 0.23 0.28

KSOKF 0.54 0.54 0.35 0.10 0.09 0.52 0.10 0.10 0.08
LinKF 0.66 0.63 0.47 0.01 0.07 0.52 0.04 0.02 0.08

LinBMJ 0.77 0.72 0.55 0.35 0.44 0.61 0.37 0.33 0.41
LinGF 0.79 0.68 0.72 0.41 0.40 0.65 0.53 0.47 0.29

LinG3D 0.70 0.59 0.35 0.18 0.05 0.54 0.20 0.17 0.05
LinTiS 0.71 0.61 0.64 0.25 0.24 0.56 0.27 0.27 0.24

LinOKF 0.67 0.60 0.46 0.15 0.08 0.56 0.14 0.14 0.07
WSM3KF 0.68 0.64 0.48 0.01 0.06 0.54 0.01 0.01 0.05

WSM3BMJ 0.73 0.68 0.62 0.26 0.34 0.57 0.28 0.29 0.34
WSM3GF 0.72 0.67 0.66 0.40 0.38 0.59 0.46 0.47 0.37

WSM3G3D 0.57 0.57 0.34 0.20 0.07 0.50 0.19 0.19 0.07
WSM3TiS 0.61 0.50 0.52 0.15 0.17 0.47 0.16 0.14 0.16

WSM3OKF 0.58 0.55 0.40 0.15 0.10 0.52 0.10 0.12 0.11
WSM6KF 0.74 0.69 0.55 0.00 0.17 0.59 0.01 0.02 0.12

WSM6BMJ 0.71 0.67 0.59 0.29 0.42 0.56 0.36 0.32 0.44
WSM6GF 0.84 0.68 0.75 0.41 0.49 0.67 0.50 0.49 0.34

WSM6G3D 0.63 0.61 0.38 0.11 0.10 0.53 0.19 0.21 0.14
WSM6TiS 0.69 0.59 0.62 0.19 0.22 0.56 0.20 0.18 0.24

WSM6OKF 0.77 0.75 0.54 0.29 0.15 0.56 0.32 0.29 0.20
GoMKF 0.74 0.68 0.68 0.68 0.75 0.60 0.73 0.65 0.79

GoMMBJ 0.81 0.69 0.63 0.41 0.51 0.63 0.46 0.37 0.43
GoMGF 0.77 0.70 0.74 0.54 0.51 0.63 0.58 0.55 0.37

GoMG3D 0.76 0.66 0.70 0.44 0.40 0.61 0.46 0.46 0.35
GoMTiS 0.73 0.60 0.67 0.45 0.53 0.57 0.46 0.45 0.50

GoMOKF 0.77 0.73 0.73 0.43 0.32 0.65 0.49 0.45 0.44
NThKF 0.78 0.72 0.61 0.27 0.38 0.63 0.27 0.25 0.34

NThBMJ 0.75 0.69 0.69 0.51 0.57 0.62 0.54 0.50 0.66
NThGF 0.80 0.64 0.67 0.42 0.44 0.63 0.47 0.46 0.40

NThG3D 0.72 0.66 0.35 0.19 0.06 0.58 0.22 0.21 0.05
NThTiS 0.71 0.59 0.63 0.31 0.22 0.54 0.29 0.27 0.19

NThOKF 0.79 0.72 0.53 0.24 0.25 0.65 0.26 0.22 0.25
MDMKF 0.72 0.65 0.38 0.25 0.11 0.59 0.27 0.29 0.09

MDMBMJ 0.76 0.72 0.68 0.56 0.71 0.64 0.57 0.55 0.65
MDMGF 0.78 0.68 0.68 0.42 0.42 0.68 0.49 0.50 0.32

MDMG3D 0.72 0.65 0.37 0.26 0.11 0.59 0.27 0.29 0.09
MDMTiS 0.72 0.63 0.55 0.32 0.32 0.59 0.31 0.35 0.25

MDMOKF 0.76 0.69 0.58 0.22 0.29 0.66 0.22 0.22 0.29
SBUKF 0.76 0.73 0.68 0.42 0.63 0.64 0.51 0.49 0.55

SBUBMJ 0.76 0.73 0.71 0.63 0.59 0.65 0.64 0.59 0.67
SBUGF 0.77 0.71 0.65 0.56 0.48 0.65 0.60 0.58 0.50

SBUG3D 0.71 0.67 0.42 0.31 0.18 0.59 0.33 0.31 0.15
SBUTiS 0.72 0.64 0.66 0.43 0.51 0.59 0.40 0.42 0.39

SBUOKF 0.78 0.60 0.66 0.50 0.58 0.64 0.55 0.50 0.54
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Table A5. Hit Rate (HR).
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KSKF 0.89 0.88 0.77 0.15 0.16 0.84 0.20 0.21 0.14
KSBMJ 0.90 0.84 0.79 0.19 0.23 0.83 0.20 0.22 0.18
KSGF 0.97 0.92 0.89 0.32 0.40 0.91 0.42 0.43 0.32

KSG3D 0.63 0.74 0.35 0.18 0.08 0.60 0.22 0.24 0.07
KSTiS 0.78 0.72 0.71 0.18 0.31 0.72 0.26 0.25 0.30

KSOKF 0.60 0.63 0.37 0.10 0.09 0.62 0.10 0.10 0.08
LinKF 0.85 0.84 0.59 0.01 0.07 0.77 0.04 0.02 0.08

LinBMJ 0.95 0.92 0.71 0.39 0.48 0.86 0.43 0.40 0.43
LinGF 0.92 0.86 0.88 0.46 0.42 0.88 0.58 0.53 0.31

LinG3D 0.84 0.78 0.43 0.19 0.05 0.75 0.22 0.20 0.05
LinTiS 0.87 0.81 0.78 0.26 0.25 0.80 0.28 0.29 0.26

LinOKF 0.78 0.76 0.55 0.16 0.08 0.75 0.15 0.15 0.07
WSM3KF 0.85 0.84 0.59 0.01 0.06 0.78 0.01 0.01 0.05

WSM3BMJ 0.87 0.84 0.74 0.28 0.36 0.78 0.30 0.32 0.35
WSM3GF 0.90 0.89 0.84 0.47 0.41 0.84 0.53 0.55 0.38

WSM3G3D 0.67 0.72 0.39 0.22 0.07 0.65 0.20 0.21 0.07
WSM3TiS 0.73 0.64 0.57 0.16 0.18 0.64 0.17 0.15 0.16

WSM3OKF 0.67 0.67 0.49 0.15 0.11 0.67 0.10 0.13 0.11
WSM6KF 0.95 0.92 0.74 0.00 0.18 0.88 0.01 0.02 0.13

WSM6BMJ 0.88 0.87 0.75 0.32 0.46 0.80 0.40 0.38 0.45
WSM6GF 0.99 0.90 0.89 0.48 0.52 0.94 0.56 0.56 0.36

WSM6G3D 0.81 0.81 0.46 0.13 0.10 0.75 0.22 0.24 0.14
WSM6TiS 0.89 0.79 0.77 0.20 0.23 0.80 0.22 0.20 0.26

WSM6OKF 0.97 0.98 0.62 0.30 0.16 0.78 0.34 0.32 0.22
GoMKF 0.96 0.91 0.96 0.88 0.93 0.90 0.96 0.90 0.96

GoMMBJ 1.00 0.93 0.83 0.47 0.55 0.93 0.54 0.45 0.45
GoMGF 0.99 0.94 0.93 0.64 0.61 0.94 0.69 0.67 0.42

GoMG3D 0.96 0.89 0.90 0.52 0.44 0.89 0.55 0.54 0.38
GoMTiS 0.90 0.81 0.88 0.53 0.58 0.83 0.55 0.53 0.56

GoMOKF 0.97 0.96 0.95 0.49 0.38 0.95 0.55 0.52 0.47
NThKF 0.99 0.97 0.77 0.32 0.41 0.93 0.33 0.31 0.37

NThBMJ 0.98 0.93 0.94 0.61 0.65 0.93 0.64 0.63 0.71
NThGF 0.98 0.87 0.89 0.48 0.48 0.90 0.54 0.54 0.44

NThG3D 0.84 0.87 0.43 0.22 0.06 0.80 0.25 0.24 0.05
NThTiS 0.87 0.79 0.73 0.32 0.22 0.78 0.30 0.29 0.19

NThOKF 0.92 0.92 0.63 0.28 0.27 0.93 0.30 0.26 0.27
MDMKF 0.89 0.86 0.47 0.27 0.12 0.84 0.31 0.32 0.09

MDMBMJ 0.99 0.97 0.94 0.69 0.79 0.96 0.72 0.71 0.74
MDMGF 0.98 0.91 0.87 0.47 0.45 0.95 0.55 0.54 0.34

MDMG3D 0.89 0.86 0.46 0.28 0.12 0.84 0.31 0.32 0.09
MDMTiS 0.90 0.84 0.68 0.33 0.34 0.85 0.34 0.38 0.27

MDMOKF 0.92 0.90 0.70 0.26 0.32 0.93 0.25 0.25 0.31
SBUKF 1.00 0.98 0.98 0.53 0.72 0.96 0.64 0.63 0.65

SBUBMJ 1.00 0.98 0.98 0.75 0.73 0.98 0.79 0.76 0.78
SBUGF 1.00 0.96 0.90 0.69 0.56 0.95 0.74 0.71 0.55

SBUG3D 0.90 0.89 0.54 0.35 0.19 0.85 0.38 0.36 0.15
SBUTiS 0.91 0.86 0.88 0.49 0.55 0.86 0.47 0.49 0.44

SBUOKF 1.00 0.79 0.85 0.63 0.67 0.95 0.69 0.66 0.63
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Table A6. False Alarm Ratio (FAR).
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KSKF 0.21 0.26 0.26 0.00 0.00 0.34 0.00 0.05 0.07
KSBMJ 0.20 0.25 0.24 0.05 0.08 0.32 0.00 0.24 0.11
KSGF 0.21 0.27 0.26 0.38 0.17 0.33 0.29 0.31 0.16

KSG3D 0.24 0.25 0.34 0.32 0.27 0.34 0.38 0.32 0.30
KSTiS 0.21 0.28 0.19 0.29 0.19 0.34 0.18 0.27 0.17

KSOKF 0.17 0.21 0.09 0.00 0.00 0.23 0.10 0.10 0.11
LinKF 0.25 0.29 0.30 0.92 0.42 0.38 0.64 0.78 0.53

LinBMJ 0.20 0.23 0.29 0.22 0.16 0.33 0.25 0.36 0.13
LinGF 0.16 0.24 0.20 0.22 0.11 0.29 0.16 0.19 0.14

LinG3D 0.19 0.29 0.35 0.31 0.17 0.35 0.39 0.39 0.17
LinTiS 0.21 0.29 0.22 0.14 0.23 0.36 0.14 0.22 0.22

LinOKF 0.17 0.26 0.25 0.21 0.38 0.31 0.24 0.28 0.42
WSM3KF 0.22 0.28 0.28 0.00 0.00 0.36 0.00 0.00 0.17

WSM3BMJ 0.18 0.22 0.21 0.24 0.15 0.32 0.25 0.24 0.06
WSM3GF 0.22 0.27 0.25 0.27 0.15 0.34 0.23 0.24 0.10

WSM3G3D 0.21 0.28 0.29 0.20 0.22 0.33 0.31 0.25 0.22
WSM3TiS 0.20 0.31 0.16 0.25 0.15 0.36 0.25 0.28 0.20

WSM3OKF 0.20 0.24 0.30 0.13 0.23 0.30 0.36 0.31 0.21
WSM6KF 0.23 0.27 0.31 1.00 0.15 0.35 0.83 0.71 0.46

WSM6BMJ 0.21 0.25 0.27 0.23 0.19 0.35 0.22 0.33 0.08
WSM6GF 0.15 0.26 0.17 0.26 0.09 0.30 0.19 0.20 0.15

WSM6G3D 0.26 0.29 0.32 0.52 0.25 0.36 0.43 0.38 0.18
WSM6TiS 0.24 0.30 0.24 0.24 0.21 0.36 0.33 0.35 0.22

WSM6OKF 0.21 0.23 0.20 0.15 0.32 0.33 0.17 0.24 0.22
GoMKF 0.24 0.27 0.31 0.25 0.20 0.35 0.25 0.30 0.18

GoMMBJ 0.19 0.27 0.28 0.24 0.10 0.34 0.24 0.33 0.12
GoMGF 0.22 0.27 0.22 0.23 0.24 0.34 0.21 0.24 0.25

GoMG3D 0.21 0.28 0.24 0.26 0.18 0.34 0.26 0.25 0.20
GoMTiS 0.21 0.30 0.27 0.25 0.13 0.36 0.27 0.25 0.18

GoMOKF 0.21 0.25 0.24 0.21 0.32 0.32 0.20 0.24 0.15
NThKF 0.22 0.26 0.26 0.40 0.17 0.34 0.38 0.43 0.22

NThBMJ 0.23 0.27 0.27 0.25 0.17 0.35 0.23 0.29 0.10
NThGF 0.18 0.28 0.27 0.24 0.16 0.32 0.23 0.24 0.19

NThG3D 0.17 0.27 0.35 0.35 0.00 0.33 0.35 0.36 0.00
NThTiS 0.20 0.30 0.19 0.14 0.00 0.36 0.16 0.19 0.00

NThOKF 0.15 0.24 0.25 0.37 0.21 0.31 0.33 0.41 0.21
MDMKF 0.21 0.27 0.34 0.22 0.21 0.33 0.35 0.28 0.25

MDMBMJ 0.23 0.26 0.29 0.25 0.13 0.34 0.26 0.29 0.16
MDMGF 0.21 0.27 0.24 0.20 0.14 0.29 0.18 0.13 0.13

MDMG3D 0.21 0.27 0.34 0.21 0.21 0.33 0.35 0.28 0.25
MDMTiS 0.22 0.29 0.25 0.09 0.11 0.34 0.23 0.20 0.19

MDMOKF 0.18 0.26 0.23 0.37 0.21 0.30 0.35 0.41 0.21
SBUKF 0.24 0.26 0.30 0.34 0.16 0.34 0.29 0.31 0.21

SBUBMJ 0.24 0.26 0.27 0.20 0.24 0.34 0.22 0.27 0.17
SBUGF 0.23 0.26 0.30 0.26 0.22 0.33 0.24 0.23 0.13

SBUG3D 0.23 0.27 0.35 0.27 0.14 0.34 0.31 0.30 0.29
SBUTiS 0.22 0.29 0.27 0.23 0.12 0.35 0.29 0.26 0.25

SBUOKF 0.22 0.28 0.26 0.29 0.20 0.34 0.27 0.31 0.22
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Table A7. Bias (B).
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KSKF 1.1 1.2 1.0 0.1 0.2 1.3 0.2 0.2 0.2
KSBMJ 1.1 1.1 1.0 0.2 0.3 1.2 0.2 0.3 0.2
KSGF 1.2 1.3 1.2 0.5 0.5 1.4 0.6 0.6 0.4

KSG3D 0.8 1.0 0.5 0.3 0.1 0.9 0.4 0.4 0.1
KSTiS 1.0 1.0 0.9 0.3 0.4 1.1 0.3 0.3 0.4

KSOKF 0.7 0.8 0.4 0.1 0.1 0.8 0.1 0.1 0.1
LinKF 1.1 1.2 0.8 0.1 0.1 1.2 0.1 0.1 0.2

LinBMJ 1.2 1.2 1.0 0.5 0.6 1.3 0.6 0.6 0.5
LinGF 1.1 1.1 1.1 0.6 0.5 1.2 0.7 0.7 0.4

LinG3D 1.0 1.1 0.7 0.3 0.1 1.2 0.4 0.3 0.1
LinTiS 1.1 1.1 1.0 0.3 0.3 1.2 0.3 0.4 0.3

LinOKF 0.9 1.0 0.7 0.2 0.1 1.1 0.2 0.2 0.1
WSM3KF 1.1 1.2 0.8 0.0 0.1 1.2 0.0 0.0 0.1

WSM3BMJ 1.1 1.1 0.9 0.4 0.4 1.1 0.4 0.4 0.4
WSM3GF 1.2 1.2 1.1 0.6 0.5 1.3 0.7 0.7 0.4

WSM3G3D 0.8 1.0 0.5 0.3 0.1 1.0 0.3 0.3 0.1
WSM3TiS 0.9 0.9 0.7 0.2 0.2 1.0 0.2 0.2 0.2

WSM3OKF 0.8 0.9 0.7 0.2 0.1 1.0 0.2 0.2 0.1
WSM6KF 1.2 1.3 1.1 0.1 0.2 1.4 0.1 0.1 0.2

WSM6BMJ 1.1 1.2 1.0 0.4 0.6 1.2 0.5 0.6 0.5
WSM6GF 1.2 1.2 1.1 0.7 0.6 1.3 0.7 0.7 0.4

WSM6G3D 1.1 1.1 0.7 0.3 0.1 1.2 0.4 0.4 0.2
WSM6TiS 1.2 1.1 1.0 0.3 0.3 1.2 0.3 0.3 0.3

WSM6OKF 1.2 1.3 0.8 0.4 0.2 1.2 0.4 0.4 0.3
GoMKF 1.3 1.3 1.4 1.2 1.2 1.4 1.3 1.3 1.2

GoMMBJ 1.2 1.3 1.1 0.6 0.6 1.4 0.7 0.7 0.5
GoMGF 1.3 1.3 1.2 0.8 0.8 1.4 0.9 0.9 0.6

GoMG3D 1.2 1.2 1.2 0.7 0.5 1.3 0.7 0.7 0.5
GoMTiS 1.1 1.2 1.2 0.7 0.7 1.3 0.8 0.7 0.7

GoMOKF 1.2 1.3 1.3 0.6 0.6 1.4 0.7 0.7 0.6
NThKF 1.3 1.3 1.0 0.5 0.5 1.4 0.5 0.5 0.5

NThBMJ 1.3 1.3 1.3 0.8 0.8 1.4 0.8 0.9 0.8
NThGF 1.2 1.2 1.2 0.6 0.6 1.3 0.7 0.7 0.5

NThG3D 1.0 1.2 0.7 0.3 0.1 1.2 0.4 0.4 0.1
NThTiS 1.1 1.1 0.9 0.4 0.2 1.2 0.4 0.4 0.2

NThOKF 1.1 1.2 0.8 0.4 0.3 1.3 0.4 0.4 0.3
MDMKF 1.1 1.2 0.7 0.3 0.1 1.3 0.5 0.4 0.1

MDMBMJ 1.3 1.3 1.3 0.9 0.9 1.5 1.0 1.0 0.9
MDMGF 1.2 1.2 1.1 0.6 0.5 1.3 0.7 0.6 0.4

MDMG3D 1.1 1.2 0.7 0.4 0.1 1.3 0.5 0.4 0.1
MDMTiS 1.2 1.2 0.9 0.4 0.4 1.3 0.4 0.5 0.3

MDMOKF 1.1 1.2 0.9 0.4 0.4 1.3 0.4 0.4 0.4
SBUKF 1.3 1.3 1.4 0.8 0.9 1.5 0.9 0.9 0.8

SBUBMJ 1.2 1.1 1.3 1.0 1.0 1.3 1.0 1.0 0.9
SBUGF 1.3 1.3 1.3 0.9 0.7 1.4 1.0 0.9 0.6

SBUG3D 1.2 1.2 0.8 0.5 0.2 1.3 0.6 0.5 0.2
SBUTiS 1.2 1.2 1.2 0.6 0.6 1.3 0.7 0.7 0.6

SBUOKF 1.3 1.1 1.1 0.9 0.8 1.4 0.9 1.0 0.8
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Table A8. Rainfall event (mm): 21 December 2001 to 23 December 2001.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg Sg. Soi 351.9 462.9 82.7 140.5 371.1 109.8
Paya Besar 300.6 256.8 33.6 65.3 191.3 49.8

PCCL Sg. Lembing 498.0 504.9 42.2 79.6 509.8 94.4
Rumah Pam 601.9 958.4 45.0 169.3 640.6 128.7

Ladang Nada 470.7 587.4 44.8 86.5 548.2 120.3
Landan Kuala Raman 358.5 642.8 49.0 98.9 594.3 117.4

JPS Negeri Pahang 51.4 1014.4 39.1 171.1 616.3 124.5

Table A9. Rainfall event (mm): 29 December 2010 to 2 January 2011.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg Sg.Soi 223.8 186.9 90.9 77.5 114.9 93.4
Paya Besar 270.9 145.4 40.0 32.4 66.3 39.4

PCCL Sg. Lembing 248.6 168.6 189.9 159.7 98.7 110.2
Rumah Pam 268.1 215.1 137.7 66.3 112.2 105.5

JKR Gambang 177.5 213.2 71.5 87.9 101.5 104.6
Ladang Nada 208.1 198.6 163.0 181.0 92.1 147.1

Ladang Kuala Raman 192.2 233.4 186.8 209.0 88.3 188.7
JPS Negeri Pahang 363.4 249.6 70.5 42.9 139.7 51.3

Table A10. Rainfall event (mm): 26 January 2011 to 30 January 2011.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg Sg.Soi 121.3 118.4 69.532 74.883 101.117 66.762
Paya Besar 172.3 65.2 27.842 29.308 60.052 27.885

PCCL Sg. Lembing 185.9 140.7 188.121 228.847 139.354 240.554
Rumah Pam 161.7 143.8 52.979 40.589 110.148 71.243

Ladang Nada 159.3 141.0 117.419 204.061 148.404 219.386
Ladang Kuala Raman 151.4 133.0 101.591 168.675 144.688 128.793

JPS Negeri Pahang 177 147.7 37.689 23.598 103.042 42.075

Table A11. Rainfall event (mm): 26 March 2011 to 30 March 2011.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg Sg.Soi 46.9 62.2 237.147 266.113 94.69 230.476
PCCL Sg. Lembing 91.9 93.5 574.294 374.582 92.012 528.157

Rumah Pam 22.1 71.1 352.291 421.498 71.28 275.796
JKR Gambang 20.1 33.2 86.583 283.663 105.85 263.08
Ladang Nada 104.2 95.4 587.981 469.327 89.112 629.164

Ladang Kuala Raman 88.6 93.3 586.971 552.005 87.876 590.573
JPS Negeri Pahang 34.7 50.3 217.738 341.265 61.715 195.28

Table A12. Rainfall event (mm): 11 January 2012 to 13 January 2012.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg Sg.Soi 323.3 191.9 98.5 101.7 162.9 107.8
Paya Besar 280 90.0 45.7 46.0 76.6 50.4

PCCL Sg. Lembing 252.1 270.4 102.0 20.5 243.5 100.9
Rumah Pam 334.3 241.7 147.2 111.3 203.9 151.7

Ladang Nada 310.4 259.2 115.3 72.0 251.6 117.5
Ladang Kuala Raman 309.6 243.4 114.4 98.8 234.0 136.2

JPS Negeri Pahang 176.7 256.5 126.9 111.4 219.0 144.5
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Table A13. Rainfall event (mm): 1 December 2013 to 5 December 2013.

RF Stations Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

JKR Gambang 592.8 287.3 351.9 439.6 274.2 263.1
Rumah Pam 1074.4 397.5 312.3 487.1 360.4 275.8
Kg. Sg. Soi 768.5 320.1 305.1 384.5 290.8 230.5

Ladng Nada 621.5 277.5 440.7 923.5 296.0 629.2

Table A14. Rainfall event (mm): 8 December 2016 to 12 December 2016.

RF Station Observed SBUBMJ WSM6GF LinGF MDMBMJ MDMGF

Kg. Sg.Soi 62.8 72.3 75.5 62.4 48.5 68.5
Paya Besar 60 74.1 32.8 27.1 30.1 30.2

PCCL Sg. Lembing 18.3 52.0 387.1 224.8 64.5 345.5
Rumah Pam 60.1 58.1 57.4 59.6 44.4 69.5

JKR Gambang 16.5 19.4 85.6 73.2 60.6 77.9
Ladang Nada 60.1 71.6 230.4 189.9 54.4 211.9

Ladang Kuala Raman 60.1 70.1 172.7 180.1 53.4 112.2
JPS Negeri Pahang 60 80.4 22.4 32.7 39.4 35.5
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