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Abstract: Human detection is a special application of object recognition and is considered one of
the greatest challenges in computer vision. It is the starting point of a number of applications,
including public safety and security surveillance around the world. Human detection technologies
have advanced significantly in recent years due to the rapid development of deep learning techniques.
Despite recent advances, we still need to adopt the best network-design practices that enable compact
sizes, deep designs, and fast training times while maintaining high accuracies. In this article, we
propose ReSTiNet, a novel compressed convolutional neural network that addresses the issues of
size, detection speed, and accuracy. Following SqueezeNet, ReSTiNet adopts the fire modules by
examining the number of fire modules and their placement within the model to reduce the number of
parameters and thus the model size. The residual connections within the fire modules in ReSTiNet are
interpolated and finely constructed to improve feature propagation and ensure the largest possible
information flow in the model, with the goal of further improving the proposed ReSTiNet in terms of
detection speed and accuracy. The proposed algorithm downsizes the previously popular Tiny-YOLO
model and improves the following features: (1) faster detection speed; (2) compact model size;
(3) solving the overfitting problems; and (4) superior performance than other lightweight models
such as MobileNet and SqueezeNet in terms of mAP. The proposed model was trained and tested
using MS COCO and Pascal VOC datasets. The resulting ReSTiNet model is 10.7 MB in size (almost
five times smaller than Tiny-YOLO), but it achieves an mAP of 63.74% on PASCAL VOC and 27.3%
on MS COCO datasets using Tesla k80 GPU.

Keywords: computer vision; object detection; human detection; convolutional neural networks

1. Introduction

Human beings possess an inherent ability to perceive surrounding objects in static
images or image sequences almost flawlessly. They can also sense emotions and interactions
among persons and notice the total persons present in images by making mere observations.
The computer vision field is expected to provide the required technological assistance for
this human aptitude in order to improve the quality of life of humans. Hence, the aim of
this field is to explore methods for effectively teaching machines or computers to observe
and understand characteristics in images or videos using digital cameras [1].

A precise detection of objects in an image is essential in computer vision in order to
suit the demands of various applications involving vision-based approaches. For instance,
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object detection includes the identification of specific details in an image, and localizing
its coordinates is considered to be a problem in vision technology. Identifying objects
is not the only task that requires performance but categorizing them accordingly across
various classes in an appropriate manner is also required [2]. A classic example of this
includes visual object detection [2]. Figure 1 illustrates the basic operation of a machine
learning (ML) model for detecting objects. For example, consider the goal of classifying
three dissimilar objects: a bird, a human being, and a lion. Initially, training images are
collected with labeled data in preparation for training an ML framework. Secondly, the
desired features are extracted and then added to the classifier’s architecture.

Training Data Feature Extraction Test Data

Human

Classifier

Figure 1. Example of machine learning work flow for object classification across three different classes
(bird, human, and lion).

Certain features can be best expressed by utilizing various object characteristics that
include colors, corners, edges, ridges, and regions or blobs [3]. The success achieved from
training is directly proportional to several factors that include feature extraction, classifier
selection, and the training procedure. The first task is important as it not only enhances
the accuracy of trained networks but also eliminates redundant features in the image. It
involves reducing the dimensionality of data by extracting redundant information, which
in turn improves the quality of inference while simultaneously improving the training
rate. An ideological view is to expect features to be invariable in the control of dynamic
and illuminated conditions while possessing the capability to cope with any randomized
variations during either scaling or rotational motions. Features are appended to the training
framework after all feasible features from the image samples have been extracted. They
are then supplied to an appropriate sort of classifier based on accuracy and speed. Some
normally used classifiers exist, which include the Support Vector Machines (SVM), Nearest
Neighbor (NN), Random Forest (RF), and Decision Tree (DT). Once the training framework
is ready, removing alike features from the test image samples and, as a consequence,
predicting the proper class from features using the trained framework for each provided
test image are feasible.

Several techniques were proposed in light of the efficient extraction of features as
well as classification to detect arbitrary objects in images [4]. Over the past two decades,
the focus had been on the design of efficient hand-crafted features to improve detection
robustness and accuracy. A diverse set of extraction techniques was provided by the
vision research community such as Scale Invariant Feature Transform (SIFT), Viola Jones
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(VJ), Histogram of Oriented Gradients (HoG), Speeded Up Robust Features (SURF), and
Deformable Part-Based Models (DPM) [5,6].

Deep learning techniques have effectively combined the task of extracting the features
and classification in an end-to-end way [4]. Convolutional neural networks (CNNs) have
become quite popular for tackling various problems, among which includes object detection.
Subsequently, the performance of such architectures has led to a proliferation in both
achievable speed and accuracy. The object detection methods using deep CNN such
as Spatial Pyramid Pooling Networks (SPPNets), Region-based CNN (R-CNN), Feature
Pyramid Networks (FPNs), fast RCNN, You Only Look Once (YOLO), faster R-CNN,
Single-Shot Multibox Detector (SSD), and Region-based Fully Convolutional Networks
(R-FCNs) have shown excellent benefits relative to state-of-the-art ML methods [7,8]. This
article focuses on a specific sub-domain of detection, which is the human detection.

In a year, over a billion people lost their lives and around 20–50 million people
experienced fatal complications as a result of traffic accidents [9]. In 2015, more than
5000 pedestrians died in traffic accidents, while about 130,000 pedestrians required medical
care for non-fatal problems in the United States. However, the ratio of traffic fatality can
be reduced or even eliminated by utilizing various detection techniques in autonomous
vehicles that use sensors to interact with other neighboring vehicles in the vicinity [10].

With increases in crime and public fear of terrorism, public security has become an
unavoidable concern, and human detection techniques can be employed to monitor and
control public spaces remotely. Approximately 21,000 people lose their lives because
of terrorist activities every year and 0.05% of the total deaths in 2017 occurred due to
terrorism [11]. The necessity to install a sufficient number of human-detecting devices
has spiked in public locations following tragedies in London, New York, and other cities
across the globe. Such incidents are critical enough and demand a robust design and
global deployment of such systems. Hence, human-detection systems are observed as a
viable answer for ensuring public safety and have become one of the most significant study
fields today.

The detection of human beings is one of the key responsibilities in the field of computer
vision. It is indeed difficult to identify human in pictures because of several background ef-
fects such as occlusions [12], illuminated conditions and background clutters [13]. Previous
techniques have been unsuccessful in real-world scenarios for detecting humans, as they
took a longer period of time for detection and yielded outcomes that were not sufficiently
accurate due to distance as well as changes in appearance [6]. Therefore, a universal rep-
resentation of objects still continues to remain an open challenge in midst of such factors.
Human detection is currently being utilized for many applications. Human detection is in
the early stages in a number of use cases including pedestrian detection, e-health systems,
abnormal behavior, person re-identification, driving assistance systems, crowd analysis,
gender categorization, smart-video surveillance, human-pose estimation, human tracking,
intelligent digital content management, and, finally, human-activity recognition [6,14–17].

The deep CNN is a dense computing framework in and of itself. With a large number
of parameters and higher processing loads, followed by high memory access, energy
consumption increases rapidly, thereby making it impossible to adopt the method for
compact devices with minimal hardware resources. A feasible approach is a compressive,
deep CNN technique for real-time applications and compact low-memory devices, which
reduces the number of parameters, the cost of calculation, and power usage by compressing
deep CNNs [18].

Over the past few years, the construction of tiny and effective network techniques to
detect objects has become a point of discussion in the field of computer vision research. Ac-
celeration and compression techniques are related primarily to the compact configuration
of network architecture [19], knowledge distillation [20], network sparsity and pruning [21],
and network quantization [22]. Various studies on network compression have advanced
network models: for instance, SqueezeNet [23], which is a fire module based architecture;
MobileNets [24], a depthwise separable filters based architecture; and, finally, the Shuf-
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fleNet [25], a residual structure based network in which channel shuffle strategy and group
pointwise convolution were incorporated.

Motivated by lightweight architectures, a novel compact model was proposed to
detect humans for the portable devices that were absent in the current literature. Tiny-
YOLO, which is the tiny version of the YOLO model, is used as the base architecture
of this proposed model. YOLO is a faster and more accurate technique compared to
other object detection models, and it has been enhanced since its first implementation,
which includes v1-YOLO, v2-YOLO, and v3-YOLO. However, these architectures are not
suitable for portable devices because of their large sizes and inability to maintain real-time
performance in constrained environments. As mentioned, Tiny-YOLO is smaller than these
models. However, it failed to achieve high accuracy, and speed remained unsatisfactory for
low-memory devices.

This article proposes a model called ReSTiNet that is based on Tiny-YOLO. This model
reduces the size of the model while simultaneously achieving higher accuracy and boosting
detection speeds.The ultimate goal of this article is to develop a more capable human
detection model for portable devices. Intelligent surveillance systems that use portable
devices with less processing power can easily take advantages of this smaller and lighter
model. This improves the performance and capabilities of the system without increasing
the cost of the hardware or the amount of processing power it needs. Furthermore, lighter
and faster models can be used in low-latency real-time human detection applications. The
inspiration for ReSTiNet came from SqueezeNet, which use the fire module in order to
decrease the total model parameter numbers and therefore compressed the overall size of
the model. Determining the number of fire modules and where in the network they should
be placed is one of the parts of integrating the fire module in Tiny-YOLO that presents one of
the greatest challenges. The investigation of the residual connection between fire modules
is still another key issue that needs to be addressed in order to improve detection accuracies
and speeds even more. The useful feature of residual connections in Resnet [26] served as
an inspiration for the implementation of residual connections within the fire modules of
ReSTiNet. This was performed to ensure that the maximum amount of information flowed
and to improve feature propagation throughout the architecture. In the end, dropout was
used in ReSTiNet in order to circumvent the overfitting issue, attain an overall satisfactory
level of performance, and lower the amount of computing effort required.

Prior to delving into the details of the study, it is essential to discuss the scope of the
current effort. The following sections are the contents of this paper: Section 2 discusses
the recent literature on human detection. In Section 3, the proposed ReSTiNet model
for portable devices is explained. The experimental results are reported step-by-step
in Section 4: system specification, dataset Specification, mAP, model training, ablation
experiments of the proposed ReSTiNet, comparison with other lightweight models, and
performance analysis of the proposed ReSTiNet. Finally, Section 6 concludes the article.

2. Related Literature: State-of-the-Art Methods

Human detection is the process of identifying each object in a static image or image
sequences that are regarded to be human. Human detection is widely acknowledged to
have advanced through two different historical periods in recent decades: “conventional
human detection period (before 2012)” and “deep learning-based detection period (after
2012)”, as illustrated in Figure 2.

Human detection is typically accomplished by extracting regions of interest (ROI) from
an arbitrary image sample, illustrating the regions using descriptors, and then categorizing
the regions as non-human or human, accompanied by post-processing processes [27].

In conventional techniques, human descriptors are generally designed by locally re-
moving the features. A few examples include “edge-based shape features (e.g., [28])”,
“appearance features (e.g., color [29], texture [30])”, “motion features (e.g., temporal dif-
ferences [31])”, “optical flows [32]”, and their combinations [33]. Most of their functions
are manually designed, which benefit from the ease of description and intuitively compre-



Appl. Sci. 2022, 12, 9331 5 of 20

hending them. In addition, they were shown to perform well with limited collections of
training datasets.
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Figure 2. Human-detection milestones.

The Deformable Part-based Model (DPM) is the earlier state-of-the-art approach for
detection process [34]. DPM is considered an extension of the histograms of the oriented
gradients (HOG) model. The projected object is scored using the entire image’s coarse
global template as well as the six higher-resolution portions of the object. HOG is used to
characterize every single input. Following this approach, HOG’s multi-model can address
the varying viewpoint problem. In the training phase, a latent support vector machine
(latent SVM) was employed to decrease the detection drawback relative to the classification
area. The coordinates of the component are considered as the latent element. This approach
resulted in a massive impact due to its robustness.

Manually described features on the other hand, are unable to present more detailed
information about the objects. In particular, they were challenged by the background,
occlusion, motion blur, and illumination conditions. Hence, deep learning algorithms
are regarded as relatively more efficient in human detection because they can learn more
sophisticated features from images [35–37]. Although these initial deep algorithms have
demonstrated some improvements over the classical models, these functions are still
constructed manually, and the key concept is to expand the earlier models. Deep CNNs
are also applied for the feature extraction in a few studies, for example [38]. A complexity
perception cascade training for human detection was performed followed by the extraction
of features.

Deep learning approaches are currently being used to address many identification
problems in several ways. One of the most promising architectures is the Convolutional
Neural Network (CNN). Deep CNNs can learn object features on their own; thus, they
depend less on the object’s classes. Training a class-independent method, contrastingly,
means that more data will be used for learning as deep learning requires a significant
volume of data relative to training a domain-specific method. Only a few articles have
been published in the field of human detection using the CNNs method. Tian et al. [39]
employed a CNN to learn human segmentation characteristics (e.g., hats and backpacks),
but the network component leads to boosting the prediction accuracy by re-classifying the
prediction item as negative or positive, rather than making predictions directly. Li et al. [40]
included a sub-network relative to a novel network built on Fast R-CNN to deal with
small-scale objects. Zhang et al. [41] straightforwardly examined a cross-class detection
method (CNN), which involved faster R-CNNs performances on independent pedestrian
detection, and came up with good findings. Among the three techniques, besides [39],
which does not directly deal with detection, refs. [40,41] performed various experiments
based on cross-class detection techniques. In [42], the authors suggested a system based
on the combination of “Faster R-CNN” and “skip pooling” to deal with human detection
issues. The architecture of “Faster R-CNN’s region proposal network” is generalized to a
multi-layer structure and finally combined with skip pooling. The skip pooling structure
removes several interest regions from the lower layer and is fed to the higher layer, without
considering the middle layer. In [43], the authors had suggested an enhanced mask R-CNN
approach for real-time human detection that achieved 88% accuracy.
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In [44], a deep convolutional neural network-based human detection technique was
proposed using images that were used as input data to classify pedestrians and humans.
The authors used the VGG-16 network as a backbone and the model had provided better
accuracy on the “INRIA dataset”. In [45], the authors combined a deep learning model
with machine learning technique to achieve high accuracies with less computational time
for human detection and tracking in real time. However, the model had a lower speed.
In [46], the authors suggested a sparse network-based approach for removing irregular
features and the developed approach was applied to a kernel-based architecture to reduce
nonlinear resemblance across different features. This model, on the other hand, cannot be
used for real-time detection and tracking.

H. Jeon et al. [47] resolved the human detection problem in extreme conditions by
applying a deep learning-based triangle pattern integration approach. Triangular patterns
are employed to derive more precise and reliable attributes from the local region. The
extracted attributes are fed into a deep neural architecture, which uses them to detect
humans in dense and occluded situation. In [48], K.N.Renu et al. proposed a deep learning-
based brightness aware method to detect human in various illuminated conditions for both
day and night scenarios. In [49], the authors cascaded aggregate channel features (ACF)
with the deep convolutional neural network for quicker pedestrian and human detection.
Then, a hybrid Gaussian asymmetric function was proposed to define the constraints of
human perception. In [50], the authors proposed a single-shot multibox detector (SSD) to
detect pedestrians. The SSD convolutional neural architecture extracts low features and
then combines them with deep semantic information in the convolutional layer. Finally,
humans are identified in still images. In the suggested technique, pre-selection boxes with
different ratios are used, which increased the detection capability of the entire model.

In [51], the authors proposed a multi-stage cascade framework for coarse-to-fine
human-object interaction (HOI) recognition understanding. The introduced method
achieved first position in ICCV2019 Person Context Challenge (PIC-19) and also showed
the excellent outcomes on V-COCO dataset. In [52], the authors developed a compressed,
powerful, and effective architecture to resolve the instance-aware human part parsing
issue. In the proposed method, structural information are used across a variety of human
granularities, which makes the challenging task of person-partitioning easier.

3. The Proposed ReSTiNet for Low-Memory Devices
3.1. Motivation

The network structure of Tiny-YOLO is shown in Figure 3. This architecture consists
of a total of nine convolutional layers followed by six max-pooling layers that are used
to remove features of images along with one detection layer. This method uses convolu-
tional layers containing 512 and 1024 filters that provide a large parameter density, large
memory storage, and a lower detection speed. Another issue with Tiny-YOLO is its low
detection accuracy. The network’s irrational compression techniques may further decrease
detection accuracies.
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Hence, in order to address such issues, ReSTiNet is introduced in this research, which
directs towards the performance of the model’s size as well as its accuracy. Algorithm 1
details the proposed ReSTiNet model.

Algorithm 1 ReSTiNet pseudocode

Input: Input(shape= (input_size, input_size,3))
Input: learning_ rate, epoch, batch_size
Input: iou_ threshold, score_ threshold
Output: output_shape, mAP
def fire_module(model, fire_id, squeeze, expand)
def maxpooling (pool_size, stride)
def resnet_block (model, filters, reps, stride)
def mAP (model):

map = model.evaluate (generator, iou_threshold,
score_threshold, average_precisions)

return map
def layer(conv, batchnorm, activation, maxpooling, dropout)
def main (){

create layer1: ([16,3,1], norm_1, leakyReLU[.1], 2, null)
x← layer1

for i in range(2,3,4,5):
create layer(i): ([32∗(2∗∗i), 3, 1], norm_ + str(i+2),

leakyReLU[.1], 2, [0.20])
x← (x) (layer(i))

//return x
create fire_module1: (x, 2, 16, 64)
create fire_module2: (x, 3, 16, 64)
create maxpooling1: (3, 2)
create resnet_block1: (x, 64, 3, 1)
create fire_module3: (x, 4, 32, 128)
create fire_module4: (x, 5, 32, 128)
create maxpooling2: (3, 2)
create resnet_block1: (x, 128, 4, 2)
create fire_module5: (x, 6, 48, 192)
create fire_module6: (x, 7, 48, 192)
create fire_module7: (x, 8, 64, 256)
create fire_module8: (x, 9, 64, 256)
dropout← 0.50
return mAP(x), output_shape(x)}

The goal of ReSTiNet is to develop a model that is smaller, swifter, and more capable
at detecting humans on lightweight devices. The network’s optimization is carried out by
performing a reduction in parameters to an acceptable level rather than blindly decimating
the convolution layers. SqueezeNet’s fire module compresses the framework using a
bottleneck network layer and widens the network module without significantly sacrificing
detection accuracy. As a result, the introduction of fire module was carried out to achieve
the performance of a faster as well as a smaller network structure. ReSTiNet then seeks
achieve a higher accuracy in detection while simultaneously minimizing the parameters.
Study [53] achieved a higher accuracy with a smaller number of parameters in which
residual blocks were integrated between fire modules in the VGG-16 network. Thus, in
between the fire modules lies the residual block, which is used in ReSTiNet to maximize
the detection accuracy.



Appl. Sci. 2022, 12, 9331 8 of 20

3.2. Construction of ReSTiNet

The structure of ReSTiNet is shown in Figure 4. The first five convolutional layers of
Tiny-YOLO are retained in ReSTiNet. Layers with 512 and 1024 filters in the Tiny-YOLO are
replaced with the fire modules, which shrink the model. Then, residual connections from
Resnet-50 network inside the fire modules are integrated, which help the proposed model
achieve a higher mAP. This article synthesizes three widely used approaches: Tiny-YOLO,
ResNet, and the SqueezeNet method. The details of the implementations are as follows.

Input

Residual block inside the fire 

modules after max pooling 

Fire Module

Output

Detection Layer

1*1 Conv ReLU

ReLU

Concat

1*1 Conv
Squeeze

Expand

Input
Output

Detection Layer

weight layer

weight layer

ReLU

ReLU

F(x)

F(x) + x

x

identity

ReLU

1*1 Conv

Output

Input

N

1

S

S

M

S

S

M

H

H

M

L

L

N M-channel 

filters

 M-channel 

input image

 N-channel 

input image

1. scalar product 2. accumulation

Figure 4. The structure of ReSTiNet. Fire modules are adopted from SqueezeNet, which shrinks the
model. Then, residual connections are integrated from ResNet-50 network inside the fire modules to
enhance the proposed ReSTiNet’s efficiency.

3.2.1. Tiny-YOLO

A popular technique called “Tiny-YOLO”, which is the smaller version of “You Only
Look Once (YOLO)”, was formulated to create a single step procedure that involved both
the detection as well as the classification process. Upon a single appraisal of the input
image, both the bounding box and class predictions are produced.

The distinguishing feature of this technique as opposed to the conventional models
is that the class as well as bounding box predictions are performed at the same time. The
procedure is as follows: Firstly, the image that is considered as the input is split across
the S× S grid. Secondly, every single grid cell is assigned with a confidence score, which
contains the respective bounding box. The probability or chances that the object is present
in every bounding box is referred to as the confidence score and is mathematically given by
the following:

C = Pr(Object) ∗ IOUtruth
pred (1)

where term IOU (“intersection over union”) is defined to be a fraction that numerically lies
within the limits of [0, 1]. The overlapped area in between the ground truth as well as the
bounding box predictor is termed as the intersection. The entire region between the ground
truth and the predictor is known as the union. In ideal terms, the IOU must be closer to 1,
which implies that the ground truth is approximately equal to the bounding-box predictor.

Similarly, the conditional class probability C is also predicted by individual grid cells
while the bounding boxes are created. Thus, for every cell, the class-specific probability
function is expressed as follows.

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred

= Pr(Classi) ∗ IOUtruth
pred .

(2)

3.2.2. Fire Module of ReSTiNet

The introduction of the fire module under ReSTiNet was to decrease the number
of parameters as well as escalate the width and depth of the entire network. This was
performed in order to ensure the accuracy of detection. This model consists of both expand
as well as the squeeze components so that the model’s network tends to expand and
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compress. The compress or squeeze component utilizes the convolutional layer with a
size of 1× 1 introduced by NIN as a substitute for the usual layer with the size 3× 3. In
order to decrease the number of parameters, the model that follows the 1× 1 technique
was found to be more efficient. Additionally, the accuracy of detection does not reduce
significantly as the training parameter is only a single variable that should be learnt.
During the expansion, both the models with sizes 1× 1 as well as 3× 3 are typically used.
Finally, the arrived outputs from the respective convolutional layers are concatenated at
the concatenation layer.

For a convolutional layer, the parameters are given as ci, the number of channel input
variables, k as the kernel size, and co as the number of channel output variables. Using
Equation (3), the value of the number of parameters for the convolutional layer is then
calculated. The number of channel inputs is ci for the fire module; ks1 is the kernel size
of the squeeze component, and s1 is the number of channel output variables. If the value
of ks1 is assigned to 1, a reduction in a large number of model parameters for the squeeze
component is possible. The number of channel input variables is s1 followed by the kernel
sizes ke1 and ke3 for the expanded component. The total number of channel output variables
is the sum of e1 and e3. Using Equation (4), the number of model parameters is calculated.
Figure 5 illustrates the structure of the fire modules in ReSTiNet.

Pconv = (ci × k2 + 1)× co (3)

Pf ire = (ci × k2
s1
+ 1)× s1 + (s1 × k2

e1
+ 1)

× e1 + (s1 × k2
e3
+ 1)× e3

(4)
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Figure 5. The structure of Fire Module. It is made up of two layers: squeeze and expand. The squeeze
layer consists of a small number 1× 1 filters, and the expand layer consists of a small number of 3× 3
and 1× 1 filters.

The ability with which the fire can be utilized more effectively depends on the appro-
priateness of the position of the fire module within the network. ReSTiNet architecture
comprises a total of eight fire modules. In the ReSTiNet network, the sixth layer is replaced
with the initial four fire modules where the former contains 512 filters followed by down-
sampling technique. Layers seventh and eighth containing 1024 filters are replaced with
four other fire modules, and this is carried out before the 1× 1 convolutional layer and
detection layer. However, the choice of the number of channel inputs ci is not bounded,
while choosing a large number of channel inputs would lead to reduction in parameters.

3.2.3. Residual Block between Fire Modules

The optimization trajectory will follow a negative slope due to degradation when it is
expected of depth to provide an enhanced detection accuracy. Relative to the conclusions
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derived from other neural networks, it is observed that the error is typically higher in deep
CNN architectures [53]. In study [26], the authors developed a degradation resolution
that enables a subset of stacked layers to accept the existing residual mapping. This is
the area where the degradation typically halts the layers in order to be congruent with
the standard subsidiary mapping. Formula (6) represents the subsidiary mapping rather
than Formula (5), where H(x) is the desired mapping, and F(x) is the learned residual
mapping. The actual mapping is modified into F(x) + x. In study [26], the authors found
that optimization is relatively easier in a residual-based mapping than the primary one.

F(x) = H(x) (5)

F(x) := H(x)− x (6)

H(x) = F(x) + x (7)

However, one or more layers were ignored during “shortcut connections”, as men-
tioned in studies [26,53]. “Shortcut connections” are expressed in Equation (7) [26].
Study [26] utilized “shortcut connections” in order to conduct identity mappings. The
fusing of stacked layer outputs is performed with that of the “shortcut connections” output
values. The latter possesses the advantage of being parameter-free, thereby using minor
values during the computational process. Paper [54] developed highway-based networks
by merging “shortcut connections” and “gating functions” along with their parameters.
The possibility of optimization using a “stochastic gradient descent (SGD)” is another bene-
fit of “shortcut connections” [26]. It is easier to integrate “identity shortcut connections”
using deep learning open-source libraries [26,53].

We integrated “residual learning” from ResNet-50 within ReSTiNet architecture fol-
lowed by a down-sampling technique after the 2nd and 4th fire modules. The building
residual block is expressed in Equation (8).

y = F(x, Wi) + x (8)

Terms y and x represent the output and input vectors of the layers, respectively. The
mentioned function, F(x, Wi), is nothing but the residual mapping to be learnt. As in
Figure 2, there are 2 layers, F = W2σ(W1x), in which the term σ represents the ReLU
functionl; for reducing the complexity of notations, many biases were appropriately re-
moved. The process, F + x, was carried out by the use of a “shortcut connection” and
“elemental-wise addition” operation upon which the second ReLU (non-linearity) function
was made use of. The “shortcut connections” in Equation (8) add neither more parameters
nor complexity to the computation [26].

3.2.4. Dropout in ReSTiNet

The mask that neutralizes the effects caused by neurons in the succeeding layer is
termed as the dropout layer. This mask tends to stabilize the neurons and keeps the others
unchanged. This layer is important while training CNNs since they counteract the effects
of overfitting on the data that needs to be trained. Otherwise, an influence from the initial
batch of samples will be present on the learning and causes disproportionate results in the
performance. Thus, the efficiency in learning the features will be deeply affected; it further
delays the arrival of such results in later batches [55]. The common practice of a dropout
is to use a small value within the range of 20–50% of neurons, with 20% being a decent
starting point. A probability that is too low has no impact, whereas a value that is too large
results in the network’s under-learning [56]. In the convolutional layers (2nd–5th), 0.2 and,
after the fire module, 0.5 dropouts are used in the proposed ReSTiNet network to overcome
the overfitting problem.
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3.2.5. Loss Function of ReSTiNet

The custom loss function is utilized in this study, unlike Tiny-YOLO, which consists of
three parts: error in prediction coordinate, error in IOU, and classification error.

The error in coordinate prediction is described as follows:

Errorcoord =

λcoord
s2

∑
i=0

B
∑

j=0
Lobj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord
s2

∑
i=0

B
∑

j=0
Lobj

ij [
(√

wi −
√

ŵi
)2

+

(√
hi −

√
ĥi

)2
]

(9)

where s2 denotes the grid cell number of all scale. B represents the bounding-box number
for every grid. Lobj

ij defines target of the i-th grid cell, which falls in the j-th bounding box.

(x̂i, ŷi, ŵi, ĥi) and (xi, yi, wi, hi) represent the center coordinate, height, and width of the
predicted box and the ground truth, respectively.

The IOU error is described as follows:

ErrorIOU =
s2

∑
i=0

B
∑

j=0
Lobj

ij
(
Ci − Ĉi

)2

+λnoobj
s2

∑
i=0

B
∑

j=0
Lnoobj

ij
(
Ci − Ĉi

)2
(10)

where Ĉi and Ci define the predicted and true confidence, correspondingly.
The classification error is defined as follows:

Errorcls =
s2

∑
i=0

Lobj
i ∑

c∈classes
(pi(c)− p̂(c))2. (11)

where p̂i(c) denotes the predicted value, while pi(c) denotes the target’s true probability.
From the above, the final loss function is shown in Equation (12).

Loss = Errorcoord + ErrorIOU + Errorcls

= λcoord
s2

∑
i=0

B
∑

j=0
Lobj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord
s2

∑
i=0

B
∑

j=0
Lobj

ij [
(√

wi −
√

ŵi
)2

+

(√
hi −

√
ĥi

)2
]

+
s2

∑
i=0

B
∑

j=0
Lobj

ij
(
Ci − Ĉi

)2

+λnoobj
s2

∑
i=0

B
∑

j=0
Lnoobj

ij
(
Ci − Ĉi

)2

+
s2

∑
i=0

Lobj
i ∑

c∈classes
(pi(c)− p̂(c))2.

(12)

3.3. Time Complexity, Success, and Challenge of ReSTiNet

In this section, time complexities of the proposed ReSTiNet with its success and
challenge are described.

3.3.1. Time Complexity

In the proposed algorithm, some operations occur only once and their time complexity
is O(1). However, in ReSTiNet, different methods have iteration, and their time com-
plexity is O(n2). Therefore, the time complexity of our proposed algorithm is as follows:
O(1) + O(n2) = O(n2). Therefore, we define this algorithm as having a Quadratic Time
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Complexity to indicate that as the size of the input increases, the amount of time needed to
run it increases accordingly. Informally, Quadratic Time Complexity represents an algo-
rithm for which its performance is directly proportional to the squared size of the input
data set.

3.3.2. Advantage of the Model

This proposed method is easily adaptable; therefore, this process can be applied to
compress various current deep CNN models. As human detection is the first phase of
many applications, this developed method can be used for pedestrian detection and pose
estimation with low-memory devices.

3.3.3. Challenge of the Model

ReSTiNet employs fire modules that reduce the model’s parameter and, thus, the com-
putational cost. However, the procedure still requires a significant amount of processing to
be performed on a portable device. As a result, the architecture is still trained on a machine
(i.e., remote server) capable of handling this computationally intensive method.

4. Experimental Results

Initially, the experimental environment setups, datasets, and evaluation criteria (mAP)
are described in this segment of the article. The performance is then compared based
on training time, mAP, and model size metrics. Moreover, to validate the advantage of
ReSTiNet performance over alternative lightweight networks, we conducted comprehen-
sive experiments to verify the findings of the performance comparison.

4.1. System Specification

The Tesla K80 is used to train the ReSTiNet model and also to evaluate the detection
speed of the architecture. The Tesla K80 is a pro graphics card launched by NVIDIA. Tesla
K80 is built on the GK210 GPU and manufactured using 28 nm technology. The GK210
GPU has a 561 mm² die area with 7100 million transistors. The Tesla K80 integrates two
GPUs to boost the performance. The configuration of the Tesla K80 is provided in Table 1.

Table 1. Configuration of Tesla K80.

Computing Platform Graphics Processor Memory

Tesla K80

GK210 × 2,
2496 × 2 shading units,

208 × 2 TUMs,
48 × 2 ROPs

12 GB × 2,
384 bit × 2,

GDDR5,
240.6 GB/s × 2

Ubuntu-16.04 LTS is used as base operating system with 62 GB RAM, NVDIA CUDA
v10.2, NVDIA cuDNN v7.6.5. The script is written in python v2.7 with TensorFlow v1.14.0,
Keras v2.2.2, cv2, NumPy v1.16.4.

4.2. Data-Set Specification

This study makes use of the “MS COCO” [57] and “Pascal VOC” [2] datasets. Generally,
object detection, image classification, and segmentation are performed with these two
datasets. The “Pascal VOC” dataset consists of “Pascal VOC 2007” and “Pascal VOC
2012”. There are 8540 images of human beings from the “Pascal VOC” dataset used for
this experiment. “MS COCO” is more challenging while “Pascal VOC” is easier to train.
Generally, the performance on the MS COCO dataset of a method for object detection
models is more inclined. There are 45,174 images of human beings used from the “MS
COCO-train2014” dataset for accomplishing this study. Both datasets are split 80/20
for training and validation, respectively. The IOU (“intersection over union”) is set 0.5
by default for both datasets while calculating mAP values. The “INRIA” dataset [6]
(1208 images) is used to test the proposed ReSTiNet model’s detection speed.
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4.3. Evaluation Criteria (mAP)

The mean average precision (mAP) metric is utilized to estimate the performance of
the introduced ReSTiNet and the baseline architectures. The mAP scores are reported for
both “MS COCO” and “Pascal VOC”.

Average Precision (AP): The recall/precision curve is used to assess the output perfor-
mance for a specific class and task. Precision is the ratio between the relevant and retrieved
examples explained in Equation (13).

precision =
|{relevant instances} ∩ {retrieved instances}|

|{retrieved instances}| (13)

The rate of recall is described as the ratio of the total number of relevant examples to
the total positive instances. The average precision is utilized for evaluating precision over
multiple equidistant recall levels:

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] ∗ Precisions(k) (14)

where n defines the number of the threshold.
The mAP (“mean average precision”) is employed to calculate the C class’s average precision:

mAP =
1
C ∑

i∈{0,1,2,...,C}
AP(ci) (15)

where AP(ci) defines the average precision for the class of ci.

4.4. Model Training

The pre-trained weight daraknet19.conv model is imported into ReSTiNet before the
training started on both “MS COCO” and “Pascal VOC” datasets. ReSTiNet takes 416∗416
as the size of the input. The learning rate of ReSTiNet is 0.001, and the batch size is 16
with 50 epochs. MS COCO has a max iteration batch number of 504K, whereas Pascal
VOC has a max iteration batch number of 129 K. Table 2 represents the model’s trained
hyperparameters.

Table 2. Hyperparameters used in the ReSTiNet.

Hyperparameter Range

input size 416 × 416
learning rate 0.001
activation Leaky ReLU (α = 0.1), ReLU
batchsize 16
no. of epoch 50
optimizer adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8)
loss function custom loss
dropout 0.2, 0.5
iou_threshold 0.5
score_threshold 0.5

4.5. Ablation Experiments of the Proposed ReSTiNet

We have conducted ablation experiments in the ReSTiNet network by sequentially
adding fire modules, residual connections, and dropout layers to demonstrate the impact
of these methods on ReSTiNet’s performance. Table 3 shows the results (mAP) of the
proposed model, ReSTiNet, and the original Tiny-YOLO on the “Pascal VOC” and the “MS
COCO” dataset.
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Table 3. Ablation experiments: Tiny-YOLO vs. ReSTiNet.

Tiny-YOLO ReSTiNet

fire module X X
residual learning X
dropout X X

MS COCO mAP(%) 19.0 24.37 27.31
Pascal VOC mAP(%) 42.21 55.67 63.79

Detection accuracy is commonly evaluated using the mAP. The new proposed model
achieved 27.31% mAP on the MS COCO dataset, whereas Tiny-YOLO obtained 19% mAP.
The dropout layer and residual connections helps the ReSTiNet model in achieving higher
accuracies than Tiny-YOLO. ResTiNet achieves 63.79% mAP on the Pascal VOC dataset; on
the other hand, Tiny-YOLO reaches 42.21% mAP. The use of residual connections between
the fire modules and the dropout layer significantly contributes to the increase in mAP
without requiring an excessive number of parameters. Utilizing residual connections and
dropout improves mAP by 12.06% on “MS COCO” and 14.59% on “Pascal VOC” based on
adding fire modules. In addition, employing the dropout layer helps reduce the training
time and helps the model from the over-fitting problem. ReSTiNet outperforms Tiny-
YOLO, showing 43.74% and 51.09% improvements on the “MS COCO” and “Pascal VOC”
datasets, respectively.

Detection Time, Parameter, and FLOPs Comparison between Tiny-YOLO and ReSTiNet

The entire testing time is calculated for 1208 images from the “INRIA Person” dataset
using the Tesla K80. Table 4 shows the average test time, total parameter, and FLOPs for
both Tiny-YOLO and ReSTiNet models. As observed, the overall time needed to detect
1208 images using the ReSTiNet is less than 40 s. ReSTiNet outperforms Tiny-YOLO in
terms of detection speeds. Tiny-YOLO completes the detection in more than 74 s. When
compared to Tiny-YOLO, the detection speed of ReSTiNet is improved by 49.2%. On the
other hand, it has been observed that ReSTiNet has 80.90% less parameters than Tiny-YOLO,
and the FLOP’s amount is also reduced by 34.47%.

Table 4. Detection time, parameter, and FLOP comparison.

Tiny-YOLO ReSTiNet Dataset

Avg. test time 74.486 (s) 37.514 (s) INRIA

Model parameters 11.043 (m) 2.109 (m) -

FLOPs 11.552 (bn) 7.570 (bn) -

4.6. ReSTiNet Performance Comparison with Other Lightweight Methods

ReSTiNet is compared with the other lightweight state-of the-art networks, such as
MobileNet, SqueezeNet, and Tiny-YOLO in order to analyze the proposed model’s further
improvement. The “Pascal VOC” customized dataset is used to train the MobileNet and
SqueezeNet models. The training operation is performed on the Tesla k80, which operates
in similar experimental settings as ReSTiNet.

The comparative findings of the four models are summarized in Table 5. As shown
in Table 5, ReSTiNet outperforms Tiny-YOLO and MobileNet in terms of model size and
achieves higher mAP compared with all three models. The model size of SqueezeNet is
very impressive, while resulting in very low mAP. The proposed model is 10.7 MB, which
is larger than SqueezeNet yet smaller than MobileNet and TinyYOLO. Compared with
Tiny-YOLO, ReSTiNet reduces the model size of 82.31%, which is suitable for portable
devices. ReSTiNet shows 51.09%, 35.38%, and 53.67% improvements in terms of mAP on
Tiny-YOLO, MobileNet, and SqueezeNet, respectively.
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Table 5. ReSTiNet vs. other lightweight models.

Network mAP (%) Model Size (MB)

MobileNet 47.12 13.5
SqueezeNet 41.51 3.0
Tiny-YOLO 42.21 60.50
ReSTiNet 63.79 10.7

5. Performance Analysis of ReSTiNet

Tiny-YOLO is used as the backbone architecture for the proposed ReSTiNet model. As
Tiny-YOLO has several layers with 512 and 1024 filters, it has a large number of parameters,
its speed is slow, and its model size is large. A replacement is carried out, thereby using
the fire module instead of the sixth, seventh, and eighth layer present in the Tiny-YOLO
method as the fire module contains far lower numbers of parameters as opposed to its
counterpart filter of size 3× 3.

The input channels also decreased to the filters with a size of 3× 3. Then, by multiply-
ing the number of filters as well as the input channel values, the net parameters present in
the fire module can be calculated. By reducing the input channel and filter count, a deep
CNN network can be designed containing only fewer number of parameters. Table 6 shows
that the parameters that are reduced in the layer containing 256 filters are numerically
lower relative to the layer with 512 filters.

Table 6. Parameter numbers comparison between fire modules and convolutional layers.

Conv.
Layer

Input
Channel

Output
Channel

Kernel
Size

Conv. Layer
(Parameters)

Fire Module
(Parameters)

1 3 16 3 448 184
2 16 32 3 4680 740
3 32 64 3 18,496 2888
4 64 128 3 73,856 11,408
5 128 256 3 295,168 45,344
6 256 512 3 1,180,160 180,800
7 512 1024 3 4,719,616 722,048
8 1024 512 3 4,719,616 722,048

If the goal is to further decrease the number of model parameters, a replacement with
a larger number of channel inputs in the convolutional layer is required while distributing
such layers in the middle and the end components of the ReSTiNet module.

It was found that the accuracy of detection becomes poor if fire modules substitute the
total convolutional layers since fire modules replace certain convolutional layers with a
limited number of filters. If the convolutional layers (first five) with a fewer number (less
than 256) of convolution filters are retained instead of being substituted by fire modules,
the rate of accuracy can improve by 6.2 percent and the size of model can increase by
1.6 megabyte. Thus, ReSTiNet retains the frontal (first five) convolutional layers while
replacing the convolutional layers (three) with eight fire modules at the end of Tiny-YOLO.

A simplistic method to compress the network is to decrease the number of layers in
the network, network scaling factor, and to utilize networks that are considered shallow.
However, the degree of freedom to efficiently compress such networks is limited and more
distant from existing DNN models [58]. Ba et al. [59] suggested a training procedure
of shallow neural networks that best simulates the deep models, but there has been an
increase in the number of parameters. In study [60], the authors had shown that the
degree of expansion possesses the capability to be exponentially grown as a function
of increasing depth. However, networks that are too shallow do not play the role of
substitution for deeper networks. As illustrated in Figure 4, there are five pooling layers
after the five convolutional layers. It contains a total of eight fire modules with a depth value
of 2 followed by convolutional layer with a kernel size 1× 1 in the ReSTiNets architecture.
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The above mentioned eight fire modules in ReSTiNets replaced the three convolutional
layers from the last layer in Tiny-YOLO. As a result, the net depth attains a value of 29,
which is exactly twelve layers deeper in physical depth compared to Tiny-YOLO thereby
raising the network’s accuracy.

All max-poolings are set to 3× 3 in size followed by the down-sampling technique later
within the architecture. This in turn yields several layers with large activation maps [61].
Such layers provide activation maps with a minimum of 1 × 1 spatial resolution and
typically in higher orders at other times.

Activation maps’ width and height can be determined using a set of variables, namely
the input data size and various choices of layers in which down-sampling more likely
tends to occur. The down-sampling strategy has been accomplished in studies [62–64]
using a stride that is larger than one during a choice of convolutional or pooling layers.
It was concluded that a large number of layers contain smaller activation maps when the
initial layers are set to larger stride parameters. The authors in [65] detected improved
classification accuracies after implementing down-sampling strategies into four distinct
CNN networks [53].

Then, residual connections are integrated to examine whether it can increase the
efficacy of the Tiny-YOLO network while making the model quicker and smaller at the
same time. The concept of the fire module [23] is modified by adding residual connections
at strategic locations across the network. The model does not experience an increase in
complexity apart from a bit of computation associated with the collection operation as
the residual connections do not have any parameters. This model employs the dropout
layer to handle the over-fitting issue and speed up data processing. The dropout method
disregards the randomly chosen neurons during the training period.

Figures 6 and 7 show the detection results for both proposed ReSTiNet and Tiny-
YOLO models. From all figures, it can be seen that the proposed model detects human
objects with a higher accuracy, while Tiny-YOLO can sometimes miss objects and recognize
non-human objects as human. These scenarios are shown in Figures 6c and 7b . The
proposed ReSTiNet sometimes misses people in a dense scenario shown in Figure 7a. In
this scenario, there are five people on the wall. Of these five people, ReSTiNet detected only
four. However, the detection rate is still better than that of Tiny-YOLO, which detected
only two out of the five people, but the proposed method can still be improved. The
images showing the results of the detection are available in full size at the following URLs:
Figure 6: https://i.ibb.co/6FhDYf5/P1-comp.png (accessed on 4 September 2022); Figure 7:
https://i.ibb.co/tDs6xPB/P2-comp.png (accessed on 4 September 2022).

The ReSTiNet architecture that has been suggested has a significantly reduced number
of parameters while also preserving a greater amount of information flow throughout the
model. It detects humans more quickly than other lightweight models, and its performance
in terms of detection time and mAP score is superior to that of those models. This is despite
the fact that the model itself is quite compact.

https://i.ibb.co/6FhDYf5/P1-comp.png
https://i.ibb.co/tDs6xPB/P2-comp.png
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Figure 6. Detection results with confidence values for the proposed ReSTiNet and Tiny-YOLO model
in a sparse scenario. (a–d) presents comparison for four images for the models.

Figure 7. Detection results with confidence values for proposed ReSTiNet and Tiny-YOLO model in
a dense scenario. (a,b) presents comparison for two images for the models.

6. Conclusions

In this article, ReSTiNet, a compact human-detection method, is proposed for portable
devices, and it focuses on issues related to size, speed, and accuracy. The suggested
method reduces the size of the previously popular Tiny-YOLO algorithm while improving
the following characteristics: improving detection performance, reducing model size,
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resolving overfitting issues, and outperforming existing lightweight models in terms of
mAP. ReSTiNet is constructed by first incorporating the fire modules from SqueezeNet
inside the Tiny-YOLO with the aim of minimizing the model’s size. Following that, the fire
module numbers and their placement have been investigated in the model’s architecture.
The residual connection inside the fire modules in Tiny-YOLO is integrated from the Resnet
model. The residual connection helps maximize feature propagation and information flow
within the network, with the aim of further improving the developed ReSTiNet’s detection
speed and accuracy. Using the dropout layer in the convolutional layer and at the end of
the fire module helps resolve the overfitting problem in ReSTiNet. The experimental results
show that ReSTiNet outperforms Tiny-YOLO in terms of efficiency. ReSTiNet also exhibits
comparable performances when compared to lightweight models such as MobileNet and
SqueezeNet with respect to the model’s size and mAP. The findings show the effectiveness
of ReSTiNet for portable devices. The developed algorithm can be simply modified and
completely incorporated into a variety of different deep convolutional neural networks
for compression. The performance of ReSTiNet will be further optimized in future for
high-resolution images, particularly for the EuroCity Persons dataset.
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