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Future perspective on redox flow batteries: aqueous 
versus nonaqueous electrolytes 
Lina Tang1, Puiki Leung1, Qian Xu2, Mohd Rusllim Mohamed3,  
Shuyang Dai1, Xun Zhu1, Cristina Flox4 and Akeel A. Shah1   

The unique architecture of redox flow batteries enables energy 
and power to be decoupled and scaled up more easily than 
conventional batteries. With the objectives of achieving the cost 
target (USD$ < 100 (kW h)−1) and superior performances, 
significant developments of redox and hybrid flow batteries 
have been made using various organic and inorganic redox 
couples in aqueous and nonaqueous electrolytes. To further 
improve the energy and power densities, desirable properties of 
these electrolytes are essential. In this article, comparisons and 
latest advances of these electrolytes in terms of stabilities, 
redox potentials, solubilities, viscosities, conductivities, 
opportunities, and economic prospects are discussed. 
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Introduction 
Redox flow batteries store all or part of their energies in 
liquid electrolytes instead of electrodes within the cells. 
This unique architecture enables energy and power to 
be decoupled and scaled-up more easily than conven-
tional batteries [1–3]. The storage capacities can be in-
creased readily with the amount (or higher 
concentrations) of the electrolytes, while power rating 

can be scaled by using larger electrode (active surface) 
areas or/and number of cells/stacks in the systems. 
Taking account of this scalability, improved redox flow 
batteries are considered as one of the most promising 
technologies in the range of kW/kW h–MW/MW h [2]. 

In the past decades, various redox flow batteries have 
been introduced in aqueous and nonaqueous electro-
lytes. To date, only a few redox and hybrid flow batteries 
(i.e. V–V, Zn–Br, and Zn–Fe) have been successfully 
commercialized at MW/MW h scale [1]. Early develop-
ments have focused on the uses of metallic redox cou-
ples in aqueous electrolytes, which are often stable and 
reversible reactions. At present, the costs of these sys-
tems (i.e. USD$ > 300 (kW h)−1) are still far higher than 
the future cost targets of USD$ 100 (kW h)−1[4]. For 
aqueous systems, decreasing active materials' costs by 
inexpensive materials are recent approaches to reduce 
the costs effectively, considering that the costs of water 
and its salts are negligible (USD$ 0.1 kg−1) [5–7]. The 
main challenges of aqueous systems are obtaining high 
voltage and solubilities simultaneously, con-
sidering that voltage windows are often limited to <  
2.0 V caused by water electrolysis [5]. 

Various nonaqueous systems enable wider windows of 
electrochemical stability, multielectron transfers, and 
increased solubilities [8,9]. For instance, some recent 
organic molecules can deliver up to 6 electron transfers 
and provide highly positive electrode potentials in al-
ternative solvents [10••]. Despite the lower ionic con-
ductivities, some nonaqueous systems have 
demonstrated comparable current densities 
(15–100 mA cm−2) to their aqueous counterparts [11••]. 
Considering the higher cost of these nonaqueous elec-
trolytes (USD$ > 20 kg−1), increasing power density in 
order to use fewer cells and necessary parts appears to be 
the most effective approach in cost reduction [8]. 

In the past five years, a number of review articles have 
been published summarizing the latest advances of 
redox flow batteries [1], regarding cell engineering [12], 
mathematical modeling [13], and specific systems (e.g. 
zinc [14], organic [4], and lithium-based [15]). The main 
contribution of this work focuses on the pros and cons of 
using aqueous and nonaqueous electrolytes with the 
discussions of their stabilities, redox potentials, 
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solubilities, viscosities, conductivities, opportunities, and 
economic prospects. 

Factors affecting cell performance in aqueous 
and nonaqueous electrolytes 
Stabilities 
The stabilities of aqueous and nonaqueous flow batteries 
depend on the selections of suitable supporting elec-
trolytes, redox chemistries, and battery components. 
Aqueous systems use water as solvent that has a nar-
rower-potential stability window (often < 2.0 V) but 
subjected to the overpotentials of hydrogen and oxygen 
evolutions, which could vary with electrolyte composi-
tions and electrode surfaces [6]. In addition to gas evo-
lutions, some metal anodes (e.g. zinc) used in hybrid 

systems have the tendency to dissolve in acidic/alkaline 
electrolytes, resulting in energy losses (as a self-dis-
charge/corrosion process) [14]. Other than active mate-
rials, exposure of metallic components/parts to corrosive 
acid or alkaline shall be avoided, which may lead to 
unstable redox potentials during cycling. 

Compared with aqueous flow batteries, there are various 
solvents available for nonaqueous systems and tend to 
provide wider potential stability window (up to 8.2 V as 
shown in Figure 1a) [16], also subjected to kinetics, 
materials involved, and durations of the required reac-
tions [17]. Solvent decompositions may also take place 
with its electrochemical window by their interactions 
with corresponding active species and electrolyte 

Figure 1  
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Stabilities and redox potentials. (a) Potential stability windows of various electrolytes potentially used in redox flow batteries (DMSO: dimethyl 
sulfoxide and ACN: acetonitrile) [16]; (b) the redox potentials of different active materials (inorganic and organic) in aqueous electrolytes (DHAQ: 
1.8-dihydroxy-9,10-anthraquinone; FMN-Na: flavin mononucleotide sodium salt; BTMAP-Vi: bis (3-trimethylammonio) propyl viologen tetrachloride; 
AQDSDMS: anthraquinone-2,6-disulfonate dimethyl sulfide; ARS: 3,4-dihydroxy-9,10-anthraquinone-2-sulfonic acid; 2-AQS: anthraquinone-2- 
sulfonic acid; 2，6-AQDS: anthraquinone-2,6-disulfonate; Fc: ferrocene; DP: dopamine, TEMPO: 2,2,6,6-tetramethyl-1-piperidinyloxy) [21]; (c) the 
redox potential of organic or organometallic active material in nonaqueous electrolytes (AQ: anthraquinone; NQ: naphthoquinone; BQ: benzoquinone; 
TCNQ: 7,7,8,8-tetracyanoquinodimethane; DBBB: di-tert-butyl-1,4-bis-(2-methoxyethoxy) benzene) [2].   
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salts [18]. However, nonaqueous electrolytes are usually 
based on nonpolar solvents, for example, acetonitrile. 
Unlike metal complexes, many organic active molecules 
exist as free radicals. They are often reactive and short- 
lived but can be stabilized by steric and/or resonance 
effects through functionalization with substituents. 
Among carbonyls, amide molecule exhibits relatively 
high stability due to their high-resonance stabilization 
effect between carbon–oxygen and carbon–nitrogen  
[19]. Stabilizing radicals are essential in long-term cy-
cling and maintaining storage capacities, which have 
been major hurdles in exploiting increased concentra-
tions of many nonaqueous systems. For instance, phe-
nothiazine radicals have been successfully stabilized for 
up to 7 weeks in acetonitrile [20•]. Nonaqueous elec-
trolytes are also corrosive on most polymer (plastic)- 
based components/parts. Thus, higher material stabi-
lities are required for components from electrolyte 
tubing to reservoirs, that also increase the overall costs of 
most nonaqueous systems [9]. 

Redox potentials 
Redox potentials of the active species in redox flow 
batteries depend on the selected chemistries for a given 
solvent. Increasing the potential difference is a cost-ef-
fective approach to reduce the electrolyte cost per kW h 
and to involve fewer cells for the same power output. 
The redox chemistries can be very different in non-
aqueous electrolytes compared with their aqueous 
counterparts, which also vary with their electrolyte 
compositions (e.g. pH and anions) [19]. Figure 1b and c 
show the electrode potentials of the reported redox 
couples in aqueous and nonaqueous flow batteries, re-
spectively. It is obvious that the redox potentials of most 
active materials in aqueous electrolytes are restricted by 
the stability window of water (between −1.0 and +1.75 V 
vs. SHE) [3]. The use of alkaline electrolyte can sup-
press hydrogen evolutions and realize electrode poten-
tials of <  −0.5 V vs. SHE [2]. 

Without the concern of solvent breakdown, nonaqueous 
electrolytes tend to offer larger potential difference 
(i.e. > 4 V) in flow batteries. However, suffering from the 
interaction with solution species and redox molecules, 
organic solvents usually have not enough wide effective 
potential window [22••]. Early investigations focused on 
the uses of metal–ligand complexes [9] to yield relatively 
high cell voltages (> 2 V), but suffer from poor solubi-
lities and low efficiencies. To address this, recent works 
have considered a wide range of organic and orga-
nic–metallic materials (Figure 1c) that may also provide 
multielectron transfers and high solubilities for high- 
energy-density systems. However, low ionic con-
ductivities of these nonaqueous systems are still the 
major hurdle for future commercialization. 

Solubilities 
Solubility is the ability to dissolve active materials, in 
particular, electrolytes at the highest concentrations, 
which are proportional to the theoretical capacities and 
hence the energy densities. Figure 2a summarizes the 
solubilities of different active materials in aqueous and 
nonaqueous electrolytes [10••,11••,28–40]. Regardless 
of electrolytes, active species with larger molecular mass 
tend to have lower solubilities. The law of "like dissolves 
like", polar active compounds/molecules (i.e. metal ions 
and organic molecules with polar groups) dissolve easier 
in aqueous electrolytes, while nonaqueous electrolytes 
are more prone to dissolve nonpolar active molecules 
(such as free radicals and organic molecules with non-
polar groups) [19]. For metallic active species, solubi-
lities are associated with ion-pair formation effect, which 
can be improved with suitable complexations/supporting 
electrolytes. Their organic or organometallic counter-
parts can achieve higher solubilities in aqueous and 
nonaqueous electrolytes by grafting ionic (–SO3

-, –CO2
-, 

–PO3
2- and –N+R, etc.) and polar substituents (carbonyls 

and ethers, etc.), respectively [23–25]. For instance, 
when ferrocene is functionalized with ammonium-cation 
group, solubilities could reach up to 4 M in water (neu-
tral) at the expense of the slight increase in molar mass  
[40•]. Instead, nonpolar groups (i.e. benzene rings) may 
decrease the solubility in polar solvents and water. 

In aqueous flow batteries, solubilities vary significantly 
with acid or base at different concentrations (Figure 2). 
As shown in Figure 2b and c, the solubilities of selected 
metal ions (V4+, Ce3+, and Ce4+) and organic molecules 
(BQDS, AQDS) tend to decrease at higher sulfuric acid 
concentrations, but this trend may not be valid for the 
same metallic ions at different oxidative states in other 
acids [26]. In some cases, the solubility trends of certain 
metal ions in different acids can be completely opposite. 
For instance, solubility of both Ce3+ and Ce4+ decreases 
with higher concentrations of sulfuric acid. In contrast, 
the solubility of Ce4+ increases at higher methane-
sulfonic acid concentrations (Figure 2d) [14]. This in-
dicates that mixed electrolytes of two acids may enhance 
the solubilities of certain active species in aqueous 
electrolytes. For the case of vanadium, the mixed elec-
trolytes of sulfuric and hydrochloric acids are known to 
minimize the issues associated with the precipitation of 
V5+ at elevated temperatures and overcome low solubi-
lities of V4+ at low temperatures [27]. 

Viscosities 
High concentration of active species could mean more 
energy to be stored in a given electrolyte volume. 
However, it is inevitable to increase the viscosities [42] 
that hinder the mass-transport processes, particularly 
through the porous electrodes or at high current den-
sities [43]. It also has influences on electrolytic 
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conductance and pump losses while recirculating the 
electrolytes [44]. 

Viscosities of the selected aqueous (all-V, and all-or-
ganic) and nonaqueous (e.g. Li-based) flow batteries are 
illustrated in Figure 3a and b at higher concentrations of 
active materials (Vn+, BQDS, and AQDS in H2SO4) and 
supporting salts (LiTFSI and TEABF4 in acetonitrile)  
[26,45]. In conventional all-vanadium systems, the visc-
osities are not the same at different oxidative states in 
sulfuric acids (viscosities of 1.6 M V2+, V3+, VO2

2+, and 
VO2

+electrolytes are 4.7, 3.7, 3.0, and 2.8 mP s, respec-
tively). For organic molecules, despite larger molecular 
size of AQDS, its viscosities are even higher in sulfuric 
acid than that of BQDS. In nonaqueous electrolytes, the 
use of some organic conductive salts (e.g. TEABF4) may 
lead to lower viscosities than using conventional LiTFSI 
in acetronitrile [45]. However, the viscosities of non-
aqueous solvents could vary significantly and are sum-
marized in Figure 3d. Nonaqueous solvents, particularly 

those amides and carbonates, tend to have higher visc-
osities (i.e. N-methylacetamide, ~4 mPa s), while most 
ether, ketones, and nitriles have lower viscosities than 
water (ca. 0.89 mPa s) at ambient temperatures [19]. 

Conductivities 
The ionic conductivities of the supporting electrolytes 
are the ability to transfer supporting ions for electrical 
conduction, which are directly related to ohmic losses in 
the charge–discharge processes. Conductive electrolytes 
are essential for larger power outputs that lead to drastic 
saving in electrode areas and number of cells/stacks. 
Supporting electrolytes having high degrees of ioniza-
tion are often referred as strong electrolytes. Enhanced 
conductivities are often expected with smaller sizes of 
free ions at increased concentrations [8]. In aqueous 
systems, the ions used in supporting electrolytes are 
usually small ions, such as H+, OH–, and Na+, that 
transfer rapidly and lead to relatively high ionic con-
ductivities (i.e. > 140 mS cm−1) [19]. The ionic 

Figure 2  
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Solubilities. (a) The solubilities of reported organic active species (anode in blue, cathode in black, and bipolar electrode in red) in aqueous and 
nonaqueous electrolytes (MePh, DB-1 DBBB, and CoCp2 dissolved in nonaqueous DME: methoxymethane, DMSO, carbonate, and DOL: 1,3- 
dioxolane, respectively. Besides, MEEPT: N-[2-(2-methoxyethoxy) ethyl] phenothiazine, azoB, and C3-PTZ all dissolved in ACN.) [10••,11••,28–40]; 
(b)–(d) show the relationships between solubilities of active materials and acid concentrations in aqueous flow batteries [14,26,41]. (b) Selected metal 
active species (VOSO4, Ce3+, and Ce4+) in sulfuric acid solution; (c) Organic active molecules (2,7-AQDS: Anthraquinone‐2,7‐disulfonate, 2,6-AQDS, 
2-AQS, and BQDS: 1,2-ihydroxybenzene-3,5-disulfonic acid) in sulfuric acid; (d) Ce4+ in sulfuric and methanesulfonic acid.   
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conductivities in nonaqueous electrolytes are often 
lower and associated with viscosities, dielectric, and 
dissociation constants [8,42], although 100 mA cm−2 has 
been achieved with suitable membranes/separators (e.g. 
Daramic) [11••]. 

In nonaqueous electrolytes, some organic salts (e.g. 
BF4

–, PF6
–, and TFSI–) are preferred over halide salts 

due to their higher solubilities and stabilities [46].  
Figure 3d summarizes the ionic conductivities of typical 
aqueous and nonaqueous electrolytes used in several 
flow batteries. The ionic conductivities of most aqueous 
electrolytes (e.g. 2 M H2SO4/H2O: 630 mS cm−1) are an 
order of magnitude higher than those of their nonaqu-
eous counterparts (e.g. 1.5 M TEABF4/ACN: 60 mS 
cm−1) [19]. In general, ionic conductivities tend to in-
crease with supporting electrolyte concentrations, but 
the influences of active material concentrations on con-
ductivities can be very different, depending on the 

electrolytes. However, additions of organic molecules, 
BQDS and 2,7-AQDS, in aqueous electrolytes, tend to 
decrease ionic conductivities, but still with comparable 
values of conventional vanadium species (Figure 
3c) [47]. 

Economic prospects 
To ensure broad market penetration, the capital cost of 
the overall flow battery systems shall be lower than USD 
$ 100 (kW h)−1 in the long term (e.g. 2030 s) [6,48]. At 
present, the costs of active materials and membranes 
contribute about 70% of a commercial all-vanadium flow 
battery (USD$300 (kW h)−1) (Figure 4a). Hence, cost 
reductions of aqueous flow batteries can be achieved by 
decreasing the costs of active materials and membranes 
through mass productions [6,49]. Furthermore, the real 
cost shall also consider the lifetime of active materials 
and interest rate for discounting as in a recent cost 
model [50**]. 

Figure 3  
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Viscosities and conductivities. The influences of (a) concentration of active materials (V3+ and VO2+ at 0% SOC, V2+ and VO2
+ at 100% SOC, as well as 

2,7-AQDS, BQDS at 0% SOC, SOC: state of charge) on electrolyte viscosities in aqueous 1 M and 4 M H2SO4 solutions [26]; (b) the concentration of 
supporting electrolyte (LiTFSI: bis(trifluoromethane) sulfonimide lithium and TEABF4: tetraethylammonium tetrafluoroborate) on viscosities in nonaqueous 
acetonitrile [45]; (c) the concentration of active materials (V2+, V3+, VO2+, VO2

+, 2,7-AQDS, and BQDS) on ionic conductivities in aqueous 1 M and 
4 M H2SO4 solutions [26]; (d) a concise relationship between ionic conductivity and viscosity of typical solvents used in aqueous and nonaqueous 
redox flow battery systems [8,19].   
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By contrast, nonaqueous flow batteries use more ex-
pensive solvents and supporting salts, that is, PF6

– 

and TFSI– (USD$ > 20 kg−1 vs. USD$ 0.1 kg−1 of water). 
These systems are known to have lower ionic con-
ductivities in both electrolytes and membranes, thus 
larger area resistances (> 5 Ω cm2) [48]. Some electrolytes 
are susceptible to the absorption of water and lead to 
higher resistances/overpotentials. In such cases, it is 
more cost-effective to enhance the power density by 
making use of their larger cell voltages, while further 
increasing current densities with more conductive elec-
trolytes and with fast kinetic reactions (e.g. radicals). 
The resulting higher power densities imply the use of 
smaller electrode areas or/and number of cells in the 
systems for the same power outputs. Owing to the lower 
current densities (usually < 10 mA cm−2), most nonaqu-
eous flow batteries require much larger electrode areas to 
deliver the same power than their aqueous counterparts, 
even with higher voltage of each single cell (Figure 4b). 
Taking account of the notable aqueous AQ–Br and 
nonaqueous Li–TEMPO systems, the stack volume per 
kW h was estimated to be 1.4 and 29 L (kW h)−1 based 
on commercial 2 MW Regenesys® stack. The significant 
increase in stack volume for nonaqueous Li–TEMPO 
system results in much higher stack cost (USD$ 788 (kW 
h)−1compared with USD$ 44 (kW h)−1 for aqueous 
AQ–Br batteries) that involves the uses of membranes, 
electrodes, and other cell components [2]. Realizing 
higher output voltage and volumetric power density, the 
bipolar manifold stacks are required for both aqueous 
and nonaqueous RFBs. 

Opportunities 
In addition to the existing works (past 5 years), there are 
many other opportunities required for further develop-
ments, including  

(1) Exploration and design of new active electrolytes 
with high-energy content and stabilities through 
computational screenings. 

(2) Characterizations of aqueous and nonaqueous elec-
trolytes based on their physical/ chemical properties 
(e.g. solubilities and conductivities) and stabilities at 
different compositions (active materials, salts, and 
solvents) and operating conditions.  

(3) Further increase of power density for both aqueous 
and nonaqueous systems with enhanced mass- 
transport processes and improved cell architectures.  

(4) Development of high-performance electrodes and 
membranes that catalyze the redox reactions and 
reduce the area resistance/cross-contamination, re-
spectively.  

(5) Addressing durability and stability issues under 
prolonged cycling at reasonable concentrations and 
current densities.  

(6) Scale-up and mass-transport/rheological studies from 
lab-scale to practical industrial systems. 

Challenges and future perspectives 
For both aqueous and nonaqueous batteries, the overall 
cost per kW h not only depends on the cell components 
(e.g. electrolytes and cells), but also on the choices of the 
active materials (molar mass and solubilities), redox 
chemistries (potentials and electron transfers), and sup-
porting electrolytes (viscosities and conductivities). It is 
difficult to enhance the energy and power densities of 
current systems without sacrificing the long-term stabi-
lity (i.e. radicals). This requires electrolytes with high- 
energy content that offers competitive cell voltages, 
stabilities, and multielectron transfers simultaneously. 
Decreasing molar mass also improves the gravimetric 
capacity, thus lowering active material cost per unit 
charge. This is particularly challenging due to lack of 

Figure 4  
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Economic analysis of flow batteries. (a) The cost breakdown of “commercial” all-vanadium redox flow batteries (4 MW h) [6]; (b) the illustrations of 
typical aqueous and nonaqueous redox flow batteries for the same power output. Assumption: aqueous flow batteries have lower resistance and 
single-cell voltage.   
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suitable chemistries and the restriction of potential 
window (< 2.0 V). Meanwhile, high-energy density 
means smaller size or number of cells can deliver the 
same power output, resulting in significant cost reduc-
tion. This can also be facilitated by efficient mass 
transport of active species and decreased area resistances 
with suitable flow fields, which may also result in more 
complex architectures. 
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