Production of syngas from ethanol CO₂ reforming on La-doped Cu/Al₂O₃ : Impact of promoter loading

Shafiqah, Mohd-Nasir Nor^a; Nguyen, Trinh Duy^b; Jun, Lau N.^a; Bahari, Mahadi B.^a; Phuong, Pham T. T.^c; Abdullah, Bawadi^d; Vo, Dai-Viet N.^{a, e}

^a Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia

^b Center for Advanced Materials Research, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

^c Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Str., Dist.1, Ho Chi Minh City, Viet Nam

^d Chemical Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750, Malaysia

^e Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang, 26300, Malaysia

ABSTRACT

Incipient wetness impregnation (IWI) method was applied to prepared 10%Cu/Al₂O₃ whereas M%La-doped 10%Cu/Al₂O₃ (Mwt%= 1%, 2%, 3%, 4% and 5%) were synthesized by employing sequential IWI technique. The prepared catalysts were evaluated from ethanol CO₂ reforming (ECR) at 1023 K and stoichiometric feed ratio. Average crystallite size of CuO particle is reduced with La-promoter addition probably caused by lanthana dilution effect that prevent agglomeration from occurring within CuO particles. H₂ reduction process produce complete CuO reduction and constant signal is appearing beyond 525 K suggests that the catalysts were completely reduced beyond that temperature. 3%La catalyst identified as optimal promoter loading based on reactant conversions. C₂H₅OH and CO₂ conversions were achieved on 3%La loading is 87.6% and 55.1%, respectively. Carbon was identified on catalyst surface based on X-ray diffraction (XRD) and scanning electron microscopy (SEM).

KEYWORDS

Cu/Al₂O₃ catalyst; Ethanol dry reforming; Hydrogen; La₂O₃; Syngas

ACKNOWLEDGMENTS

The financial assistance from Universiti Malaysia Pahang (RDU 170326 and PGRS 180368, UMP Research Grant Scheme) is fully acknowledged by the authors. Mohd-Nasir Nor Shafiqah would like to give gratitude to Master Research Scheme (MRS) from Universiti Malaysia Pahang.