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Prospective customers are becoming more concerned about safety and comfort as the automobile
industry swings toward automated vehicles (AVs). A comprehensive evaluation of recent AVs collision
data indicates that modern automated driving systems are prone to rear-end collisions, usually
leading to multiple-vehicle collisions. Moreover, most investigations into severe traffic conditions
are confined to single-vehicle collisions. This work reviewed diverse techniques of existing literature
to provide planning procedures for multiple vehicle cooperation and collision avoidance (MVCCA)
strategies in AVs while also considering their performance and social impact viewpoints. Firstly, we
investigate and tabulate the existing MVCCA techniques associated with single-vehicle collision
avoidance perspectives. Then, current achievements are extensively evaluated, challenges and flows
are identified, and remedies are intelligently formed to exploit a taxonomy. This paper also aims

to give readers an Al-enabled conceptual framework and a decision-making model with a concrete
structure of the training network settings to bridge the gaps between current investigations. These
findings are intended to shed insight into the benefits of the greater efficiency of AVs set-up for
academics and policymakers. Lastly, the open research issues discussed in this survey will pave the
way for the actual implementation of driverless automated traffic systems.

Over the last decade, the scientific community has been paying close attention to research into sustainable tech-
nologies, artificial intelligence and smart city. This trend will continue in the coming years'. One area that has
undergone intensive investigation is the public transportation service, while the automotive industry is head-
ing towards automated vehicles (AVs) intending to boost road safety. It is estimated that 94% of road accidents
occur where drivers are primarily responsible due to a lack of proper attention. Whether due to poor visibility or
excessive speed, they endanger themselves and others on the road?. In this, autonomous vehicles have emerged
as a potentially big change that has the potential to eradicate the errors that drivers make while operating their
vehicles®. Recent AV collisions during testing, on the other hand, highlight the need for more rigorous risk
analysis. In May 2011, the United Nations (UN) launched a global schema titled “Decade of Action for Road
Safety 2011-2020”* in response to the high death toll associated with unsafe roads. Modern scientists want to
transfer all driving tasks from humans to machines since the majority of traffic collisions (94%) are caused by
driver distractions.

The term multiple collision refers to a collision that involves two or more vehicles(up to n) colliding with one
another in the same collision. Altogether, these multiple collisions accounted for almost 20% of all traffic colli-
sions and 18% of the deaths on United States motorways®. Furthermore, multiple collisions are responsible for
up to 50% of urban traffic congestion®. Because of highway conditions, rear-end crashes accounted for 42.7%of
all accidents that usually lead to multiple vehicle collisions (MVCs)’. Through an extensive evaluation of recent
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AV crash data, we found a crucial indication that the AVs systems are most prone to rear-end collisions, the
leading cause of chain crashes or crashes among multiple vehicles®. Additionally, as the transportation community
moves from an era of data-scarce to a generation of data-rich, a standard methodological shift from physics-
based methods to artificial intelligence techniques is urgently needed to forecast the transportation dynamics of
vehicles operating adjacent to human-driven vehicles and help socially optimize policymakers’.

Research on MVCs in AV highlights the need to follow the evaluation of the consequences of a collision'.
In contrast, existing research is dedicated to three viewpoints: (1) identifying multiple collisions'!, (2) analyzing
multiple collisions’ characteristics'?, and (3) multiple collisions’ risk modelling'®. Collision avoidance at high
volume vehicle velocity, which leads to MVCs, is considered a high non-linearity vehicle force that demands an
optimal motion planning strategy. The current control strategies are validated only at low and medium velocity;
a reliable, validated strategy is essential for high-speed situations®
focused solely on collision avoidance strategies for two consecutive vehicles and ignored the MVCs aspects. Sev-
eral review articles and journals which focused on the aspects mentioned above were discussed and compared.
Table 1 presents the result of the discussion and comparison.

However, more intensive research is essential for highlighting principles of examining accidents and pre-
venting chain collisions, which represent the generating mechanism of a traffic accident?"?2. In support of this
argument, a safety framework for driving actions should be built from the viewpoint of a chain collision. The
combined potential concerns of MVCs are illustrated by Fig. 1 in four phases: the first phase is the regular driv-
ing representation; the second phase is the pre-crash situation associated with the point of no return; the third
phase represents the first crash situation; and finally, the fourth phase is the illustration of MVCs induced by

the first collision.

*. Regrettably, the continuous AV research

Survey coverage

Refs. SP CC TA DM vC DS CI svC MVC (&)
1 v v v v v v

16 v v v v v v

7 v v v v v v v

18 v v v v v v

e v v v v v v

20 v v v v v v

Ours v v v v v v v v v v

Table 1. Comparison of autonomous vehicle collision (single and multiple vehicles) avoidance related survey
papers. SP Sensing & perception, CC Communication & cooperation, TA Threat assessment, DM Decision-
making, VC Vehicle control, DS Database & software, CI Challenges and issues, SVCA Single vehicle
collision avoidance, MVCA Multiple vehicle collision avoidance, CS Conceptual solution.
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Given these challenges, a growing number of researchers are devoted to perfecting the driving strategy of
autonomous vehicles (AVs) in order to create reliable ways of avoiding collisions. Real-time vehicle control and
planning for smooth driving with enhanced awareness; routing based on microscale traffic data; coordinated pla-
tooning in response to traffic signals; these are just some of the features identified in a survey of AVs control and
planning architectures®. In addition to the potential for AVs to increase safety by mitigating traffic accidents and
reducing the traffic crash severity, a recent large-scale study** demonstrated how to combine and merge highway
on-ramps into a standard intersection strategy. A comprehensive analysis*® can provide us with high-level solu-
tions to improve the ability of autonomous vehicles (AVs) to control themselves in an urban traffic environment
by estimating the traffic flow and optimizing signal timing. Apart from that, an extensive discussion was held,
focusing on the distributed control mechanisms depending on the dynamical modeling of AVs?*. Contemporary
motion control focuses on the cooperative longitudinal motion of multiple vehicles and is extensively discussed?.

During a combined approach, different strategies were suggested that focus either on improving certain areas
or considering all difficulties. As a result, in order to gain a thorough understanding of the research progress in
this field, it is necessary to compile all available works. Therefore, a comprehensive taxonomy is demonstrated in
this article that differentiates techniques, methods, and technology offered to date for effective autonomous driv-
ing strategies for single-vehicle collision avoidance (SVCA) and multiple-vehicle collision avoidance (MVCA).
Subsequently, we reviewed relevant literature to highlight the key ideas of each current study. Essentially, the
purpose of this study is to inspire readers to recognize current research breakthroughs in this domain and iden-
tify unsolved concerns. Finally, we offer a conceptual framework of an MVCCA strategy for creating an optimal
solution in an AV's system.

The contributing contents of this paper are as follows:

1. A comprehensive analysis that identifies and segments the chain events of collisions associated with MVCs
was conducted. Both SVCA and MVCA perspectives are reviewed objectively, and a taxonomy is created
that consolidates all potential collision avoidance approaches into a single window.

2. Recent technologies and protocols are investigated to determine realistic automated driving decisions and
optimal cooperative decision-making methods. According to their performance matrix, the practical dif-
ficulties and issues are presented in depth.

3. 'This study offers a future research direction with an Al-enabled conceptual framework for MVCCA in AVs.
The proposed framework closely scrutinizes five aspects of AVs to guarantee adequate driving strategies.
Learning-based monitoring and preservation with highlighted applications are also offered in the intended
framework to unlock the potential of AV as standalone MVCCA strategies.

4. An extensive review of the existing challenges, including the design issues of optimum decision-making and
technical matters regarding essential performance aspects of collision avoidance among multiple vehicles. In
this context, we proposed a deep reinforcement learning-based decision-making model to control multiple
vehicles in a multi-agent traffic environment to perform the best action-state map for our automated agents.
The proposed model will work to reform the computational aspects of collision avoidance optimization
according to our proposed framework.

5. Finally, open research issues are sketched out to allow future research direction on existing work and potential
research domains.

As the paper highlights a comprehensive overview of specific topics relevant to the development of the conceptual
framework, it enables readers to uncover these topics. The rest of the paper is laid out as follows, Sect. 2 presents
an overview of the AVs and collision segmentation. In Sect. 3, the challenges and issues of avoidance MVCs in
AV are extensively illustrated. Section 4 represents a taxonomy of MVCCA and under this taxonomy in Sect. 5,
a spacious Al-enabled conceptual framework is deployed for MVCCA in AVs. Section 6 synchronizes valuable
future research indications to provide respected researchers with future challenges. Finally, Sect. 7 concludes the
paper by revealing the article’s contribution.

Overview of MVCCA

The leading subject in automotive science in recent years has been AVs**?. Millions of lives are likely to be
saved soon, considering the remarkable statistics showing that the number of casualties in road accidents has
been reduced to a good 1.2 million a year in the last ten years®. Furthermore, it will optimize traffic and reduce
travel times significantly. An overview of the workflow is presented in Fig. 2 for the sequences involving multiple
vehicles cooperating and avoiding chain collisions.

It is worth mentioning that the strength gain is self-evident in developing a stable AV system. However, their
implementation is a major challenge for both rule-based control and data-driven decision-making. Readers are
encouraged to refer to’*? for the appropriate analysis of key technologies for assistance systems for collision
prevention. Multiple business giants in different countries are currently working on the production of AVs. The
authors of*® briefly described the data on the growth of each country in AVs design and the challenges faced by
those countries. AVs production in the initial days entails numerous studies and problems. Real-world AV are
never 100% sure what various things are such as road boundaries, lanes, rules, signals, and so on, in a situation.
Instead, it has a certain level of confidence or degree of certainty about all these aspects®.

AVs fundamentals. In the modern transportation world, autonomous systems have been activated to pre-
vent 94% of driver error road accidents®. AVs can sense their surroundings and operate without human interfer-
ence. Figure 3a is the cognitive presentation of AVs basics. For a more elaborate discussion on the automation
level of AVs, readers are referred to®. The mass production of tools relevant to AVs is approaching thanks to
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Figure 3. Evaluations of driving complexity in AVs.

rapid advancements in AVs technologies, particularly the recent advancements in LiDAR, GPUs, and learn-
ing control strategies®. Many business giants such as Waymo and GM-affiliated automotive and IT firms are
working hard to get their advanced self-driving cars onto public roads as soon as possible. The leading peril of
optimal performance in AVs technologies is traffic collisions. Thus, the mechanism for accident prevention must
be capable of controlling all types of threats during automated navigation, with the progress of the production of
AVs. Figure 3b depicts the complexity and speed of numerous driving conditions.

n-number AVs. To date, most of the current research has perhaps concentrated unexpectedly on two polar
scenarios, in which either one AV is traveling on a highway in an environment dense with human drivers or an
AV network with minimal interaction with human-operated participants. The much more realistic but chal-
lenging transformation between these two scenarios has received much less attention. It is this hybrid human-
machinery space, now known as mixed autonomy, which merits our collective interest. In the survey*, authors
divided this transformation into 4 stages, pure conventional vehicles (CVs), the CVs-dominated stage, the AVs-
dominated stage, and the pure AV stage. The latter 3 stages are the subject of this article. The difficulty of model-
ling for each step is shown in Fig. 4. The CVs-dominated and AVs-dominated stages, that is, mixed autonomy,
are difficult to chart. An understanding of the unknown road participant and complicated interactions among
different vehicle types is required. The following concepts further split the relative proportion of AVs and CVs
into mixed autonomy (indicated in road map in Fig. 4):
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In Fig. 4, a black-dotted box is included in the group associated with each step. The objective of the transport
community is pure CVs, then a model which is dominated by CVs, and finally pure AVs dominated®. However,
researchers are more concerned with the step of the CVs-dominated operation, in which one or few AVs navigate
the traffic environment.

Spectrum analysis of collision in AVs. Most of the current automated driving research goes far beyond
the control of a single vehicle. However, in reality, decision-making in crucial scenarios and the initiation of
strong sensors, cooperative communications networks, and embedded systems have created extensive concern
about how to solve the problem of multiple automated vehicles’ cooperative control. The problems of vehicle
control by motion planning for a single automated vehicle are usually divided into three segments: (1) the sta-
bilization of points, (2) tracking trajectory, and (3) the path following®. For multiple vehicles, formulating a
cooperative trajectory generation strategy is the main issue. In particular, a collision-free route is adopted by
each vehicle, and all vehicles reach their respective destinations. In Table 2 is shown the major aspects of single
and multiple vehicle collisions®®.

MVCCA in AVs. As with the conventional traffic system, the autonomous traffic system offers a potential
perspective on both the SVC and the MVCs. Despite the fact that automakers have focused on creating real-
istic solutions for AVs to replace human-driven vehicles, the most recent solutions are only suitable for single
vehicles. On the other hand, road traffic is a dynamic and interactive system. Such a system necessitates a mul-
tifaceted approach to solving the issue since it takes into account not only the pedestrians and the surrounding
road but also other road users, which may involve multiple participants®. Authors* extensively investigated
and illustrated a region map of single, double, triple, and multiple vehicle collision conditions regarding sudden
slowdown. The article®® evaluates the steering stability for multiple vehicles in the case of automatic or manual
driving, which is restricted for safety. In fact, MVCs are likely to result from a series of unstable coupled groups
of vehicles.

Chain collision or MVCs description. MVCs are the ultimate result of an SVC in a traffic system. Drivers on
highways frequently rely heavily on the vehicle’s tail brake lights to decide if they brake*. This creates potentially
dangerous situations when a vehicle follows another closely, particularly when the ability to see past the vehicle
is limited. The reaction time of the driver between the occurrence and the frequency of the brake is usually 0.75
to 1.5 seconds*!. There may be few margins of protection if a short inter-vehicle distance is maintained in order
to prevent accidents during abrupt braking. Furthermore, the successive drivers’ cumulative reaction times in
heavy traffic will lead to a number of secondary accidents and create multiple vehicle accident chains*>.

Traffic situation ontology. 'The perception process of dangerous situations, in a cooperative group of vehicles, is
discussed in®. In the meantime, it has been accepted that a higher degree of situational understanding is often
required in order to provide driver assistance. Vehicles have to understand the situation they are involved in.
This is or will become the basis for numerous implementations, including advanced crash detection and mitiga-
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Features aspects svC MVC
Crash severity Less severe than MVC | More severe than SVC
Static
Collision types Dynamic Very common Very common
Uncertain
Cause pattern Defined situations Unpredictable situations
Automated approach Very common Very common
Avoidance techniques Study widely Study marginally
Avoidance algorithms Study widely Study marginally
Agents Single Multi agents
Single and multi agents perception Environment Less complicated Very complicated
Private goal Focused Focused
Common goal Not focused Focused
Location Agents involved
Interaction Location
Duration Urgency and costs

Preparation time Interaction type

Characteristics of cooperation
Initiation Duration

Cooperation driving Mutuality

Preparation time

Initiation
Lane merge Platooning
Examples of cooperative situations | Truck overtaking Lane merge

Truck overtaking

Table 2. Major aspects of SVC and MVC.

tion systems. The advantage of knowing the scene would allow for automated driving of more than one vehicle
to deal with hazardous situations at high speed in complex inner-city environments or cooperative maneuvers if
necessary*. Traffic collisions prevent the flow of traffic, block the highway, and cause serious congestion. Some-
times, the blockage causes collisions between vehicles. The accident often causes further collisions and leads to
multiple-vehicle collisions.

Scenario I: highway unregulated by sudden slow down or blockages. 'We consider a typical highway scenario in
which n number of vehicles are traveling in parallel, in front of or behind each other. All vehicles attempt to mon-
itor their own relationship to speed. In this situation, a driver usually relies on the brake light of the car ahead of
them to evaluate their own braking action in road emergencies caused by bad weather or misjudgment*’. In low-
visibility situations, the behaviour of the traffic is certainly different from that in natural conditions. With the
use of a model of friction-force**’, collision among multiple vehicles was investigated in low visibility situations.
However, if the emergency incident is caused by multiple vehicles ahead, then it could be too late to stop the
collision by the time the vehicle brakes immediately ahead. In addition, the combined reaction time of drivers
across all the vehicles ahead will further escalate the situation. Consequently, a single emergency incident may
also lead to injuries in multiple-chain collisions. Another aspect is that the driver deploys brake matching to the
taillights of the leading vehicle and the rearrangement of friction force, which strongly depends on the velocity
of the vehicle in the traffic situation. Chain collisions can be caused by the first accident!*?.

Scenario II: sudden lane change by highway obstructed. The first collision caused by a sudden lane change can
induce further collisions and may lead to MVCs among several vehicles when a vehicle switches lanes on a two-
lane highway from its ego lane to the next lane. If a vehicle enters the second lane at a high (or low) speed from
the first lane, there is a high chance of a first collision with the vehicle that is driving in that lane, and the colliding
vehicle could be positioned as the forward (or rear) vehicle, which can cause further collisions to occur as a result
of the initial collision*®. Another scenario is that the three-lane highway is reduced to a single lane due to road
work heterogeneity or that the leading vehicle comes to a halt unexpectedly due to a blockage®. This roadwork is
announced to all vehicles via road signs. According to these signs, vehicles must slow to 70 km/h and then merge
into a single lane. As a consequence, the situation becomes more complicated, exposing the differences in the
controls. Secondary collisions are typically caused by the first collision, and* contains a thorough investigation
of the factors influencing secondary crashes. Potential readers were referred to read®*->? to uncover the crucial
aspects of secondary collisions. Figure 5a is the symbolic representation of the consequences of MVCs.

Chain collision avoidance techniques. While reviewing contemporary research works, we usually found numer-
ous solutions and protocols concerning SVC; however, the MVCs problems continue to suffer from a lack of
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Figure 5. Demonstration of MVCs and its avoidance technique.

concern, particularly in the domain of AVs. Traffic situations with multiple vehicles interacting are difficult in
AV system. Even though another traffic participant’s rough intent is understood, all participating vehicles must
agree on a cooperative decision that gives a conflict-free trajectory plan, indirectly or explicitly. For each vehicle,
the movement must be secure and comfortable and must accommodate all individual goals and desires®. The
standard interval between these intervals can be determined using the collision-free interval for each agent™.
When each agent’s velocity is adjusted in parallel, the velocities in the non-intersecting distance inevitably avoid
colliding. This agreement protocol is used in competing speeds in a common interval®. As a navigation query,
collision detection and avoidance in agents® or multi-agent®’—° scenarios has also been addressed.

Theoretically, chain collisions can be avoided or decreased in severity by reducing the time between an
emergency occurrence and the moment when approaching vehicles are in a chain collision. Propagating a
vehicle-to-vehicle incident warning alert is one way to do this. The warning alert is designed to circumvent the
usual chain of drivers responding to the activation of vehicle brake lights immediately ahead of them, and even
allow drivers to react to an incident before seeing it. Secondary collision mitigation strategies can be found
in'*". Common strategies employed for MVCCA include Platooning®, Active Brake Control®, Time-Critical
Cooperative Control®”, Trajectory Re-planning®?. Authors in® proposed avoidance technique for chain crash
as shown in Fig. 5b.

Challenges and issues of MVCCA

For combinations of hundred-pulse sensors, communications devices, and actuators, an extensive evaluation
will be needed before the mass production of AVs. These matters indicate the analysis of the root causes of AV's
failures and finding out the chain events of the potential failures. Obviously, policymakers and researchers are
dependent on this kind of comprehensive evaluation to develop the optimum strategies. Several barriers are
likely to challenge the advancement and execution of sensible driving technologies, particularly the avoidance
of collisions among multiple vehicles. The key factors that could hamper technology adoption before or after its
full maturity consist of:

Mixed traffic systems management. It is proven that technology is not the outcome of one or two days,
but rather the outcomes starting from the 1960s (new models) until now. The same is true for transportation
systems. We cannot expect all the road transport systems to convert to automated systems within a day®. As a
result, it is expected that the transition from the shape of a traditional non-automated vehicle fleet to the shape of
an AVs fleet would occur in stages over time. This viewpoint implies that our AVs-based framework would take
into account both AVs and conventional vehicles (CVs) at the same time. According to the most recent auto-
mated vehicle testing findings submitted by AV’ testing companies, the majority of AVs involved in accidents are
caused by CVs sharing the road with AVs®,

Cooperative maneuvers for each vehicle safety. Research challenges involve expanding the method
to random road geometry and incorporating for each vehicle a plan B trajectory that ensures that in the case
of a crash, e.g., loss of contact, a safe state is reached. Although the measurement of cooperative behavioural
action®>® is almost realistic, with a growing number of participants, it does not scale well. In the AV traffic
systems, it is more crucial than it is in conventional traffic systems.

Multi agent robotics systems. In multi-robot navigation, global path planning and local motion plan-
ning play crucial roles. Autonomous driving is clearly a multi-agent, dynamic field, with the most difficult chal-
lenge being the deployment of a collision-free, safe, and robust trajectory plan for each of the robots from their
starting point to the desired destination. In any unexpected, critical situation, the system needs to be capable of
re-planning for a proper collision avoidance strategy. On the other hand, in multi-agent robot environments,
where the agent learns the collision avoidance navigation strategies from the environment, it is more challenging
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to deploy the particular capabilities to find collision-free routes, and they are well adapted to all kinds of unseen
scenarios®.

Adequate data for efficient learning. Machine learning algorithms are currently being learned in a
supervised method primarily and therefore, adequate data is needed for efficient learning and a robust training
process. Despite the fact that automated vehicles have been tested in highly regulated environments, they often
struggle to make the right decisions, sometimes with disastrous consequences. For adapting automated naviga-
tion to all forms of critical driving environments, defining a deriving mechanism in any certain crucial situation
first would benefit the deployment of robust driving ability in all the scenes. The author mentioned some key
critical conditions in®”. Robust schemes, such as re-planning and retreating the perspective process, would be
built to accomplish safe and secure planning in the web of uncertainties. Erhan, L. ef al., reviewed the anomaly
recognition in automated vehicle sensor systems®®. Table 3 shows the summary of currently available data sets
mentioned in prominent survey papers.

Simulator and simulation studies. Conducting a better-automated system generally requires more and
more experiments and reshaping of the systems, and it is not always possible to use a real automated vehi-
cle. In addition, performing more in-depth investigations and configurations that require risky scenarios must
be conducted in some type of simulation. Since the 1960s, simulator studies in the automotive domain have
been carried out”. A simulation does not contain any of the actual driving information, meaning that creat-
ing a realistic simulation experience both psychologically and physically remains a challenge. Acquisition of
samples, simulator fatigue, training of simulator, interface designing, requests for take-over, and the secondary
tasks of automated and simulated driving study are examples of these’. Traffic simulator in open-source phase
as- SUMO”” MATSim”® in commercial phase AIMSUN”’ PTV Vissim® Paramics® VIPS®, network simulator
802.11p/ITS G5 protocols®> OMNeT++%, NS-3%, Multi-Agent Systems(MAS) LightJason®. Potential readers
are invited to read the systematic literature review on Agent-Based Simulation of Autonomous Vehicles®. The
authors of*® evaluated the segmented validity checking systems into robustness testing, combination testing, and
search-based testing methods. In the field of automated driving, there is a need to bridge the gap between open-
source software and vehicle hardware, see® and® for ITS simulation systems, respectively.

Taxonomy of MVCCA in AVs

In AVs systems, MVCCA is a more complex task than SVCA, and in this section, according to the existing
research publication, we developed an extensive taxonomy. The future of automotive safety is generally predicted
to be self-driving and highly AVs, potential academics and manufacturers are conducting crash avoidance and
AV research to keep drivers and passengers safe. The taxonomy is presented by Fig. 6 to address different per-
spectives and methods for forming MVCCA strategies associated with the SVCA in AVs.

The basics have been categorized based on the literature’s most pressing concerns. To begin, numerous works
have been discovered to allow a vehicle to move on its own, with four basic subsystems typically incorporated:
location identification and navigation system, environmental situation analysis system, motion planning system,
and trajectory control system. The second most prevalent strategy is focused on decision-making model devel-
opment for vehicle control using physics-based control theories and the latest learning control methods. This
section comprises all the collision avoidance technologies proposed by numerous writers. Third, many studies
have been found that aim to provide learning control to prevent single-vehicle collisions and adaptive control
of single vehicles to optimize the AVs. This segment talks through many forms of perception, communication,
threat assessment, decision-making, and vehicle control approach applicable to a distinct range of technologies.
Finally, there are a few studies that offer a complete method of MVCCA strategies utilizing a combination of the
five fundamental aspects of AVs. Further elaboration of this research will be presented in the following sections.

Perception. The process of perception is entirely dependent on the domain of sense, and its perfectness is
a crucial factor in the AVs system’s collision avoidance strategies. From the perspective of MVCCA, the funda-
mental problems are the correct understanding of the road traffic environment, the identification of possible
traffic accidents, and the proposal of alternative driving strategies. Contemporary object detection and tracking

Refs. ‘ Data sets

Factors Critical scenarios Challenges to handling

Survey of the explicate of environmental conditions

69

ApolloSpace, NightOwls

Illuminati-on Shadow, directly facing the sun, Night Light intensity variations.

70

AMUSE, CMU, Oxford RobotCar Weather Snow, rain, fog Difficulty in computer vision-based tasks.

71

ApolloSpace, Berkeley DeepDrive Traffic Conditions

High speed, Multiple collisions, Heavy traffic Lack of realistic datasets

flows.
7 IDD, CCSAD, Highway work zones | Road conditions Damage, rough surfaces Lack of data
Explicate of behavioral factors
7 UAH, Argoverse Vehicle’s behaviors Lane change, overtaking, high speed Real-time prediction in multiple participants
7 JAAD, Daimler pedestrian Participants and road users’ behaviors | Crossing, wrong direction movements. Lack of datasets

Table 3. Prominent survey papers represented data-sets with detailed features.
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Figure 6. Taxonomy of MVCCA in AVs.

systems such as 3D object detection for automated traffic systems are offered with a multi-modal 360-degree
balancing framework proposed by®. The perfect perception process is dependent on several facts, and given how
crucial this is for MVCCA that we reviewed some articles to determine the focus feature in the perception phase
in AVs, and it is shown in Table 4. A more elaborate discussion is found in the following subsections.

Environment fusion (EF). AV have the power to perform automatic actions and navigate themselves based on
their surroundings and pre-programmed duties’’. Based on the environment in which it is operating, AV sys-
tems may have varying levels of complexity. Artificial intelligence (AI) has fueled the improvement and deploy-
ment of AVs in the transportation sector. Fuelled by large data from numerous sensing devices and improved
computer resources, Al has come to be a vital component of AV for understanding the surrounding environ-
ment and creating appropriate choices in motion. For the ultimate objective of self-driving cars, understanding

how AI functions in AV systems is essential®’.

Sensor fusion (SF). For accurate perception, AVs rely on Sensor Fusion (SF), which requires them to gather
input from their surroundings and extract important knowledge in order to classify data by semantic meaning®
and even anticipate their future states’’. To do this, the perception approach may utilize a single acquisition
procedure or several sensors to constantly scan and monitor the surroundings, such as human-like vision, and
other sensations. Collection, filtering, and dealing with raw data collected from a variety of sensors are all part
of the process. In spite of extensive research into on-road driver assistance schemes and autonomous driving
systems (including self-driving cars), methods established for organized traffic in a city environment may fail in
an off-road setting due to the uncertainty and variety of unfamiliar conditions encountered®. The range, signal
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Refs.

Features Aspects

EF

SF

LM

OR

MI |VHM |(CP |SVCA | MVCA | Pros Cons

Focused on a fully automated system and the

v v Presents the methods of sensor fusion. . . . .
mixed traffic was not in consideration.

AN

v v Obstacle detection performance. Multi-agent is not in consideration.

v v v v v Discussed on algorithms for perception. Empowered by DL algorithms only.

NIENENERN

<
<\
<\

In off-road environments. Obstacle avoidance methods.

Information used for the controller.

N

Information-awareness by sensing.

Discussed on environment perception. Only simulation platforms.

Intention recognition utilizing mirror neuron. | Limited in-lane illustration process.

98

End-to-end approaches Only software components.

9

NENENEN

v

Drawbacks of new automated systems. Mixed traffic was not checked

100

NENENENE

NNENENENENENEN

NENENEN
NNENENENEN
NNENENENENEN

v Al-supported applications. Discussed sensing systems.

Table 4. Perception aspects of MVCCA in AVs. EF Environment fusion, SF Sensor fusion, LM Localization
and mapping, OR Object refinement, MI Maneuver illustration, VHM Vehicle health monitoring, CP
Cooperative perception, SVCA Single vehicle collision avoidance, MVCA Multiple vehicle collisionavoidance.

features, and detection conditions of a single sensor make it difficult to detect obstacles®. As a result, researchers
and technologists are looking into multiple sensors and systems. The typical categories of sensors are Image-
based sensors, Range-based sensors, and Hybrid sensors, while the most important methods of sensing are
classification-based methods, probability-based methods, and inference-based methods®.

Localization and mapping (LM).  For almost 25 years, a continuous localization and mapping system has been
a hot topic in the community of mobile robotics. The increasing focus on AVs has accelerated the research
attempt with the assistance of automobile manufacturers®. The global navigation satellite system (GNSS) could
be considered a solution to the problem of location; however, it was immediately demonstrated that this is not
sufficient in and of itself>. Even though the accuracy constraints of any classical GNSS system are raised when
ideally positioned base stations are employed with the kinematic GNSS, namely Real-Time Kinematic GNSS,
availability continues to be a problem in this environment. The use of road infrastructures such as road mark-
ings or highway indications to guide a vehicle into a lane is another fundamental approach to localization and
navigation®®. These kinds of approaches, while limiting in their scope as the lateral positioning in the multi-agent
traffic environment, are sufficient for contexts where the route can be clearly seen, such as highways. More com-
plicated situations, particularly multiple-vehicle traffic environments, may not always give enough road data to
locate a car accurately. Moreover, longitudinal position precision is more than crucial in straight, expressway-
like situations®.

Object refinement (OR). The quality of a self-driving systems perception task significantly impacts its
performance®. There has been a rise in the availability of scanners, like LIDAR, which allows for more precise
depictions of the vehicle’s surroundings, resulting in safer systems. The results demonstrate that contemporary
real-time object detection arrangements achieve high performance at the detection rate and the accuracy cost®.
Hardware and software advancements are expected to lead to a better balance between run-time and detection
rate object refinement (OR)*. However, current real-time OR networks are unsuitable for high-accuracy tasks
like AV visual perception'®.

Maneuver illustration (MI). 'The march toward more enhanced driver assistance systems and the advancement
of AVs open up new opportunities for the safety system®. Improved MI methods may be developed due to
increased information accessible in the vehicle regarding the surrounding traffic situations and the path ahead®.
These systems will utilize this data for control stability during safety-critical maneuvers. In order to reduce the
chance of a collision, such a method might adaptively trade-off between regulating the vehicle’s lateral, longitu-
dinal, and rotational dynamics in order to achieve the best balance.

Vehicle health monitoring (VHM). Many factors contribute to traffic fatalities and injuries, including poor vehi-
cle maintenance, unfit drivers, careless driving, a lack of driving instruction, and poor decision-making when
it comes to adhering to traffic regulations. Legislative bodies are also to blame for these accidents because they
do not have the proper oversight in place. Developing a centralized intelligent VHM system appears to be an
excellent answer to this situation'®.

Cooperative perception (CP). Precise localization is critical for navigation tasks in related fields such as AVs
and intelligent transportation systems. The multi-vehicle perception process and control viewpoints are repre-
sented in'”". Cooperative operations (CO) in multiple vehicle systems are intended to allow participants to trade
sensed obstacles or perceived information with one another in order to broaden their sensory horizons, hence
increasing their situational awareness and safety!®>. The concept of cooperative and non-cooperative accident-
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avoidance alert methods for overhauling or lane shifting assist and automatic lane shift is represented in another
study'®. Several research areas have looked into cooperative perceptions, incorporating sensor data handling,
wireless network settings, and implementations of unified perceptions'®. Certain researchers have used sensor
fusion solutions to improve the reliability and precision of their data'®!%. Authors in® give a flowchart of the
cooperative perception procedure in AVs.

Communication and cooperation. The second important fact of MVCCA in AVs mentioned in our
taxonomy is communication & cooperation (CC). Over the past two decades, advances in robotics, naviga-
tion, sensing, computer vision, and high-performance computing have stimulated new automotive innovations,
mainly through two streams. First, the automation of vehicles, where vehicle control functions autonomously
without direct driver inputs (such as steering, throttle, and braking). Second, vehicle connectivity consists of
different communication technologies'® for vehicles, such as V2V, V2I, and V2P%. Multiple vehicular com-
munication research!®-113 has been conducted to establish efficient and realistic cooperative communication
systems. This work is dedicated to evaluating some existing reviews and journal papers in this phase as seen
in Table 5. The possible impacts of vehicle communication and mutual awareness using the vehicular ad-hoc
network (VANET) Veins simulator were explored by authors of''%. The allocation of vehicle communications
services through the use of value-anticipating networks was discussed in an article by''’. In the survey, authors
in'"* reviewed communication security in a systematic literature review. The next subsections present some
details of CC regarding AV's system.

Intra-vehicle networking (IVN). In the AVs prospects, the IVN has some viable roles. Improved sensor tech-
nologies such as ranging and light detection, cameras, radar, and other sophisticated sensor technologies ush-
ered in a new age in automated driving''®. A consequence of the inherent constraints of these sensors is that AVs
are more likely to make wrong decisions, which can result in fatal outcomes. At this stage, IVN technologies can
compensate for sensor shortcomings and are more dependable, practicable, and efficient in boosting informa-
tion interaction, resulting in improved AVs perception and planning skills and enhanced vehicle control''°.
Inter-vehicle communication is only possible if significant messages that increase safety can be exchanged
quickly and efficiently. Many technical issues must be addressed to meet this requirement, involving low latency,
high reliability, and guaranteed data rates'"’.

V2V communication. In MVCCA, cooperation and communication are essential. Recent developments in
hardware, software, and communication techniques and the creation of diverse functions and standards have
enabled the development of new technologies'"”. Vehicle-to-vehicle communication (V2V) technologies are
now being integrated into automobiles, which can detect the driving behaviors of other participants. Sensors,
communication technologies, and information systems are being unified into vehicles in order to create con-
nected vehicle networks. In interconnected networks, vehicle-to-vehicle communication (V2V) is being applied
to decrease traffic congestion, increase passenger safety, and effectively control vehicles on highways®®. V2V
communication generally delivers real-time traffic road state information (e.g., speed, acceleration, position)
concerning the ahead vehicles. As part of an active traffic management method, 12V communication, on the
other hand, primarily offers information on downstream traffic circumstances or local speed proposals''®.

V2X communication. Like V2V communication, vehicle-to-everything (V2X) communications have poten-
tial in MVCCA. Also needed for new internet-of-things (IoT) applications, including intelligent transportation
systems, self-driving cars, collision avoidance systems, and so on'"’. Vehicle IoT faces two major challenges.

Features Aspects
Refs. IN V2V | V2X |DB |CR |CPS |P SVCA | MVCA | Pros Cons
s v v v v v o v v v Discussed network and communication. Not consider the mixed traffic system.
e v v v v v v Cooperative actions investigated. Consider only lane change situations.
nz v v v v Technological problems illustration. Not discussed cooperative aspects
9 v v v v v v v v v Evaluate the crucial challenges. Not consider mixed traffic.
s v N A v v v Reviewed existing work. Only as a form of social-Al capability.
1 v v v v v v v Use cases of communication In-feasibility of current technologies.
120 v v v v v v A novgl vehicu?an" communication based on Limitgd to ‘the 4riving conditions of lane-

coordinated driving protocol. changing situations.

121 v v v |V v v Evaluation and framing key facts. Only some aspect of traffic flows.
122 v v v N A v v Multi-vehicle systems. Discussed a car-following model.
# v v v v v v v Summarizing coordination in AV's Focused on particular conditions.

Table 5. Communication and cooperation for MVCCA in AVs. IN Intra-vehicle networking, V2V V2V
communication, V2X V2X communication, DB Driving behavior, CR Coordination and reasoning, CPS
Cooperative perception sharing, P Platooning,SVCA Single vehicle collision avoidance, MVCA Multiple
vehicle collision avoidance.
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First, vehicle mobility causes network elements such as communication nodes, accessible wireless sources, and
network intensity to shift spatially. Second, the problem is made even more complex because the communication
network environment is changing over time. Vehicle IoT systems incorporate several network nodes and diverse
wireless communication techniques, thus the network situation may change frequently. As a result, we must cre-
ate a more intelligent communication system that can self-evolve!'®.

Driving behavior. Predicting and planning interactive behaviors in complex traffic situations presents a chal-
lenging task''®. It is difficult to predict and arrange interactive behaviors in complex traffic scenarios. AV strug-
gle to assess conditions and eventually attain their own driving aims, particularly in situations involving multiple
traffic participants who interact closely. It is complicated in a multi-participant setting, and typically, AV suffer
from potential driving policies to avoid single-vehicle incidents and collisions among multiple vehicles!*’.

Coordination and reasoning. The road environment, in general, contains a large number of participants. Coop-
erative multi-agent systems (MAS) are those in which multiple agents work together to complete tasks or opti-
mize value through interaction'?’. The interactions between the agents, the complexity of a multi-agent problem,
can rapidly increase with the number of agents or their behavioral sophistication'?!. Mapping, localization, and
motion planning are three interconnected competencies that must be presented for a robot to operate well. A
road or route between two entrenched configurations in a cost field must be calculated while considering mobil-

ity constraints, static obstructions, and dynamic obstacles''.

Cooperative perception sharing (CPS). Recently, in cooperative autonomous driving, the CPS concept has gar-
nered increasing attention as a plausible and feasible option to increase autonomous driving performance (safety,
comfort, efficiency)'?’. There are two main types of technical approaches: centralized and distributed. Assuming
the first scenario is, a single driver is a leader in keeping the other vehicles under control, including coordinating
their driving. Each car intends to exchange local information with others, such as cooperative adaptive cruise
control (CACC) and cooperative perception-based autonomous driving (CPAD)'?,

Platooning. It is possible to use a vehicle platooning strategy in autonomous vehicles, which involves a lead
vehicle and a group of vehicles following it**. Cooperative adaptive cruise control (CACC) governs the move-
ment of the cars in platoon''>. CACC is an upgrade to adaptive cruise control (ACC) that adds vehicle-to-vehicle
(V2V) communications and consent to cars to travel in more compact and stable platoons than ACC permits.
Most CACC systems necessitate communication between the next vehicle and the car in front of the platoon,
depending on which is closer. This can be accomplished through the exchange of data on the vehicles’ longitudi-
nal and lateral control systems (e.g., steering) along with management procedures that monitor platoon forma-
tion, driving maneuvers, and platoon disengagement''”. Cooperative awareness messages (CAM) are used to
exchange this data across connected vehicles.

The coordination of multiple autonomous agents raises several real-world issues. These studies use coopera-
tive multi-agent systems models, whereby agents aim to achieve a common global goal'®.

Threat assessment (TA). Threat assessment determines the nature of a situation and assists in the secure
operation of intelligent vehicles. As MVCCA is intended for threat assessment, several critical metrics could be
established. It is essential to decide on an appropriate critical metric for resolving certain driving and naviga-
tion issues in various driving situations. In their article'** authors attempted to use an integrated algorithm for
predicting obstacles and estimating the state of a self-driving vehicle. The authors claim in their article'®® that
the TA system performance will be stimulated by a decision-making scheme that will define the vehicle’s next
plan of action.
Essential metric
time-based metrics, unexpected driving measures-based metrics, and statistics-based metrics. In the paper
authors listed a large set of data with more than 250,000 kilometers of driving data for estimating the frequency
of collisions with EVT (extreme value theory). Vision-based road safety identification techniques were reviewed
by?2. In their article'®® they pointed out that automated car systems were first disassembled into vehicle compo-
nents and transport infrastructure components to identify the risks. Many reviewers reviewed many pieces of
literature on the tremendous potential of evolving automotive technology for safety and the environment. Table 6
refers to threat and presents the evaluations of some papers focusing on threat assessment as well as potential fea-
tures, and the upcoming sections are the in-depth discussion of some facts mentioned in the proposed taxonomy.

126 (assified them into five groups: kinematics-based metrics, potential field-based metrics,

127

Threats of in-vehicle protocol. Due to the lack of human control, it is critical for AVs to perceive the ambient
situations precisely when cruising on the road'?. AVs require a variety of sensors, including GPS, ultrasonic
sensors, light detection and ranging (LiDAR), and millimeter-wave (MMW) radar. Sensors enable AV to per-
form tasks such as sensing, obstacle/pedestrian recognition, collision avoidance, navigation, and more. Given
the great reliance on sensors, it is possible that if they are blinded, or even intentionally managed, lethal disasters
may result in'?. The privacy of in-vehicle network connections, such as LIN, CAN, or FlexRay, must be taken

into consideration'®.

Driving comfort (DC). The smoothness and consistency of a path are the two key parameters impacting DC in
a multi-agent autonomous driving technique'*’. An uneven road may cause occupant discomfort or even wheel
slippage, reducing the vehicle’s stability. The smoothness factor is gathered at the present planning phase to mini-
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Features aspects
Refs. TVP | DC CRP |CM |DSTA |UA TAS |SVCA |MVCA | Pros Cons
125 v v v v v v Comprehensive CA system highlighted. | Reviewed an introductory idea.
126 v v v v v v v Comparative review of critical metrics. Considering only three typical scenarios
129 v v v v v v Continuous real-time risk assessment. Decision made on incomplete data.
134 v v v v v v v Human-centered risk assessment. Not applicable for motion control.
13 v v v v v v Analysis the effect of warning system. Only in simulation environments.
136 v v v v v v Real-time NL collision prediction. Interaction-aware model.
132 v v v v v v v Identify the harmful situation. Did not solve the problem.
135 v v v v v v v Proposes a proactive cyber-risk model. Only concerning the cyber-risk assessment.
137 v v v v v v Analysis of threat-assessment methods. | Cover only single-behavior threats.
138 ' v v v v v v Survey of existing methods. Study marginally.

Table 6. Reviewed up-to-date papers according to SVC and MVCs threat assessment in AVs. TVP Threats
of in-vehicle protocol, DC Driving comfort, CRP Collision risk prediction, CM Collision mitigation, DSTA
Dynamic and static threat assessment, UA Uncertainty assessment, TAS Threat assessment strategies, SVCA
Single vehicle collision avoidance, MVCA Multiple vehicle collision avoidance.

mize chain collisions, but it cannot prevent the construction of a path that is substantially different from a path
generated in a prior step'®!. If the difference between the current step’s path and the prior step’s path is too great,
an abrupt transition will occur. Path consistency must be examined to avoid this situation'?.

Collision risk prediction (CRP). Early detection of dangerous conditions and proactive responses aid in main-
taining appropriate safety distances. However, unexpected, unpredictable situational changes, dangerous maneu-
vers, and crashworthiness persist as an important aspect of vehicle protection, helping to reduce the severity of
crashes!'?. The following are criticality measurements for regular automated driving. The Time-to-X-Metrics'?,
such as Time-to-Brake!*?, Time-to-Collision'”’, and Time-to-Steer, are probably the most well-known critical-
ity metrics. In their direct relationship to human reaction time, these measurements are frequently utilized in
assisted driving. However, they mainly concentrate on collision avoidance using imprecise motion forecasts
based on constant velocities and do not take into account unpredictable environmental data. Work has been
conducted on a vehicle cooperative collision avoidance (CCA) approach using the dedicated short-range com-
munication (DSRC) for the V2V!*3. A unique decentralized and cooperative policy for collision-free motion
coordinating of non-holonomic AVs was developed for the study.

Collision mitigation (CM). 'The research direction presented three techniques for single and MVCA, as well
as CM: (a) front collision indication; (b) front collision avoidance by decelerating and navigation; and (c) a
combination of (a) and (b)'®. The majority of earlier collision avoidance research did not see an improvement
in V2V communication for MVs coordination. The time delay between sensor recognition and driver/agent
reaction will accrue and spread upstream in MVs. If they follow each other closely, which is common on free-
ways, this is likely to result in numerous car collisions, especially if the first vehicle does emergency braking'**.
If the ego agent/vehicle is too close to the front agent/vehicle, steering may not be effective. Furthermore, if par-
ticipant vehicles are on both the lanes left and right, steering could result in more serious collisions. A scheme
is described as a group of agent vehicles that are longitudinally connected. If the velocity and distance of two
neighboring vehicles in the same lane satisfy certain parameters, they are considered linked. Intuitively, if the
leading car brakes, the following vehicle must take prompt action for safety. The time gaps used for realistic road
driving are typically1.4 ~ 2.1s, although some are as low as 0.4s. As a result, most vehicles in the same lane are
grouped together in some way'*%

Dynamic and static threat assessment (DSTA). Though vehicular localization is required for multi-vehicle colli-
sion avoidance, several methods presume flawless sensing and positioning and instead use global positioning via
an overhead tracking camera to avoid local procedures'**. However, in order to conduct local collision avoidance
accurately in a realistic environment, a vehicle must be able to estimate its own and other agents’ and humans’
positions without the use of external tools'*>. Furthermore, in a real-world setting, MAS requires strategies to

deal with uncertainty in their own positions as well as the positions and potential actions of other agents'®.

Uncertainty assessment (UA). In a complex traffic environment, situation assessment is essential for a good
vehicle safety method'*%. An illustration of the contemporary methods of ADAS shows that: i) the human-driv-
ing procedure involves observation, driver intention, and driving action submodules; and ii) the ADAS proce-
dure contains detection and estimating, threat-assessment, decision-making, and instinct functions'*. Indeed,
ADAS operations are intended to be an idea just like the human-driving manner, and significant progress has
been achieved in broadening the variety and difficulty of situations handled today. In the presence of several
vehicles, a key theoretical difficulty remains how to correctly discern a safe driving behavior from a hazardous
one, highlighting the importance of UA in AV systems'®*.
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Threat assessment strategies (TAS).  As vehicles become more automated, they must be able to analyze risks and
evaluate situations in real time. Driver-less vehicles in this scenario should be able to assess risks in a dynamic
environment in order to make informed decisions and adjust their driving behavior accordingly'**. To avoid
crashes, we must use a risk estimator that takes into account risk indicators such as (1) the driver’s state, (2) the
conduct of other vehicles, and (3) the weather circumstances'®!. The collision avoidance (CA) system is one of
the most important components of ADAS. Threat assessment, path planning, and TAS are commonly included
in a suitable CA architecture. Using a combination of these methodologies, there are numerous approaches to
construct exact CA architecture'?.

Decision making. The current autonomous driving system is prone to rear-end collisions, and it is a typical
cause of MVCs. An optimum decision-making strategy is needed to prevent this type of collision. Authors of'®,
examine fleet management issues in single and multiplayer transportation networks. In the article'’, authors
focused on their annual study of recent trends in AV's driving decision-making planning. This review discussed
some of the latest findings related to various areas of AVs decision-making and planning in Table 7. A valuable
review of the decision-making and control systems of AV is available'*!.

Using a rigorous mathematical framework, authors'*? formulate and discuss the optimization algorithm for
the solution and examine the main details of the implementation of the multi-vehicle motion planning problem.
In the article!?*, the authors propose a new way of thinking in which agents learn collision as a single agent and
then avoid multiple collisions by reversing the trained policy. Major research using quadratic mixed-integer
programming (MIQP) has been conducted'*, with others implementing B-splines'*, polynomials'#, elastic
bands'*, and potential fields'¥’, in route planning strategies'*®. Contemporary research takes into account the
problem of route planning for a single vehicle when multiple vehicles are present in a traffic environment. The
following subsections are the discussion about the decision-making aspects of multiple participants’ environ-
ments in AVs.

Cooperative motion planning (CMP). CMP for automated cooperative collision avoidance in a multiple-vehicle
setting is a possible future solution to improve traffic safety. This method necessitates a real-time motion ana-
lyzer that calculates several cognitive vehicles’ cooperative moves. Path planning is a computationally demand-
ing operation, the planner’s computing time must be balanced against the solution’s efficiency’*®. Automatic
involvement of this support system in dangerous scenarios involving many vehicle accidents. Human drivers
have a long response time and few opportunities to organize their actions with many other drivers, they are fre-
quently unable to initiate the right actions'*’. A fundamental requirement for the designed method is planning
cooperative moves that avoid or lessen accidents.

Cooperation and interaction (CI). Cooperative MAS are processes where several agents work together to solve
problems or maximize utility through the interactions between the agents. The complexity of a multi-agent
issue can rapidly increase as the number of agents or their behavioral sophistication increases. Due to the dif-
ficulty in programming solutions to MAS problems, machine learning approaches to facilitate the search and
optimization process are gaining popularity. Typical solutions'* for dealing with those specific maneuvers are
rule-based methods that use some notion of time-to-collision'* to ensure that they are only executed if there is
more time in the worst-case scenario. Due to the lack of explanation of the situation, these options led to overly
cautious behavior. It was suggested that machine learning methods, such as partially observable Markov deci-
sion processes or deep learning techniques, be used to infer the intentions of other drivers'®. However, training

Features aspects
Refs. | CMP |CI CDM |FM |ABD |TC |LLC |SVCA | MVCA | Pros Cons
139 v v v v v v Framework for multiple players. A computational technique.
140 v v v |V v Behavior-aware planning. &Zﬁ;‘}jﬁgﬂ;ﬁ;ﬂiﬁ?ws and did not attempt to
19 v v v v v A Generic Mixed-Integer Formulation. | Not considering the multi-agent cases.
150 v v v v v v Cooperative conflict resolution. Computational complexity is high.
151 v v v v v v Cooperative trajectory planning for MV. | Arbitrary road geometry.
142 v v v v v v Motion planning for multiple vehicles. Exclusively by preplanning step.
194 v v v v o v Tracking and decision-making. Particularly the implementation of stochastic policy.
152 v v v v v | v Review on motion planning. Highway geometric planning.
155 v v v v v v v Decision-making in multi-agent. Lead extreme time consumption.
193 v v v v v v v Decision-making highly AVs. May need more research.

Table 7. Various areas of autonomous vehicle decision-making and planning focused on MVCCA in AVs.
CMP Cooperative motion planning, CI Cooperation and interaction, CDM Collective decision making,

FM Fleet management, ABD Autonomous braking decision, TC Trajectory coordination, LLC Longitudinal
and lateral constraints, SVCA Single vehicle collision avoidance, MVCCA Multiple vehicle cooperation and

collision avoidance.
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machine learning algorithms of this type usually necessitates simulated environments, behavioral simulation of
other drivers is crucial'®.

Collective decision-making (CDM). Various CDM procedures have been created in MAS research to obtain
consensus over the agents’ collected preferences. In automotive applications, voting processes have been used to
establish agreements in car-sharing'*’, platooning, and leader election in decentralized intersection control''.
It is able to brake properly, not like the driver’s late or poor reply to risk conditions, reducing the vehicle’s speed
and the severity of the crash. As a result, designing accurate and efficient low-level automated braking control
methods or high-level control depending on coordinated techniques is a huge technical issue. Conventional
control techniques, like constant time headway (CTH), constant spacing (CS) policy, and sliding mode control
(SMC)™, have a limited ability to adapt to changing driving environments in reliable and realistic decisions
when CAVs coexist with traditional driver-controlled vehicles'*.

Autonomous braking decision (ABD). In accidents, autonomous braking via accurate vehicle decision-mak-
ing is crucial, especially in the initial phases of AVs technology'*'. ABD is completely dependent on the auto-
mated braking function (ABF), which is one of the AVs safety cores technologies'*!. It can successfully brake,
as opposed to the driver’s reaction to dangerous situations, which is either too late or inadequate, reducing the
vehicle’s speed and the accident’s repercussions. The intelligent control system, assisted by the present advance-
ment of Al, makes decisions based on the present environment and continuously learns and adapts to it'*%

Trajectory coordination (TC).  One of the concerns in autonomous multi-robot systems is how to avoid crashes
between separate robots. Finding a coordinated trajectory from beginning to goal for all robots and then allow-
ing the robots to follow, which was TC, is one method to solve this challenge (TC)***. Classical prioritized plan-
ning, in which robots plan sequentially one after the other, is a frequently used practical method for discover-
ing such coordinated trajectories’®*. This method has been demonstrated to be effective in practice, but it is
unfinished, and it has not yet been properly assessed under what conditions the method is certain to succeed.
Furthermore, prioritized planning is a centralized algorithm, it is unsuited for decentralized multi-robot systems
and the avoidance of chain collisions'™*.

Longitudinal and lateral constrains (LLC). In collision avoidance decision-making, optimization methods
simultaneously defeat decentralization effects'*2. They use longitudinal and lateral constraints (LLC) to optimize
a cost function concerning a collection of states and the input'®. Several real-time motion planning issues are
non-convex, optimization problems may become stuck in local minima and become computationally inefficient.
Optimization issues can become stuck in the local bare minimum and inefficient to solve many motion planning
problems that are non-convex. Deploying the optimal collision avoidance decision-making approach in both
single and multiple vehicle collisions is a system need!**.

Vehicle control for MVCCA in AVs.  According to the proposed taxonomy, motion planning, decision-
making, and vehicle control are critical for multi-agents to navigate in their environment. In this section, we
review a set of the most relevant review articles and journals from the perspective of both single and multiple
automated vehicle traffic environments. We evaluate the main features as well as their decision-making limita-
tions in additional review papers in Table 8. In the coming subsections, we discussed some details of every aspect
of our taxonomy.

In order to take into account the prevention of collisions and the mitigation of their impacts in a multi-vehicle
collision situation, it is only appropriate to take into account a longitudinally coupled structure evolving of nearly

Features Aspects
Refs. OA GM KM MD RLBC |CC NC SVCA |MVCA | Pros Cons
199 v v v v v v v A nonlinear vehicle models. Focused only on modeling.
167 v v v v v Vehicle control DL methods. Deep learning methods only.
198 v v v v v Reviewed control techniques. Path tracking concepts.
2 v v v v v Trajectory motion controller. Verified only in simulation (Carsim).
163 v v v Cooperative navigation algorithm. Not guaranteed to deadlock avoidance.
160 v v ' v v v Cooperative approach for multi-agent. Strategies verified only in simulation.
tel v v v v v Investigate the trajectory modeling. Multiple vehicles are not considered.
165 v v v v v v Computational techniques. Intermodal fleet planning.
16z v v v v v v Test and compare decision and control. | Simulate interactive driver behavior.
166 v v v v Vision-based DL and RL methods. The perception input was static.

Table 8. According to latest works the major features of vehicle control for MVCCA in AVs. OA Obstacle
avoidance, GM Geometric model, KM Kinematic model, DM Dynamic model, RLBC RL based control, CC

Cooperative control, NC Non-cooperative control, SVCA Single vehicle collision avoidance, MVCA Multiple
vehicle collision avoidance.
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followed vehicles. Coupled refers to two adjacent agents in the same lane if such criteria are met jointly by their
speed and distance'*. Authors of the article!**, examined the existing controller system in a mixed traffic system
and concluded that the human driver car should be accurately modeled as an essential agent in shared drivers’
vehicle control systems in terms of cognitive processes, control mechanisms, and decision-making processes.
In this context, the swarm intelligence algorithms are recently getting popularity to solve this complex problem
and by this method, numerous types of research have been conducted to optimize the driving decision policies
to get the optimum outcomes'”’. Considering multiple agent traffic patterns, in paper'*®, authors reviewed and
demonstrated an architecture for IVDC (integrated vehicle dynamics control) for a quicker and more versatile
design to help car manufacturers and suppliers.

Obstacle avoidance (OA). The most difficult task in autonomous driving systems is avoiding both static and
moving obstacles, which is still hampered by optimal policy procedures'*. The problems arise from an inte-
grated process of detecting and interpreting the surroundings and impediments, as well as the production of
appropriate behaviors'®. As a result, having a superior control strategy that can drive in an urban setting without
colliding with other vehicles and objects is desirable'®'. The majority of current research does not concentrate on
the sub-task of obstacle avoidance (OA) in specific driving scenarios. However, on a normal road, other vehicles
or obstructions can have a significant impact on the car, therefore OA is a problem that AVs must overcome.
Cars can collect data and route information, such as road conditions and location estimations of static and

dynamic objects, and use it to forecast actions taken by other vehicles and infrastructure in real-time'®>.

Geometric model (GM). The recognition of moving objects is frequently required in the first step of computer
vision applications'®. Background subtraction is used to segregate the foreground from the background. How-
ever, the main objective is to use background removal techniques in research in real-world applications such as
traffic surveillance'®’. However, a review of the literature reveals that there is frequently a detachment between
current approaches utilized in real-world applications and current techniques in basic research. Furthermore,
the videos assessed in substantial-level datasets are not comprehensive, as they only reflect a portion of the
full range of issues encountered in real-world applications'®*. For example, for image data synthesis, a visual
structure is applied to produce an estimated geometric representation of an object, whether the image input is
static. The second example enables the creation of an image-based human model that may be utilized for optical
motion capture'®.

Kinematic model (KM). To detect unanticipated variations in participant and ego behavior, a kinematic frame-
work based on the physical phenomena of kinematics is used'*®. The KM is also used to detect unexpected
deviations by leveraging information from the leader vehicle, which is directly conveyed and monitored by
the leader’s nearby cars and supporting infrastructure. The KM is reliable, but not optimal, in particular in the
MVCCA aspect'®.

Dynamic model (DM). The majority of technical obstacles arise from the unpredictable environment in which
AVs operate, such as road and weather conditions, perceptual and sensory input data mistakes, and ambiguity
in pedestrian and agent vehicle behavior”. A robust AV control algorithm should account for many sources of
uncertainty and generate measurable safe control rules. Furthermore, algorithms that follow precise security
measures can aid legislators in handling AV-related legislation difficulties, such as insurance policies, and ulti-
mately persuade the public to accept AVs on a large scale'®.

RL based control.  The reinforcement learning (RL)-based automated decision-making strategies function rela-
tively well enough in the autonomous driving system’s ongoing learning and feedback feature. Researchers have
fantastic solutions for enhanced autonomous decision-making and control for AVs. In the article!®®, authors pro-
pose a particular precise deep Q-network-based automatic braking system to avoid vehicle-pedestrian collisions
(DQN). Subsequently, in the article'®® authors created a cooperative adaptive cruise control (CACC) automobile
controller based on RL. Recently, the authors, in'®, proposed a framework for CACC systems based on super-
vised reinforcement learning (SRL). However, authors in'®® proposed a considerable method to overcome the
coordination problem in autonomous driving using multi-agent reinforcement learning (MARL).

Cooperative control (CC). The majority of studies on multi-AV control fall under cooperative coordination'.
In other words, AVs are expected to connect for global traffic information and optimize a common goal of
improving traffic flow. In multi-robotic applications, cooperative control has received a lot of attention'®’. For a
group of robots with a centralized aim to achieve a task collectively, swarm intelligence, formation control, and
consensus control have all been widely employed, as has multi-AV control'®. A centralized controller or plan-
ner coordinates the movement of vehicles in cooperative multiple-vehicle systems to achieve a shared goal, like
collectively stabilizing traffic flow and smoothing traffic jams, optimizing driving comfort, or improving fuel
efficiency’®.

Non-cooperative control (Non-CC). A MAS is a collection of vehicles that interact in a shared environment that
they detect with sensors and act on with actuators!2. Distributed control, robotic teams, resource management,
data mining, collaborative decision support systems, and other disciplines use multi-agent systems'®®. They may
emerge as the most natural way of looking at systems or provide an alternative viewpoint on systems previously
thought to be centralized. Robotics, telecommunications, distributed control, and economics are just a few fields
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where multi-agent networks are finding use. Due to their complexity, many tasks that arise in these fields are
challenging to solve using pre-programmed agent actions. However, the agents must find a solution indepen-
dently. A substantial portion of multi-agent learning research focuses on reinforcement learning techniques'®®.

Conceptual framework of MVCCA

Proposed framework. According to the existing research works, we have developed our taxonomy to solve
the MVCC problem. Moreover, illustration of current automated vehicles (AVs) research work has shown that
multiple factors and indicators causing vehicle crashes are not thoroughly defined, categorized, or modeled in an
embracing context that can be incorporated into applications. Research on multiple agents in AVs is more com-
plex and undiscovered until now. We reviewed contemporary research in detail and created a novel approach to
collision avoidance strategies in AVs. We proposed an Al-enabled conceptual framework that has five phases.
Due to focusing on the decision-making phase, we also proposed a reinforcement learning-based model to make
a perfect driving decision for avoiding chain collisions or mitigating the chain collision severity. We define a
specific threat assessment phase containing three distinct levels of risk. The first level is the regular driving situ-
ation, the second level is a bit careful driving condition where the ego vehicle will predict only one participant
vehicle near its minimum distance. Finally, when the ego vehicle detects more than one participant in the range
of the standard distance, it will make an extra careful driving situation. We need to train our model using a trial
and error process to adopt our kinematic constraints'®®. Figure 7 shows the proposed conceptual framework for
MVCCA in AVs, and in the following sections, we will discuss briefly all five phases.

Perception phase. From the review works in section 4, due to the mitigation of multiple vehicle collisions, the
perception of a multiple-agent environment can obviously be more sophisticated than regular driving. Utilizing
the segmentation and detection algorithms, we divided the risk prediction phase into two distinct stages, where
our risk index for multiple vehicle collisions is normally zero when only one road user is detected. It will become
high when it detects two or n number of partners surrounding itself. The risk index will reach a high level when
the first crash occurs for any unpredictable reason; in this critical situation, we suggest the vision-based super-
vised learning perception methods that are now very popular in the AT community. In the proposed framework,
a local processing scheme could be suggested to achieve highly accurate localization. Map-supported localiza-
tion algorithms are used to conduct the local features. In particular, we defined the simulations by considering
the prominent method as simultaneous localization and mapping (SLAM). The aim of framing SLAMi as a
Bayesian filtering problem is to estimate the joint posterior probability,

P(xy ik, blsy k,q1 i k—1) (1)

where b is the map and x; : k = xj,. .. x the robot trajectory given its sensor measurement s; : t = sj,...$;
and the device inputs g : k — 1 = ql, ... q¢k — 1). In this group, Kalman filter is a common method. The RBPF
shows the trajectory of the vehicle and the corresponding map and factories, the probabilities are as follows:

P(x1 : k, b sy : k,ql :k—1)=P@® |x7 : k,s1 : k).P(x1 : k|51 : k,ql tk—1) (2)
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Figure 7. Proposed Al-enabled conceptual framework for MVCCA in AVs.
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Here, the posterior probability is calculated by a particle filter. P(x; : k, b|s; : k,q1 : k — 1) in which the previ-
ous distribution is derived from the odometry of participant vehicles and refined with sensor interpretations in
a multi-agent dynamic environment.

Communication and coordination phase. This is the second phase of our conceptual framework for MVCCA
in AVs. In the multiple-agent traffic environment, platooning, lane merging, and truck overtaking are extreme
cooperative coordination situations with patterns of road users. In some critical conditions such as after the
occurrence of the 1st crash, despite the high risk of 2nd, 3rd, or multiple crashes, there are situations that are not
clearly or unproductively controlled and where cooperation is required to avoid chain collisions. Therefore, as
far as the communication medium is concerned, two high standards would be set with 5G, a promising choice
for the system. If a unified level of preparation is preferred, C-V2X has to be chosen for backend communica-
tion. IEEE802.11p would also be sufficient for decentralized planning with coordination. A combination of both
methods is, of course, possible again, whereby routing information is obtained from a central planning level via
¢-V2X, and maneuver planning could be organized via V2X locally.

Threat assessment phase. Our proposed conceptual threat assessment phase will estimate the situation’s criti-
cality and aid in ensuring safety in the automated traffic system. Two critical metrics have been suggested (see
Fig. 7) for threat assessment, namely single collision, and multiple collision, and the selection process of the
critical metric must be good for specific driving actions in diverse driving environments. The previous section
"Challenges and issues of MVCCA" provides a comparison of vital indicators, with an emphasis on real-time
automated driving strategies. According to that comparison, we would like to suggest the RL-based techniques
that are required by automated systems operating in complex, dynamic, and interactive environments that gen-
eralize the interactions with multiple traffic participants to unforeseen circumstances and timely rationales. We
presented an in-depth framework in our previous work in'®, where we utilized the critical condition prediction
technique depending on a recurrent neural network-based technique.

Decision-making and vehicle control phase. In our proposed conceptual framework, the last two phases namely
decision-making and vehicle control are the most concentrated phases. From the previous sections, we can
say that the AVs’ decision-making process must deal with a diverse set of situations, communicate with other
traffic participants, and should be able to take into account a set of sensor information from the environment
as well as the uncertainty. It is impossible to manually predict all circumstances that may arise and code a suit-
able behavior. Therefore, considering methods focused on machine learning to train a decision-making agent is
convincing. A desired feature of such an agent is that it does not only deliver a recommended decision but also
measures the uncertainty of the decision in question. Deep neural networks (DNNs) are a common artificial
intelligence technique for learning after large quantities of data with little human input or without any human
interactions (i.e., RL methods). The developed agents are learned and can operate in unpredictable, broad, and
stochastic contexts, as revised. The agent has been particularly trained by the effective way of a combination of
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL)'7°. We proposed a multi-agent DRL
based on an ideal driving strategy for avoidance or mitigating multiple collisions. The following are the details of
the proposed MVCCA strategies decision-making and vehicle control mechanism.

RL Method: An RL method may learn how an agent should behave in order to maximize the predicted
cumulative rewards by interacting with the environment for a specific activation in a specific state. Existing RL
algorithms are categorized into two key types: value-based and policy-based methods. Value-based RL methods,
use neural networks to solve value functions. The main advantage of policy-based RL methods is in the phase of
optimization, which can directly improve policy optimization while remaining stable over time during approxi-
mation. Regarding our objectives which we defined in previous sections, here, we proposed a policy-based RL
approach to address multiple collision avoidance issues. The general form of loss function for RL policy updating,
in a stochastic RL where E; is the expectation policy 7y, and at time step ¢, By is an estimator of the function and
the mathematical expression is,

20) = B [logmo (erlsi) B (3)

Although performing several optimization steps on this, £ (0) (loss function) can seem appealing and straight-
forward, all the factors may pose problems, such as the prevalence of sample inefficiency, the exploration and
exploitation trade-off, and the learned policy carriages unwanted high variance. In practice, this frequently leads
to major policy updates, and it will be harmful at a future time step of a training episode because it can change
the distribution of observation and reward. In contrast, it is important to use an actor-critical mechanism for
modifying a policy that can combine the advantages of conventional value-based and policy-based approaches
in the loss function . (0) Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO)
are examples of policy based algorithms. For simpler implementation, PPO is more convenient than others
because of its less computational cost. PPO offers paired substitute loss function, a feature that can be combined
as a policy substitute and an error term of value-function, and can be expressed as follows:

$§0a1+UF+P ®) = goul(g) K f[tUF ) + KzP(Tl'Q | (pt))} 4)

where, the palred substitute goal is &} godl (0), K1, K, are coefficients, Z T is the value function’s squared error
loss (Ug (pt) — Ut )2, and the loss of entropy denoted by P. Spec1ﬁcally, the paired substitute goal is 5" (9)

takes the form as,
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2 0) = &, [min(r, ©)Br, goal (r(6)),1 — £,1 + £)B; (5)

where, ¢ is hyperparameter,r; (6) is probability ratio of r;(0) = e (at¢|st) /g, (2t |s¢). The probability ratio r is the
goal objective whose paringisatl — € or1 + ¢, and it depends on whether it is a positive advantage or a negative
advantage, forming the paired goal target as well as the ultimate goal after multiplying B, is the approximate
advantage. In contrast to the unpaired version, also known as the conservative policy iteration algorithm’s loss
function, the ultimate value of £f°* (9) takes the minimized value of this paired goal objective and unpaired
goal objective r, (), essentially avoiding a broad policy update.

The PPO algorithm typically utilizes a stable length-N trajectory segment that runs the N-time steps of policy
in each iteration, and each M parallel actor collects data at each time step. It uses a simplified version of the
generalized gain estimate, which looks like this:

B =8+ (yWbrs1 + oo + (p AN (GN1) (6)

where the discount factorisy andy and 8; = r: + y V(si+1 — V(s¢). Then the loss £ (0)) is created by PPO
and SGD is the optimizer with mini-batch , for epochs K on these time steps MN of data.

Proposed control learning model.  The decision-making model for vehicle control in the multiple agent
traffic environment is defined as a hierarchical DRL method that relies on three DRL techniques. The best driv-
ing policy or set of actions will be determined based on the DRL technique with the highest Q value. Three DRL
techniques will be used to figure out which one has the highest Q value. The results of the DRL control actions
can be optimized using compound functions by comparing the sets of actions and value functions based on the
most recent states of their respective objective functions. When all the Q values from the three different DRL
schemes are compared to one another, high-performing value function targets are identified, and a new set of
value functions that are based on all the learning control functions is generated. If a high value was chosen,
this would lead to an increase in the value of objective functions that involve preference comparisons, which in
turn would lead to an improvement in the control objective function achieved during the selection process. The
algorithm flowchart for our suggested approach to the decision-making process for vehicle control is depicted
in Fig. 8.

Proposed network settings. According to the proposed Al-enable conceptual framework presented in
Fig. 7 for MVCCA, the next step is to define the prospective network settings of the suggested training model.
For the decision-making and vehicle control processes, this network architecture has two basic elements: a neu-
ral network setting and a simulation environment. In particular, in dealing with the neighboring partners in
order to achieve a high-level policy for decision-making in MVCCA, three RL algorithms would be used to
compare the training performance. The suggested simulator will be Unity3D Game Engine and a multi-agent
environment will be created to collaborate with a partner training agent in a high-fidelity traffic environment
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Figure 8. Proposed decision-making model for avoid MVCs.
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suite to deploy the simulation. The multiple vehicles in the context of a multi-agent traffic environment that
includes various road networks and various traffic task setups will be executed. Figure 9 represents the learning
model of the proposed training phase of the system.

In the training period, the ego vehicle first obtains feedback from the environment by way of our control
rewards for the safety, smooth, and efficient driving actions of the ego vehicle and the state of its surrounding
partner vehicles, and these environments are transmitted through the network. Next, the self-wheel determined
the actions longitudinal, and lateral based on a defined policy network and subsequently returned the action to
the simulation environment to model the movement and measure the corresponding reward in the next step. The
award function integrates the key objectives of the proposed architecture, which are to develop a safe, efficient,
and comfort-based automated collision avoidance strategy. In order to achieve the best results, the following
factors must be prioritized: (1) to comfort: assessment of jerk (depends on its lateral and longitudinal move-
ment), (2) to efficiency: estimation of total time and distance between participants, and (3) to safety: assessment
of collision and near-collision risk.

Assumption of computational complexity of proposed model. The conceptual framework has a
particular proposed training model, and to get a proper assumption about the model complexity or the com-
putational cost of this model, we can follow the prominent model complexity determining notation as O(¥),
where W = OH + OMY + HI + MYI
ie.

O(¥) = O(GH + GMY + HI + MYI) (7)

G is the measurement of output units in number, H is the total number of used hidden units, M is the total
number of executed memory cell slabs, Y is the magnitude of deployed memory cell slabs, and I is the maximum
count of implemented forward-connected memory cells.

In regard to the structure that we have proposed for the training model, it is possible to state that, in general,
the methods (RL algorithms) are local in both time and space. This indicates that the values of the activation
that were obtained through the sequence treating stage are not required to be saved or maintained in any way.
In addition, the volume of storage space it needs does not change regardless of the length of the sequence that is
fed into it. In fact, the primary focus of the simulations was to find ways to keep multiple autonomous vehicles
from colliding in a chain reaction.

So, it would be useful if we tested a number of popular RL methods to see how they fared with our particular
challenge. It is well known that this type of algorithm typically learns both a Q-function and a policy simultane-
ously, so we can employ the off-policy methods in which the actor and critic networks are both subject to “soft
updates,” also known as “conservative policy iterations.” The other possibility is to employ an off-policy approach
that utilizes off-policy updates in tandem with a stable stochastic actor-critic scheme to provide similar support
for our training. Since the policy can learn multiple ways of optimal behavior, we will attempt to use it to prevent
chain collisions. Lastly, it would be better for the cost-effectiveness of the model if we looked into any of the
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Figure 9. Proposed network settings of the training process.
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on-policy updating methods. In these methods, the agent interacts directly with the environment, learns, and
then throws away a batch of experiences after a gradient update.

Open research issues
In the realm of automated driving, we have identified several critical areas for open challenges. We believe that
artificial intelligence will play a key role in overcoming these challenges:

1. The proposed framework states that the combination of diverse sensor data becomes essential for a promis-
ing sensing system. It is worth mentioning that important advances in object recognition and detection
have been reported'”!. However, the existing systems are intended to calculate 2D or 3D bounding boxes
for a few trained object classes. As a result, it is expected that future research will focus on bridging the gap
between 2D image data and LiDAR-based 3D data, as well as enhancing identified details to allow more
objects to be perceived and tracked in real-time.

2. Real-time needs must be addressed to process massive amounts of data acquired from the vehicle’s sensors
and update Al method parameters across higher-speed communication connections!’?. The progress in
semiconductor chips for self-driving vehicles and the growth of 5G networks can overcome these limita-
tions.

3. The collision risk evaluation system must fundamentally forecast the vehicle’s gesture throughout a time
horizon to include short to medium'”>. As noted by various sources, the key focus of deep learning for
AVs is perception and the learning process'’*. However, Al is projected to play a considerable role in local
trajectory assessment and planning in the coming years.

4. Since the traffic environment is changing, a vehicle might potentially exceed ordinary road restrictions
in an emergency or on an expressway. It is therefore vital to thoroughly investigate how to evaluate the
content of this uncertain situation. After all, the multi-modalities (mixed traffic systems) and multiple
actors dealing with diverse sub-problems, as described previously in section 2, are extremely challenging,
and the optimal solution has yet to be revealed. This paper shows that strategic, tactical, and operational
collision prevention problems have deeply interacted with and should be handled in an integrated way.

5. Itis challenging to incorporate non-linear vehicle dynamics in real-time in high-speed collision situations.
More complex circumstances can also be employed for the future performance of collision avoidance sys-
tems, like avoiding unexpected slowdowns and abrupt lane changes. The collision evasion system protects
the provision of a broad collision scenario that shows the best research problem for the future.

6. Typically, the trained conventional machine learning model cannot capture all critical traffic scenarios.
Enormous research uses various data sets, and the diversity of data sets is frequently not assured during
data generation. The training package is somewhat comparable and is rarer during training in rare driving
circumstances, where the model will most definitely fail. In order to address this issue, future research
should focus on the implementation of reinforcement learning approaches in automated driving.

7. Most driving scenarios are classically believed to be resolvable. The other unsolved solutions are corner
cases that need a superhuman driver’s judgement and understanding. Deep learning algorithms’ gen-
eralization capacities should be strengthened to tackle corner cases. In learning dangerous scenarios,
generalization in a learning model is crucial, partly because the training data for such corner instances are
rare. This also means the conception of one-shoot and low-shoot learning systems with fewer examples of
instruction.

8. It is worth noting that the ability of AI mechanisms to adapt based on experiences has already been
demonstrated to understand the vehicles’ control methods parameters, which is a glimmer of optimism.
Therefore, an improved approximation of the underlying precise system model shows future research
demands of considerable research.

9. In security-critical schemes, the application of protocols depends on learning-based AI techniques cur-
rently being debated, bringing closer relationships between computer intelligence and the functional secu-
rity sectors. The machine learning package is not covered by existing safety standards, such as 1SO26262.
Despite the introduction of new data-driven layout methods, there are still questions about the stability,
explainability, and classification resilience of neural networks and deep neural networks.

10. Many organizations and companies strive for automated driving to find the most effective way of mov-
ing from the tentative experimental phase to the commercial phase. Artificial intelligence and machine
learning are common methods, and large amounts of data are needed to research using these methods.
However, this is dubious as automobile researchers cannot share their resources because they believe their
competitive gain would be diminished. In order to solve this issue, core attention is needed to develop
policies that will benefit all automated driving research groups equally and enable them to share their
progress easily.

Conclusion and remarks

This manuscript reviewed the most recent advancements in the research and enrichment of AV's systems toward
the avoidance of MVCs. After evaluating the rising issues broadly related to dynamic object detection for colli-
sion risk prediction and vehicle control for the avoidance of secondary crashes, this article offered an extensive
review of the state-of-the-art CA approaches for collision-free driving strategy in AD. Also, the most relevant
single-vehicle and multiple-vehicle environments and the most severe traffic conditions were detailed, along with
the necessary avoidance techniques. Regarding these methods, the most prevalent and most recent architectures
(for perception, communications, risk prediction, decision-making, and vehicle control), with a particular focus
on the various architectures of the subsystems and the scant academic improvements in terms of performance

Scientific Reports | (2023) 13:603 | https://doi.org/10.1038/s41598-022-27026-9 nature portfolio



www.nature.com/scientificreports/

metrics, have proposed AVs systems. Apart from that, to bridge the gaps among contemporary probes, this
paper offered an Al-enabled conceptual framework and a decision-making model for MVCCA. Finally, the most
pressing unresolved issues in the current MVCCA were listed, outlining a concise strategy for AVs developers
to create affordable multi-agent automated driving solutions.

The main concern of this paper is chain-collision avoidance, and potential work reveals that it heavily relies on
foolproof perception and a critical risk prediction system. It will require extensive research and development to
improve identified details so that more objects can be perceived and tracked in real-time. We studied how covert
hidden nodes affect relay connections. Investigating platoon model characteristics, we see that they enhance link
operation by diminishing data collisions. The platoon model alleviates the data congestion and delays associated
with vehicular networks by managing the communications of multiple vehicles. In a critical driving conditions
on an expressway, a vehicle may exceed road restrictions due to the massive changing trend of traffic systems.
But this uncertain situation must be thoroughly evaluated. Mixed traffic systems as well as multiple actors deal-
ing with diverse sub-problems are challenging, and the optimal solution is still unknown. However, this paper
shows how strategic, tactical, and operational collision prevention problems interact and should be handled
together. Non-linear vehicle dynamics are difficult to model in high-speed collision situations. Future research
on collision avoidance systems can handle unexpected slowdowns and abrupt lane changes.

The massive engagement of modern Al in diverse domains of AVs encourages us to rethink data-driven
algorithms for decision-making and control methods instead of conventional methods. In the classical view,
most potential problems that may arise while driving can be solved. It would take a driver with superhuman
judgment and comprehension to handle the remaining edge cases, which is why they remain unsolved. To better
handle special cases, the generalization capabilities of deep learning algorithms should be improved. Learning
potentially harmful scenarios requires a learning model that can generalize well, in part because data for extreme
outliers is scarce in training. This entails the development of low-shoot and one-shoot learning systems that
provide fewer examples of instruction.

It is hoped that this investigation will provide insight into how to ensure that the different modules of MVCCA
cooperate effectively in AVs to achieve the desired driving strategy. Also, researchers and developers will be able
to use the article as a reference as they try to improve threat assessment and the way fully automated vehicles
are controlled.

Data availability
We do not have any data to show in this study.

Appendix
Table 9 shows the acronyms used in this manuscript for machine learning and automated multiple vehicle col-
lisions related terms.

ML related acronyms Autonomous MVC related acronyms

ML Machine learning AVs Automated vehicles

A2C Advantage actor-critic AD Automated driving

A3C Asynchronous A2C MVCCA | Multiple vehicle cooperation & collision avoidance
MSE Mean square error SAE Society of Automotive Engineers
BC Behavior cloning AVAS Advanced driver assistance systems
DDPG Deep DPG HVs Human driven vehicles

DNN Deep neural network PID Proportional integral derivative
DP Dynamic programming MPC Model predictive control

DPG Deterministic PG MAS Multi-agent systems

DQN Deep Q-network CvV Conventional vehicle

DRQN Deep recurrent Q-network AE Auto encoder

HRL Hierarchical RL TC Time to collision

MDP Markov decision process svC Single vehicle collision

POMDP | Partial MDP MVCs Multiple Vehicle Collisions

D Temporal difference CCA Car accident avoidance

PPO Proximal policy approximation CM Collision mitigation

TRPO Trust Region Policy Optimization | IMU Inertial measurement unit

MARL Multi agent RL VANET | Vehicular Ad-hoc network

GNNs Graph neural networks TAS Threat assessment systems

MIQP Mixed-integer quadratic program | CA Collision avoidance

LSTM Long-short term memory LC Lane change

ReLU Rectified linear unit CAV Connected and automated driving

Table 9. Machine learning and automated MVCs related acronyms.
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