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Abstract The aim of this paper is to highlight the output of the investigation on the MHD and

radiative flow and thermal characteristics of a non-Newtonian Reiner–Philippoff nanofluid with

Brownian and thermophoresis diffusion effects. The model studied is embedded in the Buongiorno

theory. This unique model is designed to observe both shear thickening and shear thinning proper-

ties on that particular fluid with embedded Brownian and thermophoresis diffusion implications.

The proposed model consists of continuity, momentum, energy, and concentration equations con-

structed using the theoretical assumptions and are reduced to a set of ordinary differential equa-

tions (ODEs) before solving it using the bvp4c function in MATLAB software. Two solutions

are observed, and their physical significance is justified using the temporal stability analysis. From

the standpoint of the Reiner–Philippoff fluid parameter, the skin friction coefficient as well as the

heat and mass transfer rates are at maximum for the shear-thickening fluid followed by the New-

tonian and shear-thinning fluids. The thermophoresis parameter is noticed to decline the heat

and mass transfer rate whereas the Brownian motion parameter boosts the mass transfer rate

but decreases the heat transfer rate.
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University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2022.12.056&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:iskandarwaini@utem.edu.my
https://doi.org/10.1016/j.aej.2022.12.056
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2022.12.056
http://creativecommons.org/licenses/by-nc-nd/4.0/


184 I. Waini et al.
1. Introduction

Nowadays, the study of nanofluid flow have received much
attention from researchers due to its significance in controlling

the flow behaviour, as well as the heat and the mass transfer
rate in industrial processes. It is important to note that Buon-
giorno [1] studied the convective transport in nanofluids

intending to understand the improvements in heat transfer that
were seen during convective circumstances. He downplayed
the importance of suspension, particle rotation, dispersion,
and turbulence as important factors in enhancing the heat

transfer. Buongiorno [1] put forth a brand-new model that is
based on the relative velocities of nanoparticles and the base
fluids. He concluded that in the absence of turbulent effects,

Brownian diffusion and thermophoresis predominate. Based
on these two effects, he came up with conservation equations.
This discovery was then become the main reference for many

researchers who intended to consider the combination of this
nanofluid model with various non-Newtonian fluids. To name
a few, Saleem et al. [2] and Zokri et al. [3,4] analysed the Jef-

frey nanofluid, Waqas et al. [5] and Mahat et al. [6] examined
the viscoelastic nanofluid, Shah et al. [7] with Casson nano-
fluid, and Tlili et al. [8] studied the Maxwell nanofluid flows.

Industrial and technological applications demand effective

working fluid in determining the optimum production. Con-
ventionally, pure water (Newtonian) as a cooling agent is used
in many processes but the use of the non-Newtonian type of

fluid becoming more relevant due to its effectiveness and appli-
cability. There are many types of non-Newtonian fluids avail-
able that present a special feature in their properties. Different

from the Newtonian type fluid whose strain is in line with
stress tensor, the non-Newtonian type is classified by the
behavior of either shear-thinning which present pseudo-

plasticity, or shear thickening describing the dilatant. The
shear-thickening fluid indicates the growth in viscosity propor-
tional to the shear rate, whereas the shear-thinning displays the
Newtonian fluid’s behavior in extreme values of shear rate.

Several fluid models that convey the shear thickening and thin-
ning behaviors have been mentioned in Deshpande et al. [9]
including the model of Reiner–Philippoff, Sisko, Powell–Eyr-

ing, Carreau–Yasuda as well as Carreau viscosity. Among
the models under the non-Newtonian group, the Reiner–
Philippoff model is more interesting to research since its exhi-

bits the behaviour of Newtonian fluid at zero or large value of
shear stress and behave as non-Newtonian behaviour on other
value. Owing to its big significance in engineering applications,
the investigation of the Reiner-Philippoff model obtained

attention from many researchers where the investigation cover
the analysis which the flow moving over different geometries as
well as the different effect on the flow field, see Refs. [10–20].

Moreover, other interesting works on the nanofluid flow incor-
porated with Reiner–Philippoff fluid model in the thin film
were considered by Ullah et al. [21], while Ahmad [22] and

Li et al. [23] considered the stretching surface.
Embedding thermal radiation to the flow offer more chal-

lenges and significant contribution since its presence affected

the heat transfer rate. We can find worth application of ther-
mal radiation in the field of solar technology, aeronautic
industry, and also spacecraft activities. The thermal radiation
was pioneered by Rosseland [24] and the ideas have been

widely extended by Ghosh and Mukhopadhyay [25], Yashkun
et al. [26], Agbaje et al. [27], and Muhammad et al. [28] in the
study of fluid flow covering the non-Newtonian and Newto-
nian categorized fluid with and without nanoparticles.

The effect of magnetic field or normally written as magne-
tohydrodynamics (MHD) is among the popular effect consid-
ered in fluid flow investigation due to its ability to upshot the

fluid characteristics. The presence of MHD launches the drag
Lorentz force which can delay the separation of boundary
layer. The analysis on the presence of MHD was emphasized

in a report by Rashidi et al. [29] where the MHD was applied
in energy generators and nuclear propulsion space vehicles.
Besides that, Sheikholeslami et al. [30] as well as Hussain
et al. [31] conducted the research on MHD flow under free

convection mode. On the other hand, Haq et al. [32] studied
the MHD flow by embedding the nanoparticles. Other papers
on MHD flow were reported by Khan et al. [33,34], Sriniva-

sulu and Goud [35], Khashi’ie et al. [36,37], Zhang et al.
[38], and Saranya and Al-Mdallal [39]. Additionally, the study
on convective heat transfer in MHD hybrid nanofluid flow

over different geometries has been reported by Ashwinkumar
et al. [40,41]. Meanwhile, the MHD and heat source effects
on parabolic flow over three different non-Newtonian fluids

were examined by Samrat et al. [42].
As a novelty, the study of the Reiner–Philippoff fluid model

incorporated with nanofluid is limited and offers some gaps to
be fulfilled. Hence, this study is aimed to extend the explo-

ration of the special characteristics of the Reiner–Philippoff
fluid embedding the Brownian and thermophoresis diffusion
with MHD circumstances and radiative heat transfer. The val-

idation procedures are performed by direct comparison with
the established models in the limiting case where the models
are identical. The inputs of the present computation establish

the dual similarity solutions and thus the stability analysis pro-
cedures are carried out to determine which solutions are stable.
The results of this present investigation can give insight into

the study of complex fluid which is normally found in many
manufacturing processing and also industrial applications.

2. Mathematical formulation

The steady-two-dimensional boundary layer flow of a Reiner–
Philippoff nanofluid past a shrinking surface is considered
under the assumption that the external pressure on the plate

is in the x-direction and contains nanoparticles in the base flu-
ids. The flow configuration is displayed in Fig. 1. Here,

uw xð Þ ¼ ax1=3 represents the surface velocity witha > 0. The
Fig. 1 Flow configuration.
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magnetic field B xð Þ ¼ B0x
�1=3 where B0 is constant magnetic

strength [16]. In addition, Brownian and thermophoresis diffu-
sion (DB and DT) effects are employed [21,22]. The radiative

heat flux is also considered with qr ¼ � 4r�=3k�ð Þ @T4=@y
� �

and T4 ffi 4T3
1T� 3T4

1 [24]. Here, k� and r� signify the mean

absorption and the Stefan-Boltzmann constants, respectively.

The model that represents the present problem was first under-
going the boundary layer approximations.

Therefore, the governing boundary layer equations are

[21,22]:
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subjected to the following boundary condition as once con-

sidered by [21,22,43,44]:

u ¼ euw xð Þ; v ¼ vw xð Þ; T ¼ Tw; C ¼ Cw at y ¼ 0;

u ! 0; T ! T1; C ! C1 as y ! 1 ð6Þ

with the reference shear stressss, the shear stresss, the zero-
shear dynamic viscosityl0, and the limiting dynamic viscosity
l1 [20]. Moreover, qCp is the heat capacity, d is the effective

heat capacity ratio, r is the electric conductivity, q is the fluid
density, and k is the thermal conductivity. It is assumed that at
the shrinking surface, the temperature T and the nanoparticle

volume fraction C take constant values Tw and Cw whereas the
ambient values of temperature T1 and the nanoparticle frac-
tion C1 are attained as y tends to infinity.

Consider the similarity variables [21,22,43,44]:
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with the stream functionw. Here:
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and:
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3
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am

p
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with m ¼ l1=q is the fluid kinematic viscosity. Meanwhile,

constant mass flux parameter is denoted byf 0ð Þ ¼ S. Here,
S ¼ 0 and S > 0 denote the impermeable and the suction cases.
Then, one obtains:

g ¼ f00
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subject to:

f 0ð Þ ¼ S; f0 0ð Þ ¼ e; h 0ð Þ ¼ 1; v 0ð Þ ¼ 1;

f0 gð Þ ! 0; h gð Þ ! 0; v gð Þ ! 0 as g ! 1 ð14Þ

with e ¼ 0 (static sheet), e > 0 (stretching sheet) and e < 0
(shrinking sheet). Moreover, the Prandtl numberPr, the Sch-

midt numberSc, the magnetic parameterM, the Reiner–Philip-
poff fluidk, the thermal radiationR, the Bingham numberc, the
Brownian motion parameterNb, and the thermophoresis

parameter Nt are defined as:
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The physical quantities are given as:

Shx ¼ xqm
DB Cw � C1ð Þ ; Nux ¼ xqw
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q u2w

ð16Þ
where qm (surface mass flux), qw (surface heat flux) and sw

(value of s on y ¼ 0) are:
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with Re�1=2
x Shx and NuxRe�1=2

x denote the local Sherwood

number and the local Nusselt number, respectively, and

CfRe1=2x indicates the skin friction coefficient where

Rex ¼ uw xð Þx=m signifies the local Reynolds number.

3. Stability analysis

The execution of the stability analysis is done in this section

[45,46]. Thus, the new variables are introduced [20]:
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with the dimensionless time variable,C. Here:



Table 1 Values of g 0ð Þ for c and k when S ¼ M ¼ 0 ande ¼ 1.

c k Present Result Sajid et al. [17]

0.1 0.1 �0.660275 �0.660273

0.5 �0.380604 �0.380604

1 �0.246415 �0.246415

0.1 0.3 �0.664498 �0.664497

0.5 �0.668486 �0.668484

0.7 �0.672277 �0.672282

1 �0.677648
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Employing the unsteady flow, one obtains:
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while Eqs. (1) and (2) remain unchanged. Thus:
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Then, the perturbation functions are introduced [46]:
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whereF g;Cð Þ,G g;Cð Þ,H g;Cð Þ, and J g;Cð Þ are arbitrary

functions and a denotes the eigenvalue. By settingC ¼ 0,
thenF g;Cð Þ ¼ F0 gð Þ,G g;Cð Þ ¼ G0 gð Þ,H g;Cð Þ ¼ H0 gð Þ,
andJ g;Cð Þ ¼ J0 gð Þ. Therefore:
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F0
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Here, to obtain a from Eqs. (30)-(33), F0
0 gð Þ ! 0 as g ! 1

in Eq. (34) is replaced by F00 0ð Þ ¼ 1 as employed in [47–49].

4. Results and discussion

Equations (10)-(13) with the corresponding initial and bound-

ary conditions (14) have been solved numerically using the
bvp4c scheme in the MATLAB platform [50]. The influences
of the non-dimensional governing parameters on the skin fric-

tion coefficientRe1=2x Cf, local Nusselt numberRe�1=2
x Nux, local

Sherwood numberRe�1=2
x Shx, velocity profilesf0 gð Þ, tempera-

ture profilesh gð Þ, and concentration profiles v gð Þ have been

established by assigning some numerical values to the nondi-
mensional parameters.

In order to check the accuracy and validity of the present

results, Table 1 displays the values of g 0ð Þ produced in this
study and those reported by Sajid et al. [17]. Further valida-

tions for the values of �h0 0ð Þ are shown in Table 2 where

the comparison is made between the present results with those
obtained by Waini et al. [51], Cortell [52], and Ferdows et al.
[53]. The generated results shown in Tables 1 and 2 revealed

a noteworthy agreement with previous findings hence con-
firmed the precision of mathematical formulation in the cur-
rent work. In addition, the newly computed results for the

values ofRe1=2x Cf,Re�1=2
x Nux, and Re�1=2

x Shx under various

physical parameters are given in Table 3.
The influence of Nb and Nt on the temperature and concen-

tration profiles are presented in Figs. 2-5. The upsurges of Nb
thickens the thermal boundary layer but the concentration
boundary layer decreases (see Figs. 2 and 4). These observa-
tions imply that the rising of Nb tends to increase the intensity

of the mass transfer rate but decreases the heat transfer rate.
Meanwhile, the impact of Nt is to increase both the thermal
and the concentration boundary layers (see Figs. 3 and 5)

which lead to the decrement of the heat and the mass transfer



Table 2 Values of �h0 0ð Þ for R and S whene ¼ k ¼ c ¼ 1,M ¼ Nb ¼ Nt ¼ 0, andPr ¼ 2.

R S Waini et al. [51] Cortell [52] Ferdows et al. [53] Present Result

0 0.5 1.230792 1.2307661 1.230952 1.230792

0 0.764357 0.7643554 0.764374 0.764357

�0.5 0.399100 0.3989462 0.398951 0.399100

1 0.5 0.632200 0.6322154 0.632199 0.632200

0 0.443323 0.4430879 0.443323 0.443323

�0.5 0.287485 0.2873762 0.287483 0.287484

Table 3 Values ofRe1=2x Cf,Re�1=2
x Nux, and Re�1=2

x Shx for various values of physical parameters whene ¼ �1,S ¼ 2:4,c ¼ 0:1,Pr ¼ 7,

andSc ¼ 5.

k M R Nb Nt Re1=2x Cf Re�1=2
x Nux Re�1=2

x Shx

0.5 0.01 5 0.1 0.1 1.172320 8.115112 6.308563

1 1.153161 8.054998 6.304251

1.5 1.127876 7.984054 6.299091

1.5 0 1.102980 7.946854 6.296085

0.015 1.138984 7.999908 6.300388

0.02 1.149432 8.014435 6.301586

0.01 3 1.127876 8.073701 5.683904

3.5 1.127876 8.066222 5.886497

4 1.127876 8.045975 6.050276

5 0.2 1.127876 7.372610 6.991041

0.3 1.127876 6.805216 7.219763

0.5 1.127876 5.791366 7.399564

0.1 0.2 1.127876 7.690126 5.079019

0.3 1.127876 7.410676 3.936049

0.5 1.127876 6.892089 1.860863

Fig. 2 Temperature profiles h gð Þ for various values of the

Brownian motion parameterNb.
Fig. 3 Concentration profiles v gð Þ for various values of the

Brownian motion parameterNb.
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rates. Additionally, Figs. 6 and 7 are provided to get a clear
insight of Nb and Nt effects on the heat and the mass transfer
rates. From the physical point of view, the Brownian motion

causes a collision between the fluid particles. Therefore, the ris-
ing of Nb causes an increment in the fluid temperature due to
the kinetic energy produced by the suspended nanoparticles

and consequently generates the thermophoretic force. Thus,
the fluid is driven to flow away from the surface due to the



Fig. 4 Temperature profiles h gð Þ for various values of the

thermophoresis parameterNt.

Fig. 5 Concentration profiles v gð Þ for various values of the

thermophoresis parameterNt.

Fig. 6 Local Nusselt number Re�1=2
x Nux against Nt for various

values ofNb.

Fig. 7 Local Sherwood number Re�1=2
x Shx against Nt for various

values ofNb.
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force’s intensity. As a result, higher values of Nt result in an
increase in the fluid concentration, as well as raises the fluid
temperature.

The impact of the thermal radiation parameter R on the

local Nusselt numberRe�1=2
x Nux, and the local Sherwood

number Re�1=2
x Shx whene ¼ �1, S ¼ 2:4, c ¼ 0:1, M ¼ 0:01,

Pr ¼ 7, Sc ¼ 5, and Nb ¼ Nt ¼ 0:1 are deliberated in Figs. 8
and 9, respectively. It is found that the distribution of

Re�1=2
x Nux reduces with the increasing ofR. Physically, the

occurrence of thermal radiation results in an increase of the
radiative heat flux over the functional flow. Henceforth, the
inclusion in R leads to an increase in the boundary layer thick-

ness, thus the temperature distribution in the flow region rises

as R intensifies. In contrast, the values of Re�1=2
x Shx are inten-

sified with larger values ofR . Since higher temperature occurs

for largerR, therefore, it leads to the reduction of the fluid con-
centration near the surface by thinning its boundary layer.
Consequently, the concentration gradient increases which lead
to the enhancement of the mass transfer rate. Besides, it is seen

from Figs. 8 and 9 that the critical value of Sc is unchanged for
Fig. 8 Local Nusselt number Re�1=2
x Nux against mass flux

parameter S for various R.



Fig. 9 Local Sherwood number Re�1=2
x Shx against mass flux

parameter S for various R.

Fig. 11 Local Nusselt number Re�1=2
x Nux against k for various

M.

Fig. 12 Local Sherwood number Re�1=2
x Shx against k for various

M.
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different values of R, where Sc ¼ 2:31632 for each value of R

considered.
Meanwhile, Figs. 10-12 show the variations of

Re1=2x Cf,Re�1=2
x Nux, and Re�1=2

x Shx against k for different val-

ues of M. The critical values are kc1 ¼ 1:9419 M ¼ 0ð Þ,
kc2 ¼ 2:1963 M ¼ 0:01ð Þ, and kc3 ¼ 2:5033 M ¼ 0:02ð Þ which
prove that the domain of the solution is also dependent on

k. Besides, all these physical quantities enlarge with the
increase ofM. From physical point of view, magnetic field gen-
erates Lorentz force, which is a resistive force that emerges
when a transverse magnetic field is applied and engaged with

an electrically conducting fluid. The strength of the Lorentz
force increases as the strength of the applied magnetic field
intensifies, acting in the opposite direction of fluid movement

within the boundary layer. Furthermore, this parameter devel-
ops the concentration and thermal properties which lead to
boosting the rate of the mass and heat transfer processes.

The variations of Re1=2x Cf,Re�1=2
x Nux, and Re�1=2

x Shx for dif-

ferent values of S and k are shown in Figs. 13-15. The critical
values are Sc1 ¼ 2:17656 k ¼ 0:5ð Þ,Sc2 ¼ 2:24990 k ¼ 1ð Þ, and
Sc3 ¼ 2:31632 k ¼ 1:5ð Þ. Physically, the Reiner-Philippoff fluid
Fig. 10 Skin friction coefficient Re1=2x Cf against k for various M. Fig. 13 Skin friction coefficient Re1=2x Cf against S for variousk.



Fig. 14 Local Nusselt number Re�1=2
x Nux against S for variousk.

Fig. 15 Local Sherwood number Re�1=2
x Shx against S for

variousk.

Fig. 16 Smallest eigenvalues a against mass flux parameterS.
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parameter represents the zero shear viscosity ratio to the upper
Newton limiting viscosity. From Fig. 13, it shows that increas-
ing the values of k leads to a decrease in the skin friction coef-

ficient. This is due to the fact that increasing k values cause a
reduction in viscosity, allowing the fluid to move around more
freely and thus lowering the coefficient of the skin friction.

Since the energy and concentration equations are coupled with
the momentum equation, thus, it directly affects the magni-

tudes ofRe�1=2
x Nux, and Re�1=2

x Shx as shown in Figs. 14 and 15.

Fig. 16 presents the variations of the smallest eigenvalues a
against S with the negative eigenvalue designating the second
solution while the positive eigenvalue indicating the first solu-

tion. Based on the perturbation functions (29), the unsteady
solutions converge to the steady-state solutions for a > 0 as
time evolves,C ! 1. On the other hand, the solutions diverge
for a < 0 asC ! 1. This leads to the conclusion that the first

solution is stable and reliable over time, but the second solu-
tion behaves in the opposite way.

5. Conclusion

An analysis of magnetohydrodynamic and radiative heat and
mass transfer of Reiner–Philippoff nanofluid flow over a non-

linearly shrinking sheet with Brownian and thermophoresis
diffusion effects was considered mathematically. The decre-
ment of the friction factor, the local Nusselt number, and

the Sherwood number are observed with the rise of the
Reiner–Philippoff fluid parameter. In contrast, these physical
quantities increase for larger values of the magnetic parameter

due to higher Lorentz’s force. Furthermore, the increase of the
Brownian motion parameter Nb tends to intensify the mass
transfer rate but decreases the heat transfer rate. Meanwhile,
the rising of the thermophoresis parameter Nt lead to the

decrement of the heat and the mass transfer rates. However,
increasing the radiation parameter leads to a reduction in ther-
mal and mass progress. From the computed smallest eigenval-

ues in the stability analysis, it is found that only the first
solution is physically stable in the long run.
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