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Abstract: Tracking the speed and current in permanent magnet synchronous motors (PMSMs) for
industrial applications is challenging due to various external and internal disturbances such as
parameter variations, unmodelled dynamics, and external load disturbances. Inaccurate tracking of
speed and current results in severe system deterioration and overheating. Therefore, the design of
the controller for a PMSM is essential to ensure the system can operate efficiently under conditions
of parametric uncertainties and significant variations. The present work proposes a PMSM speed
controller using machine learning (ML) techniques for quick response and insensitivity to parameter
changes and disturbances. The proposed ML controller is designed by learning fractional-order
sliding mode control (FOSMC) controller behavior. The primary purpose of using ML in FOSMC
is to avoid the self-tuning of the parameters and ensure the speed reaches the reference value in
finite time with faster convergence and better tracking precision. Furthermore, the ML model does
not require the mathematical model of the speed controller. In this work, several ML models are
empirically evaluated on their estimation accuracy for speed tracking, namely ordinary least squares,
passive-aggressive regression, random forest, and support vector machine. Finally, the proposed
controller is implemented on a real-time hardware-in-the-loop (HIL) simulation platform from PLECS
Inc. Comparative simulation and experimental results are presented and discussed. It is shown
from the comparative study that the proposed FOSMC based on ML outperformed the traditional
sliding mode control (SMC), which is more commonly used in industry in terms of tracking speed
and accuracy.

Keywords: machine learning; sliding mode control; permanent magnet synchronous motors; motor
control; disturbance estimation

MSC: 68T07

1. Introduction

Permanent magnet synchronous motors (PMSM) have great potential for high-precision
applications due to their advantages in terms of high efficiency, high power density, and
reliability [1]. However, the system uncertainties and unavoidable external disturbances
may change the time-varying parameters with high-order complex dynamics in the PMSM
speed control system [2]. In fact, the dynamical performance and steady-state performance
are two important aspects of the PMSM’s control system. Steady-state performance is
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ensured when the controller can track the reference speed with minimum tracking error
and the lowest torque ripple. In terms of dynamic performance, the controller must provide
a quick convergence with the lowest overshoot possible [3].

Over the years, classical linear control, such as the proportional-integral-derivative
(PID) controller, has been applied in industrial applications to control the PMSM drives
due to its simple implementation [4]. Nevertheless, this type of controller has faced
some issues because of the nonlinearity and load disturbance changes, which result in
complicated precise speed regulation and unsatisfactory performance [5]. To enhance the
control performance, many nonlinear control methods have been proposed for the PMSM
drive, such as predictive control [6,7], finite-time control [3,8], backstepping control [9,10],
disturbance rejection control [11,12], and adaptive control [13,14].

Among these controllers, much attention was given to sliding mode control (SMC),
one of the most effective nonlinear control methods widely applied for speed regulation [15].
SMC can enhance the performance of the PMSM drive system’s tracking speed, accuracy,
and torque dynamics. Moreover, SMC guarantees consistent tracking although the system
is exposed to internal parameter fluctuations or external disturbances. In addition, the
remarkable features of SMC are its excellent accuracy and simplicity. Several studies of
the SMC scheme have been conducted to enhance the dynamic performance of the PMSM
speed regulation system, such as in [16,17].

Generally, in the SMC approach, a large switching gain is applied to suppress dis-
turbances such as fluctuating load torque, which results in a discontinuous control law
and substantial chattering with high-frequency oscillation [18]. To overcome the aforemen-
tioned obstacles in SMC, researchers proposed various methods to reduce the reaching
phase and ensure to reach on a sliding surface [1]. For instance, in [19], the authors intro-
duced a non-singular terminal sliding mode manifold for the speed loop. The proposed
controller ensures the states reach the manifold in finite time and converge to the equilib-
rium point in a finite time. Thus, the controller could support the PMSM drive to reach
the reference speed in a finite time, obtaining a faster convergence with excellent tracking
accuracy. Moreover, this study proposed a composite terminal sliding mode control method
based on a disturbance observer to eliminate chattering. The authors in [20] proposed
a hybrid terminal sliding-mode observer based on the non-singular terminal sliding mode
(NTSM) and the high-order sliding mode (HOSM) for the rotor position and speed regu-
lation of the PMSM. The NTSM manifold and derivative estimator are applied to realize
fast convergence and to obtain the derivative of the sliding-mode function. Meanwhile,
a HOSM control law is used to ensure the stability of the observer and reduce the chattering
without a low-pass filter. In [21], a super-twisting sliding mode (STSM) control technique
combining generalized proportional integral observer (GPIO) was investigated. A GPIO
was introduced to estimate the lumped disturbance to reduce the control gain’s value
and to enhance the PMSM system’s robustness for satisfactory dynamical performance.
In [22], a sliding-mode control method using a new sliding-mode reaching law (NSMRL)
was presented. The controller consists of the system state variable and the power term
in the sliding-surface function. The proposed technique effectively suppresses the inher-
ent chattering and increases the velocity of the system state reaching the sliding surface.
Based on NSMRL, the authors designed a sliding-mode speed controller (SMSC) to replace
the traditional proportional-integral controller (PI). In [23], a continuous fast terminal
sliding-mode control (CFTSMC) was introduced for the speed regulation of the PMSM
drive system. The proposed technique has the capability to minimize the error quickly,
thus providing higher-precision tracking and robustness against external disturbances.
The extended state observer (ESO) estimates the system disturbances for feed-forward
compensation and reduces the switching gain value. In [24], the conventional SMC was
improved by changing its sliding manifold design to obtain a fractional order sliding-mode
control (FOSMC) for the speed of a PMSM. The proposed FOSMC was designed with
differentiation and integration of the sliding surface.
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Besides the SMC methods, intelligent control techniques, such as fuzzy control and
artificial neural network (ANN) control, were extensively applied for the PMSM speed
regulator due to their strong optimization and capability to deal with uncertain and non-
linear problems. The authors in [25] proposed an adaptive interval type-2 fuzzy logic
control scheme for high-performance PMSM. This technique utilizes the power of type-2
fuzzy logic systems based on adaptive control theory to enhance precision tracking and
robustness against higher uncertainties. The proposed controller does not need electri-
cal transducers. Therefore, no explicit current loop regulation is required, which yields
a simplified control scheme. In [26], the synthesis and the properties of a neural speed
controller trained online were introduced using the resilient backpropagation (RPROP) al-
gorithm with ANN. The specific properties of the speed controller in the PMSM drive were
automatically adapted and tuned. In [27], an intelligent control system using a recurrent
wavelet-based Elman neural network (RWENN) for PMSM speed regulators was presented.
The proposed intelligent optimal RWENN control system (IORWENNCS) incorporates
an optimal controller, a RWENN controller, and a robust controller for optimal control
and to reduce the quadratic performance index. To guarantee the stability of IORWEN-
NCS, online adaptive control laws derived based on the optimal control technique and
Lyapunov stability analysis are applied. In [28], an Elman neural network (ENN) based on
a complementary sliding mode control (CSMC) was presented. The CSMC is applied by
combining the integral sliding surface with the complementary sliding surface to minimize
the chattering phenomenon. In addition, it was proposed that the ENN overcomes the
problem of switching gain and boundary layer thickness due to its strong learning ability.
Even though the enhanced SMC and the intelligent control techniques have a continuous
law, which has the ability to eliminate the chattering problem, these methods need high
switching gain during the multi-speed step change, which introduces chattering and large
steady-state fluctuations in the speed regulation of the PMSM. Moreover, these types of
controllers need parameter-tuning methods for a quick response [29].

In that context, this paper proposes a speed control scheme using the ML technique,
designed by learning fractional-order sliding mode control (FOSMC). The main objective
of this work is to design an advanced non-linear control technique to solve the speed
regulation control problem of the PMSM under a control input constraint. Moreover, the
ML controller is investigated on a speed controller to avoid self-tuning of parameters, as
well as to reduce the effects of parametric uncertainty and complicated load fluctuation.
Several ML techniques are built, analyzed, and compared against the conventional SMC
in a real-time hardware-in-the-loop (HIL) simulation environment using the RT Box from
PLECS. The controllers are evaluated and compared under different testing profiles in
terms of tracking speed and accuracy and reference overshoot.

This paper is organized into the following sections. In Section 2, the mathematical
model of the PMSM and the speed controller are introduced. In Sections 3 and 4, the
machine learning algorithm and the methodology are described. The relevant results and
detailed analysis are given in Section 5. Finally, Section 6 concludes this study.

2. Mathematical Model of the Speed Regulation System of the PMSM
2.1. Dynamic Modeling of PMSM Drive

Under the synchronously rotating reference frame, the PMSM mathematical model in
the d-q axis coordination can be presented as follows [30]:

i′d = −Rs
Ld

id + npωiq +
ud
Ld

i′q = −npωid − Rs
Lq

iq −
nsψ f

Lq
ω +

uq
Lq

.
ω =

1.5npψ f
J iq − B

J ω− Tl
J

(1)

where the superscript ′ denotes the derivation of a variable with respect to time. i′d and
i′q are the derivative of the stator current components in the rotating frame. id and iq are
the d- and q-axis stator axis. ud and uq represent the d- and q-axis stator voltage. Ld and Lq
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represent the d- and q-axis stator inductance. Rs describes the stator winding resistance.
ω represents the angular velocity. B is the viscous friction coefficient. np represents the
number of pole pairs in the PMSM. Tl is the load torque, and ψ f represents the flux linkage.
.

ω represents the second-order angular velocity model of the PMSM. J is the moment of
inertia. The output of the PMSM system is speed ω. From Equation (1), the PMSM dynamic
equation can be described as:

.
ω =

1.5npψ f
J iq − B

J ω− Tl
J

=
1.5npψ f

J i∗q − B
J ω− Tl

J −
1.5npψ f

J (i∗q − iq)
= bi∗q + d(t)

(2)

where b = 1.5npψ f /J and d(t) = −(Bω/J)− (Tl/J)− (1.5npψ f /J)(i∗q − iq), which can be
represented as the lumped disturbance, including the friction, the external load disturbance,
and the tracking error of the d- and q-axis current loop.

In practice, the internal parameters of the PMSM drive are affected by the temperature.
Thus, a limited scale is used to represent the range of internal parameter variations. The
nominal value of the load torque must be limited. Therefore, the lumped disturbances i′d,
i′q, and

.
ω represent the derivatives.

A block diagram of the PMSM drive system in this work is shown in Figure 1. In order
to decouple the speed and currents, the vector control strategy of the reference current
d-axis is set to 0. Two PI controllers, which are used to stabilize the d− q axes current errors,
are adopted in the two current loops.
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2.2. Design of Fractional-Order Sliding Mode Control (FOSMC) for Speed Control of PMSM

The speed loop aims to obtain the optimal output signal to control the PMSM speed.
The speed regulator ensures the motor speed ω is tracking the reference speed ω∗ accurately
by driving the tracking error asymptotically to zero. The output signal can be described
as [30]:

e = ω∗ −ω (3)

where e is the asymptotical error, ω∗ is the reference angular velocity, and ω is the real
angular velocity. In SMC, the fractional-order sliding surface can be described as:

s = Kpe(t) + Dr
t e(t) (4)
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where Kp is a positive number, and Dr
t is a fractional order integral where 0 < r < 1

.
s = −w s− ks · sign(s) (5)

The control law is given by [31]:

s = Kpe(t) + KiD−α
t e(t) + KdDβ

t e(t) (6)

where ws and ks∈ R, and sign(.) is the sign function.
In this work, the fractional order sliding surface for FOSMC is given as [24]:

iq(t) = (bKp)
−1


Ki0D1−α

t e(t) + Kd0Dβ+1
t e(t)

+(w− a)Kpe(t)
+Kpe(t) + wKi0D−α

t e(t)
+wKd0Dβ

t e(t) + Ks·sign(s)

 (7)

where Kd, Ki, Kp are the fractional controller coefficients, and α and β are the order of
fractional integration and differentiation, respectively. The order of fractional integration
and differentiation helps to improve the stability, eliminate any steady-state error, and
ensure that the controlled system converges to the desired setpoint.

3. Machine Learning Algorithms

The integration of machine learning (ML) into the control loop allows for predicting
the behavior of non-linear dynamic systems. In other words, ML can find the optimal
control signal by mapping between inputs and outputs based on a training dataset and then
making predictions of the inputs that have never been trained. In order to find a reliable
general representation of inputs and outputs, the training dataset for the generalization
model must contain a complete representative set of data. In general, the ML dataset
S = {(x1, y1), . . . , (xN , yN)} is given to the learning method, with fixed and unknown
distribution D, where N represents the size of the dataset. In each instance, xi is a vector of
the form xi =

(
x1

i , . . . , xM
i
)
. Each value x1

i , . . . , xM
i is relative to each feature X1, . . . , XM.

Y is a special feature called class. Yi, i = 1, . . . , N represents a set of labels associated with
each instance, xi. If all sets Yi, i = 1, . . . , N have only one value, the problem is considered
a single label. Hence, the ML models have one output value for prediction. However, some
ML architecture cannot be treated as a single-label problem. In this study, the output value
from the speed controller has a single value. Therefore, the ML model is considered as
a single label.

In practice, the ML models categorize based on their modeling capabilities, previous
data assumptions, the number of model parameters and their update methods, and the
runtime. Representative classes for the regression task in the ML model can be represented
as linear models such as ordinary least squares and passive-aggressive regression, or non-
linear regression, such as random forest and support vector machine. In this section, the
ML models used for the regression are presented. Moreover, some notations required to
formulate the ML models mathematically are briefly described.

3.1. Ordinary Least Squares

Ordinary least squares (OLS) regression in the ML model is a generalized linear
modeling technique, which is used to model a single-label problem that has been recorded
on at least an interval scale. The OLS technique can be used with a single explanatory
variable, multiple explanatory input, or categorical explanatory variables that have been
correctly coded. The ordinary least squares regression model can find a linear relationship
between the responses (input vector, X ∈ R) and the predictor (output vector, Y). Consider
the following linear regression model [32]:

Yi = α̂ + β̂Xi + εi (8)
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where εi represents the error between the values of the responses and the predictors, which
are also known as the residuals. In the ordinary least squares regression case, the sum of
the squared residuals is given as:

n

∑
i=1

(
Yi − (α̂ + β̂Xi)

)2

(9)

where α̂ and β̂ are the parameter of the linear model that minimizes the sum of the residual.
α̂ and β̂ are defined by:

α̂ = Y− β̂Xβ̂ =
∑ (Xi − X)(Yi −Y)

∑ (Xi − X)
2 (10)

3.2. Passive-Aggressive Regression

The passive-aggressive algorithm offers an interesting regression closed-loop solution
for control tasks. This ML technique uses a simple formulation within a regression frame-
work, which aims to obtain a linear model track for every new instance by ensuring the
correct regression of the present instance. This strategy demonstrates an accommodation
between the passive behavior, where the algorithm tries to improve the model using the
past data memory, and the aggressive behavior, where the algorithm attempts to predict
the current values correctly [33]. The mathematical expression to describe the distance
function and the ε-insensitive loss reading is given as follows [34]:

Wt+1 = arg min
(

1
2
‖w− wt‖2

2 + Cξ

)
(11)

Subject to : `ε(yt, w·ft) ≤ ξ

`ε(yt, w·ft) =

{
0, if |y− w·ft| ≤ ε

|y− w·ft| otherwise
(12)

where ε is a constant to control the learning rate. C is a parameter to control the aggres-
siveness using the slack variable, ξ. If the prediction is within the ε-margin, the algorithm
either remains “passive” in each update round or “aggressively” adjusts its weights to fit
the new sample.

3.3. Random Forest

The random forest technique is an integrated ML algorithm developed from the
bagging algorithm. As a non-linear model ensemble regression method, the random
forest strategy is structured by a set of uncorrelated classification and decision regression
trees [35]. The single decision trees may suffer from high variance in making optimal
predictions due to the overfitting of the data [32]. The ensemble of decision trees is used
to mitigate and fit a random sample of the given observations by replacing the random
sample of features. Each sample is selected from the training dataset, and the features used
are extracted randomly from all features at a certain rate of the set during the training
process of the tree. After training the random forest model, the prediction values can be
made by averaging the predictions from all the individual regression trees using Equation
(13) [36]:

f̂ B
r f (x) =

1
Br

Br

∑
b=1

TB(x) (13)

where f̂ Br
r f (x) is the prediction of the regression model at the new point, x. TBr (x) represents

the output of the ensemble of the tree, and Br is the total number of the tree.
The results of random forest training show the voting output for all decision trees.

Compared to the other ML models, which require tedious parameter adjustments, the
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random forest technique does not need parameter adjustments and promises to achieve
nearly all desired results with high adaptability to the data and the parameters used [35].

3.4. Support Vector Machine

The support vector machine model has been extensively applied in control systems
and forecasting models [37,38]. Support vector machines are very effective for solving
non-linear problems and deal with a limited sample of training datasets. The structure risk
minimization (SRM) principle in vector machines is used to reduce the upper bound of
the generalization error to enhance the confidence level in the prediction model. The main
concept behind the support vector machine is to apply a kernel function that performs
non-linear mapping from the input space to higher-dimensional feature space and performs
linear regression in this feature space. This method uses samples from the dataset to design
the prediction function, which can be described as follows [39]:

y = wTφ(x) + b (14)

where w represents the weight vector of the features, φ(x) is the mapping value between
the inputs and outputs, x represent the inputs, and b is the intercept.

The regularized risk function is described in Equation (15) to estimate the coefficients
w and b [39]:

arg min

(
1
2
‖w‖2 + C

1
N

N

∑
i=1

(ξ1 − ξ∗1)

)
(15)

Subject to :


Yi − wφ(Xi)− b ≤ ε + ξ1
wφ(Xi) + b ≤ ε + ξ∗1 , i = 1, 2, . . . , N.
ξ1 ≥ 0 ξ∗1 ≥ 0

(16)

where ‖w‖ is the regularized factor. C is the penalty parameter to determine the trade-off
training and flatness errors, ε represents the intensity loss function, and ξ1 and ξ∗1 are the
slake variables. By applying the kernel function, Equation (15) can be represented as:

arg min



1
2

N
∑

i=1

N
∑

j=1
(αi − α∗i )(αj − α∗j ) .

K(Xi, Xj)− ε
N
∑

i=1
(αi − α∗i )

+
N
∑

i=1
Yi(αi − α∗i )


(17)

Subject to :


N
∑

j=1
(αi − α∗i ) = 0

αi, α∗i ∈ [0, C]
(18)

where αi, α∗i are Lagrange multipliers, and i and j are different samples. The prediction
function can be written as below:

Y = f (X) =

(
N

∑
i=1

(αi − α∗i )·K(Xi, Xj) + b

)
(19)

4. Methodology

This research aims to identify the input features in the speed controller among other
output components. Therefore, the speed controller can more accurately track the speed
reference under parametric uncertainties and significant variations. Figure 2 illustrates
the design of the proposed methodology for the speed controller based on ML for PMSM
drive. The major parts in the proposed methodology are: (i) data acquisition and dataset
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construction; (ii) features’ configuration; (iii) regression model configuration; (iv) model
validation; and (v) real implementation and evaluation.
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4.1. Data Acquisition and Dataset Construction

Data creation and data collection are essential components because data are the back-
bone of ML models. With an understanding of the problem from the first stage of the
procedure, a dataset containing features relevant to the prediction of the speed tracking of
PMSM is created and collected. In PMSM drive, obtaining an accurate and sufficient dataset
to allow reliability in real-time for training, validating, and evaluating the ML model is
challenging. Hence, any failure occurring in the system affects the collected dataset, which,
in turn, affects the efficiency of the trained ML model. Therefore, a technique based on
generating and training the dataset via simulations is used.

The FOSMC is integrated as a speed regulator to drive the PMSM at the rated load
and different speed references to collect data for the ML model training. The output
signal i of the FOSMC is identify by two different variables as described in Equation (3)
(the error and the reference speed). The data are created and collected offline based
on simulations using the PLECS blockset in the Matlab/Simulink environment. The data
comprise the input value of the FOSMC controller, made up of the speed error and the speed
reference as a response feature and the reference current d-axes as a predictor value (refer to
Equations (3)–(7)). To gain a proper understanding of the dataset and its properties, initial
activities on the dataset seek to create familiarity with the dataset, including identifying
data quality issues and using exploratory data analysis to make first insights and discover
interesting patterns.

Based on the collected data, the next stages of the proposed methodology involve
a series of activities focusing on cleaning, standardizing, and normalizing the dataset to
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a form that is more suitable for analysis and model building. The activities include tech-
niques for improving the performance of the ML model, such as processing and evaluation.

4.2. Features’ Configuration

The collected data are loaded into the Jupyter Notebook environment using the Pandas
library, and the features of response and predictor variables in the dataset are verified.
Data quality checking is carried out to ensure the dataset is in a suitable format for the
analysis. The dataset is checked for missing values in each column of the features and
overall to make sure that the dataset does not contain missing values in any of the columns,
along with a check of the data types of each column to make sure that all the variables are
numerical. For the purpose of scaling, normalization and standardization techniques are
used for data preprocessing.

Normalization is the operation for rescaling the dataset from the original range so
that all values are within the range [0, 1]. Normalization requires knowing or correctly
predicting the minimum and maximum predictor values, which can be predicted from the
collected dataset. The normalization formula is given by:

x(i)norm =
x(i) − xmin

xmax − xmin
(20)

where x(i)norm is the normalized value. x(i) is the particular sample. xmax and xmin are the
largest and the smallest values in the response column, respectively.

The standardization of the dataset involves rescaling the distribution of values so the
mean of the observed values is 0 and the standard deviation is 1. The standardization
process can be obtained using the equation below:

x(i)std =
x(i) − ux

σx
(21)

where x(i)std is the new value, ux represents the sample mean of a particular feature column,
and σx is the standard deviation value. Correlation analysis is performed to understand the
relationships between the feature variables using a 3D plot. After establishing the dataset
quality checks, the ML model is built in the next step.

4.3. Regression Model Configuration

The Sklearn library ML packages in the Jupyter Notebook environment are applied
for the modeling, with an optimized implementation of the described ML models and
some support packages to evaluate the ML model [40]. The ML model is implemented by
simply calling the library from the Sklearn package to the relevant model and uploading
the dataset. The proposed ML models are trained and evaluated for efficient training and
model generalizability by splitting the dataset into two sets: 80% for training and 20%
for testing. The dataset is split randomly to avoid the continuity of data that drives the
system into a steady-state condition. Then, each ML model is configured using its specific
parameters for training and testing.

4.4. Model Validation

The built models are evaluated on a testing dataset using the R-squared (R2) score
evaluation metric, which measures the relationship strength between the dependent vari-
able and regression models on a convenient scale between 0 and 1. After training the ML
models, the evaluation test is conducted to determine the goodness-of-fit of the trained
models by calling the r2_score( ) function in Sklearn packages. The R2 score reveals the
scatteredness of data values over the regression line, referred to as the coefficient of deter-
mination. The score value is always between 0 and 1. A 0 score implies that the input value
has no variability around its mean described by the model, while 1 implies that the input
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value has all the variability around its mean. A high R2 score represents the superiority of
the ML model. The R2 is given by:

R2 = 1− SSres

SStotal
(22)

SSres =
n

∑
i=0

(yi −
_
y i)

2
(23)

SSres =
n

∑
i=0

(yi − yi)
2 (24)

where SSres represents the residual sum of the squares, and SStotal describes the total
sum of the squares. The boxplot tool is used to verify the presence of outliers during the
exploratory evaluation of ML models.

4.5. Real-Time Implementation and Evaluation

After building and evaluating the ML models, the code is generated, and the ML mod-
els are uploaded to the hardware device for testing. The m2cgen package is a simple Python
library that converts the trained ML models into different programming languages [41]. In
this work, m2cgen is employed to convert the ML model from Sklearn to the C function.
The m2cgen library is adaptable and simple to use and allows for easy uploading of the
generated code to the PLECS RT-BOX device. The function written in C language represents
the ML model of the speed controller for the PMSM drive. It consists of two inputs that
demonstrate the speed error and the speed reference and a single output that represents the
predicted reference current q-axis. The mean absolute error (MAE) is utilized to evaluate
the proposed speed controller, which is characterized based on the error signal, e(t), as
denoted below:

MAE =
1
T

T∫
0

|e(t)| dt (25)

5. Results and Analysis

To demonstrate the effectiveness of the proposed FOSMC based on ML techniques for
speed control, simulation and experiments based on the PMSM drive system are extensively
investigated in this section. The parameters of the PMSM are listed in Table 1.

Table 1. Parameters of the PMSM.

Parameter with Abbreviation Value

Stator resistance, Rs 1.38 Ω
d-axis stator inductance, Ld 2.534 mH
q-axis stator inductance, Lq 2.534 mH

Magnetic pole, p 4
Moment of inertia, J 7.485 × 10−6 kg m2

Flux linkage, λ 80 Wb
Viscous friction coefficient, Bm 0.0002 N ms/rad

As mentioned in the previous section, the dataset must be created based on the real
behavior of the PMSM drive for the acquisition of data on the responses and predictor
variables. Then, the simulation-generated dataset must be modified to replicate a real
application environment. In order to create the dataset, different speed reference steps were
proposed using FOSMC as a speed control. The speed reference steps were set from 100 rpm to
1000 rpm, with a 100 rpm increment (100→200→300→400→500→600→700→800→900→1000)
and with a time duration of 0.03 s for each step. The sampling time of 4 × 10−6 s was
proposed to collect one sample of data for the speed error, speed reference, and current ref-
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erence q-axes at instant t. Consequently, the complete raw dataset contained approximately
75,000 samples for each speed reference step. To make a fair comparison, the variables for
FOSMC were not tuned prior to this process to observe the steady-state performance of the
proposed technique. The parameters of FOSMC are described in Table 2 [24].

Table 2. Parameters of the FOSMC.

Description Symbol Value

Order of fractional integration α 0.35
Order of fractional

differentiation β 0.3

Integral gain Ki 160
Proportional gain Kp 10
Derivative gain Kd 3

As an example of general preprocessing, the data collected are plotted and represented
by a 3D graph, as illustrated in Figure 3, with the speed reference on the X-axis, speed
error on the Y-axis, and the reference current d-axes on the Z-axis. It can be seen that
the reference current in q-axes value in the constrained limits is in the range of [−10, 10].
Moreover, a high correlation can be observed between the speed reference, speed error, and
the current reference q-axes; for example, the current reference q-axes correlate with the
speed reference and the speed error.
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For the regression model configuration phase, the specific hyperparameters of the
proposed ML model are described in Table 3. All hyperparameter interval bounds are
manually selected to be in the range where the convergence of ML models’ performance
avoids overfitting.

After training the ML models, the results in terms of accuracy for each ML technique
are shown in Figure 4. The accuracy is calculated by comparing the actual and the predicted
values of the target variables. The total accuracy is summed over all the test samples that are
randomly chosen from the dataset. In other words, the results report the sum of the testing
dataset, which is correctly predicted out of the total testing data provided. Comparing the
four models, the ML models based on RF and SVM show the best results, with an accuracy
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of 0.996 and 0.994, respectively. Although the accuracy values of compared models are
close, the models based on RF and SVM are highly appropriate for the non-linear dataset.
These experimental results show the effectiveness of the proposed models to obtain the
predictor value.

Table 3. Hyperparameters of the proposed ML models.

Regression Model Hyperparameter Parameters

Ordinary least squares (OLS)

copy_X True

fit_intercept True

n_jobs None

Normalize False

Passive-aggressive regression (PR)
max_iter 100

random_state 0

Random forest (RF)

max_depth 2

random_state 0

n_estimators 100

max_leaf_nodes 100

Support vector regression (SVM)

kernel RBF

C 100

gamma 0.1

epsilon 0.1
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To further prove the effectiveness of the trained models, the accuracy of the different
speed steps for each ML model is shown in the form of a boxplot in Figure 5. The boxplots
provide a pictorial representation of the effect of the speed reference steps on the accuracy
of the trained ML models. The boxplots help us analyze each model and portray how
accuracy varies over different speed reference steps. In the figure, the red line represents
the median of the accuracy for each model and the two black horizontal lines connected
with the black rectangle are, respectively, the non-outlying minimum and maximum values
of the accuracy. It is observed that the SVM model is less accurate for some testing data.
However, the SVM model accurately predicts the values in most speed references.
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5.1. Comparative Simulations

To further analyze the precision and effectiveness of the proposed techniques, simula-
tion is carried out to select the efficiency of the proposed speed controller. Comparative
simulations are performed among the proposed FOSMC based on ML models, and also
with conventional SMC to verify the effectiveness.

The reference speed is set to 1000 rpm as a step signal and starts without a load. The
speed tracking control responses of the FOSMC based on ML models and the SMC are
shown in Figure 6. As can be seen from this figure that the speed of the PMSM system under
the proposed FOSMC based on ML models has a better transient response profile than
the conventional SMC as it performs with faster stability and without overshoot. When
comparing the linear ML (OLS, PR) model with non-linear ML, as illustrated in Figure 6a,
the speed controllers using OLS-FOSMC and PR-FOSMC experience less chattering and
are more stable compared to RF-FOSMC and SVM-FOSMC. However, all the proposed
ML models indicate that the control effects are excellent, with less error in the steady-state
phase. On the other hand, the speed performance of the SMC is poor, which needs more
time to regulate the reference speed and undergoes a considerable tracking error with large
chattering while tracking the speed reference, as depicted in Figure 6b.

In addition, the graphical results are confirmed by calculating the error index. The
obtained numerical values for the index metrics are compared in Table 4. It can be observed
that the mean absolute error (MAE) index for the speed error plots under the OLS-FOSMC
is reduced by 75% compared to that of the conventional SMC. Moreover, the MAE indexes
for the speed errors using RF-FOSMC and SVM-FOSMC are reduced by 55%. However,
the MAE index for the speed using PR-FOSMC is lower than that when the SMC is used. It
can be concluded from these numerical results that the combined control of the speed and
thrust force achieved under the OLS-FOSMC, RF-FOSMC, and SVM-FOSMC can deliver
a faster speed response during start-up compared to the conventional SMC.

Table 4. Comparison of transient performance of the proposed controllers based on ML and the SMC
using the MAE index.

MAE Index OLS-FOSMC PR-FOSMC RF-FOSMC SVM-FOSMC SMC

0.5967 5.426 0.7524 0.7522 2.2986
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5.2. Experimental Verification

In this section, experiments based on the PMSM drive system using a hardware-in-the-
loop (HIL) setup are investigated in detail. As presented in Figure 7, the setup used for HIL
verification purposes comprises an RT-Box 1 provided by Plexim, where the sampled time
to model the controller is 6 µs and the switching frequency (fs) is 25 kHz. The connection of
the RT-Box is described in [42,43]. The controller and PMSM drive parameters are set such
that the parameters are equal to the parameters that were implemented in the simulation.
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In order to show the superiority and robustness of the introduced speed controller
based on ML, the following three scenarios are proposed:

5.2.1. Comparative Dynamic Response under Speed Reference

In this experiment, the system performance is tested under no load and the reference
speed is set to be a step signal at 1000 rpm, as shown in Figure 8. The speed curves of the
system under OLS-FOSMC, PR-FOSMC, RF-FOSMC, SVM-FOSMC, and SMC are exhibited
in Figure 8. It can be noted that the speed fluctuation in a steady state with conventional
SMC is much higher than that with the proposed controller based on ML. It is clearly
illustrated in Figure 8a,b that the dynamic speed responses under the OLS-FOSMC and
PR-FOSMC techniques have low fluctuation in the speed, with over speeds of +0.03% and
+0.11%, respectively. The dynamic speed responses of RF-FOSMC and SVM-FOSMC are
also presented in Figure 8c,d, where it can be seen that RF-FOSMC and SVM-FOSMC
have small chattering, with over speeds of +0.09% and +0.04% and drop speeds of 0.06%
and 0.05%, respectively. The conventional SMC has the highest speed fluctuation and
an over speed and drop speed of +0.75% and 0.8%, respectively, as shown in Figure 8e. The
comprehensive results demonstrate that the proposed FOSMC based on ML techniques
has a better disturbance rejection capability, smaller speed drop, and better convergence
than the conventional SMC.

5.2.2. Comparative Dynamic Response under a One-Speed Step Change

Figure 9 demonstrates the comprehensive comparative results of the four control
methods using FOSMC based on ML and conventional SMC under a one-speed step
change as a waveform of 2 min with a 50% duty cycle, considering the low- and high-speed
responses are 1000 and 1200 rpm, respectively.

First, Figure 9a shows a much faster convergence of the speed tracking and dynamic
performance when using OLS-FOSMC (i.e., the shorter settling time of 5 ms, overshoot
of +0.03%) due to the behavior of the proposed ML model, which drives the non-linear
system as linear during the steady-state phase and rejects any repeatable disturbances.
Meanwhile, Figure 9b displays a convergence of the speed response when using PR-FOSMC
(5.7 ms) and a higher speed tracking error compared to that shown in Figure 9a. However,
Figure 9c,d illustrate the overshoot of +0.09% and +0.04% of the speed error during the
transition when using RF-FOSMC and SVM-FOSMC at the instants 5.4 ms and 5.7 ms,
respectively. Next, Figure 9e exhibits a low convergence to the speed reference (11 ms) and
remarkable distortion during tracking of the speed error for the conventional SMC.

5.2.3. Comparative Dynamic Response under a Multi-Speed Step Change

This subsection verifies the comparative dynamic responses of the four control meth-
ods using FOSMC based on ML and conventional SMC under a multi-speed step change via
comparative experimental results. In this experiment, the step response is set to 1000 rpm,
1200 rpm, and 1400 rpm, and the estimated values of the rotor speed are exhibited in
Figure 10. The multi-speed step is changing as a waveform of 1.8 min with a 33% duty
cycle in each step and a different initialization time considering the low- and high-speed re-
sponses are 1000 rpm, 1200 rpm, and 1400 rpm. The speed tracking performance of PMSM
in this scenario is shown in Figure 10. Figure 10a illustrates an excellent convergence of the
speed tracking and dynamic performance using OLS-FOSMC. Moreover, the overshoot and
rise time are small in the speed transition, where the shorter settling time in each transition
is 5 ms or 5.1 ms, and the overshoot is +0.03%. Figure 10b represents the convergence of
the speed response during the transition when using PR-FOSMC (the shorter settling times
of 5.7 ms and 5.6 ms in each transition). Figure 10c,d illustrate the shorter settling times of
5.5 ms and 5.7 ms during the second transition when using RF-FOSMC and SVM-FOSMC,
respectively. Meanwhile, Figure 10e exhibits a low convergence to the speed reference in
the transition (11 ms and 12 ms) and remarkable distortion when tracking the speed error
for the conventional SMC.
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different-step reference speed using HIL. (a) OLS-FOSMC, (b) PR-FOSMC, (c) RF-FOSMC, (d) SVM-
FOSMC, (e) SMC.
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6. Conclusions

A speed controller based on machine learning (ML) was successfully designed and
implemented for PMSM drive. The proposed ML controller was designed by learning the
behavior of the fractional order sliding mode control (FOSMC). Different ML algorithms
were presented and applied as the ML model’s basic architecture, which were proven to
overcome self-tuning and the speed transition problem to drive the PMSM. The dataset
for training, validation, and testing was obtained through a simulated control process.
The trained ML models were based on an FOSMC speed controller. The proposed speed
controllers were tested in a full environment-control process simulation. The superiority
of the proposed controller was confirmed through simulations and experiments using
HIL, and the results showed that the designed method could perform satisfactorily, with
a fast transient response and good disturbance rejection. Using the proposed controller,
the PMSM drive can accurately track the reference speed with the industrial requirement
of 0.1% error. The conventional SMC method has inferior characteristics and fluctuation
in the steady-state speed of the PMSM and a lower convergence rate. The ML controller
was investigated with a speed regulator to avoid self-tuning of parameters (learning the
tuning parameters during the training) and reduce the effect of parametric uncertainties
on the speed variation. However, it is still uncertain how well this type of controller may
be generally applied across the different environments of the PMSM or even in different
implementations that require an enormously large dataset exhibiting this diversity.
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