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Abstract: In the last decade, the volume of semantic data has increased exponentially, with the
number of Resource Description Framework (RDF) datasets exceeding trillions of triples in RDF
repositories. Hence, the size of RDF datasets continues to grow. However, with the increasing number
of RDF triples, complex multiple RDF queries are becoming a significant demand. Sometimes, such
complex queries produce many common sub-expressions in a single query or over multiple queries
running as a batch. In addition, it is also difficult to minimize the number of RDF queries and
processing time for a large amount of related data in a typical distributed environment encounter.
To address this complication, we introduce a join query processing model for big RDF data, called
JQPro. By adopting a MapReduce framework in JQPro, we developed three new algorithms, which
are hash-join, sort-merge, and enhanced MapReduce-join for join query processing of RDF data.
Based on an experiment conducted, the result showed that the JQPro model outperformed the two
popular algorithms, gStore and RDF-3X, with respect to the average execution time. Furthermore, the
JQPro model was also tested against RDF-3X, RDFox, and PARJs using the LUBM benchmark. The
result showed that the JQPro model had better performance in comparison with the other models. In
conclusion, the findings showed that JQPro achieved improved performance with 87.77% in terms of
execution time. Hence, in comparison with the selected models, JQPro performs better.

Keywords: semantic web; distributed computing; RDF; big data; SPARKSQL

MSC: 68P05

1. Introduction

Over the last several years, Semantic Web technology in various research fields has
grown, with persistent growth in its information collection. Hundreds of millions of triple
data sets are now readily accessible by web indexing, creeping, and network connectivity
initiatives [1]. Large-scale data can be collected from the Internet of Things (IoT), mobile
devices, traffic management, network monitoring, sensor applications, manufacturing
processes, blogging, and emails. Usually, the current size of this data ranges from terabytes
to petabytes. Hence, dealing with this amount of data is challenging due to the required
resilient and large-scale methods. The Semantic Web, which is endorsed by the world, pro-
motes concepts and international standards in data envelopment analysis at common web
open interfaces [2]. The demand for complex multiple RDF queries is becoming significant
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with the increasing number of RDF triples. Such complex queries occasionally produce
many common subexpressions. A single query or several runs mostly as batches. It is there-
fore extremely challenging to reduce the amount of RDF queries and transmission time for
a vast number of related data collected in the publicly available typical distributed setting.

The recent rise in the amount of data collected is astonishing, with the growth rate
surpassing the capacity to design appropriate data storage and analysis systems for effective
data processing. Resource Description Framework (RDF) technologies commonly use an
interactive data structure for Semantic Web. Nowadays, RDF triples are becoming web-
scale graph datasets available via the internet, such as DBpedia, UniProt RDF, LUBM, and
YAGO2 [3,4]. Therefore, RDF datasets that surpass hundreds of thousands of triples data
are on the increase in various RDF databases. Figure 1 shows an example of the RDF graph.
RDF databases consist of a triple, which is an atomic data entity called a graph data model,
and are used for SPARQL queries. The W3C standard RDF query language is SPARQL,
which can be used with a large number of data sets to process your database in RDF format.
SPARQL queries may take different forms in practice, as shown in Figure 2. The main
SPARQL queries with a general modification that sets, then rearranges [5].
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Early RDF data management research activities resulted in powerful big RDF systems
such as RDF-3X. Although central data storage is not well suited to complicated web-scale
RDF queries, as such, distributed RDF management systems are implemented by splitting
RDF data between multiple device nodes and transmitting queries [6]. A query from
SPARQL is subdivided into several sub-requests that are evaluated separately by each node.
When data are distributed, intermediate results can be shared during query evaluation [7].
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Distributed processing models were used to optimize RDF queries, such as map-side
joins, heuristic distributed plan generation, reordering, cost-based optimizations, and join-
optimistic triple reordering, which demonstrated that the runtime of large RDF data and
the complexity of the query statement were relatively high [8–10]. As such, a high number
of self-joins on the relational table are needed for the querying of RDF triple store databases
that poorly scale into state-of-the-art RDF databases, which is time-consuming [11–13].
Additionally, most existing models have used parallel access to node-distributed RDF
triples to distribute the entire workload among nodes containing replicated RDF data.
However, parallel processes are complicated because of a sequential job, which results
in multiple RDF triples running longer. This is more complicated, particularly if a large
amount of RDF data is running [14].

According to Chantrapornchai and Choksuchat [15] and Jarrar and Dikaiakos [16],
path expressions and access to multiple properties for resources with the subject being used
in relation tables also require the complexity of requesting graph data. Furthermore, Husain
and McGlothlin’s [9] study found that there is a gap in the distributed data management
repository and that the planer’s greed does not consider the selectivity of join. For selective
queries, a large overhead is induced, as only works are carried out with MapReduce.
Therefore, due to the growing volume of RDF data [17,18] and Linked Data distributed
query processing, some difficulties in RDF storage and distributed query processing over
Linked Data have been identified [19]. In light of these issues, an effective query processing
model is needed that addressed the issue of RDF data.

The objective of this paper is as follows:

• To develop a novel join query processing model for big RDF data.
• To adopt a MapReduce framework in the developed model to aid in RDF data reduc-

tion and sorting.
• The proposed JQPro is composed of three newly developed algorithms, which are

hash-join, sort-merge, and enhanced MapReduce-join for join query processing of
RDF data.

• To process the join query of RDF data by utilizing the HIVE and MapReduce strategy
for SPARQL queries.

• The contribution of this paper contains:
• A novel model JQPro in a distributed system for big RDF data using the hash-merge

join technique.
• Adopting a MapReduce framework in JQPro, by developing three new algorithms,

which are hash-join, sort-merge, and enhanced MapReduce-join for join query pro-
cessing of RDF data.

• Conducting an extensive experiment on the Lehigh University Benchmark (LUBM)
and the Waterloo SPARQL Diversity Test Suite (WatDiv) v06 benchmarks to evaluate
and assess the proposed JQPro model.

The rest of the paper is described as follows. Section 2 contains the related works.
Section 3 introduces the developed model. Section 4 outlines the general experiment setup,
including the benchmarks and datasets utilized. The results and discussion are presented
in Section 5. The study is concluded in Section 6.

2. Related Work

In the last few years, a substantial amount of literature has been published on distributed-
based processing models for big RDF data, with various models proposed [8–10,20,21]. Abde-
laziz, Harbi [22], and Özsu [23] provide a survey and comparative study on distributed
SPARQL engines for very large RDF data. The author has selected 22 recent studies con-
cerning distributed RDF data processing. The results of the comparison have been made
online for researchers to use as benchmarks. In this section, we summarize some of the
existing models developed for big RDF data.

CliqueSquare is a novel optimization technique introduced by Goasdoué, Kaoudi [24]
for assessing conjunctive RDF queries in a massively parallel context. The aim is to limit



Mathematics 2023, 11, 1275 4 of 20

the number of joins encountered on a root-to-leaf path in the plan to reduce query response
time. ExtVP is a revolutionary relational partitioning schema for RDF data presented by
Schätzle, Przyjaciel-Zablocki [25] that employs semi-join-based preprocessing, similar to
the notion of join indices in relational databases, to efficiently decrease query input size
independent of pattern form and diameter. To answer subgraph matching queries on large
RDF networks, Xu, Wang [26] present SP-Tree, a novel distributed subgraph matching
approach based on the Pregel model. The approach is based on the query graph, which is
turned into a spanning variation.

Guo, Gao [27] introduced a model named Leon. Leon is a distributed RDF system
that deals with multi-query problems. The idea is to use a characteristically determined
partitioning scheme to support complete parallel processing with a set of features to reduce
data communication by direct transmission of intermediate results rather than broadcast-
ing. In the context of RDF/SPARQL, Leon reviews the traditional issue of multi-query
optimization. In view of the NP-hardness of SPARQL multi-query optimization, the author
has presented a heuristic algorithm that partitions the input batch of queries into groups
to identify the common sub-query of several SPARQL queries. Gai, Wang’s [28] research
also looks at the restricted support for queries with more extensive SPARQL specifications,
as well as semantic-preserving translation from SPARQL to SQL. The authors provide
ROSIE, a runtime optimization system that repeatedly re-optimizes the SPARQL query
plan based on the partial incremental query evaluation’s real cardinality. During runtime,
the model employs heuristic plan generation and a system for identifying cardinal errors
in estimation. The authors tackled the problem of suboptimal query plans caused by an
error-prone estimation of cardinality. Extensive trials on real-world and benchmarking data
revealed that, when compared to state-of-the-art queries, ROSIE regularly outperformed
rival models by orders of magnitude.

RDF-3X [29] uses a giant triple table; six B+ clusters must be updated to manage
actual updates. However, RDF-3X supports correct SPARQL queries only, and wildcard
requests fail to support them. As such, with the underlying RDF repositories, RDF-3X
cannot perform web updates effectively. Moreover, for starters, if there are updates of
properties in RDF triples in clustered property table-based methods, the re-cluster property
has to be performed.

Zou, Özsu [30] created a new gStore approach to effectively answer SPARQL queries.
In the developed system, RDF data were processed into a large graph to represent the
SPARQL database as a query graph. Additionally, a pruning rule index was developed to
achieve scalable and effective processing of queries. For managing web updates over RDF
repositories, an efficient maintenance approach was also used. The result of the experiment
demonstrates that the accuracy of the system developed was best related to the existing
systems. To deal with the missing attribute values in the dataset, the developed system lags.

Hadoop MapReduce is presented in Husain, Doshi [31], as a new framework for
manipulating large quantities of RDF data graphs. A high-fault tolerance of the Hadoop
distributed file system and MapReduce is automatically accepted via the algorithm on top
of the framework to define the baseline processing plan to answer a SPARQL query. Many
modern frameworks used for the storage of RDF data do not scale for connected large data
because the results do not show the emulation of RDF storage and retrieval.

JOTR [8] has been introduced to distributed Hadoop-based RDF systems as a SPARQL
query optimization method. The design is based on the calculation of discrimination and
was tested on the LUBM dataset, one of the standard RDF benchmarks. In consideration of
the query execution time, large data sets were used to compare the JQPro model with other
optimization approaches. The result shows that the JQPro model can deliver prominent
results on distributed RDF systems. The RDF triple numbers and size of the LUBM dataset
that have been tested are small, so they cannot return the real runtime.

In [32], the authors introduced the RDFox system to efficiently parallelize hash-based
joins and produce a suitable parallelization result. Although RDFox supports query evalu-
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ation, it is not the major emphasis of the system, and there is no support for intra-query
parallelism, which means that each query is assessed in a single thread, for such queries.

Concerning key memory environments, Bilidas and Koubarakis [33] proposed a PARJ
system and provided a physical architecture and a query method for using spatial localities
to efficiently access the memory. The authors took advantage of totally or partly ordered
RDF data through an integrated convergence retrieval approach. They proved that their
prototype could store and query RDF graphs up to two billion triples on a computer with
128 GB of main memory and 16 core components. The method exceeds both centralized
and distributed state-of-the-art approaches.

MuSe was proposed in [34] as a multi-level storage scheme for big RDF data using
MapReduce. Large volumes of RDF data may be swiftly processed using a two-level storage
approach called triple pattern matching MapReduce. The MuSe RDF Storage component
of Hadoop is utilized to store a significant quantity of data, and MapReduce processes are
used to handle the translated SPARQL queries. MuSe is easy to construct and deploy across
a Hadoop cluster due to its simplistic architecture; nonetheless, this effort does not explain
how MuSe performs with complex queries.

Ref. [35] proposed a multi-way join approach called ADJ, which co-optimizes commu-
nication, pre-computing, and computation costs in a one-round multi-way join evaluation.
ADJ explores cost-effective partial results to find an optimal query plan and achieves su-
perior performance compared to existing multi-way join methods. The study intended
to address the neglect of the computational cost, which can become a bottleneck after
communication costs are minimized.

The study [36] focused on the processing of distance join queries (DJQs), which involve
both join and distance-based search and are used in various applications, including spatial
databases and data mining. The increasing use of spatial data applications has led to the
emergence of distributed spatial data management systems (DSDMSs) that use distributed
cluster-based computing systems such as Hadoop and Spark. The study compared the
performance of two recent DSDMSs, SpatialHadoop and LocationSpark, using existing
and new parallel and distributed DJQ algorithms on large spatial datasets. The study finds
that SpatialHadoop is efficient for large spatial datasets, while LocationSpark is faster for
medium datasets due to in-memory processing but requires higher memory allocation for
large datasets. The study also proposes efficient and scalable DJQ algorithms that consider
different parameters, such as dataset sizes and the number of computing nodes.

The study of [37] proposed a meta-heuristic optimization-based approach called
MOBDC-MR, which involves a binary pigeon optimization algorithm for feature selection
and a beetle antenna search with an LSTM model for big data classification. They imple-
mented the proposed method on Hadoop with the MapReduce programming model, which
was evaluated using a benchmark dataset. Results show that the MOBDC-MR approach
outperforms existing techniques in terms of accuracy and complexity reduction across
various dimensions. This paper discusses how big data can be effectively managed and
analyzed through feature selection methods to remove unnecessary features that can affect
classification results. However, traditional methods are not scalable for massive datasets,
so new models are necessary.

Ref. [38] addressed the issue of laggard nodes in the MapReduce architecture, where
variations in the operating system environments and input data can result in differences in
the number of intermediate data created, affecting the completion time of cloud application
tasks. To improve execution performance, the paper proposes a dynamic task adjustment
mechanism that uses an intermediate-data processing cycle prediction algorithm to adjust
the number of Map and Reduce program tasks based on the processing capabilities of
each cloud worker node. This mechanism aims to mitigate the impact of laggard nodes
on the Google Cloud Platform (Hadoop cluster). The proposed mechanism was evaluated
through a performance analysis and was found to improve processing efficiency by at least
5% for small-scale cloud applications when compared to a simulated Hadoop system.
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Ref. [39] proposed a query optimization approach called access plan recommendation,
which uses previously created query execution plans to optimize new queries. The query
space is divided into clusters, but traditional clustering algorithms take a long time for
large datasets. In addition, the study investigated the use of the Apache Spark and Apache
Hadoop frameworks in the MapReduce distributed computing model to cluster query
datasets of different sizes. The performance is evaluated based on execution time, and the
results show that parallel query clustering is highly scalable. Additionally, Apache Spark
outperforms Apache Hadoop, achieving an average speed up of 2x.

Ref. [40] proposed a new data partitioning technique called distance-join query pro-
cessing (DJQs) based on Voronoi diagrams and improved MapReduce algorithms for
KNNJQ and KCPQ operations. The effectiveness of these approaches is tested through
experiments using real-world datasets, showing that they are efficient, scalable, and ro-
bust in SpatialHadoop. SpatialHadoop is an extension of the Hadoop framework that
enables better processing of spatial datasets by incorporating global indexing techniques
and partitioning data across multiple machines. DJQs, which combine spatial joins with
distance-based search, are important operations in spatial applications but are also compu-
tationally expensive.

Ref. [41] discussed the importance of the Semantic Web and Big Data Technology for
extracting and deriving useful knowledge from the enormous amount of structured and
unstructured data on the web. It highlights the need to process this data with powerful
and scalable techniques in distributed processing environments such as MapReduce and
mentions several distributed RDF processing systems. The article then compares selected
RDF query systems using two widely used RDF benchmark datasets, FedBench and LUBM.
The results show that the SemaGrow distributed system performs more efficiently than
FedX and Splendid, even though the former performs slower on smaller queries.

Ref. [42] proposed a new approach that includes a relational partitioning schema and
a distributed RDF data management system to provide efficient and scalable RDF data
management in distributed systems. The proposed partitioning schema, property table
partitioning (PTP), further partitions an existing property table into multiple tables based
on distinct properties to minimize the input size and the number of join operations in
a query. The authors also introduce a distributed RDF data management system called
S3QLRDF that uses SQL to execute SPARQL queries over the PTP schema and is built on
top of Spark. The experimental analysis shows that S3QLRDF outperforms state-of-the-art
distributed RDF management systems in terms of query performance and preprocessing
costs. By addressing the issues of querying efficiency, optimization for different query
patterns, and minimizing pre-processing cost, the proposed approach can lead to improved
management of RDF data in distributed systems, with benefits for applications that rely on
large-scale semantic data processing.

3. Proposed Join Query Processing (JQPro)

In this section, the developed JQPro propose is discussed in detail. Hence, Figure 3
presents the model in detail.

The JQPro model is composed of two main components, which are the data source
and the MapReduce framework. The data source component converts large URL data to
RDF format. Hence, the data pre-processor converts the RDF into N-triples serialization
formats using the N-triples converter module. This N-triple file of an RDF graph is an
input data source, which is loaded as a HIVE query. The users send the query via the
HIVE query interface, and the query is then submitted to the MapReduce framework (the
second component). As shown in Figure 3, the relationship between the plan generations
for query processing and the MapReduce framework. After the data are loaded into HIVE,
the input selector gets the data from the storage as triples formats. To reduce the time
it takes MapReduce to find the relevant results based on the query, plan generation is
used to reduce the amount of data and time taken to execute each query. Since RDF data
are extracted from various machines, the performance of each machine is assumed to be
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different from others. Therefore, the time to retrieve the data is different depending on the
machine selected by the Hadoop framework. Plan generation consists of two developed
algorithms. The first algorithm is based on the hash join, where all the selected input is
inserted into a hash table using a join relation. The output of Algorithm 1 is then used in
Algorithm 2 in which sort-merge join is used to find distinct values of the join attribute for
each set of the data that contains the matching of the overall dataset. The combination of
the list of join attributes will be used by the modified MapReduce join algorithm to map
the selected data using the MapReduce framework.
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In this framework (MapReduce framework), the input selector, which is the first
module, maps the HIVE query and generates a plan for query completion. The join
executor uses our developed algorithms [43] that are based on the join-merge strategy to
find an optimal result to reduce the time (Algorithm 1) while increasing the throughput.
After the required queries are joined using the join executor mechanism, the output is
shuffled and sorted by the MapReduce Framework to accurately answer the query. As
such, the reduce part takes the output of the shuffle and sort using key-value to reduce the
results of the query; the outcome will be again submitted to HIVE in order to be returned
to the users as an answer (Algorithm 2). The third algorithm is the MapReduce join, which
is performed using the developed enhanced MapReduce-join algorithm (Algorithm 3).
This algorithm begins by erasing all non-joining variables that are not related to the query.
Furthermore, after removing all the non-joining-related queries, the output is shuffled
and sorted by the MapReduce Framework to accurately answer the query. As such, the
reduce part takes the output of the shuffle and sort using key-value to reduce the results of
the query by using the algorithm (Algorithm 3). The outcome will be again submitted to
HIVE in order to return an answer to the users. These algorithms are further discussed in
this section.

- Hive

Hive is an open-source data warehouse software developed by the Apache Software
Foundation. It is built on top of Hadoop and enables users to perform SQL-like queries on
large datasets stored in the Hadoop Distributed File System (HDFS) or other compatible file
systems. Hive uses a language called Hive Query Language (HQL) to process data. HQL is
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similar to SQL and allows users to write queries in a familiar SQL-like syntax. However,
instead of operating on traditional database tables, Hive queries operate on distributed
data stored in Hadoop. It is designed to work with structured and semi-structured data and
supports various data formats such as Apache Parquet, ORC, and AVRO. It also supports
data partitioning, which allows data to be divided into smaller, more manageable parts
that can be processed independently.

One of the key benefits of Hive is its scalability. It can process large amounts of
data stored in Hadoop and distribute the workload across multiple nodes in a cluster.
Additionally, Hive can integrate with other Hadoop components, such as Pig and HBase,
to provide a more comprehensive data processing solution. Overall, Hive is a powerful
tool for big data processing and analysis and is widely used in industries such as finance,
healthcare, and telecommunications.

- MapReduce

MapReduce is a programming model and software framework for processing large
datasets in a distributed environment. It was developed by Google and is now an open-
source project under the Apache Software Foundation. The MapReduce framework consists
of two main phases: the map phase and the reduce phase. In the map phase, input data is
divided into smaller chunks and processed in parallel by multiple nodes in a distributed
system. Each node applies a map function to its assigned data chunk and generates a set
of key-value pairs. In the reduce phase, the key-value pairs are grouped by their keys
and processed by a reduce function. The reduce function aggregates the values associated
with each key and generates the final output. MapReduce is designed to work with a
variety of data sources, including structured, semi-structured, and unstructured data. It
can also be used to perform a wide range of data processing tasks, such as filtering, sorting,
aggregating, and transforming data.

One of the key benefits of MapReduce is its scalability. It can process large datasets
that are too big to fit into the memory of a single node by distributing the workload across
multiple nodes in a cluster. MapReduce can also handle node failures and ensure that
data processing tasks are completed even if some nodes fail. Therefore, MapReduce is
widely used in industries such as finance, healthcare, and telecommunications for big data
processing and analysis. It has become a standard framework for processing large datasets
in distributed environments and has been implemented by various big data processing
systems, including Apache Hadoop and Apache Spark.

- Related big data tools

Computing and big data are distributed hand in hand. Big data enables users to use
commodity computing so that distributed queries can be made via many data sets and the
result sets returned in time. There are several related big data tools that are commonly used
in conjunction with tools such as Hive and MapReduce. Some examples include:

1. Apache Hadoop: Hadoop is a distributed storage and processing framework that
provides the underlying infrastructure for tools such as Hive and MapReduce. It is
designed to handle large volumes of structured and unstructured data and can be
used to store, process, and analyze data across a large cluster of computers.

2. Apache Spark: Spark is a fast and general-purpose cluster computing system that can
be used for big data processing, machine learning, and graph processing. It provides
a simpler programming model than MapReduce and can be used to process data in
memory, which can result in faster performance.

3. Apache Pig: Pig is a high-level platform for creating MapReduce programs used with
Hadoop. It provides a simplified programming model for data processing that is
based on a language called Pig Latin.

4. Apache Cassandra: Cassandra is a distributed NoSQL database that is designed
to handle large volumes of structured and unstructured data across a distributed
network of nodes. It provides high availability and scalability and is often used for
applications that require real-time data access.
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5. Apache Storm: Storm is a distributed real-time processing system that can be used for
stream processing and real-time analytics. It can be used to process large volumes of
streaming data in real time, making it useful for applications such as fraud detection
and sensor data processing.

- Characteristics of the Hive query used.

Hive query has some characteristics. The specific characteristics of a query will depend
on the requirements of the project and the data being processed. However, in general, some
common characteristics of Hive queries include:

1. Hive queries are written in a SQL-like language called HiveQL. This allows devel-
opers who are familiar with SQL to work with Hive without having to learn a new
programming language.

2. Hive is designed to work with large datasets, so Hive queries are often used to process
large volumes of data.

3. Hive is built on top of Hadoop, so Hive queries are often executed in a distributed
environment across a cluster of machines.

4. Hive provides a schema-on-read approach to data processing, which means that the
schema for the data is inferred at the time the data is read rather than being defined
ahead of time.

5. Hive supports a wide range of data formats, including structured, semi-structured,
and unstructured data.

6. Hive supports a variety of data storage systems, including the Hadoop Distributed
File System (HDFS), Apache HBase, and Amazon S3.

3.1. Algorithm 1. Hash-Join

This algorithm is the hash-join algorithm [44] developed for the input selector module.
For this algorithm, the first set of data is loaded along with a table inside the HIVE in the
building phase. The large dataset is then scanned and joined with the relevant triple used
in the probe phase. In Algorithm 1, P and Q are defined as table partitions in the LUBM
and WatDiv datasets. The algorithm sorts both relationships into join qualities and then
integrates the sorted relationships. Furthermore, groups of datasets with the same values
are sorted in a join column. The sort-merge join algorithm sorts the data sets P and Q on
the join qualities and thereafter searches for qualifying tuples p 2 P and q 2 Q by combining
the 2 sets. This grouping is exploited by making a comparison between the group R tuples
and the S tuples in a similar segment. The hash-join algorithm can be very useful on social
media platforms where large amounts of data are generated every second. Social media
platforms need to analyze this data to gain insights into user behavior, preferences, and
other metrics to improve their services. The hash-join algorithm combines multiple datasets
efficiently, even if they are stored in different databases. For example, they can use hash
join to combine user data such as demographics, interests, and activity with engagement
data such as likes, shares, and comments.

Algorithm 1: Hash-Join Algorithm

1. for all pε P, do
2. load p into in memory hash-table H
3. end for
4. For all qε Q do
5. if H contains p matching with q, then
6. add (p,q) to the result
7. end if
8. end for
9. end
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3.2. Algorithm 2: Sort-Merge Join

This algorithm is the sort-merge join algorithm [45]. Firstly, the algorithm will check
if the plan generation is less than the query processing. The execution of the query will
then be performed. Moreover, the plan generation will be checked again based on equality.
If the plan generation and query processing of the RDF datasets are similar, then these
components will be added to the P and Q datasets. This process will continue until p and q
are equal to the query. This algorithm requires range practitioner (records are subdivided
into sorted buckets), all of which are exclusive of each other exclusive. Merge reads from
two sets of reducer outputs covering a certain key range. The sorting process groups all
tuples with about the same significance in the join column.

Defining partitions or groups of tuples with almost the same value in the join column
is therefore easy. This partitioning is used by trying to compare P tuples in a partition just
with Q tuples in about the same partition (instead of all tuples in Q), thus further ignoring
the enumeration or cross-product of P and Q. This partition-based technique works just to
achieve a level playing field.

Sort-merge join can be used to merge data from different sources, such as customer or-
ders and customer information, financial data on income and expenses, and get a complete
view of a company’s finances, in healthcare it can help electronic health records and lab
reports and providers get a complete view of each patient’s medical history. Sort-merge
join involves sorting the tables based on the common key and then merging the sorted
tables by scanning through them in order. It can be used in situations where there are large
amounts of data and performance is a concern.

Algorithm 2: Sort-Merge-Join Algorithm

1. p ε P; q ε Q; gq ε Q
2. while more tuples in inputs, do
3. while p.a < gq.b, do
4. advance p
5. while p.a > gq.b, do
6. advance gq {a group might begin here}
7. while p.a == gq.b, do
8. Q = gq {mark group beginning}
9. while p.a == q.b, do
10. add (p, q) to the result
11. advance q
12. end
13. advance p (move forward)
14. end
15. gq = q {candidate to begin next group}
16. end

3.3. Algorithm 3: Enhanced MapReduce-Join

This algorithm begins by erasing all non-joining variables that are not related to the Q
query. Q = {X, Y, VZ, XY, XZ}, where X, Y, VZ, XY, and, XZ represent a set of features with
their association for query Q in the running example and erasing the variable non-joining
V gives the: Q outcomes = {X,Y,Z,XY,XZ}. This is usually obtained beginning with the first
task within the while loop. In Line 4, the variables are sorted out by their respective E-count,
and these include: U = {Y; Z; X} with Y and Z having an E-count equal to 1, while the X
variable is assigned to an E-count equal to 2. JobJ is usually designated as the storage point
for all the join operations, where all the tasks executed are stored accordingly. It is important
to note that ‘j’ denotation represents the identity of the current task. Moreover, the resultant
triples of the joins of an existing join are stored in line 6 for a limited period with the
variable denoted by ‘tmp’. At the loop in line 8, each variable is tested to see whether it
can be discarded in full or in part. If so, the results are recorded in the provisional variable
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(line 9), and Q (line 11) will be modified. Hence, this will be applied to the immediate job
(line 12).

To properly conduct an experiment for the JQPro model with big RDF data, we
assume that, when running locally in a real application, different large data applications
vary dynamically and consider the size of the cluster used in this analysis. This evaluation
assumes that users can scale up or down workload tracks by their needs, whether in data
or working scales.

The benchmarks’ aim is to measure the performance, time of execution, CPU usage,
and performance of the developed join query algorithms. Hence, MapReduce’s perfor-
mance is measured by its execution time [46]. Furthermore, several other factors, such as
the number of mapping tasks and reduced tasks, the underlying network, the intermediate
shuffled data pattern, and the shuffled data size can significantly influence the work of
MapReduce.

Algorithm 3: Enhanced MapReduce-Join Algorithm

1. Q Remove non joining variables (Q)
2. while Q6 = Empty, do
3. j 1 // Total jobs number

4. U = {u1,..., un} < // All variables sorted with their
//E-counts in a non-decreasing order

5. Jobj Empty // Join operations list in the current job

6. Tmp Empty // The resulting triple patterns are
//temporarily stored

7. for i = 1 to K, do

8. if Can-Eliminate (Q,ui) = true, then
// partial or complete elimination possible

9. tmp tmp [ Join–result(TP(Q,ui))
10. Q Q-TP(Q,ui)
11. Jobj Jobj[ join(TP(Q,ui))
12. end
13. end
14. Q Q [ tmp]
15. j j + 1
16. end

4. Experiment

In this section, an overview of the experiment is given. The experiment setup, the
benchmarks used, and the descriptions of the datasets utilized are presented in detail.

4.1. Experimental Setup

In conducting our experiment, a Hadoop cluster is configured. Hence, each node was
installed in a distinct virtual machine (VM). We set up a network connectivity between
five computer devices where each computer has a dedicated ethernet cable connected to
the switch. Then we installed Hadoop software on each machine to join them into one
cluster. Clusters can provide increased processing power and performance by distribut-
ing workloads across multiple nodes, allowing for faster processing of large datasets or
complex computations.

The cluster (Hadoop) is composed of a master virtual machine and a NameNode,
and multiple virtual machine workers running DataNode and a NodeManager. Therefore,
DataNode is located in a cluster by the NameNode when an RDF query is placed. Hence, a
DataNode contains part of a dataset and communicates with the NameNode constantly to
perform a particular task. When the datasets are located within the cluster, the NodeMan-
ager starts data processing using the MapReduce framework mechanism, which begins
with an input selector, maps, combines, shuffles, and reduces.

The importance of the clustering process can be seen in its ability to reduce the
amount of data that needs to be processed. By grouping related data together, an algorithm
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can eliminate unnecessary computations and join operations, resulting in faster query
processing times and reduced computational overhead. Moreover, the cluster process
enables to perform batch processing, which is particularly useful for handling large amounts
of data. By clustering together similar data, an algorithm can perform batch processing on
subsets of data, reducing the overall processing time required to complete the entire query.

The experiments were performed with 5 VMs installed on the Linux Ubuntu 19 Hadoop
Cluster. NameNode and ResourceManager are used by one of the VMs, while DataNode
and DataManager are run by the others. Each VM has a 2.80 GHz processor, 8 GB main
memory, and 1000 GB of disk space configuration. A high-level query has been utilized
with Hadoop version 2.6.0. To specify the data block replication limit, the maximum
replication factor “dfs.replication.max” was applied. A representative benchmark set of
CPU and IO-intensive applications included in the Hadoop distribution, such as Waterloo
SPARQL Diversity Test Suite (Watdiv) and Lehigh University Benchmark (LUBM) has been
used for performance analysis to evaluate the MapReduce jobs effectively [17].

4.2. Benchmarks

In this research, two synthetic benchmarks were used, namely LUBM and WatDiv v06
benchmarks.

LUBM: The Lehigh University Benchmark was developed as a standard to systemati-
cally facilitate the evaluation of Semantic Web repositories. The purpose of the benchmark
is to evaluate the performance of those repositories with extensional queries over a large
dataset committed to a single realistic ontology. The benchmark consists of the ontology of
the university domain, customizable and repeatable synthetic data, a set of test queries, and
various performance metrics. The LUBM features a university-domain ontology, arbitrary-
scalable synthetic OWL data, 14 extensional queries representing a variety of properties,
and many performance metrics. LUBM has been extended to include a widely adopted
RDF and OWL dataset benchmark of approximately 1 GB data size.

WatDiv: The benchmark was developed to measure how an RDF data management
system performs on a large variety of SPARQL queries with varying characteristics and
selectivity classes. Data generator WatDiv enables users to create their datasets through a
description language of the dataset. Thus, users can control which entities are included in
their dataset. How well-structured each entity is, how different entities are associated with
each other, the probability that a type X entity is associated with a type Y entity, and the
cardinality of such associations. The test data for WatDiv is designed using those features.
It is possible to generate test datasets of various sizes by executing the data generator with
different scale factors.

Our implementation ranged from ten million to one billion RDF triples generated
using the WatDiv data generator with scale factors of 10, 100, and 1000 on three datasets,
respectively. WatDiv, a more balanced stress testing environment for RDF data management
systems with more diverse underlying workloads than other benchmarks, provides the
generator with all the different forms of queries. This allowed us to test the performance of
the developed algorithm against more fine-grained rivals. Hence, the reason for choosing
these two benchmarks in this study is that both of them are the most often used to process
RDF datasets as baseline benchmarks for MapReduce.

5. Results and Discussion

In this section, the result is sectionalized into the various sections that represent distinct
outcomes of the developed model on the two benchmarks (WatDiv and LUBM).

5.1. Effectiveness of JQPro on WatDiv Benchmark

This section presents the results of JQPro on the WatDiv benchmark. Hence, the results
of different queries of size 10 M, 100 M, and 1000 M are given. Hence, these results are
illustrated in Figure 4.
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Figure 4. Measurement of the execution time (s), for a number of queries using WatDiv.

Figure 4a highlights the overall average execution time for queries of size 10 M. These
queries are complex (1–3), linear (1–5), snowflake-shaped (1–5), and star (1–7) as presented
in the figure. From Figure 4a, we observed that the execution time of each query is different;
hence, some queries have a higher execution time while others have a lower one. For
instance, we observed that, for the star 7 query, the execution time is 6.22 s which is the
highest achieved by our developed model (JQPro); this is followed by snowflake 3 with
6.93 s, while the lowest execution time is for query linear 5 with a 5.92 s execution time.
The reader should note that the execution times are in seconds. Hence, we conclude that
with the WatDiv query of size 10 M, JQPro has performed relatively well. Furthermore,
in Figure 4, the same queries were utilized with a query name of size 100 M WatDiv.
We observed that star 2 and star 7 are the queries that have the highest execution time.
Therefore, with a 5.03 s execution time, the query snowflake-shaped 3 achieved the lowest
execution time on size of 100 M. However, star 7 is the second highest with a 6.81 s execution
time. The trend is different from the size 10 M, where the query linear 5 is the lowest (as
illustrated in Figure 4).

We further present the result based on size 1000 M query with respect to their execution
times in Figure 4. Based on the obtained results, we observed that the execution time was
significantly reduced for some queries, such as star 7, snowflake-shaped 3. However, the
query complex 1 execution time increased rapidly. This can be explained by the CPU-
intensive job performed. Hence, with a higher CPU power, the execution time can be
further reduced for complex 1 query. This observation is critical as the performance of
the developed model (JQPro) is not consistent across various query sizes in the WatDiv
benchmark. However, the JQPro model performed very well in this experiment.

The overall results illustrate that with a relatively large number of triples, the execution
time of some categories is reduced slightly. This result shows that using JQPro to perform
an RDF query can assist in reducing the time it takes to complete a task in comparison to
the existing normal query, which only gives fixed times for each result.

Figure 5 shows the results of overall execution time with size data 1000 M triples.
Various RDF triple query strategies are based on complex 1, 2, 3, snowflake-shaped 1–5,
linear 1–5, and star 1–7. The result indicates that under various queries, the model shows
stability in terms of execution time. Moreover, Figure 5 and Table 2 show the queries
with size data of 100 M triples, which are complex 1, 2, 3, snowflake-shaped 1–5, linear
1–5, and star 1–7. Each query was performed multiple times to obtain different results
based on execution time. This implies that the model demonstrates consistency in terms
of execution time. Particularly in the star 2 execution time, the natural test takes longer to
complete when the data size decreases, while snowflake-shaped 3 needed more triples and
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less execution time. Figure 5 and Table 1 with size data 10 illustrate that the execution time
of different queries, which are reduced on the basis of the execution time of the application,
is reduced significantly for some queries. However, a modest triples throughput exhibits
the maximum execution time in snowflake-shaped 3 and linear 3, as shown in Figure 5.
As for the less execution time, it was at complex 1 and 3, snowflake-shaped 2, and linear
5, and the volume of data was also moderated. In contrast, the highest quantity of triple
throughput is shown in complex 1, while the execution time was relatively less, and with
increasing execution time, reduced triple throughput was in star 7.
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In addition, the comparison between complex queries with different sizes of WatDiv
triples increased in terms of execution time as the number of triples increased. However,
the average execution time is higher than the regular queries. The WatDiv Triple execution
time of various sizes for snowflake queries is slightly higher. Significantly, the total time
efficiency of execution is higher than the existing performance.

5.2. Effectiveness of JQPro on LUBM Benchmark

In this section, the results of JQPro on the LUBM benchmark are presented. The RDF
data for this experiment are processed using different sizes of arranged triples (500 M,
1000 M, and 2000 M). Furthermore, numerous query categories, which involve fourteen
queries, are chosen. The results show that these queries perform better than normal RDF
queries found in the literature.

Figure 5 presents the results of the JQPro experiment on the LUBM benchmark. As
indicated in Figure 5, 14 queries are performed to measure execution time, and it shows
that the execution time of some queries improved. Hence, Figure 5 highlights the overall
average execution time for queries of size 500 M. From Figure 5 we observed that query
Q11 has the highest execution time. Hence, the best-performing query on a 500 M query
size is the query Q4, followed by Q3, Q5, Q14, and Q6, respectively. These queries achieved
low execution times. From Figure 5, the overall average execution time for queries of size
1000 M is presented. Hence, the experiment was also conducted with 14 queries. Each
query is performed to obtain different results based on execution time. The results show
that some of the queries (e.g., Q2, Q1, Q14, Q7, and Q5) provide low execution times.
However, queries such as Q8, Q4, and Q10 have a high execution time.

The result of the execution time for queries of size 2000 M is also presented in Figure 5.
Based on the experiment conducted, we observed that some queries, such as Q3 and Q12,
provided the lowest execution time. However, Q6 and Q13 have the highest execution
times, as presented in Figure 4. The result obtained in this section with respect to the
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experiment on the LUBM benchmark is good, with no more than 6.6 s of execution time
observed in all queries. These observations are important and are key to solidifying the
result obtained in this section on the LUBM benchmark.

5.3. Cross-Comparison of JQPro with the Existing State-of-the-Art

In this section, the cross-comparison results between the JQPro model and four models
(gStore, RDF-3X, RDFox, and PARJ) are presented with respect to the WatDiv and LUBM
benchmarks. The result is given for two facets, which are the execution time and the
throughputs. The results of execution time and throughput are discussed, which demon-
strate the total efficiency of our developed model. The analysis of our findings is presented
through several figures indicating their values.

5.3.1. Comparison on WatDiv Benchmark

The evaluation is required to confirm the reliability of the results based on our devel-
oped model. Evaluation of the JQPro model results from the experiments and comparison
with two existing models, gStore and RDF-3X, is presented. From Table 1, the reader can
see the cross-comparison of JQPro with the selected models.

Table 1. Comparison between our model and presented system for execution time–WatDiv.

Query (MS) JQPro gStore RDF-3X

Linear 6144 20,128 16,282.1
Star 6073 10,808.7 3820.6
Snowflake-shaped 6216 29,204.8 8405.6
Complex 9535 15,447 11,980.3

The queries were also highlighted in the table. From the result, based on the WatDiv
benchmark, we observed that generally, JQPro has a lower execution time with a great
margin. Hence, based on this result, the JQPro model performs better in comparison to the
existing state-of-the-art.

Figure 6 shows the execution time (mean) of a number of queries using WatDiv
Benchmark with JQPro, gStore, and RDF-3X in Hadoop cluster nodes with linear, star,
snowflake-shaped, and complex queries of a large number of triples. This shows that if the
number of tasks increases, the completion time of the overall processing is also reduced.
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In the first scenario, gStore and RDF-3X are used on Hadoop nodes without tuning
Hadoop parameters or the JQPro model. The result shows that JQPro outperforms the two



Mathematics 2023, 11, 1275 16 of 20

popular algorithms, gStore and RDF-3X. The blue color represents the result of the JQPro
model based on the joined approach.

5.3.2. Comparison on LUBM Benchmark

Figure 7 and Table 2 compare three models, namely RDF-3X, RDFox, and PARJ, with
the JQPro model. The result shows that JQPro has outperformed the mentioned models
when queries Q1 to Q3 and Q7 to Q10 are used on the LUBM benchmark. Looking at the
figure and table, one can see that JQPro outperformed all the compared models on some
queries for the LUBM benchmark. This is the same for the WatDiv benchmark as well.
Hence, we conclude that the JQPro model is very effective in handling multiple join queries.
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Table 2. Comparison between our solution and presented system for execution time–LUBM.

Query (MS) JQPro RDF-3X RDFox PARJ

Q1 6033 132,951 96,677 15,369
Q2 5975 21,870 40,368 2437
Q3 5957 23,179 136,554 5338
Q7 6151 68,769 31,180 9213
Q8 6264 6485 44,144 9899
Q9 6081 208,839 187,192 58,082
Q10 6054 51,235 26,690 14,606

5.4. Overall Results

Performance evaluation of the execution time for all four models of various data sizes
using the benchmarks (WatDiv and LUBM) was presented. The gStore was 18,897.125 ms
on average for WatDiv queries. The RDF-3X was 12,222.66 ms on average for WatDiv; it
was also 73,332.57 ms in LUBM, which is less efficient in LUBM than WatDiv.

The LUBM queries (Q1, Q2, Q3, Q7, Q8, Q9, and Q10) have a mean run time of
80,400.71 and are higher than the other three strategies. PARJ has taken an average of
21,433,80 for LUBM queries (Q1, Q2, Q3, Q7, Q8, Q9, and Q10), and its performance is
lower than the other three strategy frameworks. JQPro uses a lower runtime of 6073 ms
for the Star query for the WatDiv benchmark and 5957 ms for the Q3 query of the LUMB
benchmark in comparison with the existing models. The results in this section demon-
strate a percentage improvement in JQPro execution time for the developed model. The
improvement percentage is calculated according to the time execution by each model.

Performance evaluation of the execution time frameworks for all four techniques
with various data sizes comes from the benchmarks WatDiv and LUBM. The gStore took
18,897.125 ms on average for WatDiv queries. The RDF-3X was taken in 12,222.66 ms by
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queries in WatDiv; it was also 73,332.57 ms in LUBM, which is therefore less efficient in
LUBM than WatDiv. The LUBM queries (Q1, Q2, Q3, Q7, Q8, Q9, and Q10) have a mean run
time of 80,400.71 and are higher than the other three strategies. PARJ has taken an average
of 21,433,80 for LUBM queries (Q1, Q2, Q3, Q7, Q8, Q9, and Q10), and its performance is
lower than the other three strategy frameworks. Evidently, JQPro uses a lower runtime, at
6073 ms for the Star query WatDiv and 5957 ms for the Q3 query LUMB, compared with
other existing systems. The improvement percentage is calculated according to the time
spent executing each framework using Equation (1) the percentage change is measured. It
is an easy and well-known equation for identifying improvements for a technique in the
percentage of performance testing.

PIM =
TEi − TS

TEi
× 100 (1)

where,
PIMi improves the JQPro system by percentage versus new technology;
TEi is the average time the ith existing framework has been implemented;
TS is the JQPro framework’s average execution time.
In both WatDiv and LUBM datasets, JQPro generally showed faster execution times

compared to the other systems (gStore, RDF-3X, and RDFox for LUBM only). Specifically,
for WatDiv, JQPro outperformed gStore and RDF-3X for all query types, with an average
improvement. For LUBM, JQPro also outperformed gStore and RDF-3X, with an average
improvement. These results suggest that JQPro may be a promising alternative to others in
terms of query performance for large-scale RDF datasets.

6. Conclusions and Future Direction

For big RDF data, join query processing is an important aspect. With the increase in
RDF data size, the query execution time also increases drastically. Hence, in this situation,
an effective join query processing model/framework is imminent and crucial to help in
the execution time reduction. Furthermore, various performance issues such as hardware
failure, software errors, machinery, and data heterogeneity have posed a big challenge to
RDF data analytics.

The performance tuning of RDF query algorithms is therefore essential to ensure the
performance of algorithms and frameworks in a different environment. In this paper, we
developed a novel join query processing model for big RDF data, called JQPro.

The JQPro model adopted a MapReduce framework to aid in RDF data reduction
and sorting. JQPro is composed of three newly developed algorithms, which are hash-
join, sort-merge, and enhanced MapReduce-join for join query processing of RDF data (as
discussed in Section 3). The key objective of the JQPro model is to process the join query
of RDF data by utilizing the HIVE and MapReduce strategies for SPARQL queries. Our
evaluation using the Lehigh University Benchmark (LUBM) and the Waterloo SPARQL
Diversity Test Suite (WatDiv) v06 benchmarks shows that the JQPro model outperforms
the existing state-of-the-art. These algorithms determine the starting time of the task by
running the task. The evaluation result further showed that the execution time of multiple
tasks in a parallel system is reduced. Lastly, the findings showed that JQPro achieved
an improved performance of 87.77% in terms of execution time. The performance result
is based on the overall average of multiple experiments that have been conducted using
the benchmarks. Hence, in comparison with the selected models, JQPro performs better.
Deploying and testing our proposed solution in practical use-case applications such as
healthcare, social media, and open data can provide valuable insights into how the solution
works in a real-world setting. These industries generate massive amounts of data that can
be challenging to analyze. Advanced data processing and analysis techniques such as those
proposed can help provide meaningful insights and improve decision-making processes.

There are several potential areas for improving the performance and capabilities
of JQPro, a tool for processing join queries on large RDF datasets. One approach is to
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incorporate more advanced distributed computing frameworks such as Apache Spark or
Apache Flink to handle large-scale data processing tasks more efficiently. Another approach
is to explore new techniques for data compression and storage to reduce the amount of
data that needs to be processed. Additionally, integrating JQPro with other big data tools
and platforms such as Hadoop or NoSQL databases could provide new opportunities for
optimization and performance improvements. A further area for research is investigating
the use of machine learning techniques to optimize join query processing in distributed
systems, such as using reinforcement learning algorithms to select join algorithms and keys
and partition data for efficient processing.

The JQPro model has limitations that need to be addressed, such as a limited range
of query operations, reliance on the MapReduce framework, and being primarily tested
on the LUBM benchmark. More advanced query capabilities may be required in certain
scenarios, and other distributed computing frameworks such as Apache Spark or Flink
may provide better performance and scalability. Further evaluation and testing on different
datasets and query types are needed to fully assess JQPro’s capabilities and limitations.
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