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Abstract: This paper presents yttria-stabilized zirconia (YSZ) coating deposition on laser surface 

modified H13 tool steel using atmospheric plasma spray (APS) technique. A Praxair Plasma 

Spray System with SG-100 gun was used to deposit coating materials on laser-modified H13 tool 

steel substrate surface. A bond coat layer material was NiCrAlY alloy while the top coat was 

yttria stabilized zirconia (YSZ) with powder size distribution range of -106 µm to +45 µm.  A 2
3
 

design of experiment (DOE) was used to deposit bond coat and top coat powders with three 

controlled factors of input current, powder feed rate and stand-off-distance.  The design was 

optimised for minimum porosity and maximum hardness. The coating thickness and percentage 

of porosity were measured using IM7000 inverted optical microscope.  Hardness properties of 

top coating layer were measured by using MMT-X7 Matsuzawa Hardness Tester Machine with 

vickers hardness scale.  The microscopy findings indicated variations of coating thickness at 

different parameters settings.  Samples at the highest current and powder feed rate and lowest 

stand-off distance settings produced a lower porosity percentage and  higher hardness.   A higher 

powder feed rate with the smallest stand-off-distance allowed melted powders to travel 

uniformly onto the substrate surface. These findings were significant to development of thermal 

barrier coatings on semi-solid forming die surface.       

 

Introduction 

In forming applications, die surface was rapidly heated during molten metal injection, and was 

cooled by water quenching during solidification [1]. Repetitive cycles of these processes initiated 

premature failure in dies such as thermal fatigue (heat checking), erosion, corrosion, local 

adherence of the casting alloy to the tool (soldering) and gross fracture [2, 3, 4]. Erosion is 

physical impingement of incoming liquid and partially solid alloy onto die surface. 



Thermal spray processes like flame spray, electric arc spray, and plasma arc spray have been 

used to deposit metallic or non-metallic coatings [5, 6]. For thermal barrier coating application, 

YSZ in powder form was heated to a molten state or semi molten state and was projected in the 

form of micrometer size particles at high speed onto substrate surface using atmospheric plasma 

spray. Coating quality was determined by its porosity content and hardness properties [7, 8]. 

Though much works have been conducted on porosity study in thermal spray coatings, and 

effects of micro-cracks and pores on coating properties, limited works reported on atmospheric 

plasma spray parameters effects on porosity content in YSZ coating [9, 10-13].  

 

Several attempts have been carried out to establish relationship of thermal spray coating process 

parameters such as Taguchi method, full and fractional DOE [14,15]. A full factorial design  

with three factors and two levels was reported to determine the dependence of photocatalytic 

activity of titania coatings on plasma power, carrier gas flow rate, and powder feed rate [16].   

 

Generally, both hardness and porosity content were related where coating with high content 

porosity produced varied hardness properties [17]. Excessive porosity content influenced 

structural integrity of coating. During plasma spraying process, pores can be generated from 

entrapped gases, incomplete filling and shrinking during rapid solidification of splats. Major 

problems in plasma sprayed coatings were presence of open pores, closed pores and micro-

cracks which reduced mechanical properties of coating such as elastic modulus, micro-hardness 

and bonding strength [18].  Porosity varied from 2% to more than 20% which dependent to spray 

parameters.  Changes of spray parameters influenced particle velocity and temperature which 

were closely linked to coating hardness and porosity content [14]. The porosity of plasma-

sprayed coatings was analysed using digital image analysis [19]. In this study, experimental 

techniques have been utilised to study erosion failure mechanism that related to the coating 

density. Low erosion failure may occur with low porosity and high hardness obtained. 

 

Methodology and materials 

 

AISI H13 steel was used as substrate material and chemical composition of the substrate 

materials is given in Table 1.  Bond coat powder used was Praxair Nickel based NiCrAlY (Ni-

164/211 Ni 22%Cr 10%Al 1.0%Y) while  top coat, Praxair Ai-1075 ceramic coating yttria 

stabilized zirconia (ZrO2 + 8 wt.% Y2O3). 

  

Samples of 10 mm diameter and 150 mm length were processed using CO2 laser system with 

range of treated surface thickness of 10 to 32 μm. Details of processing was as described 

elsewhere [ref]. The laser modified sample was coated using APS method with parameters given 

in Table 2. Sample was rotated by controllable speed chuck during deposition and was 

positioned at a stand-off distance perpendicular to robotic arm which held plasma spray gun. The 

robotic arm was translated in z-direction to deposit the entire sample surface. In Table 2, bond 

coat was deposited at constant feed rate, stand-off distance and current while top coat processing 

was conducted at 2
3
 design of experiment. The parameters settings for 2

3
 DOE is shown in Table 

3. 

Metallographic study was conducted using IM7000 inverted optical microscope. Samples were 

measured for hardness using MMT-X7 Matsuzawa Hardness Tester Machine with vickers 

hardness scale while porosity content was analysed using ImageJ software. 



 

 

Table 1: Chemical composition of AISI H13 steel (wt. %) 

 

Material C Mn Si Cr Ni Mo V Cu P  S Fe 

H13 0.32-

0.45 

0.20-

0.50 

0.80-

1.20 

4.75-

5.50 
0.30 

1.10-

1.75 

0.80-

1.20 
0.25 0.03  0.03 Bal. 

 

 

Table 2: Praxair plasma spray system parameter settings 

Parameters Unit Bond coat (NiCrAlY) 

setting 

Top coat (YSZ) 

setting 

Secondary gas (He) kPa 345 827 

Primary gas (Ar) kPa 345 345 

Carrier gas (Ar) kPa 345 207 

Workpiece rotational speed rpm 250 250 

No. of cycle no. 4 22 

Torch speed % 5 5 

Input Current 

Feed Rate 

Ampere 

g/min 

550 

29.8 

550 

36.3 

650 

51.7 

Stand-off distance mm 110 100 120 

 

Table 3: DOE 2
3
 level parameter settings  

Sample 

no. Current, A Feed rate, g/min 

Stand-off distance, 

mm 

1 550 51.7 120 

2 650 36.3 120 

3 650 36.3 100 

4 550 51.7 100 

5 650 51.7 100 

6 550 36.3 120 

7 550 36.3 100 

8 650 51.7 120 

 

 

 

 



Results and discussions 

Micrograph in Figure 1 shows an example cross-sectional area of coated sample obtained. The 

sample cross-section consists of YSZ coating layer [A], NiCrAl alloy coating [B], laser modified 

layer [C] and substrate material [D]. Range of coating layers thickness is given in Table 4, where 

bond coat and top coat thickness varied from 145 to 225 µm, and 100 to 550 µm  respectively. 

The highest range was measured in sample 5 which was processed at higher input current, 650 A, 

higher feed rate, 51.7 g/min and minimum stand-off distance, 100 mm. Sample 1 produced the 

lowest range of top coating thickness of 100 to 170 µm.  
 

 

Figure 1: Micrograph of cross-sectional surface of coated laser modified sample 

 

The coating layers consist of porosity formation as shown by micrographs of Figure 2. High 

distribution of porosity in the top coat layer is shown in Figure 2(a) while low porosity 

distribution is given in Figure 2(b). Porosity content in both coating layers of each sample is 

shown by Figure 3. Porosity percentage in top coat varied with parameter settings. The lowest 

porosity percentage of 41% in top coat was measured from sample 5 which was deposited at 

higher input current, 650 A, higher feed rate, 51.7 g/min and lower stand-off distance, 100 mm. 

The highest porosity of 63% was analyzed  in sample 6 which was coated at lower input current, 

550 A, lower feed rate, 36.3 g/min and higher stand-off distance, 120 mm. In bond coat layer, the 

porosity content was in the range of 3 to 18%.     

 

[A] 

[B] 

[C] 

[D] 



     

Figure 2: Micrograph of YSZ and NiCrAlY coatings on laser modified H13 tool steel in (a) 

sample 5 and (b) sample 6 

 

 

Figure 3: Porosity content in coating layers of laser modified AISI H13 samples 

 

Porosity formation was affected by input current, powder feed rate and stand-off distance setting. 

Experimental using atmospheric plasma spray (APS) produced an amount of heat energy to melt 

the coating powder which was called enthalpy. A higher input current of 650 A in sample 5 

produced more efficient deposition where a higher heat energy in the plasma leads to a better in-

flight particle molten state [12]. Thus, the particle flow was enhanced and viscosity was 

decreased. This phenomenon resulted in a uniform distribution of coating layer on the substrate.  

Besides, with lower stand-off distance settings in sample 5, the enthalpy of the molten ceramic 

particles was largely stored without having lost tremendously during coating process.  The 

particles maintained their molten state because of short travelling distance of the particles to the 

substrate. Under this condition, the molten particles deposited overlapping layers on the substrate 

surface, thus resulted in low percentage of porosity in the coating. 

 

(a)

Sample 5 

(b) 

Sample 6 



In sample 6, porosity formation was the highest as with lower input current setting. Insufficient 

amount of energy for in-flight molten state particles causing non-uniform coating deposition onto 

substrate. With higher stand-off distance, molten material solidified faster due to heat loss upon 

compaction. A low powder feed rate of 4 g/min decreased deposition efficiency due to particles 

vaporization to the surrounding air.     

 

An increase in porosity will lower the coating stiffness.  Despite of high input current is good to 

decrease the percentage amount of porosity, too high arc current settings, may decrease the 

coating deposition efficiency.  A thin cap gas bubbles leaving behind a residual hole on the 

coating surface will increase the percentage amount of porosity. This is because very high arc 

current settings needs a very high gas pressure in the gas layer prior to impact. Consequences of 

this, the gas escape resulting in escalating gas pressure in the splat centre during rapid spreading 

and quenching of splats. Extremely very high arc current settings may result in vaporization of 

particles [17].   

 

Range of coating thickness on laser surface modified samples for bond coat and top coat was 

shown in Table 4.   

 

 

Table 4: Range coating thickness on laser surface modified samples 

 

Sample Range of thickness (µm) 

Bond coat (NiCrAlY) Top coat (YSZ) 

1 180 - 225 100 - 170 

2 170 - 200 260 - 290 

3 173 - 180 460 - 500 

4 145 - 165 300 - 320 

5 145 - 180 500 - 550 

6 190 - 220 150 - 220 

7 200 - 220 200 - 220 

8 180 - 230 330 - 350 

 

 

At constant parameter settings, variation of bond coat layer thickness was possibly due to small 

misalignment of sample rotation. In top coat layer, the higher range of thickness in sample 5 was 

due to higher input current setting of 650 A. Higher energy in the plasma leads to a better and 

uniform coating deposition efficiency. 

 

The lower coating thickness range in sample 1 was due to the higher feed rate setting which 

increased the amount of particles to share the kinetic energy. Thus, particles velocity and thermal 

energy of the plasma flame decreased. 

 

 

 



Hardness of coated laser modified H13 is shown in Figure 4. The top coat layer hardness range 

of 150 to 550 HV0.1 was measured at 120 μm depth from sample surface, while the bond coat 

layer hardness of 280 HV0.1 was measured at 670 μm depth. The highest hardness range was 

measured across sample 5 cross-section. In sample 5, the top coat layer exhibited 400 HV0.1 

hardness. A lower hardness of 300 and 150 HV0.1  was measured in sample 3 and 6 respectively. 

The bond coat layer hardness in the samples was between 270 and 290 HV0.1.  

 

 

Figure 4: Hardness of cross-sectional surface of coated laser modified H13 steel substrate 

 

 

The highest hardness properties achieved in top coating of sample 5 was due to low porosity 

content of the coating and the lowest hardness properties measured in sample 6 was resulted 

from high porosity content.  Referring to porosity content in sample 6, pores formation within 

the molten layer  during solidification  altered the coating layer integrity.   Lower input current 

and feedrate along with high stand-off distance settings decrease particles flattening ratio upon 

coating deposition.  Whereby, for sample 5, higher input current and feedrate with low stand-off 

distance settings the fully molten particles deposited overlapping layers were fully flatten 

contributes to low porosity percentage.  A gradient of hardness properties across the substrate 

signifies its relationship with coating mechanical properties.  Presence of open pores, closed 

pores and micro-cracks reduced coating hardness along with reduced mechanical properties of 

coating such as elastic modulus, micro-hardness and bonding strength [18].   
 

 



Conclusion 

 

 

Higher settings of input current, 650 A  and feed rate,  51.7 g/min  along with lower setting of 

stand-off distance, 100 mm have significant effect on the microscopy findings of coating 

thickness, coating porosity and hardness.    Higher input current setting assist in increasing the 

thermal energy during APS coating.  While, feed rate supply the sufficient amount of powder for 

efficient coating deposition.  Low stand-off distance maintain the particles enthalpy by reducing 

molten particles heat loss to surrounding air. 
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