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ABSTRAK 

Minat yang semakin meningkat dalam sukan papan selaju sebagai sukan kompetitif 

memerlukan pendekatan analisis gerakan baharu dan cara inovatif bagi menggambarkan 

prestasi atlet kerana klasifikasi teknik aksi sebelum ini sering dianggap tidak mencukupi 

dalam memberikan penilaian yang tepat semasa pertandingan. Oleh itu, kaedah yang 

objektif dan adil bagi menilai aksi papan selaju dibangunkan untuk menganalisis aksi 

pemain papan selaju adalah bukan remeh. Kajian ini bertujuan untuk mengklasifikasikan 

aksi tanah rata, iaitu Ollie, Kickflip, Pop Shove-it, Nollie Frontside Shove-it, dan 

Frontside 180, melalui penggunaan Inertial Measurement Unit (IMU) dan model 

pembelajaran mesin. Enam pemain amatur papan selaju melakukan lima jenis aksi yang 

diulangi sebanyak lima kali bagi setiap jenis aksi. Data papan selaju input domain siri 

masa (TS) telah diubah kepada dua jenis domain kekerapan yang berbeza, iaitu Fast 

Fourier Transform (FFT) dan Discrete Wavelet Transform (DWT). Oleh itu, kedua-dua 

ciri domain masa dan kekerapan digunakan bagi menilai enam model pembelajaran 

mesin, Logistic Regression (LR), Random Forest (RF), k-Nearest Neighbors (k-NN), 

Artificial Neural Network (ANN), Naïve Bayes (NB), dan Support Vector Machine (SVM). 

Sebagai tambahan, dua jenis kaedah pemilihan ciri yang dikenali sebagai kaedah Wrapper 

dan Embedded, telah digunakan untuk mengenal pasti ciri-ciri penting. Set data 

dibahagikan kepada nisbah 70:30, 70 untuk latihan dan 30 untuk ujian. Daripada kajian 

menunjukkan bahawa RF-TS (Semua), RF-TS (Wrapper), RF-TS (Embedded), RF-DWT 

(Semua), RF-DWT (Wrapper), dan RF-DWT (Embedded) menghasilkan ketepatan 

klasifikasi sebanyak 100%. Namun begitu, RF-TS (Wrapper) ditetapkan sebagai yang 

terbaik kerana ia menggunakan bilangan ciri yang paling sedikit (empat puluh satu dan 

bukannya lima puluh empat), yang seterusnya mengurangkan kerumitan model untuk 

mengklasifikasi aksi yang dinilai. Oleh itu, pendekatan yang dicadangkan dapat mengenal 

pasti aksi papan selaju secara munasabah bagi membantu para juri menilai prestasi aksi 

dengan lebih tepat berbanding teknik subjektif dan tradisional yang digunakan pada masa 

ini. 
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ABSTRACT 

The growing interest in skateboarding as a competitive sport requires new motion analysis 

approaches and innovative ways to portray athletes' performance as previous 

classification of tricks techniques was often deemed inadequate in providing accurate 

evaluation during competition. Therefore, an objective and fair means of evaluating 

skateboarding tricks were developed to analyze skateboarder’s tricks is non-trivial. This 

study aims at classifying flat ground tricks, namely Ollie, Kickflip, Pop Shove-it, Nollie 

Frontside Shove-it, and Frontside 180, through the use of Inertial Measurement Unit 

(IMU) and machine learning models. Six armature skateboarders executed five tricks for 

each type of trick repeatedly by five times. It is worth noting that the time-series (TS) 

domain input skateboard data were transformed to two different types of frequency 

domains, namely Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT). 

Therefore, both the time and frequency domain features were used to evaluate six 

machine learning models, Logistic Regression (LR), Random Forest (RF), k-Nearest 

Neighbors (k-NN), Artificial Neural Network (ANN), Naïve Bayes (NB), and Support 

Vector Machine (SVM). In addition,  two types of feature selection methods known as 

Wrapper and Embedded methods, were applied to identify the significant features. The 

datasets were split into 70:30 ratios for training and testing, respectively. It was shown 

from the study, that the RF-TS (All), RF-TS (Wrapper), RF-TS (Embedded), RF-DWT 

(All), RF-DWT (Wrapper), and RF-DWT (Embedded) yield 100% classification 

accuracy. Nevertheless, the RF-TS (Wrapper) is established to be the best as it utilises the 

least number of features (forty-one instead of fifty-four), which in turn reduces the 

complexity of the model for the classification of the tricks evaluated. Therefore, it is 

opined that the approach proposed can reasonably identify the tricks of the skateboard to 

help the judges evaluates the trick performances more precisely as opposed to the 

currently used subjective and traditional techniques. 
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