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Abstract: Wastewater treatment and reuse are being regarded as the most effective strategy for
combating water scarcity threats. This study examined and reported the applications of the Internet
of Things (IoT) and artificial intelligence in the phytoremediation of wastewater using Salvinia molesta
plants. Water quality (WQ) indicators (total dissolved solids (TDS), temperature, oxidation-reduction
potential (ORP), and turbidity) of the S. molesta treatment system at a retention time of 24 h were
measured using an Arduino IoT device. Finally, four machine learning tools (ML) were employed
in modeling and evaluating the predicted concentration of the total dissolved solids after treatment
(TDSt) of the water samples. Additionally, three nonlinear error ensemble methods were used to
enhance the prediction accuracy of the TDSt models. The outcome obtained from the modeling
and prediction of the TDSt depicted that the best results were observed at SVM-M1 with 0.9999,
0.0139, 1.0000, and 0.1177 for R2, MSE, R, and RMSE, respectively, at the training stage. While at
the validation stage, the R2, MSE, R, and RMSE were recorded as 0.9986, 0.0356, 0.993, and 0.1887,
respectively. Furthermore, the error ensemble techniques employed significantly outperformed the
single models in terms of mean square error (MSE) and root mean square error (RMSE) for both
training and validation, with 0.0014 and 0.0379, respectively.

Keywords: error ensemble methods; computational analysis; water quality forecasting; total dis-
solved solids; energy

1. Introduction

Potable water is a necessary component of human existence, second only to food and
shelter in terms of basic survival requirements. Surface water and groundwater are the
most important sources of potable water. Globally, more than 1.4 billion people subsist on
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insufficient water every year [1]. Additionally, water pollution control is a critical element
of environmental contamination. Water pollution is caused by the release of municipal,
agricultural, and industrial waste products into bodies of water [2]. Therefore, water quality
(WQ) forecasting has become essential for the management of water pollution to enhance
the efficient supply of potable water. However, numerous researchers have employed and
documented the benefits of phytoremediation methods for wastewater treatment [3–7].
Furthermore, the complexity and anomalies that frequently occur during data collection and
the development of model structure make it challenging to create reliable and effective WQ
models [8]. Thus, stakeholders and decision-makers must incorporate modern technology
and new knowledge for the future upgrade of phytoremediation techniques in wastewater
remediation applications.

Recently, machine learning (ML) techniques have been introduced in the forecasting of
water quality (WQ) parameters due to the availability of large data and computational re-
sources [9–14]. Additionally, several studies have used artificial intelligence (AI) techniques
to forecast and model WQ parameters [5,15]. Vo et al. [16] used Scripus validus for the phy-
toremediation of hospital wastewater containing acetaminophen (ACT). In the study, the
correlation between the peroxidase enzyme extruded by S. validus and pollutants’ removal
efficiency was evaluated by applying different multivariable regression models. The results
showed that the concentrations of ACT in constructed wetland effluent and enzymes in S.
validus exhibited a significant correlation (p < 0.001, R2 = 68.3%). Kumar et al. [17] applied
two-factor multiple linear regression in the prediction of heavy metal removal using wa-
ter lettuce from paper mill effluent (PME). The findings indicated that the selected input
variables helped in the development of prediction models with a high model efficiency
(ME), higher linear regression (h2), and low mean average normalizing error (MANE) of
0.92–0.99, h2 > 0.72, and MANE < 0.02, respectively. The authors concluded that their study
demonstrated an efficient technique for simulating the absorption of heavy metals by water
lettuce from PME.

Furthermore, Kumar and Deswal [18] conducted a comparative study on artificial
neural networks (ANN), random forest, and M5P techniques in predicting phosphorous
removal from rice mill wastewater, where 30% of the trained data was used for testing
and 70% for training. The modeling findings suggest that ANN outperforms the M5P
tree and random forest models. Besides, developing an accurate and reliable model is
difficult in wastewater treatment systems [19]. Hence, the nature of the historical data
influences the outcome of the generated models [20]. Other research on AI and wastewater
can be found in [21–26]. Additionally, ensemble methods have been employed to improve
the performance of trained single models by summing or averaging their individual
outputs [27]. For instance, Xenochristou and Kapelan [20] proved that ensemble models
could outperform single models by contrasting different bias correction methods to enhance
the performance of the trained models.

However, despite the promising outcome of ensemble methods, they only just started
to attract interest a few years ago [28]. Thus, this study employed an artificial neural net-
work (ANN), support vector machines (SVM), an adaptive neuro-fuzzy inference system
(ANFIS), and multilinear regression (MLR) in predicting the concentration of the total
dissolved solids in the treated water samples (TDSt). Additionally, three different error
ensemble learning methods were used to improve the accuracy of the trained models.
Furthermore, ensemble learning methods are yet to be employed in the field of phytore-
mediation, either in technical proposals or published literature. As such, this research
will be the first to propose the application of non-linear error ensemble methods in the
phytoremediation of wastewater using S. molesta plants. According to the published results,
AI-based models have become more and more widely known in the desalination WWT
field. For example, a smart analysis research study of the widely used Scopus database
(1984–January 2023) revealed that the minimum number of keyword phenomena per report
is 5 out of more than 7800 documents. More than 1000 keywords were also determined to
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fulfill the threshold. For each of the 1000 keywords, the total strength of the concurrency
hyperlinks with their key phrases was computed (see Figure 1).
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2. Methodology
2.1. Data Collection

S. molesta plants were cultivated for the phytoremediation of domestic wastewater
using hydroponic systems. The Arduino Internet of Things (IoT) device was used to
monitor the phytoremediation of the secondary treated wastewater samples cultivated
with 280 g of the fresh S. molesta plants for 2 weeks. Furthermore, the data collection
and WQ monitoring of the total dissolved solids (TDS), temperature, oxidation-reduction
potential (ORP), and turbidity were carried out in accordance with the procedure outlined
by Priyadharshini et al. [29].

2.2. Research Area

This study was carried out at a sewage treatment plant (STP) near Kajang (2◦58′04′ ′ N,
101◦43′55′ ′ E), Malaysia. The annual temperature of the environment was 27.2 ◦C. Addi-
tionally, the STP is separated into different chambers, where wastewater is treated at the
primary and secondary stages before being released into the natural environment.

2.3. Proposed Models

WQ modeling and prediction are useful for the early detection of pollution and
projections for future applications. The modeling and prediction of the TDSt parameter
were proposed under three different scenarios. In the first scenario, two models were
generated for the prediction of the water quality indicator. The models were built with
the collected data as input and output variables. Model 1 (M1) consists of four input
parameters (TDS, temperature, turbidity, and oxidation reduction potential (ORP)) for
the prediction of TDSt (see, Figure 2). The details of the WQ parameter used in this
study can be presented in Table 1. At the same time, Model 2 (M2) comprised three input
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parameters (turbidity, ORP, and TDS) for the prediction of TDSt. An illustration of the
process modeling schema and models is presented in Figure 3 (a = M1, b = M2). The second
scenario explored the application of data-driven algorithms using ML techniques and one
classical model (MLR) for the modeling of the phytoremediation process performance
analysis based on the influent variables as the input of the model. For this purpose and
approach, other possible models could be employed in the same but different manner.
ANN, SVM, ANFIS, and MLR were selected due to their excellent historical performance
in predicting WQ involving a large number of variables and promising abilities in several
literatures of science, environment, hydrology, and hydro-informatics studies. The third
scenario employed three types of ensemble learning techniques: simple averaging ensemble
(SAE), weighted averaging ensemble (WAE), and nonlinear neural ensemble (NNE), using
the single output of the TDS model. This was established to enhance the prediction accuracy
regarding error only. Furthermore, to monitor the performance of the models, different
evaluation criteria, namely the coefficient of correlation (R), the coefficient of determination
(R2), the mean square error (MSE), and the root mean square error (RMSE), were used.
These parameters were used as benchmarks for determining the performance of the models
for each of the water quality parameters. The flowchart of the single and error ensemble
learning processes is presented in Figure 3.
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Table 1. Parameters used (influent (raw) and effluent (treated) samples).

Parameters Influent Parameters Effluent Parameters

Raw Turbidity TURBr TDSt
Treated Turbidity TURBt
Raw Total Dissolve Solid TDSt
Treated Total Dissolve Solid TDSr
Raw Oxidation-Reduction Potential ORPr
Treated Oxidation-Reduction Potential ORPt
Raw Temperature TEMPr
Treated Temperature TEMPt
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Additionally, the feature selection and data pre-processing stages are important in
building ML models. This procedure has a significant impact on accuracy and predic-
tion [6,30]. In this study, smoothing and normalization were used to describe the data trend
series. Additionally, normalization was conducted to obtain uniform input and output
values. The input and output values were standardized to fall within a specific range of 0
and 1 using the equation below [6,30]:

Ynorm =
y− ymin

ymax − ymin

where y, Ynorm, ymin, and ymax are the observed, normalized, minimum, and maximum
values of the variable, respectively.

2.4. Error Ensemble Learning Approach Development

The base learner is the most important component of ensemble learning. The general
formula for ensemble learning is presented in Equation (1). Similarly, three types of
ensemble learning methods were used to improve the accuracy of the TDS model.

Pe(x) =
n

∑
i=1

pi(x) (1)

where p(x) and Pe(x) denote a single predictor and an ensemble of n predictors, respectively.

2.4.1. Simple Averaging Ensemble (SAE)

The SAE approach used in this study involved separate training and validation of
ANN, ANFIS, SVM, and MLR models, followed by generating the average values of the
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ANN, ANFIS, SVM, and MLR training outputs for each model. The general formula for
SAE is provided in Equation (2):

P(t) =
1
N

N

∑
i=1

Pi( f t) (2)

where N and Pi represent the number of learners (N = 4) and the single model, f (t) (ANN,
ANFIS, SVM, and MLR).

2.4.2. Weighted Averaging Ensemble (WAE)

In this study, WAE was predicted by assigning different weights to individual parame-
ters. It differs in the case of SAE because all parameters are assigned equal weights [31].
The formula for WAE is provided in Equation (3):

P(t) =
N

∑
i=1

Yi pi(t) (3)

where P(t), Yi, pi(t), and N are the output of SAE, the weight applied to the ith model, the
output of the ith single model, and the number of single models (here, N = 4), respectively.
Similarly, Yi was calculated using Equation (4):

Yi =
DCi

∑N
i=1 DCi

(4)

where DCi is the performance efficiency of the ith single model.

2.4.3. Nonlinear Neural Ensemble (NNE)

In this study, NNE was performed through the training of another neural network.
The network was trained using the backpropagation algorithm, and a tangent sigmoid
was selected as the activation function of the hidden and output layers. Furthermore, the
trial-and-error method was used in determining the epoch number and the best structure
for the ensemble network. The obtained results are presented and discussed below.

3. Results of Single Models ANN, SVM, ANFIS, and MLR

As stated earlier, this research applied ANN, SVM, ANFIS, and MLR models in
predicting the water quality parameters of the S. molesta treatment system. Two models
were generated for the evaluation, and the model validation was conducted using four
performance criteria. The obtained results are presented and discussed. TDS analysis was
used to determine the number of dissolved materials in water, expressed in milligrams
per liter (mg/L). TDS is important in estimating the suitability of drinking water because
excess TDS in water may result in a “salty” taste [32]. The time-series and box plot for
untreated and treated TDS concentrations in the phytoremediation system are presented in
Figure 4.
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3.1. Results of TDSt (ANN, SVM, ANFIS, and MLR)

The use of multiple inputs influences the performance of intelligent models. In
the hydro-environmental literature, several input selection techniques, such as principal
component analysis, correlation, and auto-correlation, have been published. However,
these approaches are also used for linear input/output relationships. As stated above, three
different ML techniques and one classical linear regression model were used in predicting
the TDS of the effluent. The predicted results are presented in Table 2.

Table 2. Performance evaluation of TDSt for ANN, SVM, ANFIS, and MLR.

Training Validation
Models R2 MSE R RMSE R2 MSE R RMSE

ANN-M1 0.9995 0.1176 0.9998 0.3430 0.9954 0.1140 0.9977 0.3377
ANN-M2 0.9982 0.4306 0.9991 0.6562 0.9631 0.9192 0.9814 0.9588
SVM-M1 * 0.9999 0.0139 1.0000 0.1177 0.9986 0.0356 0.9993 0.1887
SVM-M2 0.9970 0.9970 0.9985 0.9985 0.9852 0.3696 0.9925 0.6079
ANFIS-M1 0.9988 0.3024 0.9994 0.5499 0.9716 0.0011 0.9857 0.0326
ANFIS-M2 0.9926 1.8033 0.9963 1.3429 0.8309 4.2103 0.9115 2.0519
MLR-M1 0.9928 1.7588 0.9964 1.3262 0.8350 4.1066 0.9138 2.0265
MLR-M2 0.9883 2.8616 0.9941 1.6916 0.7316 6.6813 0.8553 2.5848

* Signifies the overall best model.

From Table 2, it was found that both the classical and ML models were capable of
modeling TDSt, and this was proven by considering the statistical indicators (R, R2, MSE,
and RMSE). The visual investigation of the models indicated that M1 was superior to M2 for
all the models. This was attributed to the fact that M1 contained additional input variables,
which served as the dominant and significant variables. Concerning complexity, M1 was
the best since four input variables were employed in the modeling process, while in the
trial of M2, a decrease in accuracy was observed due to the disparity in the performance
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between the input trials. As a result, SVM-M1 was chosen as the overall best in TDSt
modeling. Figures 5 and 6 show the time-series graphs for M1 and M2 for the observed
and predicted TDSt in the validation phase.

According to the time-series plots, it was evident that the best predictive model was
M1, since the prediction trend was closer to the observed TDSt. Similarly, the trends of
the observed and predicted values for ML models were found to be close to each other.
The MLR models, on the other hand, revealed a discrepancy in the trends of observed and
predicted values. Furthermore, the time series of the models differ from one combination
to the next, implying that the vibrational pattern of the M models is determined by how
they capture the relationship between the observed and target parameters. From the above
figures, it can be justified that SVM-M1 captures the pattern of the time series more than the
other models, with MLR-M2 being the worst model. The uniqueness of the goodness-of-fit
could be indicated in the radar chart. On the other hand, it is important to involve two
or more performance criteria to come up with a justifiable argument. The radar plots
describing the R and R2 values for all the models are shown in Figure 7.
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Furthermore, a radar plot was used to compare the predictive accuracy of the models.
As mentioned earlier, radar plots are important in depicting the performance comparison
of the models due to their transparency. In this vein, a radar chart is a type of graph used
to compare three or more variables on a two-dimensional plane. Radar charts can easily
be used for depicting several variables without creating a clutter and they are viewed as
a better substitute for column graphs. Thus, radar plots were used regarding R and R2

for the training and validation phases. According to Figure 8, it was observed that the
R-values in the training and validation phases were ANN-M1 = 0.9977, ANN-M2 = 0.9814,
SVM-M1 = 0.9993, SVM-M2 = 0.9925, ANFIS-M1 = 0.9857, ANFIS-M2 = 0.9115,
MLR-M1 = 0.9138, and MLR-M2 = 0.8553. Additionally, the radar chart ranged from 0
to 1, with the best value approaching 1. It was observed that SVM-M1 was on the last
spider web for both the goodness-of-fit and R. This proves the accuracy of the training
and validation results presented in Table 3. Figure 8 presents a boxplot illustration of the
similarities between the observed and predicted TDSt for all the predicted models.
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Table 3. Ensemble results of SA-E, WA-E, and NN-E for TDS.

Ensemble Techniques MSE RMSE

SAE-M1 0.0039 0.0623
WAE-M1 0.0065 0.0806
NNE-M1 * 0.0014 0.0379
SAE-M2 0.0087 0.0933
WAE-M2 0.0486 0.2204
NNE-M2 0.0018 0.0426

* Signifies the best model.

From Figure 8, the degree of cumulative distribution in the observed and predicted
values can be measured from the different quartiles and whiskers. Furthermore, the best
model was selected based on its closeness to the observed values and the mean value. The
degree of cumulative distribution between the models that were seen and those that were
predicted showed that SVM-M1 was the best. Furthermore, there is a high likelihood of
overfitting in data intelligence algorithms where the validation accuracy is greater than
the training accuracy. However, the model can be improved by decreasing the variance
and bias. In general, the optimal point is reached when the variance and bias are low,
and the gap between training and validation accuracy is acceptable. In other words, if the
class balance is considered in the training and validation data, the unbalanced data may
cause the validation model to be biased towards one class. There are a lot of important
points to be considered regarding regularization approaches and dropouts that induce this
behavior. Furthermore, boxplot graphs take up less space, which is useful when comparing
distributions across multiple datasets or groups. As a result, the variation is determined
more by the spread of the data than by the quantitative accuracy of the models. Figure 9
represents the Taylor diagram for R, RMSE, and the standard deviation of TDSt.

According to Figure 9, the ML models were reliable tools for predicting TDSt because
they had higher R-values and lower standard deviation values than the measured data.
Additionally, the Taylor diagram revealed that SVM-M1 performed better than ANN-M1,
ANFIS-M1, and MLR-M1 in terms of the R in the training and validation phases. Taylor
diagrams have been used in the graphical presentation of data or information in the areas of
climate, hydrological modeling, and water engineering. Interestingly, the Taylor diagram is
used to compare the goodness-of-fit of different models [33,34]. In the same way, Figure 10
shows the error plot of the best model’s performance indicator.
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The lower the MSE and RMSE values, the more reliable the prediction outcomes [34–38].
As a result, the nonlinear black box revealed an accurate and valuable forecasting capability
in TDSt that could be seen as a valuable and accurate forecasting tool for the phytoremedia-
tion process. According to Figure 10, the outcome indicated that the model’s performance



Processes 2023, 11, 478 12 of 16

increased with the addition of input variables by approximately 1% in the testing phase,
according to the RMSE value. Furthermore, the simulated TDSt recorded a better fit using
ML models in the order of SVM > ANFIS > ANN > MLR for M1 and ANN > SVM > ANFIS
> MLR for M2. In addition, the numerical comparison of AI-based models regarding RMSE
depicts that SVM-M1 increased the prediction accuracy of ANFIS-M1 and ANN-M1 by
3% and 4%, respectively. Figure 11 represents the marginal correlation plot between the
observed and predicted models in the validation phase.
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From Figure 11, the plots demonstrated that the marginal correlation plot corre-
sponded with the simulated SVM and other ML models. It could be observed that the
normal distribution was associated with the SVM-M1, which served as the superiority
indicator among the models. More effective and accurate forecasting of the TDSt con-
centration in wastewater treatment and monitoring can allow effective management and
protection of natural water bodies. Therefore, the ML techniques employed in this research
are suitable for future application in decision-making and management practices. Fur-
thermore, a similar result of R-values (0.993 and 0.8393) for SVM and MLR was reported
by Parveen et al. [39], who used an SVM- and MLR-based model to predict Ni (II) ions
from tea industry waste by taking into account the independent parameters (pH, flow
rate, effluent volume, particle size adsorbent, initial Ni (II) ion, contact time, and bed
depth). Additionally, Kumar et al. [40] applied ANN and MLR approaches for forecasting
trace metal removal by Agaricus bisporus fruiting bodies. When compared to MLR models
with ME (>0.96), RMSE (0.441), MNB (0.034), and R2 (0.972), the results obtained from
the prediction of Zn, Mn, Cr, Fe, Cd, and Cu by ANN models demonstrated satisfactory
performance in terms of model efficiency (ME > 0.99), RMSE (0.075), model normalized
bias (MNB 0.009), and R2 (>0.995).

3.2. Error Ensemble Learning Results

Data characteristics such as linearity, correlation, normality, and data size have major
effects on model performance [41]. In fact, there is no single model that is optimal for all
datasets. It has been discovered that the application of multiple models in an ensemble
technique is beneficial for a range of problems. Therefore, error ensemble learning was
proposed for the TDSt models to enhance the prediction regarding error. Hence, SAE, WAE,
and NNE were employed in the ensemble of ANN, SVM, ANFIS, and MLR to enhance the
prediction accuracy of the TDS model. Table 3 represents the outcomes of the SAE, WAE,
and NNE analyses.

From Table 3, the MSE and RMSE for both the training and validation demonstrated a
noteworthy difference in efficiency performance when compared with the single models.
Hence, the effectiveness of the ensemble model is contingent on the accuracy of the individ-
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ual models since each model has its disadvantages in the modeling process. Additionally,
the results revealed that ensemble methods were found to be superior to the application of
single models for the prediction of TDS. Furthermore, Table 4 compares the best single and
ensemble models. The output of the best models (SAE-M1, WAE-M1, and NNE-M1) was
used as the input for the ensemble methods.

Table 4. Comparison of the best single model and ensemble for TDS.

Techniques MSE RMSE Normalized % Diff MSE Normalized % Diff RMSE

NNE-M1 * 0.0014 0.0379 3.4165 15.0820
SVM-1 0.0356 0.1887

* Signifies the best model.

From Table 4, NNE outperformed the other model with a normalized value of 3.4165,
based on the RMSE performance criterion. Additionally, MSE (0.0014) and (RMSE) 0.0379
values were obtained for NNE. Therefore, ensemble methods can be used to optimize the
prediction accuracy of other water quality parameters, including turbidity and oxidation-
reduction potential (ORP). Figures 12 and 13 show the frequency bars and error plots
obtained for SAE-M1, WAE-M1, and NNE-M1 for TDS, respectively.

According to Figures 12 and 13, all the ensemble methods produced results that
were satisfactory, but NNE was observed to be the most accurate, followed by SAE and
WAE. In the validation phase, the three ensemble methods improved the error efficiency
performance regarding MSE and RMSE for the prediction of TDS. This resulted in a
significant improvement in the TDS error prediction, which had previously been proven
to be bad using M2 models. Ensemble techniques are also used to minimize the flaws of
individual models, resulting in an improved composite model that is practical, accurate,
and reliable when compared to single models.

Additionally, it was observed that SAE slightly outperformed WAE. This was not
surprising, since weights are allocated to each parameter depending on their importance.
Besides, NNE performed better than SAE and WAE in the training and validation phases
due to the robustness in handling nonlinear interactions and the capability to backpropagate
the generated error in the training stage until the targeted outcome is obtained.
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4. Conclusions

This research employed the potential of ML tools and multilinear regression in predict-
ing and evaluating the concentration of total dissolved solids (TDS) in the phytoremediation
of wastewater using S. molesta plants. Subsequently, the prediction accuracy of the sin-
gle models was improved using three different error ensemble techniques. The outcome
showed that the ML models proved their merit with high precision in both the training and
testing phases compared to the linear model method. Furthermore, the employed error
ensemble techniques significantly outperformed the single models in terms of mean square
error (MSE) and root mean square error (RMSE). Therefore, the incorporation of ML tech-
niques in this study provided an ecologically friendly approach to addressing sustainable
development goals (SDGs) objectives. Furthermore, this innovation can be integrated into
the phytoremediation of wastewater and aquatic plant cultivation for bioenergy generation.

Recommendations for Future Work

Further studies should focus on the storage and updating of the Arduino IoT-generated
data in an open-source cloud. This would allow monitoring of the WQ parameters and easy
access to the data in remote areas. Applications of other single computational techniques,
such as extreme learning machines, extreme gradient boosting, the Elman neural network,
the emotional neural network, the kernel support vector machine, the ARIMA model (au-
toregressive integral moving average), logistic regression, principal component regression,
and stepwise regression, should be introduced for comparison. Additionally, applications
of nonlinear sensitivity analysis, such as mutual information, genetic algorithms, kernel
principal component analysis, and other nonlinear input variable selection techniques,
also exist.
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