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ABSTRAK 

 Senaman untuk wajah adalah siri pergerakan bahagian wajah seperti 

membesarkan dan mengecilkan zon muka bahagian atas, tengah dan bawah supaya 

nampak lebih muda dan meremajakan otot muka. Sebelum ini, keberkesanan senaman 

wajah untuk tujuan pemulihan dan peremajaan masih menjadi kontroversi kerana 

kekurangan kajian kuantitatif. Walau bagaimanapun, kajian terbaru telah membuktikan 

keberkesanan senaman wajah melalui alat bantu dan bimbingan daripada ahli 

fisioterapi. Proses pemulihan dan peremajaan melalui senaman wajah adalah 

membosankan dan memakan masa. Kekurangan motivasi dan kesabaran adalah punca 

utama kegagalan rawatan. Oleh itu, pengalakkan dan rawatan senaman wajah yang 

menarik adalah mustahak untuk meningkatkan tahap keberkesanan. Tujuan kajian ini 

adalah untuk menganalisis prestasi sensor pengerakan Kinect versi 1 dan 2 untuk 

pembangunan aplikasi senaman wajah berdasarkan analisis prestasi pengesanan wajah. 

Kamera 2D biasa kekurangan dalam maklumat kedalaman (depth). Oleh itu, ia akan 

mengakibatkan pengesanan titik wajah yang tidak tepat. Dalam kajian ini, kamera 3D 

seperti sensor pengerakan Kinect versi 1 (v1) dan versi 2 (v2) digunakan untuk 

menggantikan kamera 2D biasa supaya dapat mengesan titik wajah dengan lebih tepat. 

Kedua-dua sensor Kinect digunakan untuk menggunakan kaedah Model Penampilan 

Aktif (AAM) untuk mengesan dan mengekstrak ciri muka. Kemudian, pelbagai kaedah 

klasifikasi klasik seperti rangkaian saraf, pokok keputusan kompleks, mesin vector 

sokongan padu (SVM), SVM Gaussian halus, jiran k-terdekat (kNN), dan analisis 

diskriminasi kuadratik digunakan untuk menganalisis ketepatan pengesanan kedua-dua 

sensor pengerakan Kinect. Setelah itu, versi sensor Kinect yang mempunyai prestasi 

lebih baik dipilih untuk aplikasi senaman wajah. Set data pengujian dengan ketepatan 

tertinggi dianalisis untuk membina sistem berasaskan peraturan untuk aplikasi senaman 

wajah. Akhirnya, Kinect v2 telah mengungguli hampir setiap tugas membandingkan 

dengan Kinect v1 kecuali senaman angkat kening. Selanjutnya, senaman dan ujian 

ketepatan data wajah yang diperoleh dengan menggunakan Kinect v2 adalah jauh lebih 

tinggi daripada Kinect v1. Klasifikasi kNN adalah kaedah yang paling sesuai antara 

kaedah klasifikasi yang digunakan kerana ia menandakan ketepatan ujian dan senaman 

yang memuaskan untuk Kinect v2, iaitu 97.8% dan 94.3%. Oleh itu, set data yang 

diramalkan oleh kaedah klasifikasi kNN dengan betul digunakan untuk analisis plot 

kotak untuk mendapatkan parameter ambang, iaitu min, nilai kuartil bawah dan nilai 

kuartil atas pergerakan bahagian muka. Kemudian, parameter ambang digunakan untuk 

membina sistem berasaskan peraturan untuk aplikasi senaman wajah. Aplikasi senaman 

wajah dilengkapi dengan sistem penggredan House-Brackmann yang memberikan 

penilaian skor dan gred setelah menyelesaikan setiap set senaman wajah yang dipilih. 

Kesimpulannya, aplikasi senaman muka berasaskan Kinect yang dibangunkan berfungsi 

dengan jayanya dan mampu memberi maklum balas pemarkahan kepada pengguna. 

Aplikasi ini akan dapat memberi motivasi dan menggalakkan pengguna untuk 

melaksanakan senaman wajah di rumah. 
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ABSTRACT 

Facial exercises are a series of facial movements such as exaggeration and deflation in 

upper, middle, and lower face zone for promoting youth and rejuvenating facial 

muscles. Previously, the effectiveness of facial exercises for rehabilitation and 

rejuvenation purposes is still controversial due to lack of quantitative study. However, 

recent studies have proven the efficacy of the facial exercises through assistive device 

and guidance from physiotherapist. The process of rehabilitation and rejuvenation 

through facial exercises is uninteresting and time consuming. Frequently, lack of 

motivation and patient are the main reasons for treatment failure. Hence, interesting 

course of facial exercise treatment and encouragement are essential to increase the 

success rate and effectiveness. The aim of this study is to analyse the performance of 

Kinect motion sensor version 1 and 2 for development of facial exercise application 

based on the analysis of face tracking performance. Common 2D cameras are lack of 

depth information, hence will result in inaccurate facial point detection. In this study, 

3D cameras such as Kinect motion sensors version 1 (v1) and version 2 (v2) are used 

instead of ordinary 2D camera for more accurate facial points detection. Both Kinect 

sensors are used to apply the Active Appearance Models (AAM) method to detect and 

extract the facial features. Then, various classic classification methods such as neural 

network, complex decision tree, cubic support vector machine (SVM), fine Gaussian 

SVM, fine k-nearest neighbours (kNN), and quadratic discriminant analysis are applied 

to analyse the detection accuracy of both Kinect motion sensors. After that, the version 

of Kinect sensor which has better performance is adopted for facial exercises 

application. The dataset with highest testing accuracy is analysed for constructing rule-

based system for the facial exercises application. Eventually, Kinect v2 has 

outperformed in almost every task by comparing to Kinect v1 except the raising 

eyebrows exercise. Furthermore, the training and testing accuracies of face data 

acquired by using Kinect v2 are significantly higher than Kinect v1. The kNN 

classification is the most suitable method among the applied classification methods as it 

marks the satisfying training and testing accuracy for both Kinect v2, which are 97.8% 

and 94.3% respectively. Hence, the correctly predicted dataset using kNN classification 

method is used for box plot analysis to obtain the threshold parameters, which are 

mean, lower quartile values, and upper quartile values of the facial part movements. 

Then, the threshold parameters are used to construct a rule-based system for the real-

time facial exercises application. The facial exercises application features with House-

Brackmann grading system which gives evaluation of score and grade after completing 

each set of selected facial exercises. In conclusion, the developed Kinect-based facial 

exercise application performs successfully and able to give scoring feedback to the user. 

The application will be able to motivate and encourage users for home facial exercise 

purpose. 
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