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Abstract 

This thesis focuses on the use of unscented transformation method to solve a simulta-
neous localization and mapping (SLAM) problem. SLAM is the process by which a mobile 
robot can build a map of an environment and at the same time use this map to compute its 
location. It can be performed by storing landmarks in a map when they are observed by 
the robot sensors, using the robot pose estimate to determine the landmark locations, while 
at the same time, using these landmarks to improve the robot pose estimate. Since the 
landmarks are repeatedly reobserved, their locations become increasingly certain and the 
map converges, eventually acquiring the rigidity of a priori map. Many solutions to the 
SLAM problem are focused on the filtering approaches such as the use of the extended 
Kalman filter (EKF), the unscented Kalman filter (UKF), the particle filter (PF) as well as 
their variations. 

However, the smoothing approach has received less attention in solving this problem. 
Therefore, this thesis presented a smoothing approach to solve the SLAM problem, by 
the implementation of Rauch-Tung-Striebel smoother. In the beginning, a linearization 
approach has been applied to the Rauch-Tung-Striebel smoother. This smoother named as 
extended Rauch-Tung-Striebel smoother (ERTSS). The performances of this smoother is 
better compared to the standard EKF. 

In order to minimize errors in the nonlinear estimation, this thesis utilizes the benefit 
of an unscented transformation over linearization in the ERTSS. In the unscented transfor-
mation, the state distribution is represented using a minimal set of carefully chosen sample 
points, called sigma points. These sigma points are propagated through the true nonlinear 
function, without any approximation. In addition, the difficulty of Jacobian matrix calcula-
tion, which is used in the EKF, is not required in this method. This transformation method is 
applied to the Rauch-Tung-Striebel smoother to obtain the unscented Rauch-Tung-Striebel 
smoother (URTSS). The performance of the URTSS is evaluated and compared to the sim-
ilar filtering method, the UKF. The result shows that the URTSS gives lower errors in 
solving the SLAM problem, compared to the errors produced by the UKF. 

This thesis also investigates other paradigm of solving a SLAM problem known as a 
FastSLAM approach. In this framework, the approximation used in the standard FastSLAM 
is replaced by the unscented transformation, in which it is called the unscented FastSLAM 
(UFastSLAM). The proposed method is evaluated and its performance is compared to the 
standard FastSLAM. It is shown that, the UIFastSLAM gives better result in solving the 
SLAM problem. In addition, a new sampling technique, which is called a spherical simplex 
unscented FastSLAM (SSUFastSLAM), is presented. This new sampling technique uses 
less number of sigma points, compared to the standard one used in the UFastSLAM. For 
that reason, the computational cost is reduced without giving any effect on its performance, 
which is proved by the simulation result.
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Chapter 1 

Introduction 

1.1 Introduction 

The ability of a mobile robot to determine its location in space is a fundamental competence 
for autonomous navigation. Knowledge of self location, and the location of other places of 
interest in the world, is the basic foundation on which all high level navigation operations 
are built. It enables strategic path planning for tasks such as goal reaching, region cover-
age, exploration and obstacle avoidance, and makes following of these planned trajectories 
possible. Without a notion of location, a robot is limited to reactive behavior based solely 
on local stimuli and is incapable of planning actions beyond its immediate sensing range. 

The most basic form of localization is dead reckoning, which is simply estimation 
of the vehicle pose by integrating estimation of its motion for example the used of inertial 
sensing and encoder based odometry. The problem with dead reckoning is that each change 
in pose estimation includes a component of error and these errors accumulate as part of the 
integration process. Thus, uncertainty in the pose estimation increases monotonically with 
time although the sensor and the motion model accuracy are improved. At last, uncertainly 
in robot pose estimation is so large, then it give no useful information to solve the localiza-
tion problem. For this reason, dead reckoning is an insufficient mechanism to implement 
for long term localization. However, dead reckoning does retain usefulness as an auxiliary 
information source in conjunction with map based localization. 

Pose estimation with bounded uncertainty is only possible through the availability of 
absolute rather than incremental pose measurements. The source of absolute information 
can be found in a map of the environment which is defined by the locations of distinct land-
marks. Thus, if the robot has an ability to sense its surroundings, it can obtain absolute pose 
estimates by registering sensed information with the map. The problem with a priori map 
based localization is that, the environment should be explored in advance and the landmark 
locations also have been recognized before the robot can begin to navigate autonomously. 

The motivation for SLAM is to overcome the need for a priori maps as a mechanism 
for bounded pose uncertainty, and to enable map construction that is extensible and adaptive 
to environmental change. SLAM is performed by storing landmarks in a map as they are 
observed by the robot sensors, using the robot pose estimate to determine the landmark 
locations, while at the same time, using these landmarks to improve the robot pose estimate. 
As the landmarks are repeatedly reobserved, their locations become increasingly certain 
and the map converges, eventually acquiring the rigidity of an priori map.
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The SLAM ideal is to allow immediate navigation capabilities in completely un-
known environments, so that a robot might be placed in a new environment and left to 
explore and map the environment without human intervention. Alternatively a human op-
erator might drive the robot through an environment once for example as a training phase 
where the operator might demonstrate trajectories and way points. This phase could ac-
cumulate sufficient knowledge for the robot to travel competently within the region in the 
future. For real environments, training by a human operator is currently a more practicable 
scenario than autonomous exploration especially when operating in the presence of hid-
den structures. For example, transparent objects and objects outside of the view plane, are 
invisible to a robot with only a range laser sensor and will not be avoided. Other struc-
tures such as stairwells present a potential danger unless the robot equipped with a specific 
recognition of vertical free space. 

The first SLAM algorithm to comprise an explicit and consistent representation of 
uncertainty, and therefore provide qualification of map convergence, was presented in [1]. 
This method, referred to here as stochastic SLAM, remains the basic foundation of prac-
tically all subsequent SLAM proposals using the landmark based map framework. Early 
experimental verification of the algorithm with laser [2] and sonar [3] sensors demonstrated 
its utility in relatively small-scale indoor environments. However, increasing in a computa-
tion cost and storage size when involved building a large map, give direct implementation of 
this algorithm intractable. As a result, more feasible adaptations of stochastic SLAM have 
been proposed such as removing redundant map features [4], developing efficient estima-

tion procedures [5, 6], and dividing the environment into a network of submaps [7, 8, 6]. 
The development of a feasible and reliable SLAM system is dependent on the non lin-

earity in the process of constructing a map and localizing from it, computational complexity 
and storage requirements and data association in recognize on correct correspondence be-
tween data obtained from the robot sensor and the data currently stored in the map. The 
objective of this thesis is to develop a non linear solutions in the process where the robot 
build the map of it environment and then localize itself on the map. 

1.2 Simultaneous Localization and Mapping 

The probabilistic simultaneous localization and mapping (SLAM) problem occurred at the 
1986 IEEE Robotics and Automation Conference held in San Francisco, California when a 
probabilistic methods were only just beginning to be introduced into both robotics and ar-
tificial intelligence (Al). A number of researchers had been looking at applying estimation 
theoretic-methods to solve the mapping and localization problems. These led the discus-
sion to recognize that the consistent probabilistic mapping was a fundamental problem in 
robotics with major conceptual and computational issues that need to be addressed. Work 
by Smith and Cheesman [1] and Durrant-Whyte [9] established a statistical basis for de-
scribingrelationships between landmarks and manipulating geometric uncertainty. 

A key element of this work was to show that there must be a high degree of corre-
lation between the estimation of different landmarks location in a map and that, indeed, 
these correlations would grow with successive observations. At the same time Ayache and 
Faugeras [10] were undertaking early work in visual navigation, Crowley [11] and Chatila 
and Laumond [12] were working in sonar based navigation of mobile robots using Kalman



1.3. THESIS CONTRIBUTION	 3 

filter type algorithms. These two strands of research had much in common and resulted 
soon after in the landmark paper by Smith et al. [13]. This paper showed that as a mobile 
robot moves through an unknown environment taking relative observations of landmarks, 
the estimation of these landmarks are all necessarily correlated with each other because 
of the common error in the estimated vehicle location [3]. It is found that a consistent 
full solution to the combined localization and mapping problem would require a joint state 
composed of the vehicle pose and every landmark position that need to be updated by each 
landmark observation. In turn, this would require the estimator to employ a huge state of 
vector (on the order of the number of landmarks maintained in the map) with computation 
scaling as the square of the number of landmarks. 

However, this work did not look at the convergence properties of the map or its 
steady state behavior. Indeed, it was assumed at the time that the estimated map errors 
would not converge and would instead exhibit a random walk behavior with unbounded 
error growth. The conceptual breakthrough came with the realization that the combined 
mapping and localization problem, once formulated as a single estimation problem, was 
actually convergent. Although most researchers had tried to minimize the correlations 
between landmarks, it was recognized that the more these correlations grew, the better of 
the solution. 

The structure of the SLAM problem, the convergence result was first presented in 
a mobile robotics survey paper presented by Durrant-Whyte et al. [14]. The essential 
theory on convergence and many of the initial results were developed by Csorba [15]. Sev-
eral groups already working on mapping and localization, notably at the ACFR at Sydney 
[16, 17], the Massachusetts Institute of Technology [18], Zaragoza [19, 20], and others 
[7, 21], began working in earnest on SLAM or also called concurrent mapping and lo-
calization (CML) in indoor, outdoor, and subsea environments: At this time, the work 
focused on improving computational efficiency and addressing issues in the data associa-
tion, or loop closure. The 1999 International Symposium on Robotics Research (ISRR'99) 
[22] was an important meeting point where the first SLAM session was held and where a 
degree of convergence between the Kalman filter based SLAM methods and the probabilis-
tic localization and mapping methods introduced by Thrun [23] was achieved. The 2000 
IEEE International Conference on Robotics and Automation (ICRA) Workshop on SLAM 
focused on issues such as algorithmic complexity, data association, and implementation 
challenges. 

1.3 Thesis Contribution 

The principal contributions of this thesis are as follows: 
• Introduced of extended Rauch-Tung-Striebel smoother to solve a SLAM problem. 

This estimator used linearization technique to linearize the nonlinear system and 
based on forward backward smoother equation. 

• In order to improved nonlinear estimation, we then implement unscented transforma-
tion to Rauch-Tung-Striebel smoother where a set of carefully selected point known 
as sigma points directly propagate nonlinear system. This smoother named as an Un-
scented Rauch-Tung-Striebel smoother. This smoother then used to solve a SLAM 
problem.
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• In order to apply the unscented transformation more deeply, we applied it to the other 
paradigm used to solve a SLAM problem known as a FastSLAM. The unscented 
Kalman filter has been used in conjunction with standard particle filter in the Fast-

SLAM framework. 
• We also introduced other sampling technique used in unscented transformation aim 

to reduced number of sigma points used in the unscented FastSLAM in previous 
contribution. This techniques known as a Spherical Simplex Unscented FastSLAM 

(SSUFa5tSLAM). 

1.4 Thesis Overview 
This thesis is organized as follows: 

Chapter 2 presents the necessary background to this thesis by discussing the common opti-
mal filtering and smoothing. The history and formulation of the discrete time optimal filter-
ing and smoothing as recursive Bayesian inference are presented in the beginning. Then the 
fundamental knowledge of the classical Kalman filter, extended Kalman filter, unscented 
Kalman filter and particle filter are discussed in detail. The smoothing methods based 
on RauchTung-Striebel are explained in detail including the basic RauchTung-Striebel 
smoother, extended RauchTung-Striebel smoother, and unscented RauchTung-Striebel 

smoother. 

Chapter 3 gives detailed explanations about the SLAM problem. This chapter starts by 
describing the basic navigational map such as occupancy grid, feature map and topological 
map which is used in the autonomous mobile robot. Then, the derivation of the SLAM 
problem in probabilistic term is discussed in detail. Afterwards, this derivation then is used 
as basic knowledge to solve the SLAM problem. Detailed implementation of the common 
method in solving the SLAM problem, named the extended Kalman filter (EKF) based 
SLAM is also presented in detail in this chapter. The structure of the EKF based SLAM 
including the state augmentation between the robot state and map, the prediction and up-
dating stage, and the augmentation of new feature in the map are described step by step. 
Then, the derivation of motion model of a nonholonomic vehicle with Ackerman steering 
model used in this thesis also is demonstrated in detail. In addition, we introduce the ex-
tended RauchTung-Striebel smoother (ERTSS) based SLAM and discuss its performance 

over the standard EKF based SLAM. 

Chapter 4 describes another method to solve the SLAM problem known as an unscented 
transformation used by the unscented Kalman filter (UKF) based SLAM. Instead of us-
ing the approximation of nonlinearities in a SLAM problem by the EKF based SLAM, 
this unscented transformation uses the deterministic sigma points to directly propagate the 
nonlinear system. The structure of the UKF based SLAM is described in the similar way 
as in the previous chapter but replacing the linearization with the unscented transforma-
tion to estimate the nonlinear term. The comparison between the EKF based SLAM and 
the UKF based SLAM is also presented. In addition, novel approach known as unscented 
RauchTung-Striebel smoother (URTSS) is presented to solve the SLAM problem. The
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filter type algorithms. These two strands of research had much in common and resulted 
soon after in the landmark paper by Smith et al. [13]. This paper showed that as a mobile 
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ing the approximation of nonlinearities in a SLAM problem by the EKF based SLAM, 
this unscented transformation uses the deterministic sigma points to directly propagate the 
nonlinear system. The structure of the UKF based SLAM is described in the similar way 
as in the previous chapter but replacing the linearization with the unscented transforma-
tion to estimate the nonlinear term. The comparison between the EKF based SLAM and 
the UKF based SLAM is also presented. In addition, novel approach known as unscented 
Rauch-Tung-Striebel smoother (URTSS) is presented to solve the SLAM problem. The
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performance of this proposed method is evaluated by comparing it with the UKF. 

Chapter 5 discusses another paradigm in solving a SLAM problem known as the Fast-
SLAM. The FastSLAM decomposes the SLAM problem into robot localization and a 
collection of landmark estimation problem. The standard FastSLAM framework, which 
consists of robot estimation, features state estimation and the important weight calcula-
tion, is presented in detail. In this.chapter, the linearization approaches used in the standard 
FastSLAM is replaced by the unscented transformation. The performance between the pro-
posed method and the standard FastSLAM will be also discussed. In addition to the stan-
dard sampling technique of the unscented transformation, we present the spherical simplex 
unscented transformation as a new sampling method used in the FastSLAM framework. 
The evaluation among these approaches is also presented in this chapter. 

Chapter 6 presents the conclusions and suggestions for the future directions of this work.



Chapter 2 

Optimal Filtering and Smoothing 

2.1 Introduction 

Optimal filtering refers to the methodology that can be used for estimating the state of 
time varying system, which is indirectly observed through noisy measurements. The stat 
of the system refers to the collection of dynamic variables such as position, velocities an 
accelerations or orientation and rotational motion parameters, which describe the physic 
state of the system. The noise in the measurements means that the uncertainty in me 
surements data due to disturbance in the system model, the measurement model as we 
as environment changes. The time evolution of the state is modeled as a dynamic systen 
which is perturbed by a certain process noise. This noise is used for modeling the uncei 
tainties in the system dynamics and in most cases the system is not truly stochastic, but th 
stochasticity is only used for representing the model uncertainties. 

In this chapter, the history and formulation of the discrete time optimal filtering an 
smoothing as recursive Bayesian inference are presented in the beginning. Then fundamer 
tal knowledge of the classical Kalman filter, extended Kalman filter, unscented Kalman fi 
ter and particle filter are discussed in detail. The smoothing methods based on Rauch-Tun 
Striebel are explained in detail including the basic Rauch-Tung-Striebel smoother, extende 
Rauch-Tung-Striebel smoother, and unscented Rauch-Tung-Striebel smoother. Sumniar 
of this chapter is presented in the last section in this chapter. 

2.1.1 History of Bayesian optimal filtering 

The history of optimal filtering starts from the Wiener filter [24], which is a spectral domai 
solution to the problem of least squares optimal filtering of stationary Gaussian signals. TF 
Wiener filter is still important in communication applications [25], digital signal processir 
[26] and image processing [27]. However, the Wiener filter can only be applied to stationai 
signals and it is often mathematically demanding. Due to these limitations, this filter c 
only be applied to a simple low dimensional filtering problems. 

The success of optimal linear filtering in engineering applications is begin due 1 

the seminal article by Kalman [28], which describes the recursive solution to the optim 
discrete time linear filtering problem. The reason to the success is that the Kalman filter c 
be understood and applied with very much lighter mathematical machinery than the Wieni 
filter. Also, despite its mathematical simplicity, the Kalman filter or more specifically tI 
Kalman Bucy filter [29] contains the Wiener filter as its limiting special case. 

In the early stages of its history, the Kalman filter was soon discovered to belong 1



2.1. INTRODUCTION	 7 

the class of Bayesian estimators [30, 31, 32]. An historical detail shows that while Kalman 
and Bucy were formulating the linear theory in the United States, Stratonovich was doing 
the pioneering work on the Bayesian probabilistic approach in Russia [32, 33]. 

Because of Kalman filter's useful connection to the theory and history of stochastic 
optima] control, we use the Bayesian filtering problem approaches from the Kalman fil-
tering point of view. Although the original derivation of the Kalman filter was based on 
the least squares approach, the same equations can be derived from the pure probabilistic 
Bayesian analysis and is was covered in the classical book of Jazwinski [32] as well as 
in the book of Bar-Shalom et al. [34] recently. The discussion on optimal filtering and 
smoothing as Bayesian Inference is presented in next subsection. 

2.1.2 Optimal filtering and smoothing as Bayesian inference 

The optimal Bayesian filtering is considered as the statistical inversion problems, where 
the unknown time series quantity vector (x 1 , x2 ,. . . , XT) which is observed through noisy 
measurements (y 1 , Y2 • . . YT). It can be illustrated as shown in the Fig. 2.1. 

	

Y 1	 Y2	 Y3	 6) Observed I	 Hidden 

Figure 2.1: In discrete-time filtering a sequence of hidden states Xt is indirectly observed through 
noisy measurements Yt 

The purpose of the statistical inversion is to estimate the hidden states {x 1 ,.. . XT} 

given the observed measurements {Yi, . . . , y}, which means that in Bayesian sense by 
[35, 36] all we have to do is to compute the joint posterior distribution of all the states 
given all the measurements. This can be done by straightforward application of the Bayes' 
rule as follows: 

p(x 1 ,.. . , XT I Y1 . , YT) 
= P(Yi, .. . , YT I x 1 ,. . . , x) p(x 1 , .. . , XT) 

P(Y1,...,YT)
(2.1) 

where p4 1 , .. . , XT) is the prior defined by the dynamic model, P(Yi,. . . YT I X1,... , XT) 
is the likelihood model for the measurements, and p(y 1 , .. . YT) is the normalization con-
stant which defined as 

	

p(y1,... , YT)	 fv(i.. . , YT I X1,.. . , XT) p(xi ,.. . , XT) d(xi ,.. . , XT). (2.2) 

Unfortunately, this full posterior formulation has a serious drawback that each time 
when a new measurement obtained, the full posterior distribution would have to be re-
computed. As a number of time steps increases, the dimensionality of the full posterior 
distribution also increases. This means that the computational complexity of a single time
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step also increases. Thus after a sufficient number of time steps the computations will be-
come intractable, independently of available computational resources. Without additional 
information or approximations, there is no other solution to overcome this problem in the 

full posterior computation. 
However, this problem only arises when we want to compute the full posterior dis-

tribution of the states at each time step. The computation can be reliable if we are consid-
ering the marginal distribution of the states by restricting the class of dynamic models into 
probabilistic Markov sequences. In order to achieve that, the model for the states and the 
measurements are assumed to be in the following, condition: 

• Initial distribution specifies the prior distribution p(x0) of the hidden state xo at initial 

time step t = 0. 
• The system dynamics and its uncertainties are modeled by dynamical model as a 

Markov sequence, defined in terms of the transition distribution p(x t I Xt_i). 

• The measurement of Yt and its relationship to the current state Xt is modeled using 
measurement model. This dependence is modeled by specifying the distribution of 

the measurement given the state P(Yt I xe). 
On the contrary of the full joint distribution of the states at all time steps which is compu-
tationally very inefficient and unnecessary in real time applications, the optimal Bayesian 
filtering are considered the following marginal distributions: 

• Filtering distributions are the marginal distributions of the current state Xk given the 

previous measurements {y 1 , .. . , 

p(xt I Yi	 . ,Yt),	 t = 1,... J.	 (2.3) 

• Prediction distributions are the marginal distributions of the future states, n steps after 

the current time step: 

p(Xt+n I Yi i ... ,Yt),	 t = 1,...	 n = 1,2	 (2.4) 

• Smoothing distributions are the marginal distributions of the states Xt given a certain 

interval {y1, ... YT I of measurements with t <T: 

p(xt I Yi'	 ,YT),	 t = 1,... ,T
	

(2.5) 

There exists a few classes of filtering and smoothing problems which have closed 
form solutions such as Kalman filter (KF) and Rauch-Tung-Striebel smoother (RTSS). But 
because the Bayesian optimal filtering and smoothing equations are generally computation-
ally intractable, many kinds of numerical approximation methods such as extended Kalman 
filter (EKF), extended Rauch-Tung-Striebel smoother (ERTSS), unscented Kalman filter 
(UKF), unscented Rauch-Tung-Striebel smoother (URTSS), sequential Monte Carlo, un-
scented particle filter (UPF), Rao-Blackweilized particle filters and smoothers have been 
developed. To facilitate the discussion, the basic knowledge of filtering and smoothing will 
be addressed separately in the next section.
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2.2 Optimal Filtering 

In this section, a state space models can be represented as probabilistic nonlinear form 
consisting a sequence of conditional probability distributions as: 

P(X t I Xt_i) 

	

Yt	 P(Yt I	 (2.6) 

where Xt E R? is the state, yt E R? is the measurement at time step t. p(x t I Xt_i) is 
the dynamic model distribution which describes the stochastic dynamics of the system. It 
can be a probability density, a counting measure or a combination of them depending on 
the state x t whether it is continuous, discrete or hybrid. P(Yt J 

Xt) is the measurement 
model , which is the probability distribution of measurements given the state. The model 
is assumed to be Markovian, which means that it has the following two properties: 

1. The states {Xt : t = 1,.. . , T} form a Markov sequence or Markov chain. This 
Markov property means that the current state Xt given the previous state Xti is inde-
pendent of any state that has happened before the time step t - 1. It can be formulate 
as follows:

p(xt I X 1:t_1, Yi:t__i) 	 Xt_i).	 (2.7) 

2. The current measurement Yt given the current state Xt is conditionally independent 
of the previous measurement and state histories as: 

P(Yt I X 1:t, Yi:t-l) = P(Yt I Xe).	 (2.8) 

With the Markovian assumption and the filtering model as in Eq. (2.6), the joint prior 
distribution of the states (x0 , .. . x'), and the joint likelihood of the measurements 
(y0 , ... ,	 can be describe as follows: 

p(x0 ,.. . , x) = p(xo) flp(x I Xt_i),	 (2.9) 

p(y1,...,yTlxo,..., XT) = H p (ytl xt) .	 (2.10) 

For a given T we could simply compute the posterior distribution of the states by using 
Bayes' rule as follows: 

p(x0 ,.. . ,XT 
I y11 . .. ' Yr) 

= P(Yl, .. • ' YT I X0 . . . ,XT)P(XO,.. . ,XT) 
P(Yi,...,YT) 

0C p(y 1 , . . . , YT	 .. . , X) p(x0 ,.. . , XT). (2.11) 

However, this kind of explicit usage of the full Bayes' rule is not feasible in real time ap-
plications because the amount of computations per time step increases as new observations
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arrive. Thus, this way will limit to the application with small datasets, then at some point 
of time the computations would become intractable. To cope with real time data we need to 
have an algorithm which does constant amount of computations per time step. As discussed 
in previous section, filtering distributions, prediction distributions and smoothing distribu-
tions can be computed recursively such that only constant amount of computations is done 
on each time step. For this reason we are concentrate to the above mentioned distributions 
instead of considering the full posterior computation. 

The purpose of optimal filtering is to compute the marginal posterior distribution 
(also known as prior distribution) of the state Xt at each time step t given the history of the 
measurements up to the time step t:

p(xt I Yi:t)	 (2.12) 

The fundamental equation of the Bayesian filtering theory are given as follows. The re-
cursive equations for computing the predicted distribution p(x t I Yi:ti) and the filtering 

distribution p(x t I Yi:t) at the time step t are given by the following Bayesian filtering 
equations: 

1.Initialization. The recursion starts from the prior distribution p(xo). 

2. Prediction. The predictive distribution of the state x t on time step t given the dynamic 
model can be computed by the Chapman-Kolmogorov equation 

p(xt I Yi:t-i) =	 Xt_i) p(Xt i I y1:t_1)t_1	 (2.13) 

3. Update. Given the measurement yt at time step t the posterior distribution of the state 

alt can be computed by Bayes' rule

= P(Yt alt) p(xt I Yi:t-i) 
P(Xt I Yi:t)

	

	 (2.14 
71t 

where the normalization constant Tlt is given as 

77t = J Xyt I X) p(x t 	 (2.15' 

Note that, if some of the components of the state are discrete, the corresponding integral 
are then replaced with summations. 

Proof. The joint distribution of alt and x t-1 given Yi:t-i can be computed as 

p(Xt , alt_i I Yi:t-i) = p(xt I alt_i, Yi:t-i) p(alt_i I Yi:t-i) 

p(alt I alt_i) p(x t_ i I Yi:t-i)'	 (2.16 

where the disappearance of the measurement history Yi:ti is due to the Markov propert: 

of the sequence {alt, t = 1,2, .. . }. The marginal distribution of alt given Yi:t-i can b



= P(Yt I x 1 ) p(xt 

nt

Yi:t-i)
(2.18) 
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obtained by integrating the distribution in Eq. (2.16) over Xt_i, which gives the Chapman-
Kolmogorov equation 

p(x t I Yi:t-i) = f Xxt I Xt_i) p(x t_ i I Yi:t_i) dx_1.	 (2.17) 

If x t- 1 is discrete, then the above integral is replaced with summation over x . The 
distribution of xt given Yt and Yi:t-i' that is, given Yi:t can be computed by Bayes' rule 

p(xt Yi:t) 
= P(Yt I Xt,Yi:t_i)P(Xt 

Tit 

where the normalization constant nit is given by Eq. (2.15). The disappearance of the 
measurement history Yi:t-i in Eq. (2.18) is due to the conditional independence of Yt of 
the measurement history, given Xt.

LI 

2.2.1 Kalman filter 

The Kalman filter [28] is the closed form solution to the optimal filtering equations of 
the discrete time filtering model, where the dynamic and measurements models are linear 
Gaussian:

xt = .At _ ix. 1 + q,_1 

Yt = Hk xt + rt,	 (2.19) 

where Xt E R 1 is the state, Yt E 
71 is the measurement, q -1 .A1(O, Q1) is the pro-

cess noise, rt .Af(O, R) is the measurement noise and the prior distribution is Gaussian 
A/ 0 , P0). The matrix A_ 1 is the transition matrix of the dynamic model and H 

is the measurement model matrix. The Eq. (2.19) then can be written in the probabilistic 
terms as

P(Xt I Xt_i) = .A((x I A_1x_1, Q.1) 

P(Yt I	 = J'/(Yt I Htxt , R4.	 (2.20) 

The optimal filtering equations for the linear filtering model in Eq. (2.19) can be evaluated 
in closed form and the resulting distributions are Gaussian as following equation: 

p(xt Yi:t_i) = .Af(x	 , Pt 

P(Yt Yi:t_i)	 t1(Yt	 S) 

p(xt I Yi:t)	 AT(x	 Pt).	 (2.21) 

where the and P are the predicted mean and the predicted covariance of the state x in 
time step t, respectively. St is the predicted covariance of the measurement y t evaluated at 
time step t. The parameters of the distributions then can be computed with the following 
Kalman filter prediction and update steps:
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1. The prediction step is

= 

Pt- = A_iPt_iA i + Qk-i•	 (2.22) 

2. The measurement update step is

= HPt-Ht- +Rk 

Kt Pt- Ht St-' 

Pt =	 - KSKt-.	 (2.23) 

The initial state has a given Gaussian prior distribution xo P0), which also 

defines the initial mean and covariance. The Kalman filter equations can be derived as 

follows: 
1. By Lemma A.1 in Appendix A, the joint distribution of Xt and Xt_i given Yi:t-i is 

p(xt _ i , '-t I Yi:t-1) = p(xt I Xt_i)p(Xt_i I Yi:t-I) 

= Ar(xt I A_1x_i, Q_1).A/(xt_1 I it-', P_) 

([Xt

-1xt  ]'')	 (2.24) 

where

-	 ) 

-

	

 
P'	

Pt-1	 P_1A1 

A_1Pt_i A_ 1Pt_iA i + Q).	
(2.25) - (  

and the marginal distribution of Xt is by Lemma A.2 also in Appendix A page 89 

p(xt I Yi:t-i) =	 I	 Pt-),	 (2.26) 

where

= A_1á_i 

Pt- = A_1PiA 1 + Q.	 (2.27) 

2. Again, using Lemma A.1, the joint distribution of Yt and Xt is 

p(xt, Yt I Yi:t-i) = P(Yt I xt)p(xt I Yi:t-1) 

	

R)Af(xt	 Pt-) 

=	 xt	 (2.28) 
Yt 

where

	

I	 pF	
Pt- - \\

	
= (	 Pt-H' = 

Hat- 1'	 HPt- HPt-H + ).	
(2.29)
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3. By Lemma A.2, the conditional distribution of x t is 

p(xt I Yt ' Yi:t-i) = p(xt I Yi:t) 
= Af(xt 

I t, Pr),	 (2.30) 

where

	

= +	 + p1 [Yt - H] 

	

pt = p- -	 + RtY 1HtP	 (2.31)

which can be also written in the form of Eq. (2.23). 

2.2.2 Extended Kalman filter 

The extended Kalman filter (EKF) [32, 34, 37, 38] is an extension of the Kalman filter to 
nonlinear optimal filtering problems. We will explain the basic linearization of nonlinear 
transformation used in the EKF at the beginning followed by the derivation of the EKF. 
Let consider the following transformation of a Gaussian random variable x into another 
random variable y

x 

	

y=g(x)	 (2.32) 

where x E R71 ,y e 'jam, and g :	 'j,m is a general nonlinear function. and P are
the mean and the covariances of state x, respectively. 

In order to approximate the distribution of y, a first order Taylor series based Gaus-
sian approximation needs to be performed, but only the first two terms of it were used in the 
linear approximation. Let x = + 8x where &c r' .Af(0, P), and the linear approximation 
of a, can be written as

g(x) g() + Vga,8x	 (2.33)

where Vga, is the Jacobian matrix of g, 

Vga, =	 .	 (2.34) 
aagX (a,) 

Computing the expected value with referring to a, gives: 

E [g(x)] E [g() + Vga,x] 
= g() + Vga,E [&c] 

	

= g().	 (2.35)

The covariance can be then approximated as 

E [(g(x) - E [g(x)])(g(x) - E [g(x)])T] 
E [(g (x) - g())(g(x) - g())T] 

E [(g() + Vga,x) - g())(g() + Vga,6x) - g())T] 

= E [(Vga,6c)(Vga,8x)T] 

= Vga,E [Sx8xT] Vg 

= Vga,PVg,.	 (2.36)
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The approximation of joint covariance between the variables x and y can be achieved by 
considering the augmented transformation

(x 
g(x) = g(x) )
	

(2.37) 

and the resulting mean and covariance as: 

(±) 

	

E[(x)]	
T 

( 
Cov[(x)	

I) i 

	

]	 Vga,	 ( Vg) 

=
 (

P	 PVg T

)•	
(2.38)

vg p VgPVg 

In order to derive of the extended Kalman filter equations, the Eq. (2.32) now can be 
written in a generalize form as follows: 

x Af(,P) 
qrJ\f(O,Q) 

	

y=g(x,q),	 (2.39) 

where x and q are assumed to be uncorrelated random variables. The mean and covariance 
can be now computed by substituting the augmented vector (x, q) to the vector x in Eq. 
(2.38). The joint Jacobian matrix can be then written as Vgxq (Vgx Vgq). Here 
Vgq is the Jacobian matrix of g( . ) with respect to q and both the Jacobian matrices are 
evaluated at x = and q = 0. The approximations to the mean and covariance of the 
augmented transform as in Eq. (2.38) are then given as follows: 

	

E[(x,q)]	 g(, O) 

-	 ( 

	

Coy [§ (x, q)]	
I

Vg 

(P 
VgX

o \(p 0\T(	 o T 

	

Vgq)O Qj	 gx vgq) 

	

9X	
T P VgPVg + VgqQVg)	 (2.40) 

In practical implementation, the state space consists of process models and measurement 
modes that can be can written in a general form as 

Xt = f(xt_i , q_1) 

Yt =	 (2.41) 

where q 1 .A1(0, Q) and Vt Af(O, R) are the Gaussian process and measurement 
noises, respectively. f (.) is the dynamic model function and h( . ) is the measurement model 
function. The functions f and h can also depend on the step number t, but for notational



2.2. OPTIMAL FILTERING
	

15 

convenience, this dependence has not been explicitly denoted. The idea of the EKF is to 
form the Gaussian approximations 

p(xt I Yi:t)	 .i\1(x	 t, Pt ),	 (2.42) 

to the filtering densities. In the EKF this is done by utilizing the linear approximations to 
the nonhinearities by the following steps: 

1. The joint distribution of x t and Xt_i is non-Gaussian, but we can form a Gaussian ap-
proximation to it by applying the approximation to the function f(xt_i , i-1) ' which 
results in the Gaussian approximation

Q Xt_i 1 p(xt_i, xt Yi:t_i) 
	 X ]	

"	 (2.43)

where

Xt_i 
f(-i)) 

1 (	 P_1	 P_1 Vf 
= (Pt_iVfTx)T Vf P_i Vf + VfqQt_ivf) (2.44) 

where Vf x is the Jacobian matrix of f with respect to x, evaluated at x = and 
q = 0 with elements

VfX 5fx,q 

	

= (ax) (x=,q=O)	
(2.45)

x  

and Vfq is the corresponding Jacobian matrix with respect to q: 

	

Vfq = 8,q (x=x,q=0)
	

(2.46)

From Eq. (2.26), the marginal mean and covariance of Xt are 

X t = f(-i, 0) 
p- = Vf Pt_1 Vf + VfqQt_i Vf .	 (2.47) 

2. The joint distribution of yt and Xt is also non-Gaussian, but we can again approximate 
it by applying approximation to the function h(xt , rt ). We get the approximation 

p(x, y Yi:t-i)	
( [] 

i", P11 (2.48) 
Yt 

where

x

'1 - 
(	

t) 
 

P	
PVh 

- (PVh)T VhxPVh + VhrRtVhr)	
(2.49)
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