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ABSTRACT

Buildings contribute to 33% of total global energy consumption, which corresponds to 38% of greenhouse gas
emissions. Enhancing building’s energy efficiency remains predominant in mitigating global warming. Advance-
ments in thermal energy storage (TES) techniques using phase change material (PCM) have gained much attention
among researchers, primarily to minimize energy consumption and to promote the use of renewable energy sources.
PCM technology stays as the most promising technology for developing high-performance and energy-efficient
buildings. The major drawback of PCM is its poor thermal conductivity which limits its potential use which
could be resolved by dispersing conductive nanofillers. The acquired database on synthesis routes, properties,
and performance of nano-dispersed phase change materials (NDPCMs) with various techniques presented in
the paper should deliver useful information in the production of NDPCMs with desirable characteristics mainly
for building construction applications. An outline of contemporary developments and use of NDPCMs as TES
medium is delivered. Finally, a brief discussion on challenges and the outlook was also made. In-depth research
is needed to explore the fundamental mechanisms behind the enhanced thermal conductivity of NDPCM with
nanofillers dispersion and also a thorough investigation on how these mechanisms drive improvement in building
performance.
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3D Three Dimensional
Al2O3 Aluminium Oxide
BAPV Building Attached Photovolatic
BIPV Building Integrated Photovolatic
CA Capric Acid
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CsxWO3 Cesium Tungsten Bronze
CuO Copper (II) Oxide
CuS Copper (II) Sulfide
ESS Energy Storage Systems
GHG Green House Gas
GNP Graphene Nanoplatelets
GO Graphene Oxide
h-BN Hexagonal Boron Nitride
HNT Halloysite Nanotube
HPAC Highly Porous Activated Carbon
HVAC Heating, Ventilation, and Air Conditioning
LA Lauric Acid
LH Latent Heat
MA Myristic Acid
MPCM Microencapsulated Phase Change Material
MWCNTs Multi-Walled Carbon Nanotubes
NDPCMs Nano-Dispersed Phase Change Materials
PAHXs PCM-to-Air Heat Exchangers
PCM Phase Change Material
PV Photovoltaic
rGO Reduced Graphene Oxide
SA Stearic Acid
SiO2 Silicon Dioxide
SWCNTs Single-Walled Carbon Nanotubes
TC Thermal Conductivity
TES Thermal Energy Storage
TiO2 Titanium Dioxide
xGnP Exfoliated Graphite Nanoplatelets

1 Introduction

Buildings account for one-third of global energy consumption and remain a key contributor to
the carbon footprint. Heating Ventilation & Air Conditioning (HVAC) systems hold a massive 50%
share in building energy consumption [1]. Air conditioners hold a significant role in mitigating human
vulnerability to adapt to changing climate because of uncertain climatic events such as heatwaves. It is
expected that by the year 2100, the percentage of buildings that have air-conditioning units installed
will be closer to 99.9%, from its present 2% position [2]. The UN member states are obliged to curtail
the fossil fuel by 20% to attain reduction in greenhouse gas emission as per the Paris Agreement made
in 2015 [3]. Increased energy consumption of buildings and associated GHG emissions makes energy-
efficient building materials and energy storage technologies the predominant requisite of the hour [4].
The European Union, in its energy road map for 2050 proposed that 66% of energy must be availed
from zero carbon sources [3]. According to Eurostat data in 2015, a staggering 39% of the total energy
consumption was dedicated to building-related structures (a detailed pattern is shown in Fig. 1) [5].
In addition to peak load aversion, energy storage systems (ESS) mostly improve mobility, reliability,
and even financial merit. ESS can effectively support both energy security and reduction in global
warming thereby offering an invaluable service to the world [6]. Normalizing the energy demand curve
(transferring the energy demand from peak hours and reducing the total peak demand) is a potential
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solution. Innovative techniques like the usage of thermal energy storage may deliver thermal inertia
and avert peak energy demands [7].
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Figure 1: Energy consumption pattern in residential building sector [8]

Energy conversion systems rely heavily on thermal energy storage (TES) as it remains one of the
vital systems for storing and retrieving energy. A reduction in fossil fuel usage and energy conservation
could be attained with latent heat energy storage technology based on TES [9]. A paradigm shift
towards green energy sources is of paramount importance as nonrenewable fuels attributes to 75%
of greenhouse gas emissions [3]. Sensible heat storage and latent heat storage comes under TES [9,10].
TES permits a logical use of stored heat energy and delivers significant advantages like; cutting the
running costs, swapping the peak load, reducing running costs, and even lowering GHG emissions [10].
TES system could be integrated with HVAC applications to deliver a shift in the thermal load from
higher to lower conditions [11]. Phase change materials (phase transition shown in Fig. 2) inherent
high energy storage density. Thermal conductivity, energy storage density, and melting temperature
characterize the thermal performance of a PCM (classification of PCM is given in Fig. 3) [12]. It is
highly advisable to have a PCM with swift melting and solidification rates for the proper functioning of
a PCM-based thermal energy storage system. However, the thermal conductivity of commonly used
PCMs remains comparatively low (paraffin-0.205 W/m.K [13]) which is the primary drawback that
hampers their utilization [14].

Figure 2: Phase transition of PCM in hot climate [5]
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The inherent mass of the structure remains a major stakeholder in Thermal energy storage
associated with it. Contemporary buildings maintain a heavier mass in comparison with current high-
rise buildings, which thereby results in higher temperature fluctuations for indoor air temperature [7].
The Phase Change Materials (PCMs) integrated with structures could be used for improving the heat
storage density of buildings [15]. The phase transition temperature of the PCM primarily helps in the
building’s thermal management. PCMs could be deployed either as active systems (HVAC systems) or
passive systems (heat dissipation methods) [1] and a lot of parameters (cost, availability, energy price)
depends on their implementation [7]. Passive design delivered maximal energy efficiency as it relies on
an abundant, clean, and reliable energy source, the Sun [16].

To outrun the problem of poor thermal conductivity in PCMs various thermal energy transport
enhancement techniques have been attempted. Dispersion of fins, heat pipes, foams, micro, macro,
and even nanoencapsulation, application of multiple PCMs, and adding high thermally conductive
materials. Among these dispersing, highly conductive nano-sized materials in PCMs significantly
enhances its thermal conductivity (λ value) and improves the capability of energy exchange. They had
attained immense research interest [14,17]. The dispersion of nano additives into PCMs could boost
their thermal energy transport on account of the huge surface area-volume ratio of additives and can
even alter melting and solidification rates [13,18]. This emergent composite is termed nano-enhanced
phase change material/nanocomposites/NDPCMs in this article. In 2005, Elgafy et al. [19] made the
first attempt to disperse nanomaterials in PCMs for enhancing TES. The amount of nano additives
added must be well enough to generate a conductive thermal network [10]. Aluminum oxide, copper,
copper oxide, silver, SWCNTs, MWCNTs, graphene, graphene oxide, exfoliated graphene, silicon
carbide, zinc oxide, titanium oxide, titanium carbide are the most extensively used nano additives for
thermal applications [13,20].

Figure 3: Classification of PCM [21]

Ma et al. [22] made the lone attempt to review the building applications of NDPCMs. An outline
of contemporary development and application of NDPCMs, when used as TES media, was provided.
Following are prior review attempts on PCM usage on the building. Raquel et al. [23] made a
comprehensive review to explore the relation between phase change materials, energy deficiency, and
energy efficacy. Applications of PCM in glazed zones, ceiling areas, walls, and floors of the buildings
were detailed and mentioned about PCM selection criteria. Kumar et al. [24] primarily analyzed
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micro-encapsulated PCM-based research works and observed an improvement in thermal efficiency
with MPCM. Real-time testing with mortar, brick, cement, wallboard, gypsum, and MPCM-based
simulation works were reviewed. Li et al. [25] condensed the research articles discussing the optical
and thermal efficiency of PCM-based glazing units. Experimental and simulation works with glazing
units containing PCM were analyzed. Challenges and upcoming works in the area were also presented.
Dardir et al. [26] summarized the publications made mainly on free cooling in buildings using
PCM incorporated air heat exchangers. Merits and demerits of PCM containing air heat exchangers
(PAHXs) for the desert climate were discussed in detail. The effect of phase change temperature, inlet
temperature, and air flow rates on PAHXs free cooling in buildings were also explained. Berardi et al.
[27] attempted to review the usage of PCM in concrete for building applications. Microencapsulation
and macro encapsulation methods for avoiding PCM leakage were also explained in the concrete-PCM
perspective. Jimenez et al. [28] reviewed studies related to numerical thermal modeling of conventional
solar chimneys and solar chimneys with phase change materials (PCM).The tools for analysis were
Computational fluid dynamics (CFD) and Global energy balance (GEB), of which CFD was found to
be a powerful tool to investigate numerous aspects concerning the heat transfer mechanisms in a solar
chimney. Rathore et al. [29] made a comprehensive review on energy-efficient microencapsulated PCM
for buildings and Materials for encapsulation. The potential of PCM in indoor thermal management
of buildings was also analyzed. Shah et al. [30] condensed research works on NDPCMs that could be
employed in building applications. Kasaeian et al. [31] summarized and critically analyzed research
articles on integrating PCMS and NDPCMs onto buildings.

This review article is trying to focus on research works that had reported variations in thermophys-
ical properties of PCM when dispersed with nanoparticles. Numerous research papers were published
on PCMs and NDPCMs. Among these published ones, only a handful of them were focusing on low
temperature PCMs. Moreover, a few of them have highlighted low temperature thermal energy storage
applications of NDPCM. This review paper tries to highlight the research works where NDPCMs have
delivered a competitive edge over PCMs in thermal management of buildings. It also provides a deep
insight into the thermophysical characteristics of NDPCMs. A detailed discussion on the impact of
nanoparticle dispersion on thermal conductivity and latent heat along with its reasons for variations
are also briefed. As per authors knowledge the different methods adopted for thermal management
in buildings using nano composite phase change materials are summarized for the first time. A
comprehensive and in-depth coverage on thermophysical properties of low temperature NDPCMs
makes this article substantial and different when compared with other available reviews in the same
domain.

This review paper attempts to summarize the relevant research articles published where the
usage of NDPCMs had made a profound impact on the thermal management of buildings. The
generic problems and key issues related to the use of this new class of materials in buildings for
improved indoor thermal performance and enhanced energy efficiency are discussed. The review
article is structured in the following pattern. A brief overview of energy usage patterns in buildings
and methods to mitigate them are provided in Section 1. A synopsis on different synthesis routes for
low temperature is given in Section 2 with a detailed focus on two-step method. Section 3 provides
a discussion of reasons for variations in thermal conductivity and latent heat. Thermal management
applications of NDPCMs are systematically condensed in Section 4. Section 5 delivers the challenges,
and a conclusion is given at the end.
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2 Synthesis Routes for Nano-Dispersed Phase Change Materials

The synthesis of nanocomposites does not include the mere incorporation of nanofillers into
a matrix. For obtaining consistent dispersion, appropriate mixing and stabilization approaches are
necessary. NDPCMs can be synthesized either by one-step or two-step methods. In one-step method,
nanomaterial production and dispersion occur simultaneously in the base PCM, and in the two-step
method the nanofillers are synthesized first, and then added into the base. The two-step method
remains further economical, and it is widely preferred in NDPCM synthesis [14,32].

2.1 One-Step Synthesis
Nano additives were synthesized and dispersed simultaneously in one-step method. Drying,

storage, transportation, and mixing of nanoparticles in PCM are not adopted in this method. It
can reduce the particle agglomeration issue [32]. This synthesis pattern is preferred for small-scale
production as it is costly in comparison with two-step method. Xu et al. [33] adopted one-step method
(shown in the Fig. 4), to synthesize CuS decorated MWCNT dispersed in Paraffin. Calculated amounts
of CuO, sublimation sulfur, oleic acid, paraffin, and MWCNT were added to a three-distillation flask
of 50-ml capacity. The flask was stirred continuously for 3.5 h at 180°C, and the resultant was a
NDPCM of Cus-MWCNT/paraffin. Several researchers [34,35] had followed similar synthesis routes.

2.2 Two-Step Synthesis
First nano additives are collected in dry powder form using various mechanical and chemical

methods (chemical reduction, sol-gel, and ball milling) in two-step method. The nano additives are
then added to the base matrix for getting a consistent dispersion (ultrasonic bath magnetic stirring
and high shear mixing). The main advantage of this method is that it can synthesis NDPCMs on a
large scale. Particle agglomeration stays as a major setback with this method [32].

Figure 4: One-step synthesis

2.2.1 Surfactant

The consistency of nanocomposite relies on the nature of nanofillers and base PCM. Nanofillers
can be hydrophobic/hydrophilic and base matrix could be polar/non-polar. Hydrophilic nanofillers
(oxides) can be easily dispersed into polar base fluids (water) and hydrophobic nanofillers (MWCNTs)
can be dispersed in non-polar base fluids (oils) with no surfactant. However, when hydrophobic
nanoparticles had to be dispersed into polar base fluids and hydrophilic in non-polar base fluids,
then surfactants are needed to stabilize the nanocomposite (in liquid state) [36,37]. Surfactants stay as
a bridge between nanofillers and PCMs and create continuity between both [38]. Surfactants contain
hydrophilic and lipophilic groups. They modify the surface properties of the particles and prevents
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cluster formation [39]. Fig. 5 shows the classification of surfactants. Surfactants generate a barrier and
minimize surface tension between liquid PCM and dispersed nano additives. The repulsive forces and
zeta potential generated due to surfactant stabilize the composite in the liquid state [36]. Surfactants
are divided into anionic, cationic, non-ionic, and amphoteric [40]. At high temperatures, surfactants
might exhibit altered properties or even generate foam [41]. They might cause a decline in thermal
conductivity values with the thermal resistance created among nanofillers and PCM [42]. The different
synthesis methods of low-temperature NDPCMs using surfactants are discussed in Table 1.

Figure 5: Classification of surfactants

Table 1: Overview of two step nanocomposite synthesis using surfactants

PCM Nanoparticles Surfactant Synthesis method employed Reference

Paraffin MWCNT SDBS Ultrasonication [43]
Paraffin MWCNT Gum Arabic Ultrasonication [44]
LA+SA TiO2 SDBS Ultrasonication [45]
LA+SA ZnO SDBS Ultrasonication [45]
LA+SA CuO SDBS Ultrasonication [45]
Paraffin TiO2 SDBS Ultrasonication [46]
CaCl2·6H2O γ -Al2O3 CTAB1 Ultrasonication [47]
CaCl2·6H2O CsxWo3 CTAB1 Ultrasonication [48]
Note: 1Strontium chloride hexahydrate was used as a nucleating agent.

The various two-step methods widely adopted for synthesizing low-temperature nanocomposites
are briefed below. Karaipekli et al. [49] initially transferred expanded pearlite to a flask integrated
with a vacuum system. N-eicosane was gradually added to the flask in the presence of air for half
an hour to facilitate infiltration of n-eicosane. The composite was then allowed to cool for a day to
solidify the n-eicosane entirely within expanded perlite pores. The mass fractions of n-eicosane were
varied from 30%–70% until a leakage-free sample was obtained. A composite obtained with 60% of
eicosane was found to be form stable. A calculated quantity of CNT was dispersed in acetone using
ultrasonication during the second step. To the previously prepared form stable PCM, CNT/acetone
was added and stirred continuously for 180 min with a magnetic stirrer. Finally, using oven (60°C for
360 min) acetone was removed. The same synthesis method was also used in the following study [50].
Li et al. [51] dissolved anhydrous calcium chloride in pristine water with a molar ratio of 1:6. Strontium
chloride hexahydrate (2 wt%.) was added as a nucleating agent. The mixture was put to a temperature
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of 50°C and stirred (magnetic stirrer at 300 rpm) for 15 min. To promote crystallization, the mixture
was cooled down to 40°C. For adsorption of CaCl2·6H2O onto porous SiO2 nanoparticles, the former
was melted down entirely at 50°C, and SiO2 nanoparticles were gradually added to the PCM matrix. To
ensure uniform dispersion of nanoparticles in PCM, the mixture was again put to magnetic stirring for
half an hour at 300 rpm. Finally, the mixture was cooled down to obtain the Form stable NDPCM. Li
et al. [52] mixed CNT(nitric acid-treated)/ethanol suspensions in stearic acid/ethanol (shown in Fig. 6).
The mass of CNTs was varied from 50%, 33%, and 25%, then subjected to ultrasonic treatment for
half an hour. Then the mixture was stirred for 4 h under 70°C in a water bath. Finally, the mixture was
made ethanol-free by vacuum drying at 80°C for 24 h. Researchers [53,54] had also followed a similar
synthesis method. Kazemi et al. [44] melted pure paraffin thoroughly, and MWCNT with parameters
OD < 8 (nm), length 30 (nm) were added to PCM. The suspension was put to an ultrasonic bath for
30 minutes to prevent agglomeration. Gum Arabic (surfactant) was added to ensure proper dispersion
of nano additives. The mixture was then sonicated to 1.5 h which yields the NDPCM. This is the
most widely preferred two-step synthesis route [48,55]. Su et al. [56] prepared a eutectic mixture of
octadecane and stearic acid based on the lowest eutectic point theory. The optimum ratio for the
eutectic of SA:ODE was estimated as 2:98 at a phase transition temperature of 25°C. The mixture
was heated up to 70°C followed by intense stirring for 5 min until the entire mixture was melted. The
mixtures were cooled down to promote crystallization at room temperature. Estimated quantities of
hBN were added to the liquid eutectic mixtures and stirred vigorously for 10 min at 70°C for uniform
dispersion of nanoparticles into the eutectic mixture. A similar route was adopted in this study [57].

Figure 6: NDPCM synthesis by Direct Impregnation method [52]

The various two-step methods widely adopted for synthesizing low-temperature nanocomposites
are briefed below. Karaipekli et al. [49] initially transferred expanded pearlite to a flask integrated
with a vacuum system. N-eicosane was gradually added to the flask in the presence of air for half
an hour to facilitate infiltration of n-eicosane. The composite was then allowed to cool for a day to
solidify the n-eicosane entirely within expanded perlite pores. The mass fractions of n-eicosane were
varied from 30%–70% until a leakage-free sample was obtained. A composite obtained with 60% of
eicosane was found to be form stable. A calculated quantity of CNT was dispersed in acetone using
ultrasonication during the second step. To the previously prepared form stable PCM, CNT/acetone
was added and stirred continuously for 180 min with a magnetic stirrer. Finally, using oven (60°C
for 360 min) acetone was removed. The same synthesis method was also used in the following
study [50]. Li et al. [51] dissolved anhydrous calcium chloride in pristine water with a molar ratio of
1:6. Strontium chloride hexahydrate (2wt.%) was added as a nucleating agent. The mixture was put to
a temperature of 50°C and stirred (magnetic stirrer at 300 rpm) for 15 min. To promote crystallization,
the mixture was cooled down to 40°C. For adsorption of CaCl2·6H2O onto porous SiO2 nanoparticles,
the former was melted down entirely at 50°C, and SiO2 nanoparticles were gradually added to the PCM
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matrix. To ensure uniform dispersion of nanoparticles in PCM, the mixture was again put to magnetic
stirring for half an hour at 300 rpm. Finally, the mixture was cooled down to obtain the Form stable
NDPCM. Li et al. [52] mixed CNT(nitric acid-treated)/ethanol suspensions in stearic acid/ethanol
(shown in Fig. 6). The mass of CNTs was varied from 50%, 33%, and 25%, then subjected to ultrasonic
treatment for half an hour. Then the mixture was stirred for 4 h under 70°C in a water bath. Finally,
the mixture was made ethanol-free by vacuum drying at 80°C for 24 h. Researchers [53,54] had also
followed a similar synthesis method. Kazemi et al. [44] melted pure paraffin thoroughly, and MWCNT
with parameters OD < 8 (nm), length 30 (nm) were added to PCM. The suspension was put to an
ultrasonic bath for 30 min to prevent agglomeration. Gum Arabic (surfactant) was added to ensure
proper dispersion of nano additives. The mixture was then sonicated to 1.5 h which yields the NDPCM.
This is the most widely preferred two-step synthesis route [48,55]. Su et al. [56] prepared a eutectic
mixture of octadecane and stearic acid based on the lowest eutectic point theory. The optimum ratio
for the eutectic of SA:ODE was estimated as 2:98 at a phase transition temperature of 25°C. The
mixture was heated up to 70°C followed by intense stirring for 5 min until the entire mixture was
melted. The mixtures were cooled down to promote crystallization at room temperature. Estimated
quantities of hBN were added to the liquid eutectic mixtures and stirred vigorously for 10 min at 70°C
for uniform dispersion of nanoparticles into the eutectic mixture. A similar route was adopted in this
study [57].

Researchers are also going on in the direction of employing functionalized nanoparticles to
enhance dispersion stability. Sonication is the most widely preferred two-step synthesis route. Gen-
erally, for form stable NDPCMs vacuum impregnation is widely preferred as it delivers maximum
adsorption.

3 Thermophysical Characterization

The characteristics (shape, size, loading concentration) of nano additives alter the thermophysical
properties of dispersing PCM matrix. Hence the evaluation and determination of thermophysi-
cal properties is a crucial factor [14,22]. The major thermophysical properties of low-temperature
nanocomposite phase change materials are summarized in Table 2.

Table 2: Summary on thermophysical properties of low-temperature NDPCMs

PCM Additives Fill% TNDPCM KNDPCM Change in K HNDPCM Fc Reference

Paraffin MWCNTO 0.5 24.1 0.203 49.2 180.1 86.19 [44]
Paraffin GrapheneO 0.3 24.84 1.44 860 155.98 102.48 [58]
Paraffin GrapheneO 3 28.12 0.303 146.34 216.1 96.86 [59]
Stearic Acid CNTO 20.5 29 – — 111.8 99.80 [52]
Paraffin GNPO 1.0 28.97 0.378 89 248.69 98.61 [43]
Paraffin MWCNTO 1.0 28.96 0.355 77.5 248.22 98.43 [43]
Hexadecane xGnPO 5 18.65 1.61 74 217.33 98.43 [60]
Octadecane xGnPO 5 28.91 0.99 101 240.92 104.81 [60]
Paraffin/ExP CNTO 1 36.47 0.32 113.3 157.43 57.63 [49]
CA-OA HPACO 0.1 13.1 0.45 125 52.7 87.92 [61]
Paraffin GOO 1.0 36.08 0.957 181 240.83 95.07 [62]
Paraffin rGOO 1.0 36.26 0.935 175 245.16 96.78 [62]

(Continued)
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Table 2 (continued)

PCM Additives Fill% TNDPCM KNDPCM Change in K HNDPCM Fc Reference

Paraffin GNPO 1.0 36.76 0.966 184 243.85 96.26 [62]
Paraffin MWCNTO 1.0 36.38 0.921 171 246.28 97.22 [62]
Eicosane MLGO 45 36.24 1.11 282.76 136.6 98.21 [50]
Capric Acid CuOI 3.0 32 0.235 44 159 106.44 [63]
Octadecane TiO2

I 3.0 28 0.394 1.74 – – [64]
LA+SA TiO2

I 1.0 34.38 0.27 50 173.22 98.86 [45]
LA+SA ZnOI 1.0 34.47 0.29 61 173.64 99.10 [45]
LA+SA CuOI 1.0 34.56 0.32 77.78 173.86 99.23 [45]
Paraffin CuOI 1.0 28.90 0.318 59 249.27 98.85 [43]
Paraffin Al2O3

I 1.0 28.94 0.332 66 247.03 97.96 [43]
Paraffin TiO2

I 2 36.5 0.341 70.5 227.74 90.82 [46]
Nonadecane Rut-TiO2

I 2 25 0.19 37.6 114.2 94.28 [53]
CaCl2·6H2O γ -Al2O3

I 2 28 1.373 303 157 89 [47]
PEG2000 AgI 35 34.06 0.552 84 121.7 100 [35]
CaCl2·6H2O CsxWO3

I 1.0 28.75 0.51 30%fall 129.5 84.19 [48]
CaCl2·6H2O SiO2-50nmI 30 25.6 0.148 – 136.3 97.40 [51]
Capric Acid SiO2

I 1.5 31.2 0.529 78.72 160 112.35 [55]
CA:MA SiO2

I 1.5 22.1 0.4 142 158 108.38 [55]
CA-PA-SA SiO2

I 25 17.6 0.082 76%fall 99.43 95.17 [57]
heptadecane SiO2

I 54.6 25.6 0.284 70.58 123.8 - [54]
SA-ODE h-BNI 15 29.86 0.327 9.73 189.07 99.44 [56]
Paraffin GNP/MWCNTH 1.0 28.94 0.430 115 245.18 97.22 [43]
Paraffin Al2O3+ CuOH 1.0 28.93 0.328 64 248.51 98.54 [43]
Paraffin GO+MWCNTH 1.0 36.11 0.961 182 237.42 93.84 [62]
Paraffin rGO+MWCNTH 1.0 36.57 0.965 184 235.35 92.91 [62]
Paraffin GNP+MWCNT 1.0 36.17 0.970 185 230.82 91.11 [62]
PEG1000 HNT65@Ag 3H 3 33.6 0.9 207 71.3 97.44 [65]

Note: OOrganic, IInorganic, HHybrid.

3.1 Impact of Nanoparticle Dispersion on Thermal Conductivity
Nanotechnology along with its attained advancements had enabled particles synthesis even at a

nanoscale (10−9). These nanoparticles mainly comprise of metallic, metallic oxide, carbon nanotube
(SWCNT, MWCNT), graphene, graphite, and even hybrid ones [14]. The classification of nanoparticles
is given in Fig. 7. Nanoparticles possess some signature properties in contrast to solids due to their
exorbitant surface area-volume ratio [66]. The dispersion of nanofillers with extremely high thermal
conductivity (monolayer graphene 5300 W/m.K [67]) is anticipated to enhance the thermal energy
transport in PCM. The amount of nanofillers dispersed must be good enough to generate thermally
conducting pathways [68]. The formed thermally conducting paths facilitate the heat transfer process
within the composite and this was seconded by Zhang et al. [69]. Dispersing highly conductive
nanofillers does not guarantee a nanocomposite with superior conductivity. Factors like the homoge-
nous distribution of conductive fillers in the PCM should be taken into consideration. Particle
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accumulation causes improved Van der Waal forces among nanofillers and this force eventually
attracts the nanofillers and they remain clustered [70].

Figure 7: Classification of nanoparticles

3.1.1 Organic Nanoparticles

Ashiq et al. [59] synthesized NG/paraffin composites with 146% improvement in thermal cond-
uctivity and they provided thermal comfort for more than 4 h and 2 h at ambient temperatures of 35°C
and 40°C. Arshad et al. [43] reported a downward drift in the λ value of paraffin and nanocomposites
along with rising temperatures. The phase transition turns the organized microstructured pure paraffin
(solid-phase) into a disorganized microstructured (liquid-phase) paraffin. The thermal transport in
solids is mainly attributed due to lattice vibration when the molecules vibrate inside their lattice
structure. Even at a lower temperature the particle inside a crystal vibrates near the equilibrium
position. So, the PCM lattice could be considered as a coupled mass and spring system. When the
crystal is subjected to heat the vibrations will deviate from equilibrium position. The generated high
energy phonons diffuse, and it forms the temperature gradient. Thus, in the presence of a temperature
gradient heat will drift from hot end to cold end [71,72]. The free-electron motion and lattice vibration
are prominent in solids than liquids. Hence solids normally have a greater λ value than liquids. Arshad
et al. [62] dispersed different carbon nanoparticles in paraffin to form nanocomposite and obtained
thermal conductivity increment in the range of 180%. Numerous factors account for this increment
and are concentration, interfacial thermal resistance high aspect ratio, clustering, Brownian motion,
purity, and intermolecular interaction [73]. A longer phase transition time may result in bigger micro-
scale grains formation; which shortens thermal resistance between layers leading to an increment in λ

value [74]. According to Zhang et al. [50], the addition of multi-layer graphene (MLG) accounts for the
282% increment in λ value in the composite. Due to the planar morphology of graphene nanosheets, the
thermal interface resistance got reduced in n-eicosane/graphene PCM composites, which introduces
an increment in heat transfer of samples during heating and cooling [75,76]. The improved thermal
conductivity accounts for a reduction of 45.7% and 67.1% in thermal storage and release times of
C20/MLG45 when compared with pure PCM.

3.1.2 Inorganic Nanoparticles

Li et al. [51] used nano-silica of different pore sizes to synthesize form stable composites. The
λ value of form stable PCM got reduced with a reduction in pore diameter despite an increase
in nanoparticles loading rate. It could be due to phonon-phonon scattering at the interface of
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nanoparticles and composites. This produces thermal resistance in non-metallic materials and gets
intense along with a large specific area [77].

According to Motahar et al. [64], the thermal conductivity of both PCM and the nanocomposite
(octadecane/TiO2) counts on temperature and it becomes intense at a temperature range of 25°C–
30°C where the crystalline structure of PCM is unsteady. The λ value varied from 0.375 W/m.K–
0.394 W/m.K and 0.144 W/m.K–0.150 W/m.K when the sample temperatures were 5°C and 55°C.
The λ value was 0.852 W/m.K near the melting point. Arshad et al. [43] accounted for this abrupt rise.
A similar phenomenon was previously reported by Wang et al. [78] with palmitic acid/CNT composite.
Higher thermal conductivity of the composite close to phase transition temperature is highly desirable
in thermal energy storage applications using PCMs. Xie et al. [48] reported a 30% reduction in thermal
conductivity with calcium chloride hexahydrate/cesium tungsten bronze nanocomposite. Strontium
chloride hexahydrate was used as the nucleating agent. The probable causes for reduced thermal
conductivity could be the interface resistance among components hinder the rise in conductivity with
low nanoparticle concentration and the elevated viscosity caused by surfactant dampens the heat
transfer with 1.5 wt.% SiO2 CA–MA. Martin et al. [55] had an outstanding 142% rise in thermal
conductivity. The thermal conductivity varies linearly along with nanoparticles content (0–1.5 wt.%)
This could be detailed by phenomena like phonon interaction, clustering of nanoparticles (proved by
SEM results) Brownian motion, and surface morphology effects which all could be the reasons for
this enhancement [79,75].

3.1.3 Hybrid Nanoparticles

Arshad et al. [43] analyzed the λ value of paraffin/CuO and paraffin/Al2O3+CuO and the
composites showed a slight variation in trends mainly because of the density, size, dispersion stability,
and morphology of nanofillers and their intrinsic λ value. CuO holds a higher thermal conductivity
than Al2O3, paraffin/CuO also had a higher λ value than paraffin/Al2O3+CuO. Moreover, the Al2O3

nanoparticles had a reduced size and density compared to CuO nanofillers, which possess a better
degree of homogenization and rate of dispersion in pure PCM. This accounts for the improved
dispersion stability of hybrid nanofillers (Al2O3+CuO) dispersed in paraffin. Moreover, the thermal
boundary resistance among the nanofillers and matrix molecules plays a prominent role in incon-
sistency [76]. Carbon-based hybrid nanocomposites possess a higher capability to store and release
thermal energy when correlated with metallic oxide-based hybrid nanocomposites, primarily due to
higher improvement in λ value. Two major factors contribute towards the enhanced thermal energy
transport rate of NDPCMs. First, the high λ value of nanofillers, and second, the motion of the
nanofillers inside nanocomposites in liquid-phase, that attributes to a quasi-convection phenomenon
[80]. Moreover, the interfacial thermal resistance got reduced with 3-D nanostructure as compared to
2-D nanostructure (metallic oxide-based nanocomposites) between pure PCM and nanoparticles. This
also assists in improving the thermal conductance rate. Arshad et al. [62] found that the heat transfer
improved effectively in all directions of the PCM as the 3D matrix of hybrid nanocomposites forms
a 3D path for both lattice resonance transport and phonon transmission [43,81]. The crystal lattice
resonance remains the primary heat conduction mechanism in non-metallic PCMs. Consequently,
phonons are the dominant thermal transport carriers in the PCM [72]. Furthermore, the thermal
boundary resistance (between nanoparticles and PCM) gets reduced in hybrid NDPCMs which
enhances thermal energy transport, resulting in an improvement in thermal conductivity. Song et al.
[65] explained a 200% increment in thermal conductivity (two-step process). Silver nanoparticles also
contributed to conductivity enhancement. Numerous thermal conductive pathways were provided by
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1D HNT hybrid hierarchical nanostructure which improves the thermal transport. The composite also
showed antibacterial activity.

3.1.4 Discussion on Thermal Conductivity

The λ value of nanocomposites can be enhanced with nanofiller dispersion, as the surface-to-
volume ratio rises with a decline in nanofiller size, which would eventually raise the thermal energy
transport in composites. Thus, a high thermal conductivity results in a reduced solidification and melt-
ing time in composites. Carbon-based nanomaterials are commonly preferred for the improvement
of λ value. They also deliver photothermal and electrothermal capabilities. The need to enhance the
λ value of PCMs is apparent due to their poor energy charging/discharging rates. For improving these
parameters nanofillers of high λ value can be dispersed. The higher λ value in the fluid state is due to
thermal dispersion and profound turbulence, initiated by nanofiller motions. Fig. 8 summarizes the
significant factors that influence the λ value of nanocomposites.

Figure 8: Significant factors influencing the thermal conductivity of nanocomposites

3.2 Impact of Nanoparticle Dispersion on Latent Heat
The predominant property of PCMs is their comparatively higher latent heat capacity and this

privilege of PCMs could be availed when it undergoes a phase transition process. However, the
degraded λ value restrains entire PCMs from participating in the phase transition process. Dispersing
nano additives alters the thermal conductivity [73]. The impact of nanofillers on the latent heat of
nanocomposites had to be well analyzed. Researchers had reported different conclusions in this regard.
Few researchers had reported a positive effect, i.e., nanofiller dispersion enhances the latent heat. Most
researchers had reported negative effects, i.e., the nanofiller dispersion depletes the volume of PCM
and subsequently minimizes the latent heat. Few researchers had found that a reduced volume fraction
had a positive impact on nanofillers melting enthalpy and vice versa.
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3.2.1 Organic Nanoparticles

Putra et al. [58] used theories like interfacial liquid layering, particle clustering, and Brownian
motion to justify the decline in melting enthalpy and specific heat capacity of the nanocomposites.
The interfacial liquid layering theory explains that the dispersion of nano additives could affect the
molecular structure of base fluid. A solid layer was created by base fluid molecules. The stretching of
molecular bonds in nearby molecules causes the solid layer to get exposed to low energy to separate
molecular bonds in melting and freezing. The Brownian motion explains that the rapid movement of
nano additives in the base fluid weakens the bonding in base fluid, so it takes less energy to melt and
freeze [14]. The theory of particle clustering was related to the decline in melting enthalpy and specific
heat capacity of the composite and the clustering strengthens the thermal conductivity. However,
nanographene particles attract paraffin to form particle groups that could minimize the energy for
melting and freezing because of weak molecular bonds [74]. Thermophysical properties were stable
even after 1000 cycles. Jeon et al. [60] synthesized nano-composites with hexadecane xGnP. The Latent
heat of hexadecane decreased slightly with xGnP loading. This is because of the good dispersion of
xGnP in hexadecane with a high surface area and nanoparticle size. With Hussain et al. [61] the latent
heat of nanocomposites got declined around 5% and was due to the physio-chemical changes in nano-
composites. The stability of the composite was evaluated even after 200 cycles and the latent heat
remained constant. Dispersion of the highly porous activated carbon (HPAC) suppresses the sub-
cooling effect in eutectic PCM and improves the λ value. Activated carbon carriers immense surface
energy due to sheet-like structure. The non-settling property of HPAC had linearly minimized the
degree of sub-cooling in every proportion. The change in melting and freezing time establishes that
the nanofillers dispersed into eutectic PCM served as nucleating agents and even improved the thermal
conductivity. All samples synthesized by Arshad et al. [62] exhibited a bimodal crystallization behavior
during the solidification process. The initial smaller peak represents the crystallization temperature and
the second one denotes the transition of lattice structure from triclinic to hexagonal [82]. The dual-
phase transformation phenomenon was caused by the presence of a metastable rotator phase before
finishing the whole crystallization and a result of heterogeneous nucleation during the cooling [43,83].
The changes in peak melting and crystallization temperatures was due to crystallization confinement
of mono and hybrid nanoparticle’s surface layers in the nanocomposite. The interfacial surface layers
cause the formation of an imperfect PCM and result in a minor variation in peak melting and
crystallization temperatures. These factors can enhance the degree of supercooling. The heterogeneous
nucleation may be favored as the nanofiller dispersion was at the cost of a fall in crystallization point
[83]. A higher degree of super-cooling may deliver a hysteresis response to thermal energy transfer, and
it makes the PCM unsuitable for thermal management applications.

3.2.2 Inorganic Nanoparticles

With nano-silica/CaCl2·6H2O nano-composite, Li et al. [51] had a 31% decline in latent heat. The
relative error among experimental and calculated latent heat tend to follow a linear pattern along with
the pore diameter of nano-SiO2. The potential reason behind this phenomenon could be; the restricting
effect of SiO2 tends to get weak, as pore diameter rises [84]. Arshad et al. [46] accounted for a decline
in latent heat during melting and solidification process. The TiO2 nano additives take over the paraffin
molecules resulting in a reduction in melting enthalpy of NDPCM. As the interaction between TiO2

and paraffin gets stronger, the higher will be the latent heat capacity of NDPCM. Using advanced
wet impregnation technique, Saxena et al. [53] synthesized nonadecane/rutile TiO2 nano-composites.
Along with nanoparticle dispersion, a reduction of phase transition temperature was noted which, was
due to enhanced thermal conductivity (37%). A 7.6% fall in latent heat capacity for NDPCMs was



EE, 2022, vol.119, no.4 1313

attributed due to the addition of nanofillers which were solid and does not undergo a phase transition
in the melting range of PCM. Li et al. [47] added γ -Al2O3 nanoparticles and SrCl2·6H2O (nucleating
agent) in CaCl2·6H2O to form nanocomposites. Latent heat got declined by 12.7%. The dispersion
of γ -Al2O3 nanofillers caused a fall in the degree of supercooling, and a maximum enhancement in
thermal conductivity. The degree of supercooling of CaCl2·6H2O/γ -Al2O3 nanocomposite lies in the
range of 0°C–2°C, which indicates that surplus latent heat was liberated from the nanocomposites.

3.2.3 Hybrid Nanoparticles

Arshad et al. [43] reported a decrease in melting enthalpy for nanocomposites and was due to the
increment in λ value. The degree of supercooling was almost constant around 2°C. The enhanced phase
duration for latent heat and uniform natural convective heat transfer of paraffin/GNPs+MWCNTs
evades overheating and has huge capability in thermal management of microelectronics.

3.2.4 Discussion on Latent Heat

In general, nanofiller dispersion in salt hydrates minimizes the stored enthalpy whereas with
organic PCMs this decrease remains relatively low. Thus, the energy storage performance of the salt
hydrate remains untouched as the latent heat values remain over 100 kJ/kg. The ratio of effective
PCM in a nanocomposite that can successfully store heat by completing solidification is provided by
the term crystallization factor Fc. When a part of PCMs got confined in the porous structure of the
matrix, (disorder PCMs) and cannot complete the crystallization, it leads to a decrease in Fc value
[85]. A lower shift in crystallinity values of the composite means that the incorporated PCM can still
work efficiently even though the content of nanofillers in the composite was raised to a higher level.
Furthermore, thermal properties got enhanced, as the thermal conductivity got improved and the
subcooling degree was reduced or eliminated.

4 Thermal Management in Buildings with Nano Composite Phase Change Materials

As per International Energy Agency reports, the global energy consumption trends are expecting
a rise of 44% for 1.5 decades from 2016 [86]. Buildings incur almost 30%–40% of energy usage in the
European Union which accounts for 30% of greenhouse gas emissions. In buildings, 60% of the energy
is designated for HVAC systems [30,87]. The ultimate necessity of low energy consumption paved the
way for new methods of temperature management in buildings [87]. To store and release excess thermal
energy PCMs could be deployed. High performance together with the energy-efficient building was
made possible with PCMs. They primarily store energy as latent heat and possess quite compatible
energy storage density [88]. However, the conventional PCMs possess a low heat transfer rate and it
can be improved by dispersing thermally conductive nanoparticles [89].

Carneiro et al. [90] evaluated the heat transfer performance of a building wall model under the
influence of TiO2 coated plastering mortar. When compared with the standard wall model the TiO2

coated mortar degrades the steady-state thermal behavior of the wall by 10% (for conduction thermal
resistance) and 13% (for thermal transmission coefficient). Moreover, the exterior wall with TiO2

nanofillers on the façade enhances the water evaporation rate by 136%. A 136% increment in the
water evaporation rate was observed with TiO2 nanofiller coated exterior façade

Parameshwaran et al. [91] synthesized a hybrid nanocomposite (Ethyl trans-cinnamate/silver–
titania). The composite exhibited improved thermophysical properties. The NDPCM exhibited
enhanced thermal stability than pure PCM. When compared with pure PCM freezing and melting
duration of NDPCM got reduced by 23.9% and 8.5%. Energy efficiency and savings were obtained
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with freezing rate reduction. The viscosity got enhanced to 3.89% with a rise in hybrid nanoparticle
loading This suggests that there exists a relative dependency between thermal properties and viscosity
of the NDPCM.

4.1 Active Thermal Management
According to Lechner active cooling methods are termed as “mechanical equipment to satisfy

the needs (of cooling within a building) not provided by nature” [92]. Active methods mainly rely on
electric power and heat as energy sources [92]. The heat energy could be the exhaust heat derived
from other processes if available [93] or even from district heating systems. Moreover, renewable
energy systems could be deployed to run the active devices [94]. Nonetheless, apart from fans, all
active methods have significant energy demand [95]. Active thermal management applications for
cooling in buildings are categorized as: free cooling, active solar façade, ventilated Trombe wall,
thermally activated building structures with PCM (PCM-TABS), evaporative and radiative systems,
geo cooling, and ice storage [5]. Said et al. [96] introduced a novel technique to improve the productivity
of an AC unit by integrating a PCM heat exchanger with the condenser of the AC unit. Nano
additives (Al2O3, CuO, and Cu) were dispersed into PCM. The cold ambient air at night was used
to charge. The cold energy storage inside the NDPCM was charged by using cold ambient air at
night. The hot air at daytime was cooled down by passing it through the NDPCM heat exchanger
before it flows to the AC condenser. The AC unit delivered a maximum power saving of about 7.41%
(NDPCM-Cu nanoparticles 5%) for an inlet temperature of 45°C. The best conditions for this method
could be achieved with optimization studies. Parameshwaran et al. [97] used a MATLAB simulation
environment to study the effect of silver nanoparticles dispersed in water on a variable air volume
air conditioning system. For year-round operation, LHTES air conditioner with silver nanoparticles
delivered an energy saving of 36%–58% on–peak and 24%–51% average per day. An improvement in the
overall thermal performance of the system was noted. SVAV-AC gave energy saving of 7.5%–18.6% on-
peak and 7.9%–17.8% average per day. In total, the combined air conditioning system was found to be
beneficial in attaining good thermal comfort, acceptable indoor air quality, and energy redistribution
needs of the building. Parameshwaran et al. [98] used simulations to investigate the performance of
silver-titania/Dimethyl-adipate HiTES (hybrid nanocomposites based CTES) system integrated on a
building HVAC system for year-round weather conditions. Thermal conductivity enhancement lies
in the range (7.3%–58.4%). The complete freezing time of the hybrid nanocomposites got reduced by
15%. A 46.3% decline in chiller cooling capacity (under part load) and 39.6% (on-peak load) was noted.
The novel system gained 27.3% and 32.5% reduction on-peak energy savings potential in summer and
winter respectively. Reported an yearly energy savings of 12.2% in summer and 10.2% in winter.

4.2 Passive Thermal Management
Passive thermal management mention technologies/design features devised to reduce building

temperature with zero or even with minimal energy consumption [99] to improve the structure’s
energy efficiency [100]. The amount of energy consumption is small in comparison to active methods
[99,100]. Moreover, renewable energy sources power them [100]. The use of PCM for passive thermal
management comprises of integrating them in: free cooling, passive solar façade, building envelope
components (floors, ceilings, walls, windows, shutters, and blinds) Trombe wall, solar chimney [5].

4.2.1 Building Impregnated Systems

Ashok et al. [101] used shape stable bio NDPCM to analyze the thermal energy penetration
performance of NDPCM integrated buildings. The green buildings improve thermal comfort inside
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the building and conserve energy. A novel NDPCM integrated composite was introduced to a hollow
solid concrete block. An experimental building of size 1 m3 was constructed to analyze the thermal
effects of NDPCM (paraffin/Graphene) integration. Chitosan Shell was used as a shell to prevent
leakage. The building integrated with NDPCM showed a maximum reduction of 5.3°C in room
temperature when compared with building without NDPCM. The indoor temperature of the NDPCM
integrated building increased by 1.8°C when the outdoor ambient temperature dropped below 23.6°C.
The NDPCM integration delivered an improved thermal comfort in buildings for all seasons. Thus,
NDPCM integration in buildings provides passive cooling of buildings along with energy savings.
Ranjbar et al. [54] used the impregnation technique to synthesize heptadecane/SiO2 nanocomposite.
The thermal performance of nanocomposite mixed with gypsum was analyzed by examining the
effect on the indoor temperatures of the test room. The nanocomposite had excellent thermal cycling
reliability and thermal conductivity. When the mass % of nanocomposite in the gypsum board was
increased, the rate of temperature rise got reduced. In the test room, indoor temperature fluctuation
curves declined from 41.2°C to 40.2°C, 37.4°C, and 35.5°C when the top gypsum board had 0, 1, 4,
and 8 wt.%, of nanocomposites. These results showed that the A5 nanocomposite-gypsum composite
had an excellent thermal performance. They could be deployed for TES and building thermal
management. Sarrafha et al. [102] used the finite difference method to measure the effectiveness
of nano encapsulated NDPCM (octadecane/MWCNT) integration in building walls. During the
summer, autumn, and winter days, a 50.1%, 18.5%, and 39.7% increment in latent heat activation
with NDPCM integration was observed. Moreover, a rise in the aspect ratio of MWCNT’s had a
noticeable incremental effect on thermal conductivity, up to a certain limit for NDPCM loading rate.
Li et al. [51] analyzed the thermal management potential of CaCl2·6H2O dispersed in silica for a
laboratory-scale test chamber. When compared with pure PCM, NS1 needed the longest hysteresis
time (about 7 min) before peak temperature was observed. During the cooling, the temperature
curve of nanocomposites had a smooth decline. The form stable NDPCMs were able to reduce
the indoor peak temperature greatly during the melting process and extended the duration of heat
preservation during the cooling. FSNDPCMs could maintain suitable indoor temperatures when the
external temperature is lower than the required internal temperature during winter. Hence the heating
load could be drastically minimized. From these results it is evident that NS1 had relatively good
thermal properties, making them efficient thermal management materials. Xie et al. [48] successfully
reduced the room temperature using a NDPCM (CaCl2·6H2O/CsxWO3) kept between doubled layered
windowpane of the test chamber. The loading rate of nanoparticles was varied from 0.25%–1.0%
with an increment of 0.25%. The non-freezing liquid layer [103] (between PCM and nano-particles)
accounts for the difference between calculated and experimental values of latent heat. There was
a slight deviation in melting point with nanocomposites which can be neglected. The degree of
supercooling was slightly reduced for nanocomposite which is primarily because nanoparticles acted
as nucleating agents and facilitate heterogeneous nucleation and thereby increases the crystallization
rate [104]. Too much loading of nanoparticles hinders crystal growth, and this is visible from
the results. The thermal reliability was established by thermal cycler testing. After 100 cycles the
latent heat was reduced by 4.1% and melting temperature by 1.75% which establishes the thermal
reliability of the nanocomposite. The thermal conductivity got degraded from 0.732 W/m.K (pure) to
0.584 W/m.K (NDPCM). The degradation could be due to interface resistance between components
(for low loading of nanoparticles). The elevated viscosity of CTAB also lowers the heat transfer rate.
The glass window with NDPCMs delivered a 90%NIR radiation shielding. The indoor temperature
was maintained between 22°C–28°C for a longer duration. Temperature fluctuations were minimized
and exhibited thermal inertia. Li et al. [105] conducted both simulation and experimental studies
to analyze the indoor performance of a double glazed window pane filled with NDPCM. The key
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findings were, (1) indoor temperature depends on nanoparticle size and concentration. (2) The impact
is more significant in winter. (3) The energy consumption could be minimized to 1.5% in summer,
2% in autumn, and 4% in winter (based on NP volume fraction & size). The energy consumption
rises with the volume fraction of nanoparticles and a fall in energy consumption was noted with large
particle diameter. The lowest energy consumption was recorded with a nanoparticle concentration
of 1% as well as a particle diameter of 100 nm with all seasons. The simulated results were found to
agree with measured values. The temperature difference between the interior surface of glazed windows
and the indoor environment was mainly in the range of 1°C–4°C for summer, 5°C–10°C for autumn,
and 14°C–16°C for winter seasons. Venkitraj et al. [106] studied the performance of a building model
integrated with macro-packed NDPCM (Neo Pentyl Glycol/0.1% CuO). The thermal conductivity
got enhanced by 12.7% along with a reduction in charging and discharging time. An 11% decline in
latent heat was observed with 100 thermal cyclings of the nanocomposite. The NDPCM integration
was able to deliver a reduction of 3.5°C in room temperature. Li et al. [52] observed that the maximum
temperature gained by SA/CNT composite was almost 133% higher when compared with pure stearic
acid. The exposure duration in the solar simulator was 1250 s. The NDPCM got cooled down to
20°C by 2500 s. However, the final temperature of SA was 125% higher. This enhancement was due
to enhanced photon capture and molecular heating by optical absorption of CNTs. The composite
had high thermal management abilities, especially for buildings. Sayyar et al. [107] incorporated
NDPCM (capric acid/palmitic acid- graphite nanosheets) into gypsum wallboard using a sandwich
structure. Under simulated day and night conditions the thermal performance of gypsum wallboards
incorporated with NDPCM was evaluated. The energy efficiency of NDPCM integrated tests cells
(representing a scaled building). was estimated using a numerical model. The use of NDPCM in
wallboards enabled (i) reduced fluctuations in interior temperature and (ii) shifted (delayed) the time
for peak temperature attainment. With NDPCMs the energy demand for cooling was 544 J and for
heating was 332 J. Energy demands for cooling (2224 J) and heating(1967 J) were comparatively high in
the absence of NDPCM. A 79% reduction in indoor temperature and improvement in energy savings
was noted. The indoor temperature was maintained within the comfort zone. Biswas et al. [108] used
both numerical simulation and experiments to evaluate the performance of a prototype of shape stable
NDPCM enhanced wallboard. The efficiency gained by the system was found to rise with a rise in
temperature (19°C–23°C). The integration showed a reduction in cooling electricity consumption.

4.2.2 Building Integrated Systems

Photovoltaic (PV) systems used on buildings can be classified into two Building attached PVs
(BAPVs) and Building Integrated PV(BIPV) [109]. BAPVs are simply attached to the buildings and
do not have any structural functions. Conversely, BIPVs are PV modules, which can be integrated
into building envelopes (roofs/façade) by swapping traditional construction materials [110]. Therefore,
BIPVs have a significant impact on building functionality and could be recognized as an indispensable
part of the building energy system. The electrical efficiency of BIPV declines with a rise in working
temperature. The operating temperature must be maintained at standard test conditions to outrun
this drawback. PCMs were found to be most appropriate and perfect for cooling PV cells when
compared with other technologies as they possess good energy storage density, zero operating and
maintenance cost, and zero external power required to operate the system [111]. The integration of
the PCM with the PV panel delivers additional thermal comfort along with power savings [112]. The
operating temperature of BIPV can be maintained steady and an improved efficiency was attained with
PCM usage. However, the heat transfer rate of conventional PCMs were low and can be enhanced by
dispersing thermally conductive nanomaterials [89].
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Nada et al. [113] installed three PV panel configurations, a normal PV panel, a PV panel with
PCM, and a PV panel with NDPCM(paraffin/Al2O3) mounted on a building wall. The results showed
that in stand-alone PV, PV with PCM, and PV with NDPCM, the panel temperatures got minimized
by 1.8°C and 10.6°C, respectively. Their efficiency was improved by 5.7% and 13.2% when compared
with PV panels. Sharma et al. [114] attempted to deliver passive thermal management in Building-
Integrated Concentrated Photovoltaics using micro fins, PCM, and NDPCMs (paraffin/CuO). A
12.5°C reduction in temperature at the center of the systems was noted using micro-fins with NDPCM
as compared to the micro-fins and PCMs had a reduction of 10.7°C. The NDPCM with the un-finned
surface had a temperature reduction of 11.2°C whereas with the un-finned PCM the reduction was
9.6°C. Ma et al. [22] dispersed a 10% volume fraction of Cu nanoparticles in paraffin. A lumped
enthalpy model was used for PCM modeling. Mathematical models were used in estimating the
thermal conductivity (Maxwell model) and latent heat of NDPCM. The building system simulation
of the building system was done using TRNSYS. The amount of heat absorbed showed an 8.3%
increment with NDPCMs (23.85 kWh) when compared with pure PCM (22.03 kWh). Similarly, the
heat discharged was also higher with NDPCMs. NDPCMs (10.66 kWh) discharged 25.1% more heat
when compared with PCMs (8.52 kwh). The tests were performed in winter for a duration of three
days. Kant et al. [89] used computational fluid dynamics to analyze the impact of various nanofillers
on the working temperature of a BIPV. Octadecane dispersed in Al2O3, Cu, CuO, and TiO2 were used
as nanocomposites. The result established that the dispersion of nanofillers in an optimum quantity
greatly minimized the working temperature of BIPV for a prolonged time. The maximal temperature
fall was noted with Cu and the minimal with TiO2. The panel temperature was kept below 40°C for
1 h with 5% Cu nanoparticles. NDPCM minimized the working temperature of the PV panel when
compared with pure PCM. A maximal operating temperature difference of 1.65°C, 1.19°C, and 1.15°C
was noted for 3 days at around 12.50 PM.

5 Outlooks and Challenges

Most studies implied that the thermal conductivity of NDPCM stays comparatively higher than
the base material [115]. A high-grade thermal conductivity can compensate for negative effects like
sub-cooling. The most common synthesis route is sonication in which the power used, and duration
remains different in almost all cases. A uniform protocol for synthesis must be devised. The latent heat
behavior of NDPCM must be well studied. Most of the studies indicated that nanoparticle dispersion
degrades the latent heat and vice versa. In-depth, studies must be done to address the inconsistency
in the findings. The reliability of thermophysical properties must be done with required cycling tests.
The optimum nanofiller concentration which can deliver both maximum thermal conductivity and
minimal degradation of latent heat must be identified. Thermal cycling may affect nanoparticles
dispersion where the crystallization structure of NDPCM could be altered and may eventually
affect entire thermophysical properties. The leakage of NDPCMs during phase transfer was averted
with form stable NDPCMs. The supporting skeleton used lowers the thermal conductivity. Particle
agglomeration in NDPCM relies on repulsive and Van der Waals forces. During heating, Van der
Waals forces (attractive force) in nanofillers becomes weak and the repulsive force becomes stronger.
Consequently, it reduces the agglomeration tendency of nanofillers. The repulsive force varies linearly
along with the temperature. During cooling, the nanofillers tend to agglomerate and sediment, which
could be averted by shortening the solidification time. Under a short solidification time, nanofillers are
restrained from moving close to each other or even falling due to gravitational force. Further study on
this aspect should be done. Moreover, researchers should also focus on the safety aspect of NDPCM
towards human health and the environment since the fillers being used are at the nano level. Also,
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a Techno-economic analysis, life cycle analysis (LCA), and life cycle cost analysis (LCCA) must be
done to justify the application of nanocomposites. The simulation and porotype studies conducted in
applications must be integrated to a larger level to prove their viability.

6 Conclusions

During the selection of PCM/NDPCM researchers should consider factors like λ value, enthalpy,
phase transition temperature, thermal diffusivity, volume change, stability, density, vapor pressure,
crystallization duration effect of sub-cooling, cost, safety. An adequate amount of nanofillers disper-
sion is needed to enhance the overall thermal conductivity of the composite. The thermal conductivity
of NDPCM normally rises with the rise in nanoparticle concentration. However, it is noted that
the temperature effect on the λ value of NDPCM is similar to the characteristic of pure PCM
towards temperature variations. Surfactant dispersed in nanocomposites ensures uniform distribution
of nanofillers. The interaction between PCM molecules and nanofillers is restricted to physical.
There exists inconsistency in the enthalpy of NDPCM. Carbon-based nanoparticles have delivered a
maximum increment in conductivity. Hybrid nanoparticles with their synergistic effect also provided
maximum thermal conductivity enhancement. Most researchers revealed that nanofillers degrade
latent heat but the increment in latent heat was also reported. This could be attributed to the amount
of nano additives dispersed in PCM. Nanofiller dispersion reduces sub-cooling and phase change
duration. An inconsistent trend in phase change temperature variation after nanofillers dispersion
is widely observed in the literature. The addition of nanofillers in liquid PCM improves its viscosity
behavior. Thermophysical properties of Ne PCM get slightly degraded with repeated thermal cycles.
Even though the building integration of NDPCMs had derived energy savings, statistical analysis and
further research must be done to implement it in real-life conditions.
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