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ABSTRACT 

Sunlight is the world's largest renewable energy source. Using the existing 
technologies, this energy can provide the needs of all the people on Earth. By increasing 
the solar-to-electric energy conversion efficiency while maintaining the cost and 
lifespan of a machine, conventional photovoltaic technology is being progressively 
challenged by concentrated solar thermal engine technology especially in large scale 
power plant. For local research, the limitation of technological development between 
technical potential and practical utilisation of solar energy becomes one of the reasons 
behind the minimum growth of solar energy field. Owning a local renewable energy 
conversion system means decrease fossil fuel dependability, secure near to long term 
power supply chain and hence enhances economic development. In order to develop 
local expertise with low production cost, full scaled dish-Stirling CST based on DNI 
solar flux modules were prototyped. The development of the research began with a 
preliminary assessment on a 2m diameter manual operated ideal paraboloid 
concentrating dish prototype. Based on the important design parameters and followed 
by rigorous system design principles, an 8m diameter combined paraboloid-Fresnel 
concentrating dish with low focus height, low dish height and minimal wind resistance 
was designed and constructed. Using the hydraulic-electric two-axis solar tracking 
system, the proposed system was able to move 0-90 0 in Azimuth axis and +I1800 

elevation axis for the full day solar tracking with the consideration of yearly solar path 
variation. For the thermal-to-mechanical energy conversion, a compact and superior 
combination of square configuration, four cylinders rhombic drive beta drive 
mechanism Stirling engine system was integrated with the concentrating dish and 
tracking mechanism. Throughout the research and development, detailed investigations 
were conducted to achieve correct operation of the actual prototype. Referring to the 3D 
model, these studies, including a 3D ray trace analysis on the dish's focal region solar 
flux concentration pattern, influent of Azimuth angle offset on the thermal receiver 
performance, air flow simulation on +1- 0 to 28m1s wind load, coefficient of drag 
comparison and stress distribution due to wind and structural loads. From the 
computational and operating analysis, the paraboloid-Fresnel dish showed 34.9 to 
38.3% of wind load reduction compared with ideal paraboloid design, low CD in 
between 0.077 to 0.76 depends on wind flow direction and rotating angle. Together with 
structural mass, stress simulation indicated maximum stress of 320.6JVINIm2 and was 
validated with six components failure. Meanwhile, practical model showed 51% of 
structural stress reduction after continuous design improvement. Next, focal region 
temperature readings were recorded under various circumferences, and maximum 
concentrated temperature of 357°C had agreed the research hypothesis that specific 
thermal receiver design can store the solar flux at higher intensity. After several 
cranking tests, the prototype Stirling engine was unable to start as designed due to 
scattered solar thermal distribution. Based on Schmidt's analysis, the predicted engine 
output power was 6.03kW. Considering the total energy consumption for PLC, electric 
motor, hydraulic system and auxiliary system, the net power output was predicted at 
5.759kw. Based on 1000W/m 2 solar DNI, the energy conversion efficiency for 8m 
diameter concentrating dish was predicted at 11 .52%.
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ABSTRAK 

Cahaya matahari adalah sumber tenaga boleh diperbaharui yang terbesar di dunia. 
Dengan menggunakan teknologi yang sedia ada, tenaga mi boleh menyediakan 
keperluan semua manusia di Bumi. Dengan meningkatkan kecekapan penukaran tenaga 
solar untuk elektrik sementara mengekalkan kos dan jangka hayat mesin, teknologi 
photovoltaic konvensional sedang beransur-ansur dicabar oleh tertumpu solar enjin 
teknologi haba terutama di loji kuasa secara besar-besaran. Bagi penyelidikan tempatan, 
had pembangunan teknologi antara potensi teknikal dan praktikal penggunaan tenaga 
solar menjadi salah satu daripada sebab-sebab di sebalik pertumbuhan bertakung bidang 
tenaga solar. Memiliki sistem penukaran tenaga tempatan yang boleh diperbaharui 
ertinya mengurangkan pergantungan pada bahan api fosil, kekalkan rantaian bekalan 
kuasa jangka panjang dan dengan itu meningkatkan pembangunan ekonomi. Dalam 
usaha untuk membangunkan kepakaran tempatan dengan kos pengeluaran yang rendah, 
piring/Stirling CST berskala penuh berdasarkan modul fluks solar DNI telah 
dibangunkan. Pembangunan penyelidikan bermula dengan penilaian awal mengenai 
piring paraboloid diameter 2m. Berdasarkan parameter reka bentuk yang penting dan 
diikuti dengan prinsip-prinsip reka bentuk sistem ketat, piring diameter 8m hasil 
gabungan paraboloid-Fresnel dengan ketinggian tumpuan dan tinggi piring yang rendah, 
serta rintangan angin minimum telah ditakrifkan dan dibina. Menggunakan hidraulik 
elektrik dua paksi Penjejakan sistem solar, sistem yang dicadangkan mampu untuk 
bergerak 0900 dalam Azimut paksi dan +1-180 0 dalam paksi ketinggian untuk 
Penjejakan hari solar penuh dengan mengambil kira perubahan laluan solar tahunan. 
Untuk penukaran tenaga terma kepada mekanikal, kombinasi yang padat dan atasan 
konfigurasi persegi, empat silinder berbentuk rhombic drive enjin Stirling jenis beta 
bersepadu dengan piring penggumpulan cahaya matahari serta mekanisme pengesan. 
Sepanjang penyelidikan dan pembangunan, siasatan terperinci dijalankan untuk 
mencapai pengendalian yang betul bagi prototaip sebenar. Merujuk kepada model 3D, 
kajian termasuk ray 3D surih analisis di rantau tumpuan pring kepekatan corak fluks, 
kesan sudut Azimut diimbangi prestasi penerirna haba, udara simulasi aliran dan 0-
28m1s angin beban, pekali perbandingan seret dan agthan tegasan yang disebabkan oleh 
angin dan beban struktur. Dari analisis pengiraan dan operasi, piring paraboloid-Fresnel 
menunjukkan 34.9-38.3% pengurangan beban angin berbanding dengan reka bentuk 
paraboloid yang ideal, CD rendah di antara 0.077-0.76 bergantung kepada arah aliran 
angin dan sudut berputar. Bersama-sama dengan jisim struktur, simulasi tekanan 
menunjukican tegasan maksjmum 320.6MNIm 2 dan disahkan dengan enam komponen 
kegagalan. Sementara itu, model praktikal menunjukkan 51% daripada pengurangan 
tekanan struktur selepas peningkatan reka bentuk yang berterusan. Seterusnya, fokus 
rantau bacaan suhu dicatatkan di bawah keadaan pelbagai, dan suhu maksimum pekat 
357°C telah bersetuju hipotesis penyelidikan bahawa penerima reka bentuk haba 
tertentu boleh menyimpan fluks solar pada intensiti yang lebih tinggi. Selepas beberapa 
ujian cuba hidupkan enjin, prototaip Stirling enjin tidak dapat beroperasi seperti yang 
direka bentuk kerana rata berselerak panas matahari. Berdasarkan analisis Schmidt, 
kuasa enjin yang diramalkan adalah 6.03kW. Dengan mengambil kira jumlah 
penggunaan tenaga untuk PLC, motor elektrik, sistem hidraulik dan sistern bantu, kuasa 
keluaran bersih diramalkan pada 5.759kW. Berdasarkan 1000W/rn 2 solar DNI, 
kecekapan penukaran tenaga bagi piring diameter 8m telah diramalkan pada 11.52%.
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Tieng Engine efficiency 

Optical efficiency 

ni Sun ray incoming ratio 

nt Sun ray refraction ratio 

o Solar incidence angle 
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°rim Half angle subtended by the arc of the parabola 

k Thermal diffusivity 
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aVOflM . Von misses stress 

0iimit Maximum stress 

US Stefan-Boltzmann constant, 5.67 x 108 W/(m2K4) 

P Fluid density 

Pr Reflectivity 

Pgas Working gas density 

T Transmissivity 
T ik Viscous shear stress tensor



Tt	 Temperature ratio 

Angular velocity.
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CHAPTER 1 

INTRODUCTION 

1.1	 Background Study on Solar Power 

Due to environmental issues as well as increasing demand for renewable 

resource, the conversion of solar power into useful energy is receiving more and more 

attention in recent years. Sunlight is the world's largest energy source. The amount that 

can be readily accessed with existing technology greatly exceeds the world's primary 

energy consumption. Furthermore, sunlight is free, clean, renewable and technically 

exploitable in most part of the inhabited earth (Angkee and Chana, 2011). 

Taking the Sun as the spectrum of a blackbody at 5 800K, the amount of solar 

energy falling on a surface per unit area and per unit time is illustrated in Figure 1.1. 

Currently, the Sun radiates energy at 3.9x1 026W or 64x1 06W/m2 but energy received by 

the Earth and its atmosphere is 1368 W1m2 or 1.7 x 10 17W of radiation yearly from the 

sun. This value varies in +1-1.7% due to changes in the Earth-Sun distance (Salsabila, 

Ab Kadir and Suhaidi, 2011). Assuming that the world population is 10 billion with a 

total power need per person of 10kW would require about 101 'kW of energy (Goswami, 

Frank and Jan, 2000). This is equal to 1000km x 1000km solar powered land area 

Plotted in the middle of the Atlantic Ocean (Anton and Christian, 2009). Apparently, 

solar irradiance on only 1% of the earth's surface with 10% efficiency useful energy 

conversion could provide the needs of all the people on Earth (Goswarni, Frank and Jan, 

2000).
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Figure 1.1 : Annual solar irradiance on Earth


Source : Anton and Christian (2009) 

A tropical country such as Malaysia is generally hot all year-round and 

experiences its rainy season during the end of the year. Within an average of 12 hours of 

sunshine daily, the average solar energy received is between 1400 and 1900kWh/m2 

annually. The maximum radiation is received during a sunny day, where 90% of the 

extraterrestrial radiation becomes direct radiation while the rests are being deflected as 

diffuse radiation, while conversely, on a cloudy day, nearly all the solar radiation is 

diffused (Salsabila, Ab Kadir and Suhaidi, 2011). The weather condition in Malaysia is 

suitable for solar power implementation. This is because the weather condition is almost 

predictable and the availability of about 6h of direct sunlight with irradiation of between 

800W/M2 and 1000W/rn2 (Nowshad, Chin and Kamaruzzaman, 2009). 

Today, two technologies are being actively developed to transform solar 

irradiation into electricity. One technology is photovoltaic or solar voltaic which uses 

Photovoltaic materials to convert solar radiation directly into electricity. The other 

technology is solar thermal power or concentrating solar power converts the solar 

radiation into heat and then electricity through various thermodynamic cycles. For 

photovoltaic cells, efficiency up to 18% are reported while the efficiency of heat engine 

Conversion systems can be as high as 33% depending on the quality of the technology 

used (Karabulut, Yucesu and Cinar, 2006). Restricted by the capital cost of solar panels
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and other issues, the photovoltaic technology is being increasingly challenged by solar 

thermal power technology. In recent years, some practical solar thermal power plants 

have been installed in countries such as the US, Europe, India and China (Wu, Xiao, 

Cao and Li, 2010). 

1.2	 Problem Statement 

Compared with the heavily subsidised fossil fuel, renewable energy such as solar 

power often labeled as expensive and will never be price-competitive. In addition, solar 

technology has been always stereotyped as not technically feasible for electricity 

generation due to the high cost. Although solar power has an enormous potential to 

reduce the global emissions of greenhouse gasses, the current use of this energy 

resource represents less than 1% of the total electricity production from renewable 

sources (Goswami, Frank and Jan, 2000). Particularly in Malaysia, the present 

initiatives and efforts are lower than the country's actual potential. Currently, the solar 

status in Malaysia is 1MW, but its estimated potential can reach more than 6500MW 

(Salsabila, Ab Kadir and Suhaidi, 2011). The limitation of technological development 

between technical potential and practical utilisation of solar energy becomes one of the 

reasons behind the minimum growth of solar-energy field. 

The total solar energy reaching the earth is made up of two parts; energy from 

direct irradiation and energy from diffused irradiation. Although power-plants can use 

direct and diffuse solar energy, most of the man-made solar-electric conversion system 

can convert only direct energy efficiently (Goswami, Frank and Jan, 2000). With the 

solar concentration system, high intensity solar thermal engine operation is much more 

efficient than the diffuse solar technology. 

In the recent development, one of the most viable technologies is the 

Concentrating solar thermal (CST) which is able to convert solar electric for both 

distributed and remote area applications. However, each energy conversion has 

efficiency, cost and an environmental footprint depending on the worthiness of the 

process. From a scientific and technical viewpoint, the development of new 

technologies with higher conversion efficiencies and low production costs become the
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key requirement for enabling the deployment of solar energy at a large scale (Goswami, 

Frank and Jan, 2000). 

For the dish-Stirling CST technology as instance, it has good potential in power 

modulation and possess high concentration ratio. However, the solar-to-electric 

efficiency varies largely depending upon the solar flux density, concentration factor, the 

temperature of the thermal intermediary and the thermal cycle efficiency for the 

production of mechanical work and electricity. In order to maximise the solar fraction, 

intense search for effective and economic methods to capture, store and convert solar 

energy into useful energy should not be neglected (Mekhilef, Saidur and Safari, 2011). 

In order to do that, one of the crucial steps is the introduction of specific solar 

thermal-electric energy conversion technology. In the case of dish-Stirling system, the 

technology development includes concentrator, receiver, absorber, thermodynamic 

cycle and tracking system. The technology must be further developed and proven to be 

technically and economically feasible with the consideration of environmental impact 

such as material degradation and climate constraints. 

1.3	 Objectives 

Research objectives for the development of solar thermal energy conversion 

system are listed as follows: 

i. To prototype 8m diameter innovative solar thermal concentrating dish with two-

axis solar tracking system 

ii. To develop compact multi cylinders solar Stirling engine with thermal receiver 

unit for concentrated solar flux operation 

iii. To analyse the operation feasibility of integrated full scale solar dish-Stirling 

prototype model.
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1.4 Work Scope 

The work scope is specified as follows: 

i. Development of solar thermal concentrator based on combined paraboloid-

Fresnel principle 

ii. Development of azimuth-elevation control unit, load supporting structures and 

direct normal irradiation tracking system 

Development of a square rhombic drive Stirling engine incorporated with the 

solar-thermal receiver 

iv.	 Integration of working prototype dish-Stirling system 

V.	 Installation of data acquisition and monitoring sensors 

vi.	 Dish-Stirling working model operational analysis. 

1.5	 Hypothesis 

Large concentrating dish development based on innovated paraboloid-Fresnel 

concept could minimise wind and rain load which indeed applicable for modular or 

distributed tropical application. Consistent solar tracking system could be developed 

using PLC principle and accumulation of high intensity solar direct normal irradiation. 

Consequently, it could increase the temperature of thermal flux in the specific receiver-

absorber to drive the four-cylinder square type rhombic drive beta Stirling engine. For 

the solar power conversion, solar thermal is an alternate solution instead of the photo-

chemical process.
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