Studies on the effect of H⁺ carrier toward ionic conduction properties in alginateammonium sulfate complexes-based polymer electrolytes system

Nurhasniza M Khan¹, Noor M Norman¹, Ahmad S Samsudin^{1,*}

¹Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang

ABSTRACT

The present work highlights the contribution of ammonium sulfate $(NH_4)_2SO_4$ as H⁺ carriers in alginate-based solid polymer electrolytes (SPEs) that were successfully prepared via a solution casting technique. The Fourier transform infrared analysis revealed that molecular interactions between the host polymer and the ionic dopant complexes occurred at the wavenumbers $3700-2500 \text{ cm}^{-1}$, $1800-1500 \text{ cm}^{-1}$, and $1200-900 \text{ cm}^{-1}$. These regions corresponded to the O-H stretching, COO⁻ and C-O-C, moieties of alginate, respectively, which coordinated with the H⁺ carrier from $(NH_4)_2SO_4$. At ambient temperature, the optimum ionic conductivity was obtained at $3.01 \times 10^{-5} \text{ S cm}^{-1}$ for the sample containing 10 wt.% of $(NH_4)_2SO_4$. The IR-deconvolution approach shows that the ionic conduction enhancement is governed by the ionic mobility and the diffusion coefficient of H⁺ carriers, and the findings show that the present biopolymer, which is an alginate-based SPEs system, has an excellent possibility to be used as electrolytes for application in electrochemical devices.

KEYWORDS:

Polymer electrolytes; polysaccharide polymer; ionic conductivity; molecular interaction

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Higher Education (MOHE) for providing financial support under the Fundamental Research Grant Scheme (FRGS) No. FRGS/1/2019/STG07/UMP/02/4 and Universiti Malaysia Pahang for the laboratory facilities as well as additional financial support under the Postgraduate Research Scheme PGRS2003112